WO2020240819A1 - エアロゾル生成装置、生成方法、および生成プログラム - Google Patents
エアロゾル生成装置、生成方法、および生成プログラム Download PDFInfo
- Publication number
- WO2020240819A1 WO2020240819A1 PCT/JP2019/021723 JP2019021723W WO2020240819A1 WO 2020240819 A1 WO2020240819 A1 WO 2020240819A1 JP 2019021723 W JP2019021723 W JP 2019021723W WO 2020240819 A1 WO2020240819 A1 WO 2020240819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- atmospheric pressure
- aerosol
- unit
- determination
- suction
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F47/00—Smokers' requisites not otherwise provided for
Definitions
- the present disclosure relates to an aerosol generator, a generation method, and a generation program for generating an aerosol to be sucked by a user.
- aerosol generators for generating aerosols that the user sucks, such as general electronic cigarettes, heat-not-burn tobacco, and nebulizers.
- a method for producing an aerosol for example, a method of atomizing a liquid by the heat of a heater heated by electric power supply or a method of atomizing a liquid by generating ultrasonic waves is known.
- an aerosol is generated by turning on the heater or generating ultrasonic waves.
- Patent Document 1 discloses an electronic cigarette device including a normal pressure capacity and a negative pressure capacity, in which a pressure difference is generated between the two when a user sucks the nicotine solution, thereby starting atomization of a nicotine solution. Has been done.
- one aspect of the present disclosure is an atmospheric pressure data acquisition unit, which is an atmospheric pressure data acquisition unit that acquires atmospheric pressure data indicating an atmospheric pressure in the aerosol generator that can fluctuate due to suction by a user, and the above.
- the first determination unit for determining whether the difference between the acquired atmospheric pressure, which is the atmospheric pressure indicated by the atmospheric pressure data, and the reference atmospheric pressure is equal to or less than the first determination threshold for determining the possibility of suction by the user, and the first determination.
- the aerosol generation device activates the generation of the aerosol in the aerosol generation unit.
- Another aspect of the present disclosure is a method performed by an aerosol generator, which comprises a step of acquiring atmospheric pressure data indicating the atmospheric pressure in the aerosol generator, which may fluctuate due to suction by the user, and the atmospheric pressure data.
- the step of determining whether the difference between the acquired atmospheric pressure and the reference atmospheric pressure, which is the indicated atmospheric pressure, is equal to or less than the first determination threshold for determining the possibility of suction by the user, and the first determination threshold are used.
- the judgment is that the difference between the acquired atmospheric pressure and the reference atmospheric pressure is equal to or less than the first determination threshold value, the total value of the differences between the latest and past multiple acquired atmospheric pressures and the reference atmospheric pressure.
- the total value is equal to or less than the second determination threshold.
- the determination it is a method including a step of setting the generation of the aerosol to the execution state.
- Another aspect of the present disclosure is a program that causes the processor to execute the above method when executed by the processor.
- Embodiments of the present disclosure include, but are not limited to, electronic cigarettes, heat-not-burn tobacco and nebulizers.
- Embodiments of the present disclosure may include various aerosol generators for producing aerosols that the user sucks.
- FIG. 1 is an example of a schematic block diagram of the configuration of the aerosol generator 100 according to the embodiment of the present disclosure.
- FIG. 1 shows roughly and conceptually each component included in the aerosol generator 100, and does not show the exact arrangement, shape, dimensions, positional relationship, etc. of each component and the aerosol generator 100. Please note.
- the aerosol generator 100 includes a first member 102 (hereinafter referred to as “main body 102") and a second member 104 (hereinafter referred to as "cartridge 104").
- the main body 102 may include a control unit 106, a notification unit 108, a power supply 110, a barometric pressure sensor 112, and a memory 114.
- the main body 102 may also include a circuit 134 described later.
- the cartridge 104 may include a storage section 116, an atomizing section 118, an air intake flow path 120, an aerosol flow path 121, a mouthpiece 122, a holding section 130 and a load 132.
- a part of the components contained in the main body 102 may be contained in the cartridge 104.
- a part of the components contained in the cartridge 104 may be contained in the main body 102.
- the cartridge 104 may be configured to be removable from the main body 102.
- all the components contained in the main body 102 and the cartridge 104 may be contained in the same housing instead of the main body 102 and the cartridge 104, or may be separately contained in three or more housings. Good.
- the storage unit 116 may be configured as a tank for accommodating the aerosol source.
- the aerosol source is, for example, a polyhydric alcohol such as glycerin or propylene glycol, a liquid such as water, or a mixture thereof.
- the aerosol generator 100 is an electronic cigarette or a heat-not-burn tobacco
- the aerosol source in the storage unit 116 may include a tobacco raw material that releases a flavor component or an extract derived from the tobacco raw material.
- the holding unit 130 holds the aerosol source.
- the holding portion 130 is made of a fibrous or porous material, and holds an aerosol source as a liquid in the gaps between the fibers and the pores of the porous material.
- the aerosol generator 100 is a medical inhaler such as a nebulizer
- the aerosol source may also include a drug for the patient to inhale.
- the reservoir 116 may have a configuration capable of replenishing the consumed aerosol source.
- the reservoir 116 may be configured so that the reservoir 116 itself can be replaced when the aerosol source is consumed.
- the aerosol source is not limited to a liquid, and may be a solid. When the aerosol source is a solid, the reservoir 116 may be a hollow container.
- the atomizing unit 118 is configured to atomize the aerosol source to generate an aerosol.
- the suction operation is detected by the barometric pressure sensor 112 and the control unit 106, the atomizing unit 118 generates an aerosol.
- the holding unit 130 is provided so as to connect the storage unit 116 and the atomizing unit 118.
- a part of the holding unit 130 leads to the inside of the storage unit 116 and comes into contact with the aerosol source.
- the other part of the holding portion 130 extends to the atomizing portion 118.
- the other part of the holding portion 130 extending to the atomizing portion 118 may be housed in the atomizing portion 118, or may be passed through the atomizing portion 118 and led to the inside of the storage portion 116 again. ..
- the aerosol source is carried from the reservoir 116 to the atomizer 118 by the capillary effect of the retainer 130.
- the atomizing unit 118 includes a heater including a load 132 electrically connected to the power supply 110.
- the heater is arranged so as to be in contact with or close to the holding portion 130.
- the control unit 106 controls the heater of the atomizing unit 118 or the power supply to the heater, and atomizes the aerosol source by heating the aerosol source carried through the holding unit 130. ..
- Another example of the atomizing unit 118 may be an ultrasonic atomizer that atomizes an aerosol source by ultrasonic vibration. Further, the atomizing unit 118 may be an atomizer that heats the aerosol source and then atomizes it by ultrasonic vibration.
- An air intake flow path 120 is connected to the atomization unit 118, and the air intake flow path 120 leads to the outside of the aerosol generation device 100.
- the aerosol produced in the atomizing section 118 is mixed with the air taken in through the air intake flow path 120.
- the mixed fluid of aerosol and air is pumped into the aerosol flow path 121, as indicated by arrow 124.
- the aerosol flow path 121 has a tubular structure for transporting a mixed fluid of aerosol and air generated in the atomizing portion 118 to the mouthpiece 122.
- the mouthpiece 122 is located at the end of the aerosol flow path 121, and is configured to open the aerosol flow path 121 to the outside of the aerosol generation device 100.
- the user takes in air containing an aerosol into the oral cavity by holding the mouthpiece 122 and sucking it.
- the notification unit 108 may include a light emitting element such as an LED, a display, a speaker, a vibrator, and the like.
- the notification unit 108 is configured to give some notification to the user by light emission, display, vocalization, vibration, or the like, if necessary.
- the power supply 110 supplies electric power to each component of the aerosol generation device 100 such as the notification unit 108, the barometric pressure sensor 112, the memory 114, the load 132, and the circuit 134.
- the power supply 110 may be charged by connecting to an external power source via a predetermined port (not shown) of the aerosol generator 100. Only the power supply 110 may be removed from the main body 102 or the aerosol generator 100 or may be replaced with a new power supply 110. Further, the power supply 110 may be replaced with a new power supply 110 by replacing the entire main body 102 with a new main body 102.
- the atmospheric pressure sensor 112 measures the atmospheric pressure in the aerosol generator 100. Whether or not the user of the aerosol generation device 100 is sucking is determined by the air pressure in the aerosol generation device 100.
- the barometric pressure sensor 112 may be incorporated in the circuit 134. The function of the barometric pressure sensor 112 may be incorporated in the control unit 106.
- the control unit 106 may be an electronic circuit module configured as a microprocessor or a microcomputer.
- the control unit 106 may be configured to control the operation of the aerosol generator 100 according to a computer executable instruction stored in the memory 114.
- the memory 114 is a storage medium such as a ROM, RAM, or flash memory.
- the memory 114 may store setting data and the like necessary for controlling the aerosol generator 100.
- the memory 114 is a control program of the notification unit 108 (modes such as light emission, vocalization, vibration, etc.), a control program of the atomization unit 118, a value acquired and / or detected by the barometric pressure sensor 112, and a value of the atomization unit 118.
- Various data such as heating history may be stored.
- the control unit 106 reads data from the memory 114 as needed and uses it for controlling the aerosol generation device 100, and stores the data in the memory 114 as needed.
- the configuration of the aerosol generator 100 shown in FIG. 1 is merely an example, and is not limited to this.
- the aerosol generating device is an aerosol generating device capable of detecting the weak suction when the weak suction is continuously performed and eliminating the inconvenience caused by the continuous weak suction. ..
- the "weak suction" here is assumed to be a case where the user lightly sucks an electronic cigarette or a heat-not-burn tobacco equipped with an aerosol generator, for example, by sucking a cigarette.
- FIG. 2 shows a graph showing the difference in the change in the acquired air pressure between the case where normal suction is performed and the case where weak suction is continuously performed.
