WO2020238652A1 - 一种导航定位方法及系统 - Google Patents

一种导航定位方法及系统 Download PDF

Info

Publication number
WO2020238652A1
WO2020238652A1 PCT/CN2020/090490 CN2020090490W WO2020238652A1 WO 2020238652 A1 WO2020238652 A1 WO 2020238652A1 CN 2020090490 W CN2020090490 W CN 2020090490W WO 2020238652 A1 WO2020238652 A1 WO 2020238652A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
positioning
axis
open environment
source
Prior art date
Application number
PCT/CN2020/090490
Other languages
English (en)
French (fr)
Inventor
汪漪
李伟超
陈孔阳
刘毅
Original Assignee
鹏城实验室
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹏城实验室, 南方科技大学 filed Critical 鹏城实验室
Publication of WO2020238652A1 publication Critical patent/WO2020238652A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of navigation and positioning, in particular to a navigation and positioning method and system.
  • the embodiments of the present invention provide a navigation and positioning method and system to solve the current problems of low positioning reliability and low accuracy in manually selecting positioning modes according to their own environment.
  • the first aspect of the embodiments of the present invention discloses a navigation and positioning method, and the method includes:
  • the mobile terminal is in a mobile state, determining that the positioning scene of the mobile terminal is an open environment or a non-open environment;
  • determining that the positioning source of the mobile terminal is satellite positioning
  • the positioning scene of the mobile terminal is a non-open environment, determine the positioning source of the mobile terminal in the current non-open environment, where the positioning source includes inertial navigation positioning, WiFi positioning, and base station positioning;
  • the process of acquiring the acceleration of the mobile terminal includes:
  • x, y, and z are the accelerations of the mobile terminal on the X-axis, Y-axis, and Z-axis, respectively, and x', y', and z'are the calibrated mobile terminal's accelerations on the X-axis, Y-axis, and
  • q is the X axis of the mobile terminal and the The included angle of the X axis of the geodetic coordinate system, g is the constant of gravitational acceleration.
  • the determining whether the mobile terminal is in a moving state according to the acquired acceleration of the mobile terminal includes:
  • the moving amplitude of the mobile terminal is less than or equal to the motion state threshold, it is determined that the mobile terminal is in a stationary state.
  • determining that the positioning scene of the mobile terminal is an open environment or a non-open environment includes:
  • the mobile terminal determines that the positioning scene of the mobile terminal is an open environment
  • the mobile terminal determines that the positioning scene of the mobile terminal is a non-open environment.
  • determining the location source of the mobile terminal in the current non-open environment includes:
  • the positioning scene of the mobile terminal is a non-open environment, judging whether the positioning results of the previous N satellite positioning of the mobile terminal are accurate;
  • the positioning source of the mobile terminal is base station positioning.
  • the obtaining the positioning position of the mobile terminal by using the positioning source includes:
  • the second aspect of the embodiments of the present invention discloses a navigation and positioning system, and the navigation and positioning system includes:
  • the first determining unit is configured to determine whether the mobile terminal is in a moving state according to the acquired acceleration of the mobile terminal;
  • the first acquiring unit is configured to acquire the previous positioning position of the mobile terminal if the mobile terminal is in a stationary state
  • the second determining unit is configured to determine that the positioning scene of the mobile terminal is an open environment or a non-open environment if the mobile terminal is in a moving state;
  • the third determining unit is configured to determine that the positioning source of the mobile terminal is satellite positioning if the positioning scene of the mobile terminal is an open environment;
  • the fourth determining unit is configured to determine the location source of the mobile terminal in the current non-open environment if the location scene of the mobile terminal is a non-open environment, wherein the location source includes inertial navigation positioning, WiFi positioning, and base station positioning ;
  • the second obtaining unit is configured to obtain the positioning position of the mobile terminal by using the positioning source.
  • the second determining unit includes:
  • the first processing module is configured to determine the number of satellites recognizable by the mobile terminal if the mobile terminal is in a mobile state;
  • the second processing module is configured to determine that the positioning scene of the mobile terminal is an open environment if the number of satellites that can be identified by the mobile terminal is greater than or equal to the satellite number threshold;
  • the third processing module is configured to determine that the positioning scene of the mobile terminal is a non-open environment if the number of satellites that can be identified by the mobile terminal is less than the satellite number threshold.
  • the fourth determining unit includes:
  • the first processing module is configured to determine whether the positioning result of the previous N satellite positioning of the mobile terminal is accurate if the positioning scene of the mobile terminal is a non-open environment, and if the positioning of the previous N satellite positioning of the mobile terminal is If the result is accurate, it is determined that the positioning source of the mobile terminal is inertial navigation positioning, and if the positioning results of the previous N satellite positioning of the mobile terminal are inaccurate, the number of wireless hotspots that can be identified by the mobile terminal is determined;
  • the second processing module is configured to determine that the location source of the mobile terminal is WiFi positioning when the number of wireless hotspots that can be identified by the mobile terminal is greater than or equal to the threshold of the number of wireless hotspots, and when the number of wireless hotspots that can be identified by the mobile terminal is If it is less than the threshold of the number of hot spots, it is determined that the positioning source of the mobile terminal is the base station positioning.
  • the first determining unit is specifically configured to calculate the movement amplitude of the mobile terminal based on the acceleration of the mobile terminal on the X-axis, the Y-axis and the Z-axis in the three-dimensional coordinate system. If the movement amplitude of the mobile terminal is greater than the movement state threshold, it is determined that the mobile terminal is in the movement state. If the moving amplitude of the mobile terminal is less than or equal to the motion state threshold, it is determined that the mobile terminal is in a stationary state.
  • the method is: determining whether the mobile terminal is in a moving state according to the acquired acceleration of the mobile terminal. If the mobile terminal is in a stationary state, obtain the previous positioning position of the mobile terminal. If the mobile terminal is in a mobile state, it is determined that the positioning scene of the mobile terminal is an open environment or a non-open environment. If the positioning scene of the mobile terminal is an open environment, it is determined that the positioning source of the mobile terminal is satellite positioning. If the positioning scene of the mobile terminal is a non-open environment, determine the current positioning source of the mobile terminal in the non-open environment. Use the location source to obtain the location of the mobile terminal.
  • the acquired acceleration of the mobile terminal is used to determine whether the mobile terminal is in a motion state.
  • the positioning scene of the mobile terminal is an open environment or a non-open environment, and the positioning source used in the determined positioning scene.
  • Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually judge the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability, accuracy and reducing power consumption.
  • FIG. 1 is a flowchart of a navigation and positioning method provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of acquiring acceleration of a mobile terminal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of determining a positioning source according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a navigation and positioning method provided by an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a navigation and positioning system provided by an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a navigation and positioning system provided by an embodiment of the present invention.
  • Figure 7 is a structural block diagram of a navigation and positioning system provided by an embodiment of the present invention.
  • Fig. 8 is a structural block diagram of a navigation and positioning system provided by an embodiment of the present invention.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, article, or equipment including the element.
