WO2020240702A1 - 遮断装置 - Google Patents

遮断装置 Download PDF

Info

Publication number
WO2020240702A1
WO2020240702A1 PCT/JP2019/021117 JP2019021117W WO2020240702A1 WO 2020240702 A1 WO2020240702 A1 WO 2020240702A1 JP 2019021117 W JP2019021117 W JP 2019021117W WO 2020240702 A1 WO2020240702 A1 WO 2020240702A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
main circuit
unit
voltage
main
Prior art date
Application number
PCT/JP2019/021117
Other languages
English (en)
French (fr)
Inventor
卓志 稲垣
翔 常世田
伊藤 弘基
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19931243.0A priority Critical patent/EP3979285A4/en
Priority to PCT/JP2019/021117 priority patent/WO2020240702A1/ja
Priority to JP2019559120A priority patent/JP6704539B1/ja
Priority to US17/606,771 priority patent/US11972915B2/en
Publication of WO2020240702A1 publication Critical patent/WO2020240702A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/16Impedances connected with contacts
    • H01H33/161Variable impedances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • H01H2033/146Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc using capacitors, e.g. for the voltage division over the different switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Keying Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

遮断装置(1)は、主遮断器(21,22,23,24)と、インピーダンス回路(31,32,33,34)と、ユニット用避雷器(41,42,43,44)とが互いに並列に接続された遮断ユニット(2a,2b,2c,2d)を備え、主遮断器(21,22,23,24)が直列に接続された遮断部(8)と、リアクトル(56)、コンデンサ(55)及び投入スイッチ(51,52,53,54)を備え、遮断部(8)に並列に接続される共振回路部(5)と、リアクトル(56)を介して遮断部(8)に並列に接続される全点用避雷器(6)を備える。ユニット用避雷器(41,42,43,44)の制限電圧は、遮断ユニット(2a,2b,2c,2d)間で同一であり、且つ、全点用避雷器(6)の制限電圧を遮断部(8)における遮断ユニット(2a,2b,2c,2d)の直列数で除した値の1.1倍から1.6倍までの範囲内にある。