- the "normal suction" is assumed to be a case where the user sucks electronic cigarettes or heat-not-burn tobacco by a normal method, for example, when consciously sucking electronic cigarettes or heat-not-burn tobacco.
- it is judged that normal suction is performed when the difference between the reference air pressure and the air pressure in the aerosol generator is -120 Pa (Pascal) or less, and when the difference is larger than -120 Pa, normal suction is performed. It is judged that there is no suction (not sucking, weak suction, etc.).
- the “reference pressure” is a pressure used to determine the possibility of suction by the user, and takes a value related to the atmospheric pressure in the vicinity of the aerosol generation device 100. It is desirable that the reference pressure is close to the atmospheric pressure in the vicinity of the aerosol generator 100.
- the air pressure 202 (hereinafter, appropriately referred to as “acquisition pressure”) in the aerosol generator measured by the air pressure sensor 112 is significantly lowered (arrow 206), and is acquired.
- acquisition pressure the difference between the atmospheric pressure 202 and the reference atmospheric pressure becomes ⁇ 120 Pa (an example of a predetermined threshold value) or less, the aerosol production is started.
- weak suction is continuously performed, the acquired air pressure 202 acquired by the air pressure sensor 112 is usually lower than the reference air pressure, but does not decrease to the extent that it is determined that normal suction is performed. ..
- the acquired atmospheric pressure 202 in this case is often a value such that the difference between the acquired atmospheric pressure 202 and the reference atmospheric pressure does not fall below ⁇ 120 Pa.
- the acquired air pressure is incorporated into the reference air pressure while the weak suction continues (the calculation method of the reference air pressure will be described later), and as a result, the reference air pressure gradually decreases.
- a difference of ⁇ 120 Pa from this lowered reference air pressure is required (dashed line arrow 208), so that normal suction may not be detected. Further, for example, it is difficult to detect weak suction itself by the conventional method disclosed in Patent Documents 1 and 2.
- FIG. 4 is an example of a functional block diagram of the aerosol generator according to the present embodiment.
- the aerosol generation device 100A shown in FIG. 2 includes an atmospheric pressure data acquisition unit 152, a reference atmospheric pressure storage unit 154, a first determination unit 156, a second determination unit 158, an aerosol generation unit 160, and an update unit 162. Be prepared.
- the atmospheric pressure data acquisition unit 152 acquires atmospheric pressure data indicating the atmospheric pressure in the aerosol generator 100A.
- the "pressure in the aerosol generator 100A" is an atmospheric pressure that can fluctuate depending on the suction or blowing operation of the user, and when the suction or blowing operation of the user does not exist, the atmospheric pressure in the vicinity of the aerosol generator 100A is reached. Can take approximately equal values.
- the barometric pressure data acquisition unit 152 may be configured by, for example, the barometric pressure sensor 112 of FIG.
- the barometric pressure data acquisition unit 152 can store the acquired barometric pressure data in, for example, the memory 114 of FIG. Further, the atmospheric pressure data acquisition unit 152 may acquire the atmospheric pressure data at predetermined time intervals.
- the barometric pressure data acquisition unit 152 may acquire barometric pressure data every 50 ms (milliseconds), for example.
- the reference atmospheric pressure storage unit 154 stores the reference atmospheric pressure.
- the reference barometric pressure storage unit 154 may be configured by, for example, the memory 114 of FIG. Further, the reference atmospheric pressure storage unit 154 may store the initial value of the reference atmospheric pressure.
- the reference atmospheric pressure storage unit 154 may acquire, for example, the value of the surrounding atmospheric pressure when the power of the aerosol generator 100A is turned on for the first time and store it as an initial value, or manufacture the aerosol generator 100A. Sometimes an initial value (for example, atmospheric pressure) may be stored.
- the difference between the acquired atmospheric pressure indicated by the atmospheric pressure data acquired by the atmospheric pressure data acquisition unit 152 and the reference atmospheric pressure is equal to or less than the first determination threshold value for determining the possibility of suction by the user.
- the first determination threshold value is a threshold value for detecting even weak suction, it is assumed that the value is larger than the threshold value for detecting normal suction.
- the threshold value for the first determination is preferably about -40 to -20 Pa. In the present embodiment, the threshold value for the first determination is ⁇ 30 Pa.
- the first determination unit 156 may be configured by, for example, the control unit 106 of FIG.
- the second judgment unit 158 determines the latest and past multiple acquisition pressures. It is determined whether the total value of the difference from the reference atmospheric pressure is equal to or less than the second determination threshold value for determining the presence or absence of suction by the user. Specifically, it is desirable that the second determination threshold value is about ⁇ 140 to ⁇ 100 Pa. In the present embodiment, the threshold value for the second determination is ⁇ 120 Pa. Further, the "total value of the difference between the latest and past acquired atmospheric pressure and the reference atmospheric pressure" is, for example, the total value of the difference between the acquired atmospheric pressure and the reference atmospheric pressure from the present to the past for a predetermined number of times. It may be the total value of the difference between a plurality of acquired atmospheric pressures and a reference atmospheric pressure in a predetermined time period from the present to the past.
- the second determination unit 158 may be configured by, for example, the control unit 106 of FIG.
- the aerosol generation unit 160 has a function of generating an aerosol. Further, when the judgment in the second judgment unit 158 is that the total value of the difference between the acquired air pressure and the reference air pressure for a predetermined number of times is equal to or less than the second judgment threshold value, the aerosol generation unit The generation of the aerosol at 160 is set as the execution state.
- the phrase "putting the aerosol generation into the execution state" means, for example, that when the aerosol generation is stopped in the aerosol generation unit 160, the generation is started, or the aerosol generation is performed in the aerosol generation unit 160. If so, it means to continue this, etc.
- the aerosol generation in the aerosol generation unit 160 is stopped. “Stopping the generation of aerosol in the aerosol generation unit 160” means, for example, that if the aerosol generation unit 160 is executing the generation of the aerosol, the execution is stopped, or the aerosol generation unit 160 has already generated the aerosol. If is stopped, it means to continue the stopped state.
- the aerosol generation unit 160 can be realized by, for example, the control unit 106, the storage unit 116, the atomization unit 118, and the like in FIG.
- the update unit 162 updates the reference atmospheric pressure when it is determined that the aerosol generation in the aerosol generation unit 160 should be stopped.
- the "update of the reference atmospheric pressure" includes replacing the current value with a value calculated by a predetermined method, and initializing the reference atmospheric pressure with an initial value or the like.
- the update unit 162 may update the reference atmospheric pressure when it is determined that the aerosol generation in the aerosol generation unit 160 should be in the execution state.
- the update of the reference atmospheric pressure may be performed before the aerosol generation in the aerosol generation unit 160 is put into the execution state, or may be performed after the aerosol generation is put into the execution state.
- the updated reference atmospheric pressure may be stored in the reference atmospheric pressure storage unit 154.
- the update unit 162 may update the reference atmospheric pressure according to the atmospheric pressure indicated by the latest atmospheric pressure data acquired by the atmospheric pressure data acquisition unit 152. Further, the updating unit 162 may update the reference atmospheric pressure by a moving average value of a predetermined number of acquired atmospheric pressures. For example, the update unit 162 may use the moving average value of the acquired atmospheric pressure acquired in a predetermined time period (for example, 1 second) as the latest reference atmospheric pressure. Further, the update unit 162 may be adapted to initialize the reference atmospheric pressure. When initializing, for example, it may be initialized with the initial value of the reference atmospheric pressure, or the initial value of the moving average value of a predetermined number of acquired atmospheric pressures (the moving average value calculated first). ) Or may be the initial value of the moving average value of the acquired atmospheric pressure acquired in a predetermined time period (for example, 1 second). The update unit 162 may be configured by, for example, the control unit 106 of FIG.
- FIG. 5 and 6 show an example of the processing flow of the aerosol generator 100A according to the present embodiment.
- the aerosol production is stopped. Indicates the case where it is updated only when.
- FIG. 5 is an example of the processing flow in the former case
- FIG. 6 is an example of the processing flow in the latter case.
- step S11 the atmospheric pressure data acquisition unit 152 acquires atmospheric pressure data indicating the atmospheric pressure in the aerosol generator 100A.
- the first determination unit 156 has a difference between the acquired atmospheric pressure acquired in step S11 and the reference atmospheric pressure stored in the reference atmospheric pressure storage unit 154 of ⁇ 30 Pa (an example of the first determination threshold value) or less. Judge if there is. If the difference is -30 Pa or less, it is determined that the user may be sucking, and in step S32, the second determination unit 158 is the difference between the latest and past multiple acquired atmospheric pressures and the reference atmospheric pressure. It is determined whether the total value of is equal to or less than ⁇ 120 Pa (an example of the second determination threshold value).
- step S32 If the determination in step S32 is that the total value is ⁇ 120 Pa or less, it is determined that the user is sucking, and in step S13, the aerosol generation in the aerosol generation unit 160 is set to the execution state. .. After that, in step S41, the updating unit 162 updates the reference atmospheric pressure. In updating the reference pressure, the oldest or largest value among the reference pressures used when summing the pressure differences in step S32 may be used as the new reference pressure.
- step S15 the atmospheric pressure data acquisition unit 152 acquires atmospheric pressure data indicating the atmospheric pressure in the aerosol generator 100A.
- step S42 it is determined whether or not the difference between the acquired atmospheric pressure acquired in step S15 and the reference atmospheric pressure is ⁇ 120 Pa or less. If the difference is ⁇ 120 Pa or less, the process returns to step S15, the atmospheric pressure data acquisition unit 152 acquires the atmospheric pressure data, and repeats the determination of whether the difference between the acquired atmospheric pressure and the reference atmospheric pressure is ⁇ 120 Pa or less.