  • the embodiments of the present invention provide a navigation and positioning method and system, which determine whether the positioning scene of the mobile terminal is an open environment or a non-open environment when the mobile terminal is in a mobile state, and the positioning source used in the determined positioning scene , Use the location source to obtain the location of the mobile terminal. To improve positioning reliability, accuracy and reduce power consumption.
  • the navigation and positioning method includes the following steps:
  • Step S101 Determine whether the mobile terminal is in a moving state according to the acquired acceleration of the mobile terminal. If the mobile terminal is in a stationary state, step S102 is executed, and if the mobile terminal is in a mobile state, step S103 is executed.
  • step S101 by using a three-axis accelerometer integrated on the mobile terminal, the acceleration of the mobile terminal on the X-axis, Y-axis and Z-axis of the three-dimensional coordinate system is acquired. And based on the acceleration of the X-axis, Y-axis and Z-axis of the mobile terminal in the three-dimensional coordinate system, the movement amplitude of the mobile terminal is calculated. For example, the movement amplitude r of the mobile terminal is calculated by formula (1).
  • x, y, and z are the X-axis, Y-axis, and Z of the mobile terminal in the three-dimensional coordinate system, respectively.
  • the acceleration on the axis is the acceleration on the axis.
  • the moving amplitude of the mobile terminal is greater than the motion state threshold, it is determined that the mobile terminal is in a moving state. If the moving amplitude of the mobile terminal is less than or equal to the motion state threshold, it is determined that the mobile terminal is in a stationary state.
  • the motion state threshold value is set by the technician according to the actual situation, for example, the motion state threshold value is set to 0.1m/s 2 , that is, if the movement amplitude is greater than 0.1m/s 2 , it is stated
  • the mobile terminal is in a mobile state.
  • Step S102 If the mobile terminal is in a stationary state, obtain the previous positioning position of the mobile terminal.
  • Step S103 If the mobile terminal is in a moving state, it is determined that the positioning scene of the mobile terminal is an open environment or a non-open environment. If the mobile terminal is in an open environment, step S104 is executed, and if the mobile terminal is in a non-open environment, step S105 is executed.
  • step S103 if the mobile terminal is in a moving state, the number of satellites recognizable by the mobile terminal is determined. If the number of satellites recognizable by the mobile terminal is greater than or equal to the satellite number threshold, it is determined that the positioning scene of the mobile terminal is an open environment. If the number of satellites recognizable by the mobile terminal is less than the satellite number threshold, it is determined that the positioning scene of the mobile terminal is a non-open environment.
  • the satellite sensor built in the mobile terminal can only recognize a sufficient number of satellites in an open environment.
  • a non-empty environment such as an indoor environment and an outdoor environment with a large number of obstructions
  • the satellite sensor can only identify a small number of satellites. Therefore, it is possible to determine whether the mobile terminal is in an open environment by determining the number of satellites that the mobile terminal can recognize.
  • GPS Global Positioning System
  • the mobile terminal For the global positioning system (Global Positioning System, GPS) sensor that comes with the mobile terminal, for example, in a city
  • GPS sensors can usually identify more than 6 visible satellites.
  • the visible satellites that GPS sensors can recognize are usually less than six. Therefore, when the number of visible satellites recognized by the GPS sensor of the mobile terminal is greater than or equal to 6, it means that the mobile terminal is in an open environment.
  • the number of visible satellites recognized by the GPS sensor of the mobile terminal is less than 6, it means the mobile The terminal is in a non-empty environment.
  • Step S104 If the positioning scene of the mobile terminal is an open environment, determine that the positioning source of the mobile terminal is satellite positioning. Step S106 is executed.
  • Step S105 If the location scene of the mobile terminal is a non-open environment, determine the location source of the mobile terminal in the current non-open environment.
  • the positioning sources involved in step S105 include inertial navigation positioning, WiFi positioning and base station positioning. It should be noted that among multiple positioning sources such as satellite positioning, inertial navigation positioning, WiFi positioning, and base station positioning, satellite positioning has the highest positioning accuracy, followed by inertial navigation positioning and WiFi positioning. The positioning error of base station positioning is relatively large. The accuracy of satellite positioning to provide positioning services depends on the number of satellites that can be identified by the mobile terminal.
  • step S103 when the number of satellites recognizable by the mobile terminal is greater than or equal to the satellite number threshold, indicating that the mobile terminal is in an open environment, it is determined that the positioning source used is satellite positioning.
  • the number of satellites recognizable by the mobile terminal is less than the threshold of the number of satellites, it means that the mobile terminal is in a non-open environment, and when the number of satellites recognizable by the mobile terminal is small, satellite positioning cannot be provided by satellites.
  • Accurate location service It is necessary to determine whether the positioning source is inertial navigation positioning, WiFi positioning or base station positioning based on the environmental information collected by the mobile terminal.
  • Step S106 Use the positioning source to obtain the positioning position of the mobile terminal.
  • step S106 it can be seen from the content shown in step S105 that satellite positioning has the highest positioning accuracy among multiple positioning sources such as satellite positioning, inertial navigation positioning, WiFi positioning, and base station positioning. Therefore, if the positioning source of the mobile terminal is satellite positioning, that is, the mobile terminal is in an open environment, and the satellite positioning position of the mobile terminal is acquired. For example, when the mobile terminal is located in an open environment, the GPS positioning position of the mobile terminal is acquired through GPS satellites.
  • satellite positioning that is, the mobile terminal is in an open environment
  • the satellite positioning position of the mobile terminal is acquired through GPS satellites.
  • the location reading function needs to be triggered periodically, and the central processing unit (CPU) of the mobile terminal and the scheduling algorithm read the time Is different.
  • CPU central processing unit
  • the scheduling algorithm read the time Is different.
  • the position information of the aforementioned two positions needs to be time-registered to ensure accurate acquisition.
  • the location of the mobile terminal Please refer to the following description for the specific time registration process:
  • the formula (2) Calculate the sum of the preset time period T and the first positioning time t 1 to obtain the second positioning time t 2 of the current positioning of the mobile terminal.
  • the second positioning position s 2 of the current positioning of the mobile terminal is obtained according to linear interpolation calculation.
  • the mobile terminal it is determined whether the mobile terminal is in a motion state based on the acquired acceleration of the mobile terminal. If the mobile terminal is in a stationary state, obtain the previous positioning position of the mobile terminal. If the mobile terminal is in a mobile state, it is determined that the positioning scene of the mobile terminal is an open environment or a non-open environment. If the positioning scene of the mobile terminal is an open environment, it is determined that the positioning source of the mobile terminal is satellite positioning. If the positioning scene of the mobile terminal is a non-open environment, determine the current positioning source of the mobile terminal in the non-open environment. Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually determine the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability and accuracy and reducing power consumption.
  • the orientation of the three-axis accelerometer of the mobile terminal may not completely coincide with the moving direction of the mobile terminal. Therefore, in order to obtain a more accurate acceleration of the mobile terminal, it is necessary to calibrate the acceleration of the mobile terminal by using the angle between the three-dimensional coordinate system of the mobile terminal and the geodetic coordinate system.
  • the specific content is shown in Figure 2 below. content.