Description

遮断装置
 本発明は、遮断部の主遮断器に強制消弧方式の機械式の開閉器を用いて高電圧の電流を遮断する遮断装置に関する。
 高電圧の電流を遮断する遮断装置として、遮断部が複数の主遮断器を直列に接続した、いわゆる多点切りの構成が採用されることがある。
 多点切りの遮断装置においては、遮断直後に主遮断器の極間に発生する過渡回復電圧(Transient Recovery Voltage:TRV)、及び主遮断器の開放時に主遮断器の極間に印加される系統電圧が、各主遮断器のそれぞれに対して均等に分圧されること、即ち電圧分担を均等化することが重要である。電圧分担が均等化されない場合、電圧分担の偏りを考慮して各主遮断器に耐電圧性能のマージンを持たせる必要がある。これにより、機器が大型化し、主遮断器のスペックが過剰なものになるといった課題が生ずる。
 上記の課題に対応するため、下記特許文献1には、各主遮断器の極間と並列に均等分圧(以下、「均圧」と略す)用のコンデンサ及び均圧用の抵抗を接続して電圧分担の均等化を図る技術が開示されている。
特開昭56-32631号公報
 主遮断器が強制消弧方式の機械式の開閉器である場合、主遮断器の機械的動作のばらつきを小さくしても、遮断時において極間に発生するアークの遮断特性、及び直列に接続された複数の主遮断器における微小な遮断責務の違いなどから、遮断タイミングのばらつきを回避することは困難である。
 複数の主遮断器において、遮断タイミングがばらつくと、先に遮断した主遮断器の極間には、残りの主遮断器が遅れて遮断するまでの間、主遮断器全点分のTRVが印加されることになる。
 上記特許文献1の構成において、主遮断器のそれぞれに並列に接続される均圧用のコンデンサは、遅れて遮断する主遮断器が遮断した直後から、電圧分担の均等化に寄与しようとするものの、その時定数が急峻な電圧変化に追従できず、各主遮断器の電圧分担が不均一なまま遮断が完了してしまうことになる。
 従って、上記特許文献1の技術を用いる場合、遮断部の主遮断器の耐電圧性能に余分なマージンを確保するか、主遮断器の直列数を余分に設けるなどの対応が必要であり、主遮断器を含む遮断部の小型化及び低コスト化を阻害する要因となっていた。
 本発明は、上記に鑑みてなされたものであって、遮断部の耐電圧性能が過剰になるのを回避して、遮断部の小型化及び低コスト化を図ることができる遮断装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するため、本発明に係る遮断装置は、主遮断器と、分圧回路と、第1の避雷器とが互いに並列に接続された遮断ユニットを複数備え、複数の主遮断器が直列に接続された遮断部を備える。また、遮断装置は、リアクトル、コンデンサ及び投入スイッチを備え、遮断部に並列に接続される共振回路部を備える。更に、遮断装置は、リアクトルを介して遮断部に並列に接続される第2の避雷器を備える。第1の避雷器の制限電圧は、複数の遮断ユニット間で同一であり、且つ、第2の避雷器の制限電圧を遮断部における遮断ユニットの直列数で除した値の1.1倍から1.6倍までの範囲内にある。
 本発明に係る遮断装置によれば、遮断部の耐電圧性能が過剰になるのを回避することができ、遮断部の小型化及び低コスト化を図ることができるという効果を奏する。
実施の形態1に係る遮断装置の回路構成例を示す図 実施の形態1における制御部の機能を実現するハードウェア構成の一例を示す図 実施の形態1で用いる一般的な避雷器の電圧電流特性の一例を示す図 実施の形態1の動作説明に供する基本回路図 実施の形態1の要部の説明に供する第1の波形例を示す図 実施の形態1の要部の説明に供する第2の波形例を示す図 実施の形態1の要部の説明に供する第3の波形例を示す図 実施の形態1の要部の特徴を表す特性カーブを示す図 実施の形態1の要部の説明に供する第4の波形例を示す図 実施の形態1の構成において遅れて遮断する遮断器の遮断責務が厳しくなる理由の説明に供する図 遅れて遮断する遮断器の遮断責務を緩和する実施の形態2に係る遮断装置の要部の構成を示す図 図11の構成において遅れて遮断する遮断器に流れる電流波形の例を示す図 実施の形態1における遮断部を交流遮断用の遮断部として用いる実施の形態3に係る遮断装置の配置例を示す図
 以下に添付図面を参照し、本発明の実施の形態に係る遮断装置について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。また、以下では、電気的な接続を単に「接続」と称して説明する。
実施の形態1.
 図1は、実施の形態1に係る遮断装置の回路構成例を示す図である。図2は、実施の形態1における制御部の機能を実現するハードウェア構成の一例を示す図である。
 実施の形態1に係る遮断装置1は、主遮断器群2と、分圧回路群3と、ユニット用避雷器群4と、共振回路部5と、全点用避雷器6と、制御部10とを備える。