- step S32 When it is determined in step S32 that the difference between the acquired atmospheric pressure and the reference atmospheric pressure is larger than ⁇ 120 Pa, the aerosol generation in the aerosol generation unit 160 is stopped in step S17. Further, when the judgment in step S31 is that the difference between the acquired atmospheric pressure and the reference atmospheric pressure is larger than -30 Pa, or the judgment in step S32 is that the total value of the difference between the acquired atmospheric pressure and the reference atmospheric pressure is -120 Pa. If it is determined that the size is large, the aerosol generation in the aerosol generation unit 160 is stopped (step S17). After that, in step S33, the update unit 162 updates the reference atmospheric pressure.
- the reference atmospheric pressure may be updated by various methods for updating the reference atmospheric pressure in steps S41 and S33.
- the following methods (1) and (2) can be used.
- (1) Update the reference atmospheric pressure according to the latest acquired atmospheric pressure.
- (2) The reference atmospheric pressure is updated by the moving average value of the acquired atmospheric pressure of a predetermined number or the moving average value of the acquired atmospheric pressure acquired in the predetermined time period. In the case of (2), it is assumed that it takes time for the reference atmospheric pressure to rise, so that the reference atmospheric pressure may be initialized in step S33.
- step S41 and step S33 may be executed immediately before the processes of step S13 and step S17, respectively.
- FIG. 6 A processing flow in the aerosol generator 100A will be described with reference to FIG. 6 when the reference atmospheric pressure is updated only when the aerosol production is stopped.
- FIG. 6 the same reference numerals are given to the processing steps common to the processing flow diagram of FIG.
- step S11 the atmospheric pressure data acquisition unit 152 acquires atmospheric pressure data indicating the atmospheric pressure in the aerosol generator 100A.
- the first determination unit 156 has a difference between the acquired atmospheric pressure acquired in step S11 and the reference atmospheric pressure stored in the reference atmospheric pressure storage unit 154 of ⁇ 30 Pa (an example of the first determination threshold value) or less. Judge if there is. If the difference is -30 Pa or less, it is determined that the user may be sucking, and in step S32, the second determination unit 158 is the difference between the latest and past multiple acquired atmospheric pressures and the reference atmospheric pressure. It is determined whether the total value of is equal to or less than ⁇ 120 Pa (an example of the second determination threshold value).
- step S32 determines whether the total value is ⁇ 120 Pa or less, it is determined that the user is sucking, and in step S13, the aerosol generation in the aerosol generation unit 160 is set to the execution state. .. Then, in step S15, the atmospheric pressure data acquisition unit 152 acquires the atmospheric pressure data indicating the atmospheric pressure in the aerosol generator 100A. After that, the processes after step S31 are repeated.
- step S31 when the judgment in step S31 is that the difference between the acquired atmospheric pressure and the reference atmospheric pressure is larger than -30 Pa, or the determination in step S32 is the difference between the latest and past multiple acquired atmospheric pressures and the reference atmospheric pressure. If it is determined that the total value is larger than ⁇ 120 Pa, the aerosol generation in the aerosol generation unit 160 is stopped (step S17). After that, in step S33, the update unit 162 updates the reference atmospheric pressure. As described above, there may be various methods for updating the reference atmospheric pressure in step S33.
- step S33 may be executed immediately before the process of step S17.
- FIGS. 5 and 6 may be executed so that the barometric pressure data acquisition unit 152 periodically (for example, every 50 ms) acquires barometric pressure data in steps S11 and S15.
- the aerosol generator and the generation method according to the present embodiment it is possible to detect weak suction, and it is possible to eliminate the inconvenience caused by the lowering of the reference air pressure due to the weak suction.
- the first embodiment of the present disclosure has been described as an aerosol generator and a method performed by the aerosol generator.
- the present disclosure may be implemented, for example, as a program that causes the processor to perform the method when executed by the processor, or as a computer-readable storage medium containing the program.
- the aerosol generator according to the present embodiment is an aerosol generator capable of appropriately detecting suction even when a weak blow is continuously made.
- the "weak blow” here is assumed to be a case where the user blows a light cigarette, for example, by holding an electronic cigarette or a heat-not-burn tobacco equipped with an aerosol generator.
- FIG. 7 is a diagram illustrating an outline of the present embodiment.
- FIG. 7 shows a graph showing an example of a change in the reference air pressure when a weak blow is continuously made. Also in this example, when the difference between the reference air pressure and the acquired air pressure (the air pressure in the aerosol generator) is -120 Pa or less, it is determined that normal suction has been performed, and when the difference is larger than -120 Pa, it is determined that normal suction has been performed. It is judged that normal suction is not performed (no suction, weak suction, etc.).
- the acquired air pressure 222 acquired by the air pressure sensor 112 is higher than the reference air pressure 224, but the threshold value at which normal suction is determined to have been performed ( In this example, the atmospheric pressure often does not exceed ⁇ 120 Pa).
- the atmospheric pressure often does not exceed ⁇ 120 Pa.
- the atmospheric pressure is incorporated into the reference air pressure while the weak blowing continues, and as a result, the reference air pressure 224 gradually rises.
- the atmospheric pressure (acquired atmospheric pressure) in the aerosol generator 100 decreases, and becomes smaller than the reference atmospheric pressure.
- time T1 if the difference between the acquired atmospheric pressure and the reference atmospheric pressure is ⁇ 120 Pa or less (time T1), it is erroneously detected as being sucked, and the generation of aerosol is started, which is a disadvantage.
- the fluctuation of the reference air pressure is monitored, and if the reference air pressure tends to rise, it is determined that the weak blowing is continuing, and the aerosol generation is not put into the execution state.
- FIG. 8 is an example of a functional block diagram of the aerosol generator according to the present embodiment.
- the aerosol generator 100B shown in FIG. 2 includes an atmospheric pressure data acquisition unit 152, a reference atmospheric pressure storage unit 154, a first suction determination unit 252, a blow determination unit 254, a second suction determination unit 256, and an aerosol generation unit. It includes 258 and an update unit 162.
- the barometric pressure data acquisition unit according to this embodiment is the same as the barometric pressure data acquisition unit 152 in the first embodiment.
- the reference atmospheric pressure storage unit 154 has the same function as that of the first embodiment.
- the reference air pressure is a reference value used to judge not only the possibility of suction by the user but also the possibility of blowing by the user.
- the first suction determination unit 252 determines that the difference between the acquired atmospheric pressure, which is the atmospheric pressure indicated by the atmospheric pressure data acquired by the atmospheric pressure data acquisition unit 152, and the reference atmospheric pressure is the first suction determination for determining the presence or absence of suction by the user. Judge whether it is below the atmospheric pressure. Specifically, it is desirable that the first suction determination threshold value is about ⁇ 140 to ⁇ 100 Pa. In the present embodiment, the threshold value for the first suction determination is ⁇ 120 Pa.
- the first suction determination unit 252 may be configured by, for example, the control unit 106 of FIG.
- the blow judgment unit 254 determines the latest reference pressure and the past time point. It is determined whether or not the difference from the reference atmospheric pressure in the above is equal to or less than the blowing determination threshold value for determining the presence or absence of blowing by the user. Specifically, it is desirable that the threshold value for blowing determination is about +20 to +40 Pa. In the present embodiment, the threshold value for blowing determination is +30 Pa.
- the blow determination unit 254 may be configured by, for example, the control unit 106 of FIG.
- the aerosol generation unit 258 has the same function as the aerosol generation unit 160 in the first embodiment. However, the aerosol generation unit 258 of the present embodiment states that the difference between the latest reference air pressure and the reference air pressure at a past time point (for example, 5 seconds ago) is equal to or less than the blow determination threshold value in the determination by the blow determination unit 254. If it is judged, it is judged that there is almost no fluctuation of the reference air pressure, that is, it is not a weak blow, and the aerosol is generated in the execution state. If the determination by the first suction determination unit 252 determines that the difference between the acquired atmospheric pressure and the reference atmospheric pressure is larger than the threshold value for the first suction determination, the aerosol generation by the aerosol generation unit 258 is stopped. ..
- the judgment in the blowing judgment unit 254 is that the difference between the latest reference pressure and the reference pressure at a past time point (for example, 5 seconds ago) is larger than the blowing judgment threshold value, the fluctuation of the reference pressure Is large, that is, it is determined that weak blowing is being performed, and the aerosol generation in the aerosol generation unit 258 is stopped.
- the aerosol generation unit 258 can be realized by, for example, the control unit 106, the storage unit 116, the atomization unit 118, and the like in FIG.
- the second suction determination unit 256 determines that the difference between the latest reference air pressure and the reference air pressure at a past time point is larger than the blow determination threshold value in the determination by the injection determination unit 254, the latest acquisition pressure. It is determined whether the difference between the air pressure and the reference air pressure at the past time point is equal to or less than the second suction determination threshold value. If the judgment is that the difference between the latest acquired atmospheric pressure and the reference atmospheric pressure at the past time point is equal to or less than the second suction determination threshold, the aerosol generation in the aerosol generation unit 258 is set to the execution state. When it is determined that the difference between the latest acquired atmospheric pressure and the reference atmospheric pressure at the past time point is larger than the second suction determination threshold value, the aerosol generation in the aerosol generation unit 258 is stopped.
- the second suction determination unit 256 may be configured by, for example, the control unit 106 of FIG.
- the first suction determination threshold value and the second suction determination threshold value may be the same value or different values. In the description in this embodiment, both are described as the same value (-120 Pa).
- the update unit according to the present embodiment is the same as the update unit 162 in the first embodiment.
- FIG. 9 shows an example of the processing flow of the aerosol generator 100B according to the present embodiment.
- the atmospheric pressure data acquisition unit 152 acquires atmospheric pressure data indicating the atmospheric pressure in the aerosol generator 100B.
- the difference between the acquired atmospheric pressure acquired in step S11 and the reference atmospheric pressure stored in the reference atmospheric pressure storage unit 154 is ⁇ 120 Pa (an example of the first suction determination threshold value). Determine if it is: If the difference is ⁇ 120 Pa or less, it is determined that the user is sucking, and in step S51, the blowing determination unit 254 sets the latest reference atmospheric pressure and the reference atmospheric pressure at a past time point (for example, 5 seconds ago). It is determined whether the difference is + 30 Pa (an example of the threshold value for blowing determination) or less.