  • the process of acquiring the acceleration of the mobile terminal involved in step S101 in FIG. 1 of the above embodiment of the present invention shows a flowchart of acquiring the acceleration of a mobile terminal provided by the embodiment of the present invention, including the following steps:
  • Step S201 Obtain the acceleration of the mobile terminal in the three-dimensional coordinate system.
  • step S201 the acceleration of the mobile terminal on the X-axis, Y-axis and Z-axis of the three-dimensional coordinate system is acquired through a three-axis accelerometer.
  • Step S202 Obtain the angle between the three-dimensional coordinate system of the mobile terminal and the geodetic coordinate system.
  • the included angles of the X, Y, and Z axes of the three-dimensional coordinate system of the mobile terminal and the X, Y, and Z axes of the geodetic coordinate system are respectively acquired.
  • the angle between the X axis of the three-dimensional coordinate system and the X axis of the geodetic coordinate system is called the flip angle
  • the angle between the Y axis of the three-dimensional coordinate system and the Y axis of the geodetic coordinate system The angle is called the pitch angle
  • the angle between the Z axis of the three-dimensional coordinate system and the Z axis of the geodetic coordinate system is called the yaw angle.
  • Step S203 Based on the angles between the X, Y, and Z axes of the mobile terminal and the X, Y, and Z axes of the geodetic coordinate system, compare the X, Y, and Z axes of the mobile terminal. The acceleration on the axis is calibrated to obtain the calibrated acceleration of the mobile terminal in the three-dimensional coordinate system.
  • the calibrated acceleration of the mobile terminal in the three-dimensional coordinate system is calculated by formula (4).
  • x, y, and z are the accelerations of the mobile terminal on the X-axis, Y-axis, and Z-axis, respectively, and x', y', and z'are the calibrated mobile terminal Acceleration on the X-axis, Y-axis and Z-axis.
  • p is the angle between the Y axis of the mobile terminal and the Y axis of the geodetic coordinate system, as shown in formula (5).
  • q is the angle between the X axis of the mobile terminal and the X axis of the geodetic coordinate system, as shown in formula (6).
  • g is the constant of gravitational acceleration.
  • the acceleration of the mobile terminal in the three-dimensional coordinate system is projected onto the geodetic coordinate system, and the calibrated acceleration and the pre-calibrated acceleration corresponding to the mobile terminal satisfy the above formula (4).
  • the mobile terminal is determined based on the calibrated acceleration Whether it is in a moving state, that is, the moving amplitude is calculated by the calibrated acceleration of the mobile terminal in the three-dimensional coordinate system, as shown in formula (7). And by comparing the magnitude of the movement amplitude with the movement state threshold, it is judged whether the mobile terminal is in a moving state.
  • the specific judgment process refer to the content shown in step S101 in FIG. 1 of the foregoing embodiment of the present invention, and details are not described herein again.
  • the acceleration of the mobile terminal is calibrated by using the angle between the three-dimensional coordinate system of the mobile terminal and the geodetic coordinate system.
  • the motion state of the mobile terminal is determined according to the calibrated acceleration.
  • the positioning scene of the mobile terminal is an open environment or a non-open environment, and the positioning source used in the determined positioning scene.
  • Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually judge the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability, accuracy and reducing power consumption.
  • step S104 and step S105 in the above embodiment of the present invention in FIG. 1 shows a flowchart of determining the location source provided by the embodiment of the present invention, including the following steps:
  • Step S301 Determine whether the positioning scene of the mobile terminal is an open environment, if yes, execute step S302, if not, execute step S303.
  • step S301 it can be known from the content in step S103 of FIG. 1 that whether the mobile terminal is in an open environment is determined by determining the number of satellites that can be recognized by the mobile terminal.
  • the mobile terminal is in an open environment, and when the number of satellites that can be identified by the mobile terminal is less than or equal to the threshold of the number of satellites, the mobile terminal is in Non-empty environment.
  • Step S302 If the positioning scene of the mobile terminal is an open environment, determine that the positioning source of the mobile terminal is satellite positioning.
  • step S302 it can be seen from the content in step S105 in FIG. 1 that satellite positioning has the highest positioning accuracy among multiple positioning sources such as satellite positioning, inertial navigation positioning, WiFi positioning, and base station positioning.
  • multiple positioning sources such as satellite positioning, inertial navigation positioning, WiFi positioning, and base station positioning.
  • the number of satellites that can be identified by the mobile terminal is large, so it is determined that the positioning source of the mobile terminal is satellite positioning.
  • Step S303 If the positioning scene of the mobile terminal is a non-open environment, determine whether the positioning results of the previous N satellite positioning of the mobile terminal are accurate. If it is accurate, execute step S304, if not, execute step S305.
  • step S305 when the positioning scene of the mobile terminal is a non-open environment, the number of satellites recognizable by the mobile terminal is insufficient, and the satellites recognizable by the mobile terminal cannot be used to provide accurate satellite positioning Service, that is, the positioning provided by satellite positioning is not reliable at this time, and other positioning sources need to be selected.
  • the specific selection process is:
  • Inertial sensors can be used Provide inertial navigation and positioning services for the mobile terminal.
  • the mobile terminal has at least N+1 times when the positioning is inaccurate, and the cumulative error of the inertial sensor is greater than the error threshold, that is, the inertial navigation and positioning cannot provide the mobile terminal
  • Step S304 If the positioning result of the previous N satellite positioning of the mobile terminal is accurate, it is determined that the positioning source of the mobile terminal is inertial navigation positioning.
  • Step S305 If the positioning result of the previous N satellite positioning of the mobile terminal is not accurate, determine the number of wireless hotspots that can be identified by the mobile terminal.
  • the number of wireless hotspots in the environment where the mobile terminal is located is detected by using the WiFi sensor of the mobile terminal. If the number of detected wireless hotspots is greater than or equal to the threshold for the number of hotspots, it means that accurate WiFi positioning services can be provided for the mobile terminal through WiFi. If the number of detected wireless hotspots is less than the threshold of the number of hotspots, it means that accurate WiFi positioning cannot be provided for the mobile terminal through WiFi, and a base station positioning needs to be selected to provide positioning services for the mobile terminal.
  • Step S306 When the number of wireless hotspots recognizable by the mobile terminal is greater than or equal to the threshold of the number of hotspots, it is determined that the positioning source of the mobile terminal is WiFi positioning.
  • Step S307 When the number of wireless hotspots recognizable by the mobile terminal is less than the threshold of the number of hotspots, it is determined that the positioning source of the mobile terminal is base station positioning.
  • the positioning source of the mobile terminal is satellite positioning, inertial navigation positioning, WiFi positioning, or base station positioning. Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually determine the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability and accuracy and reducing power consumption.
  • Step S401 Obtain the acceleration of the mobile terminal.
  • the acceleration of the mobile terminal is acquired by reading the acceleration sensor of the mobile terminal, for example, the acceleration of the mobile terminal is acquired through a three-axis accelerometer of the mobile terminal.
  • Step S402 Calibrate the acceleration.
  • step S402 the acceleration is calibrated by using the angle between the three-dimensional coordinate system of the mobile terminal and the earth coordinate system.
  • the specific calibration process refer to the content shown in FIG. 2 of the foregoing embodiment of the present invention, and details are not described herein again.