 図1に示すように、主遮断器群2は、直列に接続された複数の主遮断器21,22,23,24を備える。即ち、実施の形態1に係る遮断装置1は、いわゆる多点切り構成された遮断装置である。主遮断器21,22,23,24は、主線路である直流線路50に配置された直流遮断器である。主遮断器21,22,23,24の一例は、電流遮断能力の高い真空遮断器であるが、真空遮断器以外のスイッチ開閉器を主遮断器として使用してもよい。
 図1において、主遮断器21が配置されている側が電源側であり、主遮断器24が配置されている側が系統側である。電源側及び系統側の直流線路50には、それぞれ断路器80,81が配置されている。断路器80は、遮断装置1を電源から切り離すための開閉器である。断路器81は、遮断装置1を系統から切り離すための開閉器である。
 分圧回路群3は、直列に接続された複数の均圧用のインピーダンス回路31,32,33,34を有する。各インピーダンス回路の構成要素は、コンデンサ素子及び抵抗器である。第1の分圧回路であるインピーダンス回路31は、第1の主遮断器である主遮断器21に並列に接続される。第2の分圧回路であるインピーダンス回路32は、第2の主遮断器である主遮断器22に並列に接続される。第3の分圧回路であるインピーダンス回路33は、第3の主遮断器である主遮断器23に並列に接続される。第4の分圧回路であるインピーダンス回路34は、第4の主遮断器である主遮断器24に並列に接続される。インピーダンス回路31,32,33,34は、並列に接続される各主遮断器の極間に生ずる極間電圧を均等に分圧するように動作する。
 ユニット用避雷器群4は、直列に接続された複数のユニット用避雷器41,42,43,44を有する。ユニット用避雷器41,42,43,44は、エネルギー吸収機器の例示である。ユニット用避雷器41,42,43,44は、並列に接続される各主遮断器の極間に生ずる極間電圧を制限電圧以下に抑制する。なお、ユニット用避雷器41,42,43,44のそれぞれを「第1の避雷器」と呼び、全点用避雷器6を「第2の避雷器」と呼ぶ場合がある。
 互いに並列に接続される、主遮断器21、インピーダンス回路31及びユニット用避雷器41は、遮断ユニット2aを構成する。互いに並列に接続される、主遮断器22、インピーダンス回路32及びユニット用避雷器42は、遮断ユニット2bを構成する。互いに並列に接続される、主遮断器23、インピーダンス回路33及びユニット用避雷器43は、遮断ユニット2cを構成する。互いに並列に接続される、主遮断器24、インピーダンス回路34及びユニット用避雷器44は、遮断ユニット2dを構成する。
 また、分圧回路群3及びユニット用避雷器群4は、電圧分担改善部7を構成する。主遮断器群2及び電圧分担改善部7は、遮断部8を構成する。
 共振回路部5は、分圧回路群3及びユニット用避雷器群4と共に、主遮断器群2の両端に並列に接続される。共振回路部5は、直流線路50に事故電流が流れた場合に、当該事故電流に重畳させる共振性電流を生成する回路である。共振回路部5は、直列に接続された投入スイッチ51,52,53,54と、コンデンサ55と、リアクトル56とを備える。コンデンサ55は、図示しない外部充電装置又は系統電圧によって、予め既定の電圧に充電されている。投入スイッチ51,52,53,54の一例は、放電ギャップ装置である。共振性電流の周波数は、コンデンサ55のキャパシタンスCp及びリアクトル56のインダクタンスLpによって決定される。
 第2の避雷器である全点用避雷器6は、投入スイッチ51,52,53,54のそれぞれと、コンデンサ55とによる直列回路の両端に並列に接続される。この接続により、回路的に見ると、全点用避雷器6とリアクトル56とによる直列回路が、主遮断器群2の両端に並列に接続される構成となる。
 なお、図1では、遮断ユニットの数、即ち遮断部8における遮断ユニットの直列数を4としているが、これに限定されない。遮断ユニットの直列数は2以上、即ち複数であればよく、後述する本実施の形態の効果が得られる。
 制御部10は、主遮断器21,22,23,24、及び投入スイッチ51,52,53,54の開閉を制御する。なお、主遮断器21,22,23,24、及び投入スイッチ51,52,53,54のそれぞれを指して「開閉器」と呼ぶ場合がある。
 制御部10の機能を実現する場合には、図2に示すように、演算を行うプロセッサ200、プロセッサ200によって読みとられるプログラムが保存されるメモリ202及び信号の入出力を行うインタフェース204を含む構成とすることができる。各開閉器の開閉を制御するためのプログラムは、メモリ202に保持される。制御部10は、インタフェース204を介して必要な情報の授受を行い、メモリ202で保持されているプログラムをプロセッサ200に実行させることにより、後述する制御を実施する。
 なお、プロセッサ200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ202とは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリが該当する。