- step S51 If the judgment in step S51 is that the difference between the latest reference pressure and the reference pressure at the past time point is +30 Pa or less, it is determined that the user has not blown weakly, and in step S13, The aerosol generation in the aerosol generation unit 160 is set to the execution state. Then, in step S15, the atmospheric pressure data acquisition unit 152 acquires the atmospheric pressure data indicating the atmospheric pressure in the aerosol generation device 100B. After that, the processes after step S12 are repeated.
- step S12 when the judgment in step S12 is that the difference between the acquired air pressure and the reference air pressure is larger than ⁇ 120 Pa (determined that suction is not performed), or the judgment in step S51 is the latest reference air pressure and the past.
- the aerosol generation in the aerosol generation unit 160 is stopped (step S17).
- step S33 the update unit 162 updates the reference atmospheric pressure. As described in the first embodiment, there may be various methods for updating the reference atmospheric pressure in step S33.
- FIG. 10 shows another example of the processing flow of the aerosol generator 100B according to the present embodiment.
- the processing flow in FIG. 10 is different in that it includes the processing in step S52 in addition to the processing flow shown in FIG.
- step S52 when the judgment in step S51 is that the difference between the latest reference pressure and the reference pressure at the past time point is larger than the threshold for blowing judgment, the fluctuation of the reference pressure is large, that is, weak. It is determined that the blowing is being performed, and the second suction determination unit 256 determines whether the difference between the acquired atmospheric pressure and the past reference atmospheric pressure is equal to or less than the second suction determination threshold value (-120 Pa in this example).
- the aerosol generation by the aerosol generation unit 160 is set to the execution state in S13. Further, when the judgment in S52 is that the difference between the acquired air pressure and the past reference air pressure is larger than the threshold value for the second suction judgment, it is considered that the suction is weak, and therefore the aerosol is generated in S17. The generation of aerosol in part 160 is stopped. The other processing steps are the same as the processing flow in FIG.
- FIGS. 9 and 10 may be executed so that the barometric pressure data acquisition unit 152 periodically (for example, every 50 ms) acquires barometric pressure data in steps S11 and S15.
- the second embodiment of the present disclosure has been described as an aerosol generator and a method performed by an aerosol generator.
- the present disclosure may be implemented, for example, as a program that causes the processor to perform the method when executed by the processor, or as a computer-readable storage medium containing the program.
Landscapes
- Medicinal Preparation (AREA)
Abstract
エアロゾル生成装置に対する弱い吸引を検出する。 気圧データ取得部152はエアロゾル生成装置内の気圧を取得し、第1判断部156は取得気圧と参照気圧との差が、ユーザの吸引の可能性を判定するための第1判定用閾値以下であるか判断し、第2判断部158は、第1判断部156における判断が、取得気圧と参照気圧との差が第1判定用閾値以下であるとの判断である場合に、最新および過去における複数の取得気圧と参照気圧との差の合計値が、ユーザの吸引の有無を判定するための第2判定用閾値以下であるか判断し、第2判断部158における判断が、当該合計値が第2判定用閾値以下であるとの判断である場合には、エアロゾル生成部160におけるエアロゾルの生成を実行状態とするエアロゾル生成装置。
Description
本開示は、ユーザが吸引するエアロゾルを生成するエアロゾル生成装置、生成方法、および生成プログラムに関する。
一般的な電子たばこ、加熱式たばこ、ネブライザーなどの、ユーザが吸引するエアロゾルを生成するためのエアロゾル生成装置が存在する。エアロゾルの生成方法としては、例えば、電力供給により加熱されたヒータの熱によって液体を霧化したり、超音波を発生することにより液体を霧化する、等の方法が知られている。例えば、電子たばこ等では、ユーザの吸引を検出すると、ヒータがONになったり、超音波が発生されることによって、エアロゾルが生成される。
特許文献1には、常圧キャピティと負圧キャピティとを備える電子たばこ装置であって、ユーザが吸引すると両者間に気圧差が生じ、これによりニコチン溶液の霧化を開始する電子たばこ装置が開示されている。
しかしながら、電子たばこ等のユーザは、例えば咥えタバコなどをすることで、弱く吸引する場合がある。特許文献1に記載の方法では、このような弱い吸引を検出することは困難である。
本開示は、上記の課題に鑑みてなされたものである。
本開示は、上記の課題に鑑みてなされたものである。
上記課題を解決するために、本開示の一態様は、エアロゾル生成装置であって、ユーザの吸引によって変動し得る前記エアロゾル生成装置内の気圧を示す気圧データを取得する気圧データ取得部と、前記気圧データによって示される気圧である取得気圧と参照気圧との差が、ユーザの吸引の可能性を判定するための第1判定用閾値以下であるか判断する第1判断部と、前記第1判断部における判断が、前記取得気圧と前記参照気圧との差が前記第1判定用閾値以下であるとの判断である場合に、最新および過去における複数の前記取得気圧と前記参照気圧との差の合計値が、ユーザの吸引の有無を判定するための第2判定用閾値以下であるか判断する第2判断部と、エアロゾルを生成するエアロゾル生成部と、を備え、前記第2判断部における判断が、前記合計値が前記第2判定用閾値以下であるとの判断である場合には、前記エアロゾル生成部におけるエアロゾルの生成を実行状態とする、エアロゾル生成装置である。
また、本開示の他の態様は、エアロゾル生成装置によって実行される方法であって、ユーザの吸引によって変動し得る前記エアロゾル生成装置内の気圧を示す気圧データを取得するステップと、前記気圧データによって示される気圧である取得気圧と参照気圧との差が、ユーザの吸引の可能性の有無を判定するための第1判定用閾値以下であるか判断するステップと、前記第1判定閾値を用いた判断が、前記取得気圧と前記参照気圧との差が前記第1判定用閾値以下であるとの判断である場合に、最新および過去における複数の前記取得気圧と前記参照気圧との差の合計値が、ユーザの吸引の有無を判定するための第2判定用閾値以下であるか判断するステップと、前記第2判定閾値を用いた判断が、前記合計値が前記第2判定用閾値以下であるとの判断である場合には、エアロゾルの生成を実行状態とするステップと、を備える方法である。
また、本開示の他の態様は、プロセッサにより実行されると、前記プロセッサに、上記の方法を実行させる、プログラムである。
本開示の一態様によれば、エアロゾル生成装置に対する弱い吸引を検出することが可能である。
以下、図面を参照しながら本開示の実施形態について詳しく説明する。なお、本開示の実施形態は、電子たばこ,加熱式たばこ及びネブライザーを含むが、これらに限定されない。本開示の実施形態は、ユーザが吸引するエアロゾルを生成するための様々なエアロゾル生成装置を含み得る。
(エアロゾル生成装置の構成)
図1は、本開示の一実施形態に係るエアロゾル生成装置100の構成の概略的なブロック図の一例である。図1は、エアロゾル生成装置100が備える各コンポーネントを概略的且つ概念的に示すものであり、各コンポーネント及びエアロゾル生成装置100の厳密な配置、形状、寸法、位置関係等を示すものではないことに留意されたい。