  • Step S403 Determine the motion state of the mobile terminal according to the acceleration.
  • Step S404 Determine the number of satellites recognizable by the mobile terminal.
  • the number of satellites recognizable by the mobile terminal is determined by using the GPS sensor of the mobile terminal.
  • Step S405 Determine the location scenario of the mobile terminal.
  • Step S406 Determine whether the mobile terminal is located in an open environment. If yes, execute step S409, if not, execute step S407.
  • Step S407 Determine whether the previous two satellite positionings of the mobile terminal are reliable. If yes, execute step S410, if not, execute step S408.
  • Step S408 Determine whether the number of wireless hotspots that can be identified by the mobile terminal is greater than a threshold for the number of hotspots. If yes, execute step S411, if not, execute step S412.
  • Step S409 Determine that the positioning source of the mobile terminal is GPS satellite positioning, and determine the positioning position of the mobile terminal. Step S414 is executed.
  • Step S410 Determine that the positioning source of the mobile terminal is inertial navigation positioning, and determine the positioning position of the mobile terminal. Step S413 is executed.
  • Step S411 Determine that the positioning source of the mobile terminal is WiFi positioning, and determine the positioning position of the mobile terminal. Step S413 is executed.
  • Step S412 Determine that the positioning source of the mobile terminal is base station positioning, and determine the positioning position of the mobile terminal.
  • Step S413 Perform position interpolation on the positioning position of the mobile terminal.
  • Step S414 Output the location position of the mobile terminal.
  • the acceleration of the mobile terminal is acquired, and the acceleration of the mobile terminal is calibrated using the angle between the three-dimensional coordinate system of the mobile terminal and the geodetic coordinate system. Use the calibrated acceleration to determine whether the mobile terminal is in motion. If the mobile terminal is in a stationary state, obtain the previous positioning position of the mobile terminal. If the mobile terminal is in a mobile state, it is determined that the positioning scene of the mobile terminal is an open environment or a non-open environment. If the positioning scene of the mobile terminal is an open environment, it is determined that the positioning source of the mobile terminal is satellite positioning. If the positioning scene of the mobile terminal is a non-open environment, determine the current positioning source of the mobile terminal in the non-open environment. Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually judge the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability, accuracy and reducing power consumption.
  • the embodiment of the present invention also provides a structural block diagram of a navigation and positioning system.
  • the system includes: a first determining unit 501, a first acquiring The unit 502, the second determining unit 503, the third determining unit 504, the fourth determining unit 505, and the second acquiring unit 506.
  • the first determining unit 501 is configured to determine whether the mobile terminal is in a moving state according to the acquired acceleration of the mobile terminal.
  • the first determining unit 501 is specifically configured to calculate the movement amplitude of the mobile terminal based on the acceleration of the mobile terminal on the X-axis, the Y-axis and the Z-axis in the three-dimensional coordinate system. If the movement amplitude of the mobile terminal is greater than the movement state threshold, it is determined that the mobile terminal is in the movement state. If the moving amplitude of the mobile terminal is less than or equal to the motion state threshold, it is determined that the mobile terminal is in a stationary state.
  • the process of the mobile terminal refer to the content corresponding to step S101 disclosed in FIG. 1 of the above embodiment of the present invention.
  • the first acquiring unit 502 is configured to acquire the previous positioning position of the mobile terminal if the mobile terminal is in a stationary state.
  • the second determining unit 503 is configured to determine that the positioning scene of the mobile terminal is an open environment or a non-open environment if the mobile terminal is in a moving state. For the process of determining the location scenario of the mobile terminal, refer to the content corresponding to step S103 disclosed in FIG. 1 of the above embodiment of the present invention.
  • the third determining unit 504 is configured to determine that the positioning source of the mobile terminal is satellite positioning if the positioning scene of the mobile terminal is an open environment.
  • the fourth determining unit 505 is configured to determine the positioning source of the mobile terminal in the current non-open environment if the positioning scene of the mobile terminal is a non-open environment, where the positioning source includes inertial navigation positioning, WiFi positioning, and base station Positioning.
  • the positioning source includes inertial navigation positioning, WiFi positioning, and base station Positioning.
  • the second obtaining unit 506 is configured to obtain the positioning position of the mobile terminal by using the positioning source.
  • the acquiring unit 506 is specifically configured to:
  • the positioning source of the mobile terminal is satellite positioning
  • the satellite positioning position of the mobile terminal is acquired.
  • the positioning source of the mobile terminal is WiFi positioning, inertial navigation positioning or base station positioning, based on the first positioning time t 1 and first positioning position s 1 of the previous positioning, and based on the current positioning returned by the positioning scheduling algorithm
  • the second positioning position s 2 of the current positioning of the mobile terminal is obtained by calculation.
  • the mobile terminal it is determined whether the mobile terminal is in a motion state based on the acquired acceleration of the mobile terminal. If the mobile terminal is in a stationary state, obtain the previous positioning position of the mobile terminal. If the mobile terminal is in a mobile state, it is determined that the positioning scene of the mobile terminal is an open environment or a non-open environment. If the positioning scene of the mobile terminal is an open environment, it is determined that the positioning source of the mobile terminal is satellite positioning. If the positioning scene of the mobile terminal is a non-open environment, determine the current positioning source of the mobile terminal in the non-open environment. Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually determine the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability and accuracy and reducing power consumption.
  • the second determining unit 503 includes: a first processing module 5031, a second processing module 5032, and a third processing module 5033.
  • the first processing module 5031 is configured to determine the number of satellites recognizable by the mobile terminal if the mobile terminal is in a moving state.
  • the second processing module 5032 is configured to determine that the positioning scene of the mobile terminal is an open environment if the number of satellites that can be identified by the mobile terminal is greater than or equal to the satellite number threshold.
  • the third processing module 5033 is configured to determine that the positioning scene of the mobile terminal is a non-open environment if the number of satellites that can be identified by the mobile terminal is less than the satellite number threshold.
  • the positioning scene of the mobile terminal is an open environment or a non-open environment. According to the determined positioning scenario, determine the positioning source used by the mobile terminal. Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually determine the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability and accuracy and reducing power consumption.
  • FIG. 5 and FIG. 7 a structural block diagram of a navigation and positioning system according to an embodiment of the present invention is shown, and the fourth determining unit 505 includes:
  • the first processing module 5051 is configured to determine whether the positioning result of the previous N satellite positioning of the mobile terminal is accurate if the positioning scene of the mobile terminal is a non-open environment, and if the positioning result of the previous N satellite positioning of the mobile terminal is accurate If the positioning result is accurate, it is determined that the positioning source of the mobile terminal is inertial navigation positioning. If the positioning results of the previous N satellite positioning of the mobile terminal are inaccurate, the number of wireless hotspots recognizable by the mobile terminal is determined.
  • the second processing module 5052 is configured to determine that the location source of the mobile terminal is WiFi positioning when the number of wireless hotspots that can be identified by the mobile terminal is greater than or equal to the threshold of the number of hotspots. If the number is less than the threshold of the number of hotspots, it is determined that the positioning source of the mobile terminal is the base station positioning.