 図3は、実施の形態1で用いる一般的な避雷器の電圧電流特性の一例を示す図である。図3では、横軸を電流とし、縦軸は電圧を表している。避雷器は、図3に示されるように、ある一定以上の電圧が印加されると急激に抵抗値が低下して導電帯となる非線形な特性を有している。この特性により、避雷器の放電中は、電流が増加しても過電圧が制限される。このように、避雷器の放電中において、避雷器の両端に発生する制限された電圧が「制限電圧」である。なお、本発明の技術分野においては、図3に示されるように、避雷器に流れる電流が公称放電電流であるときの電圧を指して「制限電圧」と呼ぶことが一般的である。
 次に、実施の形態1に係る遮断装置1の要部に関する構成及び動作について説明する。
 まず、実施の形態1の構成の特徴は以下の通りである。
 (a)第1の避雷器であるユニット用避雷器41,42,43,44の制限電圧は、各遮断ユニット間で同一である。
 (b)第1の避雷器であるユニット用避雷器41,42,43,44の制限電圧は、第2の避雷器である全点用避雷器6の制限電圧を遮断部8における各遮断ユニットの直列数で除した値の1.1倍から1.6倍までの範囲内にある。
 ここで、全点用避雷器6の制限電圧を「Vt」、各遮断ユニットの制限電圧を「Vu」、各遮断ユニットの直列数を「n」で表す。また、直列数nで除した値に乗算する倍数を「K」で表し、「倍数K」と呼ぶ。すると、各遮断ユニットの制限電圧Vuは、全点用避雷器6の制限電圧Vt、直列数n及び倍数Kを用いて、以下の(1)式で表すことができる。また、倍数Kに関する上記(b)の関係は、以下の(2)式で表すことができる。
 Vu=Vt/n×K  …(1)
 1.1≦K≦1.6   …(2)
 以下、上記のように設定する理由について図4から図9を参照して説明する。
 図4は、実施の形態1の動作説明に供する基本回路図である。図4に示す基本回路図では、主遮断器群2、分圧回路群3、ユニット用避雷器群4及び共振回路部5の各構成要素の数を最小構成数である「2」としている。なお、図4の構成では、投入スイッチ51,52の各両端に均圧用のインピーダンス回路61,62を接続している。また、以下の記載では、主遮断器21を「Cb1」と表記し、主遮断器22を「Cb2」と表記する場合がある。
 図5は、実施の形態1の要部の説明に供する第1の波形例を示す図である。図5の上段部には、遮断時の電圧波形、即ちTRVの時間変化が示されている。図5の例は、図4に示す基本回路図の構成において、主遮断器Cb1が先に遮断し、主遮断器Cb2が遅れて遮断した場合のシミュレーション結果による波形である。細実線は主遮断器Cb1のTRV、太破線は主遮断器Cb2のTRV、そして太実線は主遮断器Cb1のTRVの値と主遮断器Cb2のTRVの値とを合算した主遮断器Cb1,Cb2全体のTRVを示している。
 直流線路50に事故電流が流れた場合、事故電流に重畳させる共振性電流によってゼロ点が形成され、図5の例では、主遮断器Cb1が先に遮断する。このとき、コンデンサ55には、余力のエネルギーが残っているため、そのときのコンデンサ55の電圧が主遮断器Cb1の両端に逆極性で表れる。これが、図5の上段部に示した「負のTRV」である。よって、先に遮断した主遮断器Cb1は負のTRVからスタートする波形となるのに対し、遅れて遮断する主遮断器Cb2はゼロからスタートする波形となる。主遮断器Cb1,Cb2は共に、それぞれに並列に接続される避雷器による制限電圧によって電圧が制限される。図5の例では、前述した倍数Kが、K=1.0に設定されていることで、主遮断器Cb2のTRVが制限電圧に達した後に全体の遮断が完了する状況が想定されている。このため、負のTRVからスタートする主遮断器Cb1のTRVが主遮断器Cb2の制限電圧に追いつく。これにより、全体の遮断の完了時には、V1=V2となり、V1/V2=1.0となる。
 図5の下段部には、ユニット用避雷器41によって処理されるエネルギーが細実線で示され、ユニット用避雷器42によって処理されるエネルギーが太破線で示されている。また、ユニット用避雷器41,42のそれぞれと、全点用避雷器6との全体によって処理されるエネルギーが太実線で示されている。この波形から理解できるように、図5の例は、ユニット用避雷器41,42のエネルギー処理量が、ユニット用避雷器全体のエネルギー処理量に比べて、相対的に大きい処理量となっている。
 図6は、実施の形態1の要部の説明に供する第2の波形例を示す図であり、各部の波形の意味は、図5と同じである。また、倍数Kの値を除き、実施条件は図5と同一である。
 図6は、前述した倍数Kが、K=1.4に設定された場合のシミュレーション結果である。図6の例では、倍数Kが、K=1.4に設定されていることで、主遮断器Cb2のTRVが制限電圧に達する前に全体の遮断が完了する状況が想定されている。これにより、全体の遮断の完了時には、V1<V2の関係となる。図6の例では、V1/V2の値は、約0.88である。