図1は、本開示の一実施形態に係るエアロゾル生成装置100の構成の概略的なブロック図の一例である。図1は、エアロゾル生成装置100が備える各コンポーネントを概略的且つ概念的に示すものであり、各コンポーネント及びエアロゾル生成装置100の厳密な配置、形状、寸法、位置関係等を示すものではないことに留意されたい。
図1に示されるように、エアロゾル生成装置100は、第1の部材102(以下、「本体102」と呼ぶ)及び第2の部材104(以下、「カートリッジ104」と呼ぶ)を備える。図示されるように、一例として、本体102は、制御部106、通知部108、電源110、気圧センサ112及びメモリ114を含んでもよい。本体102はまた、後述する回路134を含んでもよい。一例として、カートリッジ104は、貯留部116、霧化部118、空気取込流路120、エアロゾル流路121、吸口部122、保持部130及び負荷132を含んでもよい。本体102内に含まれるコンポーネントの一部がカートリッジ104内に含まれてもよい。カートリッジ104内に含まれるコンポーネントの一部が本体102内に含まれてもよい。カートリッジ104は、本体102に対して着脱可能に構成されてもよい。あるいは、本体102及びカートリッジ104内に含まれるすべてのコンポーネントが、本体102及びカートリッジ104に代えて、同一の筐体内に含まれてもよく、3つ以上の筐体に分離されて含まれてもよい。
貯留部116は、エアロゾル源を収容するタンクとして構成されてもよい。この場合、エアロゾル源は、例えば、グリセリンやプロピレングリコールといった多価アルコール、水などの液体やそれらの混合物である。エアロゾル生成装置100が電子たばこや加熱式たばこである場合、貯留部116内のエアロゾル源は、香喫味成分を放出するたばこ原料やたばこ原料由来の抽出物を含んでいてもよい。保持部130は、エアロゾル源を保持する。例えば、保持部130は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。前述した繊維状又は多孔質性の素材には、例えばコットンやガラス繊維、またはたばこ原料などを用いることができる。エアロゾル生成装置100がネブライザー等の医療用吸入器である場合、エアロゾル源はまた、患者が吸入するための薬剤を含んでもよい。別の例として、貯留部116は、消費されたエアロゾル源を補充することができる構成を有してもよい。あるいは、貯留部116は、エアロゾル源が消費された際に貯留部116自体を交換することができるように構成されてもよい。また、エアロゾル源は液体に限られるものではなく、固体でも良い。エアロゾル源が固体の場合の貯留部116は、空洞の容器であっても良い。
霧化部118は、エアロゾル源を霧化してエアロゾルを生成するように構成される。気圧センサ112及び制御部106によって吸引動作が検知されると、霧化部118はエアロゾルを生成する。
また、例えば、保持部130は、貯留部116と霧化部118とを連結するように設けられる。この場合、保持部130の一部は貯留部116の内部に通じ、エアロゾル源と接触する。保持部130の他の一部は霧化部118へ延びる。なお、霧化部118へ延びた保持部130の他の一部は、霧化部118に収められてもよく、あるいは、霧化部118を通って再び貯留部116の内部に通じてもよい。エアロゾル源は、保持部130の毛細管効果によって貯留部116から霧化部118へと運ばれる。一例として、霧化部118は、電源110に電気的に接続された負荷132を含むヒータを備える。ヒータは、保持部130と接触又は近接するように配置される。吸引動作が検知されると、制御部106は、霧化部118のヒータ又は当該ヒータへの給電を制御し、保持部130を通じて運ばれたエアロゾル源を加熱することによって当該エアロゾル源を霧化する。霧化部118の別の例は、エアロゾル源を超音波振動によって霧化する超音波式霧化器であってもよい。また、霧化部118は、エアロゾル源を加熱した上で超音波振動により霧化する霧化器であってもよい。このような霧化器はエアロゾル源の粘性を加熱により改善した上で超音波振動による霧化を行うため、霧化効率の向上も期待できる。霧化部118には空気取込流路120が接続され、空気取込流路120はエアロゾル生成装置100の外部へ通じている。霧化部118において生成されたエアロゾルは、空気取込流路120を介して取り込まれた空気と混合される。エアロゾルと空気の混合流体は、矢印124で示されるように、エアロゾル流路121へと送り出される。エアロゾル流路121は、霧化部118において生成されたエアロゾルと空気との混合流体を吸口部122まで輸送するための管状構造を有する。
吸口部122は、エアロゾル流路121の終端に位置し、エアロゾル流路121をエアロゾル生成装置100の外部に対して開放するように構成される。ユーザは、吸口部122を咥えて吸引することにより、エアロゾルを含んだ空気を口腔内へ取り込む。
通知部108は、LEDなどの発光素子、ディスプレイ、スピーカ、バイブレータなどを含んでもよい。通知部108は、必要に応じて、発光、表示、発声、振動などによって、ユーザに対して何らかの通知を行うように構成される。
電源110は、通知部108、気圧センサ112、メモリ114、負荷132、回路134などのエアロゾル生成装置100の各コンポーネントに電力を供給する。電源110は、エアロゾル生成装置100の所定のポート(図示せず)を介して外部電源に接続することにより充電することができてもよい。電源110のみを本体102又はエアロゾル生成装置100から取り外すことができてもよく、新しい電源110と交換することができてもよい。また、本体102全体を新しい本体102と交換することによって電源110を新しい電源110と交換することができてもよい。
気圧センサ112は、エアロゾル生成装置100内の気圧を測定する。このエアロゾル生成装置100内の気圧によって、エアロゾル生成装置100のユーザが吸引しているか否かが判定される。気圧センサ112は回路134に組み込まれてもよい。気圧センサ112の機能が制御部106に組み込まれてもよい。
制御部106は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであってもよい。制御部106は、メモリ114に格納されたコンピュータ実行可能命令に従ってエアロゾル生成装置100の動作を制御するように構成されてもよい。メモリ114は、ROM、RAM、フラッシュメモリなどの記憶媒体である。メモリ114には、上記のようなコンピュータ実行可能命令のほか、エアロゾル生成装置100の制御に必要な設定データ等が格納されてもよい。例えば、メモリ114は、通知部108の制御プログラム(発光、発声、振動等の態様等)、霧化部118の制御プログラム、気圧センサ112により取得及び/又は検知された値、霧化部118の加熱履歴等の様々なデータを格納してもよい。制御部106は、必要に応じてメモリ114からデータを読み出してエアロゾル生成装置100の制御に利用し、必要に応じてデータをメモリ114に格納する。
なお、図1に示されるエアロゾル生成装置100の構成はあくまで一例であって、これに限定されるものではない。
<第1の実施形態>
本実施形態に係るエアロゾル生成装置は、継続して弱い吸引がなされる場合に当該弱い吸引を検出するとともに、弱い吸引が継続することにより発生する不都合を解消することが可能なエアロゾル生成装置である。ここでの「弱い吸引」とは、例えばユーザがエアロゾル生成装置を備える電子たばこや加熱式たばこを、咥えたばこをする等して軽く吸引するような場合が想定される。
本実施形態に係るエアロゾル生成装置は、継続して弱い吸引がなされる場合に当該弱い吸引を検出するとともに、弱い吸引が継続することにより発生する不都合を解消することが可能なエアロゾル生成装置である。ここでの「弱い吸引」とは、例えばユーザがエアロゾル生成装置を備える電子たばこや加熱式たばこを、咥えたばこをする等して軽く吸引するような場合が想定される。
図2および図3は、本実施形態の概要を説明する図である。図2は、通常の吸引がなされる場合と、継続して弱い吸引がなされる場合とにおける取得気圧の変化の違いを表すグラフを示す。ここで、「通常の吸引」とは、例えばユーザが電子たばこや加熱式たばこを意識的に吸引する時のように通常の方法で吸引する場合を想定している。本例では、参照気圧とエアロゾル生成装置内の気圧との差が-120Pa(パスカル)以下となった場合に通常の吸引がなされたと判断し、当該差が-120Paより大きい場合には通常の吸引がなされていない(吸引していない、または弱い吸引がなされている等)と判断する。なお、「参照気圧」は、ユーザの吸引の可能性を判断するために用いられる気圧であり、エアロゾル生成装置100の近傍の大気圧に関連する値を取る。参照気圧はエアロゾル生成装置100の近傍の大気圧と近似であることが望ましい。
図2を参照すると、通常の吸引がなされた場合には、気圧センサ112で測定されるエアロゾル生成装置内の気圧202(以下適宜「取得気圧」という)は大きく下がることとなり(矢印206)、取得気圧202と参照気圧との差が-120Pa(予め定められた閾値の一例)以下となった場合には、エアロゾルの生成が開始される。一方、弱い吸引が継続してなされた場合には、気圧センサ112で取得される取得気圧202は、通常、参照気圧よりも低い気圧になるものの、通常の吸引がなされたと判断されるほど低下しない。よって、この場合の取得気圧202は、取得気圧202と参照気圧との差が-120Paを下回らない程度の値となることが多い。これにより弱い吸引が継続している間に取得気圧が参照気圧に組み込まれていく結果(参照気圧の算出方法については後述する)、参照気圧は徐々に低下していく。そして、通常の吸引を検知するには、この低下した参照気圧から-120Paの差が必要となるため(破線矢印208)、通常の吸引が検知できなくなる恐れがある。また、例えば特許文献1および2に開示の従来の方法では、弱い吸引そのものを検出することは困難である。
そこで、本実施形態においては、図3に示されるように取得気圧と参照気圧との差を累積し、累積値が予め定められた値(図3の例では-100Pa)以下となった場合にはエアロゾルの生成が開始される。また、本実施形態においては、吸引を検知するための閾値を複数設けることで弱い吸引を検出することを可能とする。
(機能ブロック)
図4は、本実施形態に係るエアロゾル生成装置の機能ブロック図の一例である。図2に示されるエアロゾル生成装置100Aは、気圧データ取得部152と、参照気圧記憶部154と、第1判断部156と、第2判断部158と、エアロゾル生成部160と、更新部162とを備える。
図4は、本実施形態に係るエアロゾル生成装置の機能ブロック図の一例である。図2に示されるエアロゾル生成装置100Aは、気圧データ取得部152と、参照気圧記憶部154と、第1判断部156と、第2判断部158と、エアロゾル生成部160と、更新部162とを備える。
気圧データ取得部152は、エアロゾル生成装置100A内の気圧を示す気圧データを取得する。ここで「エアロゾル生成装置100A内の気圧」とは、ユーザの吸引または吹き込み動作によって変動し得る気圧であり、ユーザの吸引または吹き込み動作が存在しない場合にはエアロゾル生成装置100Aの近傍の大気圧に略等しい値を取りうる。気圧データ取得部152は、例えば図1の気圧センサ112によって構成されうる。気圧データ取得部152は、取得した気圧データを、例えば図1のメモリ114に記憶し得る。また、気圧データ取得部152は、予め定められた時間間隔で気圧データを取得するようになっていてよい。気圧データ取得部152は、例えば50ms(ミリ秒)毎に気圧データを取得してもよい。