  • the positioning source of the mobile terminal is determined to be satellite positioning, inertial navigation positioning, WiFi positioning, or base station positioning. Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually judge the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability, accuracy and reducing power consumption.
  • the first determining unit 501 includes: a first acquiring module 5011, a second acquiring module 5012 and a calibration module 5013.
  • the first acquiring module 5011 is used to acquire the acceleration of the mobile terminal in the three-dimensional coordinate system.
  • the second acquiring module 5012 is configured to acquire the angle between the three-dimensional coordinate system of the mobile terminal and the geodetic coordinate system.
  • the calibration module 5013 is configured to use formula (4) to analyze the mobile terminal based on the included angles between the X-axis, Y-axis, and Z-axis of the mobile terminal and the X-axis, Y-axis, and Z-axis of the geodetic coordinate system.
  • the accelerations on the X-axis, Y-axis and Z-axis are calibrated to obtain the calibrated acceleration of the mobile terminal in the three-dimensional coordinate system.
  • the acceleration of the mobile terminal is calibrated by using the angle between the three-dimensional coordinate system of the mobile terminal and the geodetic coordinate system.
  • the motion state of the mobile terminal is determined according to the calibrated acceleration.
  • the positioning scene of the mobile terminal is an open environment or a non-open environment, and the positioning source used in the determined positioning scene.
  • Using the positioning source to obtain the positioning position of the mobile terminal does not need to manually judge the positioning scene of the mobile terminal and manually switch the positioning source, thereby improving positioning reliability, accuracy and reducing power consumption.
  • the embodiments of the present invention provide a navigation and positioning method and system.
  • the method is to determine whether the mobile terminal is in a moving state according to the acquired acceleration of the mobile terminal. If the mobile terminal is in a stationary state, obtain the previous positioning position of the mobile terminal. If the mobile terminal is in a mobile state, it is determined that the positioning scene of the mobile terminal is an open environment or a non-open environment. If the positioning scene of the mobile terminal is an open environment, it is determined that the positioning source of the mobile terminal is satellite positioning. If the positioning scene of the mobile terminal is a non-open environment, determine the current positioning source of the mobile terminal in the non-open environment. Use the location source to obtain the location of the mobile terminal.
  • the acquired acceleration of the mobile terminal is used to determine whether the mobile terminal is in a motion state.
  • the positioning scene of the mobile terminal is an open environment or a non-open environment, and the positioning source used in the determined positioning scene.
  • the positioning source to obtain the positioning position of the mobile terminal, there is no need to manually judge the positioning scene of the mobile terminal and manually switch the positioning source, improving positioning reliability, accuracy and reducing power consumption.

Abstract

本发明提供一种导航定位方法及系统,该方法为:根据获取到的移动终端的加速度,确定移动终端是否处于移动状态。若移动终端处于静止状态,获取前一次移动终端的定位位置。若移动终端处于移动状态,确定移动终端的定位场景为空旷环境或非空旷环境。确定当前环境下移动终端的定位源。利用定位源,获取移动终端的定位位置。在本方案中,通过获取到的移动终端的加速度,判断移动终端是否处于运动状态。当移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境,以及已确定的定位场景下所使用的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。