 なお、主遮断器Cb1,Cb2のTRVは時間によって変化する波形であり、V1/V2の値は時間によって変動する。そこで、V1/V2の値を求める時刻は、主遮断器Cb1,Cb2全体のTRVがピークとなるA点としている。
 図6の下段部には、避雷器エネルギーの波形が示されている。図6の下段部の波形によれば、ユニット用避雷器41,42のエネルギー処理量が、図5に比べて小さくなっていることが分かる。
 図7は、実施の形態1の要部の説明に供する第3の波形例を示す図であり、各部の波形の意味は、図5及び図6と同じである。また、倍数Kの値を除き、実施条件は図5及び図6と同一である。
 図7は、前述した倍数Kが、K=1.8に設定された場合のシミュレーション結果である。図7の例では、倍数Kが、K=1.8に設定されているので、図6の場合と同様に、主遮断器Cb2のTRVが制限電圧に達する前に全体の遮断が完了する状況が想定されている。更に、図6の例よりも、倍数Kの値が大きいので、V1/V2の値は、図6の例よりも小さくなる。具体的に、図7の例におけるV1/V2の値は、約0.46である。
 なお、倍数Kの値を大きくすれば、ユニット用避雷器全体のエネルギー処理量に対するユニット用避雷器41,42のエネルギー処理量が、図5及び図6の例よりも改善されることは分かっている。このため、図7では、避雷器エネルギーについては、図示を省略している。
 図8は、実施の形態1の要部の特徴を表す特性カーブを示す図である。図8において、横軸には倍数Kの値を示し、縦軸にはV1/V2の値を示している。図8では、図7での実施結果に加え、K=0.8、1.1、1.2及び1.6について、シミュレーション結果によるV1/V2の値を追加している。
 V1/V2の値が1に近いほど、より均圧化されることを意味する。一方、倍数Kを小さくすると、ユニット用避雷器が処理するエネルギーが大きくなる。これらの相反する関係により、図8では、倍数Kの値に応じた特性カーブの特徴を3つの領域に区分している。具体的に、倍数Kの値が1.1未満の領域を第1の領域とし、倍数Kの値が1.1以上、1.6以下の領域を第2の領域とし、倍数Kの値が1.6を超える領域を第3の領域としている。
 第1の領域は、電圧の均圧化率が大であるが、ユニット用避雷器が処理するエネルギーが大きく、好ましい領域ではない。また、第3の領域は、ユニット用避雷器が処理するエネルギーは小さくてよいが、電圧の均圧化率が低く、好ましい領域ではない。これらに対し、第2の領域は、電圧の均圧化率は比較的大きく、ユニット用避雷器が処理するエネルギーは小さくてよいので、好ましい領域である。
 以上により、実施の形態1では、倍数Kの値が1.1以上、且つ1.6以下の範囲を要部の構成としている。
 なお、前述の通り、図5から図7では、負のTRVが大きい場合を例示した。負のTRVが大きい場合、先に遮断するユニットが全ての負のTRVを負担する。このため、制限電圧へ到達するまでの時間が長くなり、電圧分担に偏りが生じ易くなる。特に倍数Kが大きいときは、各ユニット用避雷器の制限電圧は、相対的に高くなる。このため、遅れて遮断する主遮断器Cb2が、主遮断器Cb2の制限電圧へ到達すると、主遮断器Cb2の制限電圧と全点用避雷器6の制限電圧との差電圧が主遮断器Cb1へ印加されることになる。即ち、負のTRVが大きい場合は、主遮断器Cb1と主遮断器Cb2との間において、電圧分担の偏りが大きくなる。
 これに対し、図9では、負のTRVが小さい場合の一例として、倍数Kが、K=1.4の場合を示している。図9は、実施の形態1の要部の説明に供する第4の波形例を示す図である。
 負のTRVが小さい場合、全点用避雷器6の制限電圧の到達時点において、主遮断器Cb1,Cb2の電圧は、1対1に均圧化され易くなる。これは、負のTRVが小さいほど、先に遮断する遮断器及び遅れて遮断する遮断器のそれぞれが、それぞれの避雷器の制限電圧へ到達するまでの時間差が小さくなるからである。このため、負のTRVが小さい場合では、上記数値限定の範囲に対する影響はないといっても過言ではない。
 以上説明したように、実施の形態1に係る遮断装置では、第1の避雷器の制限電圧は、複数の遮断ユニット間で同一であり、且つ、第2の避雷器の制限電圧を遮断部における遮断ユニットの直列数で除した値の1.1倍から1.6倍までの範囲内にあるように設定する。これにより、多点切りで構成された遮断装置において、遮断部の耐電圧性能が過剰になるのを回避することができ、遮断部の更なる小型化及び低コスト化を図ることが可能となる。
実施の形態2.
 実施の形態1では、主遮断器21(Cb1)が先に遮断し、主遮断器22(Cb2)が遅れて遮断する場合を一例として説明した。実情的には、遅れて遮断する遮断器の方が、先に遮断する遮断器よりも遮断責務が厳しくなる場合がある。そこで、実施の形態2では、遅れて遮断する遮断器の遮断責務を緩和する実施の形態について説明する。