参照気圧記憶部154は、参照気圧を記憶する。参照気圧記憶部154は、例えば図1のメモリ114によって構成されうる。また、参照気圧記憶部154は、参照気圧の初期値が記憶されてもよい。参照気圧記憶部154には、例えば、エアロゾル生成装置100Aの電源が初めてONになった際に周辺の大気圧の値が取得されて初期値として記憶されてもよいし、エアロゾル生成装置100Aの製造時にある初期値(例えば大気圧)が記憶される等してもよい。
第1判断部156は、気圧データ取得部152にて取得された気圧データによって示される取得気圧と参照気圧との差が、ユーザの吸引の可能性を判定するための第1判定用閾値以下であるか判断する。第1判定用閾値の値は、弱い吸引をも検知するための閾値であるため、通常の吸引を検出するための閾値よりも大きい値であることが想定される。具体的には、第1判定用閾値は、-40~-20Pa程度であることが望ましい。本実施形態においては、第1判定用閾値は-30Paとする。第1判断部156は、例えば図1の制御部106によって構成されうる。
第2判断部158は、第1判断部156における判断が、取得気圧と参照気圧との差が第1判定用閾値以下であるとの判断である場合に、最新および過去における複数の取得気圧と参照気圧との差の合計値が、ユーザの吸引の有無を判定するための第2判定用閾値以下であるか判断する。具体的には、第2判定用閾値は、-140~-100Pa程度であることが望ましい。本実施形態においては、第2判定用閾値は-120Paとする。また、「最新および過去における複数の取得気圧と参照気圧との差の合計値」とは、例えば、現在から過去における取得気圧と参照気圧との差の予め定められた回数分の合計値であってもよいし、現在から過去における予め定められた時間期間における複数の取得気圧と参照気圧との差の合計値であってもよい。第2判断部158は、例えば図1の制御部106によって構成されうる。
エアロゾル生成部160は、エアロゾルを生成する機能を有する。また、第2判断部158における判断が、取得気圧と参照気圧との差の予め定められた回数分の合計値が第2判定用閾値以下であるとの判断である場合には、エアロゾル生成部160におけるエアロゾルの生成を実行状態とする。「エアロゾルの生成を実行状態とする」とは、例えば、エアロゾル生成部160においてエアロゾルの生成が停止している場合には生成を開始すること、またはエアロゾル生成部160においてエアロゾルの生成が行われている場合にはこれを継続すること、等を意味する。
また、第1判定部156における判断が、取得気圧と参照気圧との差が第1判定用閾値より大きいとの判断である場合、または第2判断部158における判断が、取得気圧と参照気圧との差の予め定められた回数分の合計値が第2判定用閾値より大きいとの判断である場合には、エアロゾル生成部160におけるエアロゾルの生成を停止状態とする。「エアロゾル生成部160におけるエアロゾルの生成を停止状態とする」とは、例えばエアロゾル生成部160がエアロゾルの生成を実行している場合は実行を停止すること、またはエアロゾル生成部160がすでにエアロゾルの生成を停止している場合には停止状態を継続することを意味する。エアロゾル生成部160は、例えば図1の制御部106、貯留部116、霧化部118等によって実現されうる。
更新部162は、エアロゾル生成部160におけるエアロゾルの生成を停止状態にすべきと判断された場合には、参照気圧を更新する。ここで、「参照気圧の更新」とは、予め定められた方法で算出された値によって現在値を置き換えることや、参照気圧を初期値などによって初期化することも含む。また、更新部162は、エアロゾル生成部160におけるエアロゾルの生成を実行状態にすべきと判断された場合には、参照気圧を更新するようになっていてもよい。参照気圧の更新は、エアロゾル生成部160でのエアロゾル生成を実行状態とする前に行われてもよいし、実行状態とした後に行われてもよい。更新された参照気圧は、参照気圧記憶部154に記憶されてよい。
また、更新部162は、気圧データ取得部152によって取得された最新の気圧データによって示される気圧により参照気圧を更新するようになっていてもよい。また、更新部162は、予め定められた数の取得気圧の移動平均値によって参照気圧を更新するようになっていてもよい。例えば更新部162は、予め定められた時間期間(例えば1秒間)に取得された取得気圧の移動平均値を最新の参照気圧としてもよい。また、更新部162は、参照気圧を初期化するようになっていてもよい。初期化する場合には、例えば参照気圧の初期値で初期化するようになっていてもよいし、予め定められた数の取得気圧の移動平均値の初期値(最初に算出された移動平均値)または予め定められた時間期間(例えば1秒間)に取得された取得気圧の移動平均値の初期値であってもよい。更新部162は、例えば図1の制御部106によって構成されうる。
なお、図4に示されるエアロゾル生成装置100Aの機能ブロック図はあくまで一例であって、これに限定されるものではない。
(処理フロー)
図5および図6は、本実施形態に係るエアロゾル生成装置100Aの処理フローの一例を示す。本例においては、参照気圧が常に更新される場合(エアロゾルの生成を実行状態とする場合および停止状態とする場合の両方において更新される場合)と、参照気圧がエアロゾルの生成を停止状態とする場合のみ更新される場合とを示す。図5は前者である場合の処理フローの一例であり、図6は後者である場合の処理フローの一例である。
図5および図6は、本実施形態に係るエアロゾル生成装置100Aの処理フローの一例を示す。本例においては、参照気圧が常に更新される場合(エアロゾルの生成を実行状態とする場合および停止状態とする場合の両方において更新される場合)と、参照気圧がエアロゾルの生成を停止状態とする場合のみ更新される場合とを示す。図5は前者である場合の処理フローの一例であり、図6は後者である場合の処理フローの一例である。
(参照気圧が常に更新される場合)
図5を参照し、ステップS11において、気圧データ取得部152はエアロゾル生成装置100A内の気圧を示す気圧データを取得する。ステップS31において、第1判断部156は、ステップS11において取得された取得気圧と、参照気圧記憶部154に記憶されている参照気圧との差が-30Pa(第1判定用閾値の一例)以下であるか判断する。当該差が-30Pa以下である場合にはユーザが吸引している可能性があると判断され、ステップS32において、第2判断部158は、最新および過去における複数の取得気圧と参照気圧との差の合計値が-120Pa(第2判定用閾値の一例)以下であるか判断する。
図5を参照し、ステップS11において、気圧データ取得部152はエアロゾル生成装置100A内の気圧を示す気圧データを取得する。ステップS31において、第1判断部156は、ステップS11において取得された取得気圧と、参照気圧記憶部154に記憶されている参照気圧との差が-30Pa(第1判定用閾値の一例)以下であるか判断する。当該差が-30Pa以下である場合にはユーザが吸引している可能性があると判断され、ステップS32において、第2判断部158は、最新および過去における複数の取得気圧と参照気圧との差の合計値が-120Pa(第2判定用閾値の一例)以下であるか判断する。
ステップS32における判断が、当該合計値が-120Pa以下であるとの判断である場合にはユーザが吸引していると判断され、ステップS13において、エアロゾル生成部160におけるエアロゾルの生成を実行状態とする。その後、ステップS41において、更新部162は参照気圧を更新する。参照気圧の更新は、ステップS32において気圧差を合計する際に用いられた参照気圧のうち、最も古い、または最も大きい値を新たな参照気圧としてもよい。
ステップS15において、気圧データ取得部152はエアロゾル生成装置100A内の気圧を示す気圧データを取得する。ステップS42において、ステップS15において取得された取得気圧と参照気圧との差が-120Pa以下であるかが判断される。当該差が-120Pa以下である場合には、ステップS15に戻り、気圧データ取得部152が気圧データを取得し、取得気圧と参照気圧との差が-120Pa以下であるかの判断を繰り返す。
ステップS32において取得気圧と参照気圧との差が-120Paより大きいと判断された場合には、ステップS17において、エアロゾル生成部160におけるエアロゾルの生成を停止状態とする。また、ステップS31における判断が、取得気圧と参照気圧との差が-30Paより大きいとの判断である場合、またはステップS32における判断が、取得気圧と参照気圧との差の合計値が-120Paより大きいとの判断である場合には、エアロゾル生成部160におけるエアロゾルの生成を停止状態とする(ステップS17)。その後、ステップS33において、更新部162は参照気圧を更新する。
なお、ステップS41およびステップS33における参照気圧の更新方法は、様々な方法がありうる。例えば、以下の(1)、(2)の方法がありうる。
(1)最新の取得気圧によって参照気圧を更新する。
(2)予め定められた数の取得気圧の移動平均値、または予め定められた時間期間に取得された取得気圧の移動平均値によって参照気圧を更新する。
なお、(2)の場合は参照気圧が上昇するまで時間がかかることが想定されるため、ステップS33においては参照気圧を初期化するようになっていてもよい。
(1)最新の取得気圧によって参照気圧を更新する。
(2)予め定められた数の取得気圧の移動平均値、または予め定められた時間期間に取得された取得気圧の移動平均値によって参照気圧を更新する。
なお、(2)の場合は参照気圧が上昇するまで時間がかかることが想定されるため、ステップS33においては参照気圧を初期化するようになっていてもよい。
また、図5においてステップS41およびステップS33の処理は、それぞれ、ステップS13およびステップS17の処理の直前に実行されるようになっていてもよい。
(エアロゾルの生成を停止状態とする時のみ参照気圧が更新される場合)
図6を参照して、参照気圧がエアロゾルの生成を停止状態とする時のみ更新される場合のエアロゾル生成装置100Aにおける処理フローについて説明する。なお、図6において、図5の処理フロー図と共通の処理ステップについては同一の符号が付されている。
図6を参照して、参照気圧がエアロゾルの生成を停止状態とする時のみ更新される場合のエアロゾル生成装置100Aにおける処理フローについて説明する。なお、図6において、図5の処理フロー図と共通の処理ステップについては同一の符号が付されている。
ステップS11において、気圧データ取得部152はエアロゾル生成装置100A内の気圧を示す気圧データを取得する。ステップS31において、第1判断部156は、ステップS11において取得された取得気圧と、参照気圧記憶部154に記憶されている参照気圧との差が-30Pa(第1判定用閾値の一例)以下であるか判断する。当該差が-30Pa以下である場合にはユーザが吸引している可能性があると判断され、ステップS32において、第2判断部158は、最新および過去における複数の取得気圧と参照気圧との差の合計値が-120Pa(第2判定用閾値の一例)以下であるか判断する。
ステップS32における判断が、当該合計値が-120Pa以下であるとの判断である場合にはユーザが吸引していると判断され、ステップS13において、エアロゾル生成部160におけるエアロゾルの生成を実行状態とする。そして、ステップS15において、気圧データ取得部152はエアロゾル生成装置100A内の気圧を示す気圧データを取得する。その後、ステップS31以降の処理が繰り返される。