Description

一种导航定位方法及系统
本申请要求于2019年05月29日提交中国专利局、申请号为201910456391.0、发明名称为“一种导航定位方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及导航定位技术领域,具体涉及一种导航定位方法及系统。
背景技术
随着科学技术的发展,导航和定位技术逐渐应用于生活中的方方面面。在实际应用中,通常通过各类运动传感器和电子设备为用户提供卫星定位、WiFi定位和基站定位等多种定位模式。
采用不同定位模式为用户提供定位服务时,会受到用户所在地形的影响。比如当采用卫星定位时,需要用户处在空旷的室外才能提供准确的定位服务,而当用户处在室内环境或者多建筑区域、高架桥或者隧道等遮挡物较多的区域时,卫星定位无法为用户提供定位服务,需要用户手动切换成WiFi定位或者基站定位才能提供定位服务。但是,用户通常不知道自身所处的环境需要选择哪种定位模式才能获取准确的定位服务,因此人工根据自身所在环境选择定位模式存在定位可靠性低和准确性低等问题。
发明内容
有鉴于此,本发明实施例提供一种导航定位方法及系统,以解决目前人工根据自身所在环境选择定位模式存在的定位可靠性低和准确性低等问题。
为实现上述目的,本发明实施例提供如下技术方案:
本发明实施例第一方面公开了一种导航定位方法,所述方法包括:
根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态;
若所述移动终端处于静止状态,获取前一次所述移动终端的定位位置;
若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境;
若所述移动终端的定位场景为空旷环境,确定所述移动终端的定位源为卫星定位;
若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源,其中,所述定位源包括惯性导航定位、WiFi定位和基站定位;
利用所述定位源,获取所述移动终端的定位位置。
优选的,所述获取移动终端的加速度的过程,包括:
获取移动终端在三维坐标系上的加速度;
获取所述移动终端的三维坐标系与大地坐标系的夹角;
基于所述移动终端的X轴、Y轴和Z轴分别与所述大地坐标系的X轴、Y轴和Z轴的夹角,利用
Figure PCTCN2020090490-appb-000001
对所述移动终端在X轴、Y轴和Z轴上的加速度进行校准,得到校准后的所述移动终端在三维坐标系上的加速度;
其中,x、y和z分别为所述移动终端在X轴、Y轴和Z轴上的加速度,x'、y'和z'分别为校准后的所述移动终端在X轴、Y轴和Z轴上的加速度,p为所述移动终端的Y轴与所述大地坐标系的Y轴的夹角,p=arcsin(-x/g),q为所述移动终端的X轴与所述大地坐标系的X轴的夹角,
Figure PCTCN2020090490-appb-000002
g为重力加速度常量。
优选的,所述根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态,包括:
基于所述移动终端在三维坐标系上的X轴、Y轴和Z轴上的加速度,计算所述移动终端的移动幅值;
若所述移动终端的移动幅值大于运动状态阈值,确定所述移动终端处于移动状态;
若所述移动终端的移动幅值小于等于运动状态阈值,确定所述移动终端处于静止状态。
优选的,所述若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境,包括:
若所述移动终端处于移动状态,确定所述移动终端可识别的卫星个数;
若所述移动终端可识别的卫星个数大于等于卫星个数阈值,确定所述移动终端的定位场景为空旷环境;
若所述移动终端可识别的卫星个数小于卫星个数阈值,确定所述移动终端的定位场景为非空旷环境。
优选的,所述若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源,包括:
若所述移动终端的定位场景为非空旷环境,判断所述移动终端的前N次卫星定位的定位结果是否准确;
若所述移动终端的前N次卫星定位的定位结果准确,确定所述移动终端的定位源为惯性导航定位;
若所述移动终端的前N次卫星定位的定位结果不准确,确定所述移动终端可识别的无线热点个数;
当所述移动终端可识别的无线热点个数大于等于热点个数阈值,确定所述移动终端的定位源为WiFi定位;
当所述移动终端可识别的无线热点个数小于热点个数阈值,确定所述移动终端的定位源为基站定位。
优选的,所述利用所述定位源,获取所述移动终端的定位位置,包括:
基于前一次定位的第一定位时间t 1和第一定位位置s 1,以及基于利用定位调度算法返回的本次定位的第三定位时间t'和第三定位位置s',计算预设时间周期T与所述第一定位时间的和,获得所述移动终端本次定位的第二定位时间t 2,以及根据线性插值计算得到所述移动终端本次定位的第二定位位置s 2
本发明实施例第二方面公开了一种导航定位系统,所述导航定位系统包括:
第一确定单元,用于根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态;
第一获取单元,用于若所述移动终端处于静止状态,获取前一次所述移动终端的定位位置;
第二确定单元,用于若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境;
第三确定单元,用于若所述移动终端的定位场景为空旷环境,确定所述移动终端的定位源为卫星定位;
第四确定单元,用于若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源,其中,所述定位源包括惯性导航定位、WiFi定位和基站定位;
第二获取单元,用于利用所述定位源,获取所述移动终端的定位位置。
优选的,所述第二确定单元,包括:
第一处理模块,用于若所述移动终端处于移动状态,确定所述移动终端可识别的卫星个数;
第二处理模块,用于若所述移动终端可识别的卫星个数大于等于卫星个数阈值,确定所述移动终端的定位场景为空旷环境;
第三处理模块,用于若所述移动终端可识别的卫星个数小于卫星个数阈值,确定所述移动终端的定位场景为非空旷环境。
优选的,所述第四确定单元,包括:
第一处理模块,用于若所述移动终端的定位场景为非空旷环境,判断所述移动终端的前N次卫星定位的定位结果是否准确,若所述移动终端的前N次卫星定位的定位结果准确,确定所述移动终端的定位源为惯性导航定位,若所述移动终端的前N次卫星定位的定位结果不准确,确定所述移动终端可识别的无线热点个数;
第二处理模块,用于当所述移动终端可识别的无线热点个数大于等于热点个数阈值,确定所述移动终端的定位源为WiFi定位,当所述移动终端可识别的无线热点个数小于热点个数阈值,确定所述移动终端的定位源为基站定位。
优选的,所述第一确定单元具体用于:基于所述移动终端在三维坐标系上的X轴、Y轴和Z轴上的加速度,计算所述移动终端的移动幅值。若所述移动终端的移动幅值大于运动状态阈值,确定所述移动终端处于移动状态。若所述移动终端的移动幅值小于等于运动状态阈值,确定所述移动终端处于静止状态。
基于上述本发明实施例提供的一种导航定位方法及系统,该方法为:根据获取到的移动终端的加速度,确定移动终端是否处于移动状态。若移动终端处于静止状态,获取前一次移动终端的定位位置。若移动终端处于移动状态,确定移动终端的定位场景为空旷环境或非空旷环境。若移动终端的定位场景为空旷环境,确定移动终端的定位源为卫星定位。若移动终端的定位场景为非空旷环境,确定当前非空旷环境下移动终端的定位源。利用定位源,获取移动终端的定位位置。在本方案中,通过获取到的移动终端的加速度,判断移动终端是否处于运动状态。当移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境,以及已确定的定位场景下所使用的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种导航定位方法的流程图;
图2为本发明实施例提供的获取移动终端加速度的流程图;
图3为本发明实施例提供的确定定位源的流程图;
图4为本发明实施例提供的导航定位方法的流程图;
图5为本发明实施例提供的一种导航定位系统的结构框图;
图6为本发明实施例提供的一种导航定位系统的结构框图;
图7为本发明实施例提供的一种导航定位系统的结构框图;
图8为本发明实施例提供的一种导航定位系统的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
根据背景技术可知,采用不同定位模式为用户提供定位服务时,会受到用户所在地形的影响。需要用户主动识别自身所处的环境,并根据所处环境切换对应的定位源。但是,用户通常不知道自身所处的环境需要选择哪种定位模式才能获取准确的定位服务,因此人工根据自身所在环境选择定位模式存在定位可靠性低和准确性低等问题。