 図10は、実施の形態1の構成において遅れて遮断する遮断器の遮断責務が厳しくなる理由の説明に供する図である。図11は、遅れて遮断する遮断器の遮断責務を緩和する実施の形態2に係る遮断装置の要部の構成を示す図である。図12は、図11の構成において遅れて遮断する遮断器に流れる電流波形の例を示す図である。
 主遮断器21が主遮断器22よりも先に遮断すると、図10に示すように、主遮断器21側のインピーダンス回路31及びユニット用避雷器41を介して主遮断器22へ電流が流れる。このとき、主遮断器22に流れる電流は、電流が流れる回路全体のインピーダンスによって決まる周波数次第である。このため、主遮断器22に流れる電流は、電流零点の電流変化率di/dtが高くなる場合があり、主遮断器22の遮断責務が厳しくなる。そこで、実施の形態2に係る遮断装置1Aでは、図11に示すように、主遮断器21のインピーダンス回路31における系統側と主遮断器22のインピーダンス回路32における電源側との接続点と、主遮断器21における系統側と主遮断器22における電源側との接続点との間に、リアクトル71を接続する。このように接続すると、主遮断器22に流れる電流は、図11に示すように、リアクトル71を介して流れるようになる。
 図12の左側には、遅れて遮断する主遮断器22に流れる電流波形の例が示されている。また、図12の右側には、図12の左側の波形図に破線の四角で示されているA部を拡大した電流が示されている。
 図12の右側の電流波形において、太実線はリアクトル71を有さない場合の波形であり、太破線はリアクトル71を有する場合の波形である。この図に示すように、リアクトル71を有する場合は、リアクトル71を有さない場合に比べて、主遮断器22に流れる電流の周波数と、電流波高値とを小さくすることができる。これにより、実施の形態2の構成によれば、遅れて遮断する主遮断器22の遮断責務を緩和できるという効果が得られる。
 なお、図11は、遮断ユニッの直列数が2である場合の例示であり、遮断ユニッの直列数が3以上である場合においても、図11と同様にリアクトル71が配置されることは言うまでもない。即ち、直列に接続される各2つの主遮断器同士の接続点と、当該各2つの主遮断器に対応する各2つのインピーダンス回路同士の接続点との間にもリアクトル71が接続される構成となる。
実施の形態3.
 実施の形態1は、遮断部8を直流遮断用の遮断部として用いる実施の形態であった。実施の形態3では、遮断部8を交流遮断用の遮断部として用いる実施の形態について説明する。図13は、実施の形態1における遮断部を交流遮断用の遮断部として用いる実施の形態3に係る遮断装置の配置例を示す図である。
 図13において、実施の形態3における遮断部8Aは、交流線路60に配置される。遮断部8Aの左側は電源側であり、遮断部8Aの一端は、変圧器107を介して交流電源108に接続される。遮断部8Aの一端と変圧器107との間には、接地開閉器105a、断路器106aが配置される。遮断部8Aの右側は系統側であり、遮断部8Aの系統側には、接地開閉器105b、断路器106bが配置される。また、電源側及び系統側の双方において、交流線路60には、変流器104a,104bが配置されている。
 遮断部8Aは、直列に接続された主遮断器21A,22Aを備える。主遮断器21Aの両端には、インピーダンス回路31A及びユニット用避雷器41Aが並列に接続され、主遮断器22Aの両端には、インピーダンス回路32A及びユニット用避雷器42Aが並列に接続される。なお、図13では、遮断部8Aにおける主遮断器の直列数が2である場合を示しているが、これに限定されない。遮断部8Aにおける主遮断器の直列数は3以上であってもよい。
 実施の形態3において、遮断部8Aも実施の形態1で説明した遮断部8と同様の特徴を有するものとして構成する。これにより、実施の形態3においても、実施の形態1で説明した効果を享受することができる。
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1A 遮断装置、2 主遮断器群、2a,2b,2c,2d 遮断ユニット、3 分圧回路群、4 ユニット用避雷器群、5 共振回路部、6 全点用避雷器、7 電圧分担改善部、8,8A 遮断部、10 制御部、21,21A,22,22A,23,24,Cb1,Cb2 主遮断器、31,31A,32,32A,33,34,61,62 インピーダンス回路、41,41A,42,42A,43,44 ユニット用避雷器、50 直流線路、51,52,53,54 投入スイッチ、55 コンデンサ、56,71 リアクトル、60 交流線路、80,81,106a,106b 断路器、104a,104b 変流器、105a,105b 接地開閉器、107 変圧器、108 交流電源、200 プロセッサ、202 メモリ、204 インタフェース。