また、ステップS31における判断が、取得気圧と参照気圧との差が-30Paより大きいとの判断である場合、またはステップS32における判断が、最新および過去における複数の取得気圧と参照気圧との差の合計値が-120Paより大きいとの判断である場合には、エアロゾル生成部160におけるエアロゾルの生成を停止状態とする(ステップS17)。その後、ステップS33において、更新部162は参照気圧を更新する。なお、ステップS33における参照気圧の更新方法については上述した通り、様々な方法がありうる。
また、図6においてステップS33の処理は、ステップS17の処理の直前に実行されるようになっていてもよい。
なお、図5および図6の処理フローは、例えば、ステップS11およびS15において気圧データ取得部152が定期的に(例えば50ms毎)気圧データを取得するように実行されてもよい。
本実施形態に係るエアロゾル生成装置および生成方法によれば、弱い吸引を検出することが可能であり、弱い吸引により参照気圧が下がっていくことにより発生する不都合を解消することが可能である。
なお、上述の説明において、本開示の第1の実施形態は、エアロゾル生成装置およびエアロゾル生成装置によって実行される方法として説明された。しかし、本開示が、例えばプロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。
<第2の実施形態>
本実施形態に係るエアロゾル生成装置は、継続して弱い吹き込みがなされる場合であっても適切に吸引を検出することが可能なエアロゾル生成装置である。ここでの「弱い吹き込み」とは、例えばユーザがエアロゾル生成装置を備える電子たばこや加熱式たばこを、咥えたばこをする等して軽くたばこを吹かすような場合が想定される。
本実施形態に係るエアロゾル生成装置は、継続して弱い吹き込みがなされる場合であっても適切に吸引を検出することが可能なエアロゾル生成装置である。ここでの「弱い吹き込み」とは、例えばユーザがエアロゾル生成装置を備える電子たばこや加熱式たばこを、咥えたばこをする等して軽くたばこを吹かすような場合が想定される。
図7は、本実施形態の概要を説明する図である。図7は、継続して弱い吹き込みがなされる場合における参照気圧の変化の一例を表すグラフを示す。本例においても、参照気圧と取得気圧(エアロゾル生成装置内の気圧)との差が-120Pa以下である場合に通常の吸引がなされたと判断し、当該差が-120Paより大きいである場合には通常の吸引がなされていない(吸引していない、または弱い吸引がなされている等)と判断することとする。
図7を参照すると、弱い吹き込みが継続してなされた場合、気圧センサ112で取得される取得気圧222は、参照気圧224よりも高い気圧ではあるが、通常の吸引がなされたと判断される閾値(本例では-120Pa)を超えない程度の気圧となることが多くなる。これにより、弱い吹き込みが継続している間は取得気圧が参照気圧に組み込まれていく結果、参照気圧224は徐々に上昇していく。その後、ユーザが吹き込みを止めるとエアロゾル生成装置100内の気圧(取得気圧)が下がり、参照気圧よりも小さくなる。この時、取得気圧と参照気圧との差が-120Pa以下となると(時刻T1)吸引されたと誤検知され、エアロゾルの生成が開始されるという不都合が生じる。
そこで、本実施形態においては参照気圧の変動を監視し、参照気圧が上昇傾向にある場合は弱い吹き込みが継続していると判断し、エアロゾルの生成を実行状態としないようにする。
以下、本実施形態についてさらに詳細に説明する。なお、以下の説明において、上述した第1の実施形態と同様の部分は説明を省略する。
(機能ブロック)
図8は、本実施形態に係るエアロゾル生成装置の機能ブロック図の一例である。図2に示されるエアロゾル生成装置100Bは、気圧データ取得部152と、参照気圧記憶部154と、第1吸引判断部252と、吹込判断部254と、第2吸引判断部256と、エアロゾル生成部258と、更新部162とを備える。
図8は、本実施形態に係るエアロゾル生成装置の機能ブロック図の一例である。図2に示されるエアロゾル生成装置100Bは、気圧データ取得部152と、参照気圧記憶部154と、第1吸引判断部252と、吹込判断部254と、第2吸引判断部256と、エアロゾル生成部258と、更新部162とを備える。
本実施形態に係る気圧データ取得部は、第1の実施形態における気圧データ取得部152と同様である。
参照気圧記憶部154は、第1の実施形態と同様の機能を有する。本実施形態においては、参照気圧はユーザの吸引の可能性だけでなくユーザの吹き込みの可能性を判断するためにも用いられる基準値である。
第1吸引判断部252は、気圧データ取得部152にて取得された気圧データによって示される気圧である取得気圧と参照気圧との差が、ユーザの吸引の有無を判定するための第1吸引判定用閾値以下であるか判断する。具体的には、第1吸引判定用閾値は、-140~-100Pa程度であることが望ましい。本実施形態においては、第1吸引判定用閾値は-120Paとする。第1吸引判断部252は、例えば図1の制御部106によって構成されうる。
吹込判断部254は、第1吸引判断部252における判断が、取得気圧と参照気圧との差が第1吸引判定用閾値以下であるとの判断である場合に、最新の参照気圧と過去の時点における参照気圧との差が、ユーザの吹き込みの有無を判定するための吹込判定用閾値以下であるか判断する。具体的には、吹込判定用閾値は、+20~+40Pa程度であることが望ましい。本実施形態においては、吹込判定用閾値は+30Paとする。吹込判断部254は、例えば図1の制御部106によって構成されうる。
エアロゾル生成部258は、第1の実施形態におけるエアロゾル生成部160と同様の機能を有する。ただし、本実施形態のエアロゾル生成部258は、吹込判断部254における判断が、最新の参照気圧と過去の時点(例えば5秒前)における参照気圧との差が吹込判定用閾値以下であるとの判断である場合には、参照気圧の変動がほぼ無い、すなわち弱い吹き込みではないと判断され、エアロゾルの生成を実行状態とする。また、第1吸引判断部252における判断が、取得気圧と参照気圧との差が第1吸引判定用閾値より大きいとの判断である場合は、エアロゾル生成部258におけるエアロゾルの生成を停止状態とする。また、吹込判断部254における判断が、最新の参照気圧と過去の時点(例えば5秒前)における参照気圧との差が吹込判定用閾値より大きいとの判断である場合には、参照気圧の変動が大きい、すなわち弱い吹き込みが行われていると判断され、エアロゾル生成部258におけるエアロゾルの生成を停止状態とする。エアロゾル生成部258は、例えば図1の制御部106、貯留部116、霧化部118等によって実現されうる。
第2吸引判断部256は、吹込判断部254における判断が、最新の参照気圧と過去の時点における参照気圧との差が吹込判定用閾値より大きいとの判断である場合には、最新の取得気圧と過去の時点における参照気圧との差が第2吸引判定用閾値以下であるか判断する。当該判断が、最新の取得気圧と過去の時点における参照気圧との差が第2吸引判定用閾値以下であるとの判断である場合には、エアロゾル生成部258におけるエアロゾルの生成を実行状態とし、最新の取得気圧と過去の時点における参照気圧との差が第2吸引判定用閾値より大きいとの判断である場合には、エアロゾル生成部258におけるエアロゾルの生成を停止状態とする。第2吸引判断部256は、例えば図1の制御部106によって構成されうる。なお、第1吸引判定用閾値と第2吸引判定用閾値は同じ値であってもよいし異なる値であってもよい。本実施形態における説明では双方とも同一の値(-120Pa)として説明している。
本実施形態に係る更新部は、第1の実施形態における更新部162と同様である。
本実施形態に係る更新部は、第1の実施形態における更新部162と同様である。
なお、図8に示されるエアロゾル生成装置100Bの機能ブロック図はあくまで一例であって、これに限定されるものではない。
(処理フロー1)
図9は、本実施形態に係るエアロゾル生成装置100Bの処理フローの一例を示す。
ステップS11において、気圧データ取得部152はエアロゾル生成装置100B内の気圧を示す気圧データを取得する。ステップS12において、第1吸引判断部252は、ステップS11において取得された取得気圧と、参照気圧記憶部154に記憶されている参照気圧との差が-120Pa(第1吸引判定用閾値の一例)以下であるか判断する。当該差が-120Pa以下である場合にはユーザが吸引していると判断され、ステップS51において、吹込判断部254は、最新の参照気圧と過去の時点(例えば5秒前)における参照気圧との差が+30Pa(吹込判定用閾値の一例)以下であるか判断する。
図9は、本実施形態に係るエアロゾル生成装置100Bの処理フローの一例を示す。
ステップS11において、気圧データ取得部152はエアロゾル生成装置100B内の気圧を示す気圧データを取得する。ステップS12において、第1吸引判断部252は、ステップS11において取得された取得気圧と、参照気圧記憶部154に記憶されている参照気圧との差が-120Pa(第1吸引判定用閾値の一例)以下であるか判断する。当該差が-120Pa以下である場合にはユーザが吸引していると判断され、ステップS51において、吹込判断部254は、最新の参照気圧と過去の時点(例えば5秒前)における参照気圧との差が+30Pa(吹込判定用閾値の一例)以下であるか判断する。
ステップS51における判断が、最新の参照気圧と過去の時点における参照気圧との差が+30Pa以下であるとの判断である場合には、ユーザは弱い吹き込みをしていないと判断され、ステップS13において、エアロゾル生成部160におけるエアロゾルの生成を実行状態とする。そして、ステップS15において、気圧データ取得部152はエアロゾル生成装置100B内の気圧を示す気圧データを取得する。その後、ステップS12以降の処理が繰り返される。
また、ステップS12における判断が、取得気圧と参照気圧との差が-120Paより大きいとの判断である場合(吸引していないと判断)、またはステップS51における判断が、最新の参照気圧と過去の時点における参照気圧との差が+30Paより大きいとの判断である場合(弱い吹き込みをしていると判断)には、エアロゾル生成部160におけるエアロゾルの生成を停止状態とする(ステップS17)。その後、ステップS33において、更新部162は参照気圧を更新する。なお、ステップS33における参照気圧の更新方法については第1の実施形態において説明したように、様々な方法がありうる。
(処理フロー2)
図10は、本実施形態に係るエアロゾル生成装置100Bの処理フローの別の例を示す。図10における処理フローは、図9に示される処理フローに加えて、ステップS52の処理を含む点が異なる。ステップS52においては、ステップS51における判断が、最新の参照気圧と過去の時点における参照気圧との差が吹込判定用閾値より大きいとの判断である場合には、参照気圧の変動が大きい、すなわち弱い吹き込みが行われていると判断され、第2吸引判断部256は、取得気圧と過去の参照気圧との差が第2吸引判定用閾値(本例では-120Pa)以下であるか判断する。取得気圧と過去の参照気圧との差が第2吸引判定用閾値以下であるとの判断である場合には、S13において、エアロゾル生成部160におけるエアロゾルの生成を実行状態とする。また、S52における判断が、取得気圧と過去の参照気圧との差が第2吸引判定用閾値より大きいとの判断である場合には、弱い吸引であるであると考えられるため、S17においてエアロゾル生成部160におけるエアロゾルの生成を停止状態とする。
他の処理ステップについては、図9における処理フローと同様である。