因此,本发明实施例提供一种导航定位方法及系统,通过当移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境,以及已确定的定位场景下所使用的定位源,利用定位源获取移动终端的定位位置。以提高定位可靠性、准确性和降低功耗。
参考图1,示出了本发明实施例提供的一种导航定位方法的流程图,所述导航定位方法包括以下步骤:
步骤S101:根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态。若所述移动终端处于静止状态,执行步骤S102,若所述移动终端处 于移动状态,执行步骤S103。
在具体实现步骤S101的过程中,通过利用集成在移动终端上的三轴加速计,获取所述移动终端在三维坐标系的X轴、Y轴和Z轴上的加速度。并基于所述移动终端在三维坐标系上的X轴、Y轴和Z轴上的加速度,计算所述移动终端的移动幅值。例如通过公式(1)计算所述移动终端的移动幅值r,在所述公式(1)中,x、y和z分别为所述移动终端在三维坐标系上的X轴、Y轴和Z轴上的加速度。
Figure PCTCN2020090490-appb-000003
在具体实现中,若所述移动终端的移动幅值大于运动状态阈值,确定所述移动终端处于移动状态。若所述移动终端的移动幅值小于等于运动状态阈值,确定所述移动终端处于静止状态。
需要说明的是,所述运动状态阈值由技术人员根据实际情况设定,例如将所述运动状态阈值设置为0.1m/s 2,即若所述移动幅值大于0.1m/s 2,则说明所述移动终端处于移动状态。
步骤S102:若所述移动终端处于静止状态,获取前一次所述移动终端的定位位置。
步骤S103:若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境。若所述移动终端处于空旷环境,执行步骤S104,若所述移动终端处于非空旷环境,执行步骤S105。
在具体实现步骤S103的过程中,若所述移动终端处于移动状态,确定所述移动终端可识别的卫星个数。若所述移动终端可识别的卫星个数大于等于卫星个数阈值,确定所述移动终端的定位场景为空旷环境。若所述移动终端可识别的卫星个数小于卫星个数阈值,确定所述移动终端的定位场景为非空旷环境。
需要说明的是,移动终端自带的卫星传感器需要在空旷环境下才能识别到足够数量的卫星。而在非空旷环境下,例如室内环境和具有大量遮挡物的室外环境下,卫星传感器只能识别到少量的卫星。因此,可以通过确定移动终端可识别的卫星个数来判断移动终端是否处于空旷环境。
为更好解释上述涉及到的如何根据可识别的卫星个数判断移动终端的定位场景,下面通过举例进行说明:对于移动终端自带的全球定位系统(Global  Positioning System,GPS)传感器,在例如城市街道、高速公路、校园和办公园区等空旷环境下,GPS传感器通常可以识别6颗以上的可见卫星。而在例如室内环境、高架桥下和大型商业大厦附近等非空旷环境下,GPS传感器能识别的可见卫星通常小于6个。因此,当移动终端的GPS传感器识别到的可见卫星个数大于等于6个时,说明该移动终端处于空旷环境,当移动终端的GPS传感器识别到的可见卫星个数小于6个时,说明该移动终端处于非空旷环境。
步骤S104:若所述移动终端的定位场景为空旷环境,确定所述移动终端的定位源为卫星定位。执行步骤S106。
步骤S105:若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源。
在具体实现步骤S105的过程中,所述步骤S105中涉及到的定位源包括惯性导航定位、WiFi定位和基站定位。需要说明的是,在卫星定位、惯性导航定位、WiFi定位和基站定位等多种定位源中,卫星定位的定位精度最高,其次为惯性导航定位和WiFi定位,基站定位的定位误差较大,而卫星定位提供定位服务的准确性依赖于所述移动终端可识别的卫星个数。
因此,结合上述步骤S103示出的内容,当所述移动终端可识别的卫星个数大于等于卫星个数阈值时,说明所述移动终端处于空旷环境,则确定采用的定位源为卫星定位。当所述移动终端可识别的卫星个数小于卫星个数阈值时,说明所述移动终端处于非空旷环境,而当所述移动终端可识别的卫星个数较少时,卫星定位无法通过卫星提供准确的定位服务。需要基于移动终端采集到的环境信息,确定定位源为惯性导航定位、WiFi定位或基站定位。
步骤S106:利用所述定位源,获取所述移动终端的定位位置。
在具体实现步骤S106的过程中,由上述步骤S105中所示出的内容可知,在卫星定位、惯性导航定位、WiFi定位和基站定位等多种定位源中,卫星定位的定位精度最高。因此,若所述移动终端的定位源为卫星定位,即所述移动终端处于空旷环境,获取所述移动终端的卫星定位位置。例如当所述移动终端位于空旷环境,通过GPS卫星获取所述移动终端的GPS定位位置。
需要说明的是,对于移动终端的定位导航或位置跟踪,需要周期性的触发一次位置读取功能,而所述移动终端的中央处理器(Central Processing Unit, CPU)和调度算法读取位置的时刻是不同的。获取所述移动终端的位置时需要经过多次判断并返回基站位置,但是前述两个位置对应的时刻是不同的,因此需要对前述两个位置的位置信息进行时间配准,以保证获取准确的所述移动终端的定位位置。具体时间配准过程详见以下说明:
基于前一次定位的第一定位时间t 1和第一定位位置s 1,以及基于利用定位调度算法返回的本次定位的第三定位时间t'和第三定位位置s',通过公式(2)计算预设时间周期T与所述第一定位时间t 1的和,获得所述移动终端本次定位的第二定位时间t 2。通过公式(3),根据线性插值计算得到所述移动终端本次定位的第二定位位置s 2
t 2=t 1+T     (2)
Figure PCTCN2020090490-appb-000004
在本发明实施例中,通过获取到的移动终端的加速度,判断移动终端是否处于运动状态。若移动终端处于静止状态,获取前一次移动终端的定位位置。若移动终端处于移动状态,确定移动终端的定位场景为空旷环境或非空旷环境。若移动终端的定位场景为空旷环境,确定移动终端的定位源为卫星定位。若移动终端的定位场景为非空旷环境,确定当前非空旷环境下移动终端的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
需要说明的是,当所述移动终端在处于移动状态时,所述移动终端的三轴加速计的朝向与所述移动终端的移动方向可能并不完全重合。因此为了获取更加准确的所述移动终端的加速度,需利用所述移动终端的三维坐标系与大地坐标系之间的夹角校准所述移动终端的加速度,具体内容详见以下图2示出的内容。
优选的,上述本发明实施例图1中步骤S101涉及到的获取移动终端的加速度的过程,参考图2,示出了本发明实施例提供的获取移动终端加速度的流程图,包括以下步骤:
步骤S201:获取移动终端在三维坐标系上的加速度。
在具体实现步骤S201的过程中,通过三轴加速计获取所述移动终端在三维坐标系X轴、Y轴和Z轴上的加速度。
步骤S202:获取所述移动终端的三维坐标系与大地坐标系的夹角。
在具体实现步骤S202的过程中,分别获取所述移动终端的三维坐标系的X轴、Y轴和Z轴与所述大地坐标系的X轴、Y轴和Z轴的夹角。其中,所述三维坐标系的X轴与所述大地坐标系的X轴之间的夹角称为翻转角,所述三维坐标系的Y轴与所述大地坐标系的Y轴之间的夹角称为俯仰角,所述三维坐标系的Z轴与所述大地坐标系的Z轴之间的夹角称为偏航角。
需要说明的是,上述涉及到的翻转角、俯仰角和偏航角等名称仅适用于举例说明,在本发明实施例中对于移动终端的三维坐标系与大地坐标系之间的夹角名称不做具体限定。
步骤S203:基于所述移动终端的X轴、Y轴和Z轴分别与所述大地坐标系的X轴、Y轴和Z轴的夹角,对所述移动终端在X轴、Y轴和Z轴上的加速度进行校准,得到校准后的所述移动终端在三维坐标系上的加速度。
在具体实现步骤S203的过程中,通过公式(4)计算得到校准后的所述移动终端在三维坐标系上的加速度。在所述公式(4)中,x、y和z分别为所述移动终端在X轴、Y轴和Z轴上的加速度,x'、y'和z'分别为校准后的所述移动终端在X轴、Y轴和Z轴上的加速度。p为所述移动终端的Y轴与所述大地坐标系的Y轴的夹角,如公式(5)。q为所述移动终端的X轴与所述大地坐标系的X轴的夹角,如公式(6)。g为重力加速度常量。
Figure PCTCN2020090490-appb-000005
p=arcsin(-x/g)     (5)
Figure PCTCN2020090490-appb-000006
需要说明的是,将所述移动终端在三维坐标系上的加速度投影至所述大地坐标系上,所述移动终端对应的校准后的加速度与校准前的加速度满足上述公式(4)。