Claims (4)

  1.  主遮断器と、分圧回路と、第1の避雷器とが互いに並列に接続された遮断ユニットを複数備え、複数の前記主遮断器が直列に接続された遮断部と、
     リアクトル、コンデンサ及び投入スイッチを備え、前記遮断部に並列に接続される共振回路部と、
     前記リアクトルを介して前記遮断部に並列に接続される第2の避雷器と、
     を備え、
     前記第1の避雷器の制限電圧は、複数の遮断ユニット間で同一であり、且つ、前記第2の避雷器の制限電圧を前記遮断部における前記遮断ユニットの直列数で除した値の1.1倍から1.6倍までの範囲内にある
     ことを特徴とする遮断装置。
  2.  直列に接続される各2つの主遮断器同士の接続点と、前記各2つの主遮断器に対応する各2つのインピーダンス回路同士の接続点との間にリアクトルが接続されている
     ことを特徴とする請求項1に記載の遮断装置。
  3.  前記遮断部は、直流遮断用の遮断部として用いられる
     請求項1又は2に記載の遮断装置。
  4.  前記遮断部は、交流遮断用の遮断部として用いられる
     請求項1に記載の遮断装置。
PCT/JP2019/021117 2019-05-28 2019-05-28 遮断装置 WO2020240702A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19931243.0A EP3979285A4 (en) 2019-05-28 2019-05-28 INTERRUPTION DEVICE
PCT/JP2019/021117 WO2020240702A1 (ja) 2019-05-28 2019-05-28 遮断装置
JP2019559120A JP6704539B1 (ja) 2019-05-28 2019-05-28 遮断装置
US17/606,771 US11972915B2 (en) 2019-05-28 Breaking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021117 WO2020240702A1 (ja) 2019-05-28 2019-05-28 遮断装置