図10は、本実施形態に係るエアロゾル生成装置100Bの処理フローの別の例を示す。図10における処理フローは、図9に示される処理フローに加えて、ステップS52の処理を含む点が異なる。ステップS52においては、ステップS51における判断が、最新の参照気圧と過去の時点における参照気圧との差が吹込判定用閾値より大きいとの判断である場合には、参照気圧の変動が大きい、すなわち弱い吹き込みが行われていると判断され、第2吸引判断部256は、取得気圧と過去の参照気圧との差が第2吸引判定用閾値(本例では-120Pa)以下であるか判断する。取得気圧と過去の参照気圧との差が第2吸引判定用閾値以下であるとの判断である場合には、S13において、エアロゾル生成部160におけるエアロゾルの生成を実行状態とする。また、S52における判断が、取得気圧と過去の参照気圧との差が第2吸引判定用閾値より大きいとの判断である場合には、弱い吸引であるであると考えられるため、S17においてエアロゾル生成部160におけるエアロゾルの生成を停止状態とする。
他の処理ステップについては、図9における処理フローと同様である。
なお、図9および図10の処理フローは、例えば、ステップS11およびS15において気圧データ取得部152が定期的に(例えば50ms毎)気圧データを取得するように実行されてもよい。
上述の説明において、本開示の第2の実施形態は、エアロゾル生成装置およびエアロゾル生成装置によって実行される方法として説明された。しかし、本開示が、例えばプロセッサにより実行されると当該プロセッサに当該方法を実行させるプログラム、又は当該プログラムを格納したコンピュータ読み取り可能な記憶媒体として実施され得ることが理解されよう。
以上、本開示の実施形態が説明されたが、これらが例示にすぎず、本開示の範囲を限定するものではないことが理解されるべきである。本開示の趣旨及び範囲から逸脱することなく、実施形態の変更、追加、改良などを適宜行うことができることが理解されるべきである。本開示の範囲は、上述した実施形態のいずれによっても限定されるべきではなく、特許請求の範囲及びその均等物によってのみ規定されるべきである。
100A、100B…エアロゾル生成装置、102…本体、104…カートリッジ、106…制御部、108…通知部、110…電源、112…気圧センサ、114…メモリ、116…貯留部、118…霧化部、120…空気取込流路、121…エアロゾル流路、122…吸口部、130…保持部、132…負荷、134…回路、152…気圧データ取得部、154参…照気圧記憶部、156…第1判断部、158…第2判断部、160、258…エアロゾル生成部、162…更新部、252…第1吸引判断部、254…吹込判断部、256…第2吸引判断部
Claims (6)
- エアロゾル生成装置であって、
ユーザの吸引によって変動し得る前記エアロゾル生成装置内の気圧を示す気圧データを取得する気圧データ取得部と、
前記気圧データによって示される気圧である取得気圧と参照気圧との差が、ユーザの吸引の可能性を判定するための第1判定用閾値以下であるか判断する第1判断部と、
前記第1判断部における判断が、前記取得気圧と前記参照気圧との差が前記第1判定用閾値以下であるとの判断である場合に、最新および過去における複数の前記取得気圧と前記参照気圧との差の合計値が、ユーザの吸引の有無を判定するための第2判定用閾値以下であるか判断する第2判断部と、
エアロゾルを生成するエアロゾル生成部と、
を備え、
前記第2判断部における判断が、前記合計値が前記第2判定用閾値以下であるとの判断である場合には、前記エアロゾル生成部におけるエアロゾルの生成を実行状態とする、エアロゾル生成装置。 - 前記第1判断部における判断が、前記取得気圧と前記参照気圧との差が前記第1判定用閾値より大きいとの判断である場合、または前記第2判断部における判断が、前記合計値が前記第2判定用閾値より大きいとの判断である場合には、前記エアロゾル生成部におけるエアロゾルの生成を停止状態とする、請求項1に記載のエアロゾル生成装置。
- 前記エアロゾル生成部におけるエアロゾルの生成を停止状態にすべきと判断された場合には、前記参照気圧を更新する更新部をさらに備える、請求項2に記載のエアロゾル生成装置。
- 前記更新部はさらに、前記エアロゾル生成部におけるエアロゾルの生成を実行状態にすべきと判断された場合には、前記参照気圧を更新する、請求項3に記載のエアロゾル生成装置。
- エアロゾル生成装置によって実行される方法であって、
ユーザの吸引によって変動し得る前記エアロゾル生成装置内の気圧を示す気圧データを取得するステップと、
前記気圧データによって示される気圧である取得気圧と参照気圧との差が、ユーザの吸引の可能性の有無を判定するための第1判定用閾値以下であるか判断するステップと、
前記第1判定閾値を用いた判断が、前記取得気圧と前記参照気圧との差が前記第1判定用閾値以下であるとの判断である場合に、最新および過去における複数の前記取得気圧と前記参照気圧との差の合計値が、ユーザの吸引の有無を判定するための第2判定用閾値以下であるか判断するステップと、
前記第2判定閾値を用いた判断が、前記合計値が前記第2判定用閾値以下であるとの判断である場合には、エアロゾルの生成を実行状態とするステップと、
を備える方法。 - プロセッサにより実行されると、前記プロセッサに、請求項5に記載の方法を実行させる、プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/021723 WO2020240819A1 (ja) | 2019-05-31 | 2019-05-31 | エアロゾル生成装置、生成方法、および生成プログラム |
JP2021521728A JP7137699B2 (ja) | 2019-05-31 | 2019-05-31 | エアロゾル生成装置、生成方法、および生成プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/021723 WO2020240819A1 (ja) | 2019-05-31 | 2019-05-31 | エアロゾル生成装置、生成方法、および生成プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020240819A1 true WO2020240819A1 (ja) | 2020-12-03 |
Family
ID=73553676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021723 WO2020240819A1 (ja) | 2019-05-31 | 2019-05-31 | エアロゾル生成装置、生成方法、および生成プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7137699B2 (ja) |
WO (1) | WO2020240819A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015536648A (ja) * | 2012-10-19 | 2015-12-24 | ニコベンチャーズ ホールディングス リミテッド | 電子蒸気供給装置 |
JP2018108100A (ja) * | 2013-10-09 | 2018-07-12 | ニコベンチャーズ ホールディングス リミテッド | 電子式蒸気供給装置 |
-
2019
- 2019-05-31 WO PCT/JP2019/021723 patent/WO2020240819A1/ja active Application Filing
- 2019-05-31 JP JP2021521728A patent/JP7137699B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015536648A (ja) * | 2012-10-19 | 2015-12-24 | ニコベンチャーズ ホールディングス リミテッド | 電子蒸気供給装置 |
JP2018108100A (ja) * | 2013-10-09 | 2018-07-12 | ニコベンチャーズ ホールディングス リミテッド | 電子式蒸気供給装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020240819A1 (ja) | 2021-11-25 |
JP7137699B2 (ja) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI670021B (zh) | 香味吸嚐器、筒匣及香味單元 | |
JP7197248B2 (ja) | 電子エアロゾル供給システム及び方法 | |
KR102490039B1 (ko) | 흡인 장치와 이것을 동작시키는 방법 및 프로그램 | |
KR101907769B1 (ko) | 비연소형 향미 흡인기 | |
WO2020208903A1 (ja) | 吸引装置に具備される電源ユニット、吸引装置、及び電源ユニットを動作させる方法 | |
TW201826953A (zh) | 吸嚐裝置以及使其動作之方法與程式 | |
CN110996695A (zh) | 电子吸烟系统 | |
JP7108790B2 (ja) | 吸引装置、電源ユニット、及び方法 | |
WO2020235062A1 (ja) | 吸引装置、吸引体験提供システム、方法、及びプログラム | |
JP7158557B2 (ja) | 香味成分生成制御装置、香味成分生成装置、制御方法及びプログラム | |
JP7248810B2 (ja) | バッテリユニット、情報処理方法、及びプログラム | |
CN114304736A (zh) | 用于气雾剂生成装置的电源单元 | |
TWI796551B (zh) | 電池單元、霧氣生成裝置、資訊處理方法及認證連接控制程式 | |
WO2020240818A1 (ja) | エアロゾル生成装置、生成方法、および生成プログラム | |
WO2020240819A1 (ja) | エアロゾル生成装置、生成方法、および生成プログラム | |
JP7244664B2 (ja) | バッテリユニット、情報処理方法、及びプログラム | |
EP3840166A1 (en) | Aerosol delivery device/system | |
JP6987294B1 (ja) | 吸引装置 | |
JP2022019824A (ja) | 吸引装置 | |
TWI830878B (zh) | 電池單元、霧氣產生裝置、資訊處理方法及無線通信控制程式 | |
CN113974221A (zh) | 电源组件和电子雾化装置 | |
TWI626898B (zh) | 吸嚐裝置以及使其動作之方法與程式 | |
WO2023053183A1 (ja) | 吸引装置の動作方法、プログラム、及び吸引装置 | |
WO2020217948A1 (ja) | 非燃焼式吸引器 | |
CN117940033A (zh) | 气溶胶生成系统、控制方法以及程序 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19931046 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021521728 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19931046 Country of ref document: EP Kind code of ref document: A1 |