Publications (1)

Publication Number Publication Date
WO2020240702A1 true WO2020240702A1 (ja) 2020-12-03

Family

ID=70858212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021117 WO2020240702A1 (ja) 2019-05-28 2019-05-28 遮断装置

Country Status (3)

Country Link
EP (1) EP3979285A4 (ja)
JP (1) JP6704539B1 (ja)
WO (1) WO2020240702A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167165B (zh) * 2021-11-12 2022-08-23 西南交通大学 虑及多重脉冲下功率摄取的避雷器阀片服役状态测评方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632631A (en) 1979-08-24 1981-04-02 Tokyo Shibaura Electric Co Breaker
JPS59128714A (ja) * 1983-01-14 1984-07-24 株式会社日立製作所 直流遮断器
JPS62113326A (ja) * 1985-11-11 1987-05-25 株式会社日立製作所 直流遮断器
WO2016056098A1 (ja) * 2014-10-09 2016-04-14 三菱電機株式会社 直流遮断器
JP2016081923A (ja) * 2014-10-10 2016-05-16 エルエス産電株式会社Lsis Co., Ltd. 直流遮断器及びそれを用いる方法(DirectCurrentCircuitBreakerandMethodUsingTheSame)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660131B2 (ja) * 2004-07-15 2011-03-30 株式会社東芝 直流遮断器
CN103762547A (zh) * 2014-01-08 2014-04-30 西安交通大学 基于人工过零的模块式高压真空直流开断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632631A (en) 1979-08-24 1981-04-02 Tokyo Shibaura Electric Co Breaker
JPS59128714A (ja) * 1983-01-14 1984-07-24 株式会社日立製作所 直流遮断器
JPS62113326A (ja) * 1985-11-11 1987-05-25 株式会社日立製作所 直流遮断器
WO2016056098A1 (ja) * 2014-10-09 2016-04-14 三菱電機株式会社 直流遮断器
JP2016081923A (ja) * 2014-10-10 2016-05-16 エルエス産電株式会社Lsis Co., Ltd. 直流遮断器及びそれを用いる方法(DirectCurrentCircuitBreakerandMethodUsingTheSame)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979285A4

Also Published As

Publication number Publication date
US20220208490A1 (en) 2022-06-30
EP3979285A1 (en) 2022-04-06
JPWO2020240702A1 (ja) 2021-09-13
JP6704539B1 (ja) 2020-06-03
EP3979285A4 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
KR101183508B1 (ko) Dc 전류 차단기
JP5214066B1 (ja) 直流遮断器
JPS59105226A (ja) しゃ断器
EP3242309A1 (en) High voltage dc circuit breaker
US11824346B2 (en) Current cut-off device for high-voltage direct current with adaptive oscillatory circuit, and control method
WO2014038008A1 (ja) 直流遮断器
US11367585B2 (en) Direct-current circuit breaker
US11049670B2 (en) Mechatronic circuit-breaker device
US11791617B2 (en) Current cut-off device for high-voltage direct current with capacitive buffer circuit, and control method
KR101673956B1 (ko) 전력계통을 보호하기 위한 복합형 초전도 한류기 및 이를 포함하는 차단기 시스템
WO2020240702A1 (ja) 遮断装置
CN111030654A (zh) 一种固态功率控制器
US5353186A (en) Reactor switch
US9111698B2 (en) Method for cutting off an electric arc, method and device for protecting an installation against voltage surges
US11972915B2 (en) Breaking device
JP6936547B1 (ja) 電流遮断装置
KR100767620B1 (ko) 전원의 낙뢰보호장치
KR102151150B1 (ko) 단상 가변탭 변압기 보호 장치 및 그 제어방법
JP2898714B2 (ja) 開閉装置
WO2018198552A1 (ja) 直流遮断装置
WO2018146748A1 (ja) 直流遮断器の試験装置及び試験方法
JPH0759259A (ja) 三相四線式負荷回路
Rostron et al. Simplified designs for switching reactive power improve power system reliability
CN109599853A (zh) 一种基于gdt和ntc的spd后备保护器及匹配方法
KR20200011186A (ko) 전류 제한 장치 및 이를 포함하는 직류 차단 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019559120

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931243

Country of ref document: EP

Effective date: 20220103