优选的,结合上述本发明实施例图1公开的步骤S101中示出的内容,当通过上述步骤S201至步骤S203对所述移动终端的加速度进行校准后,基于校准后 的加速度确定所述移动终端是否处于移动状态,即通过校准后的所述移动终端在三维坐标系上的加速度计算所述移动幅值,如公式(7)所示。并通过比较所述移动幅值与运动状态阈值的大小判断所述移动终端是否处于移动状态。具体判断过程参见上述本发明实施例图1步骤S101示出的内容,在此不再进行赘述。
Figure PCTCN2020090490-appb-000007
在本发明实施例中,通过利用移动终端的三维坐标系与大地坐标系之间的夹角,对移动终端的加速度进行校准。根据校准后的加速度判断移动终端的运动状态,当移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境,以及已确定的定位场景下所使用的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
上述本发明实施例图1中步骤S104和步骤S105涉及到的确定定位源的过程,参考图3,示出了本发明实施例提供的确定定位源的流程图,包括以下步骤:
步骤S301:判断所述移动终端的定位场景是否为空旷环境,若是,执行步骤S302,若否,执行步骤S303。
在具体实现步骤S301的过程中,由上述图1步骤S103中的内容可知,通过确定所述移动终端可识别的卫星个数判断所述移动终端是否处于空旷环境。当所述移动终端可识别的卫星个数大于卫星个数阈值,则所述移动终端处于空旷环境,当所述移动终端可识别的卫星个数小于等于卫星个数阈值,则所述移动终端处于非空旷环境。
步骤S302:若所述移动终端的定位场景为空旷环境,确定所述移动终端的定位源为卫星定位。
在具体实现步骤S302的过程中,由上述图1步骤S105中的内容可知,在卫星定位、惯性导航定位、WiFi定位和基站定位等多种定位源中,卫星定位的定位精度最高。而在空旷环境中,所述移动终端可识别的卫星个数较多,因此确定所述移动终端的定位源为卫星定位。
步骤S303:若所述移动终端的定位场景为非空旷环境,判断所述移动终端 的前N次卫星定位的定位结果是否准确。若准确,执行步骤S304,若不准确,执行步骤S305。
在具体实现步骤S305的过程中,当所述移动终端的定位场景为非空旷环境时,所述移动终端可识别的卫星个数不足,无法利用所述移动终端可识别的卫星提供准确的卫星定位服务,即此时卫星定位提供的定位不可靠,需要选择其它的定位源,具体选择过程为:
判断前N次卫星定位的定位结果是否准确,例如判断前2次卫星定位的定位结果是否准确。
若前N次卫星定位的定位结果准确,则说明所述移动终端在预设时间内从空旷环境移动至非空旷环境中,所述移动终端的惯性传感器的累积误差小于误差阈值,可利用惯性传感器为所述移动终端提供惯性导航定位服务。
若前N次卫星定位的定位结果不准确,说明所述移动终端至少有N+1个时刻定位不准确,所述惯性传感器的累积误差大于误差阈值,即惯性导航定位无法为所述移动终端提供准确的定位服务,需要基于所述移动终端所处的环境的信息选择WiFi定位或基站定位。
步骤S304:若所述移动终端的前N次卫星定位的定位结果准确,确定所述移动终端的定位源为惯性导航定位。
步骤S305:若所述移动终端的前N次卫星定位的定位结果不准确,确定所述移动终端可识别的无线热点个数。
在具体实现步骤S305的过程中,通过利用所述移动终端的WiFi传感器,检测所述移动终端所处环境的无线热点个数。若检测到的无线热点个数大于等于热点个数阈值,则说明通过WiFi可以为所述移动终端提供准确的WiFi定位服务。若检测到的无线热点个数小于热点个数阈值,则说明无法通过WiFi为所述移动终端提供准确的WiFi定位,需要选择基站定位为所述移动终端提供定位服务。
步骤S306:当所述移动终端可识别的无线热点个数大于等于热点个数阈值,确定所述移动终端的定位源为WiFi定位。
步骤S307:当所述移动终端可识别的无线热点个数小于热点个数阈值,确定所述移动终端的定位源为基站定位。
在本发明实施例中,通过判断移动终端的定位场景是否为空旷环境,以及结合移动终端所处环境的环境信息,确定移动终端的定位源为卫星定位、惯性导航定位、WiFi定位或基站定位。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
为更好解释说明上述图1至图3中涉及的内容,结合图1至图3,通过图4中的内容进行举例说明,参考图4,示出了本发明实施例提供的导航定位方法的流程图,包括以下步骤:
步骤S401:获取移动终端的加速度。
在具体实现步骤S401的过程中,通过读取所述移动终端的加速度传感器,获取所述移动终端的加速度,例如通过移动终端的三轴加速计获取所述移动终端的加速度。
步骤S402:校准所述加速度。
在具体实现步骤S402的过程中,通过利用所述移动终端的三维坐标系与大地坐标系之间的夹角,校准所述加速度。具体校准过程参见上述本发明实施例图2中示出的内容,在此不再进行赘述。
步骤S403:通过所述加速度,判断所述移动终端的运动状态。
步骤S404:确定所述移动终端可识别的卫星个数。
在具体实现步骤S404的过程中,通过利用所述移动终端的GPS传感器,确定所述移动终端可识别的卫星个数。
步骤S405:确定所述移动终端的定位场景。
步骤S406:判断所述移动终端是否位于空旷环境。若是,执行步骤S409,若否,执行步骤S407。
步骤S407:判断所述移动终端的前2次卫星定位是否可靠。若是,执行步骤S410,若否,执行步骤S408。
步骤S408:判断所述移动终端可识别的无线热点个数是否大于热点个数阈值。若是,执行步骤S411,若否,执行步骤S412。
步骤S409:确定所述移动终端的定位源为GPS卫星定位,并确定所述移动终端的定位位置。执行步骤S414。
步骤S410:确定所述移动终端的定位源为惯性导航定位,并确定所述移动终端的定位位置。执行步骤S413。
步骤S411:确定所述移动终端的定位源为WiFi定位,并确定所述移动终端的定位位置。执行步骤S413。
步骤S412:确定所述移动终端的定位源为基站定位,并确定所述移动终端的定位位置。
步骤S413:对所述移动终端的定位位置进行位置插值。
步骤S414:输出所述移动终端的定位位置。
需要说明的是,上述步骤S401至步骤S414中涉及到的执行原理,可参见上述本发明实施例图1至图3公开的各步骤中的内容,在此不再进行赘述。
需要说明的是,上述图4示出的各个步骤中的内容仅用于举例说明。
在本发明实施例中,获取移动终端的加速度,利用移动终端的三维坐标系与大地坐标系之间的夹角校准移动终端的加速度。利用校准后的加速度判断移动终端是否处于运动状态。若移动终端处于静止状态,获取前一次移动终端的定位位置。若移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境。若移动终端的定位场景为空旷环境,确定移动终端的定位源为卫星定位。若移动终端的定位场景为非空旷环境,确定当前非空旷环境下移动终端的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
与上述本发明实施例提供的一种导航定位方法相对应,参考图5,本发明实施例还提供了一种导航定位系统的结构框图,所述系统包括:第一确定单元501、第一获取单元502、第二确定单元503、第三确定单元504、第四确定单元505和第二获取单元506。
第一确定单元501,用于根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态。
在具体实现中,所述第一确定单元501具体用于基于所述移动终端在三维坐标系上的X轴、Y轴和Z轴上的加速度,计算所述移动终端的移动幅值。若所述移动终端的移动幅值大于运动状态阈值,确定所述移动终端处于移动状态。若所述移动终端的移动幅值小于等于运动状态阈值,确定所述移动终端处 于静止状态。具体如何判断所述移动终端的过程参见上述本发明实施例图1公开的步骤S101相对应的内容。
第一获取单元502,用于若所述移动终端处于静止状态,获取前一次所述移动终端的定位位置。
第二确定单元503,用于若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境。确定所述移动终端的定位场景的过程参见上述本发明实施例图1公开的步骤S103相对应的内容。
第三确定单元504,用于若所述移动终端的定位场景为空旷环境,确定所述移动终端的定位源为卫星定位。
第四确定单元505,用于若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源,其中,所述定位源包括惯性导航定位、WiFi定位和基站定位。具体确定当前非空旷环境下所述移动终端的定位源的过程参见上述本发明实施例图1步骤S105示出的内容。
第二获取单元506,用于利用所述定位源,获取所述移动终端的定位位置。
在具体实现中,所述获取单元506具体用于:
若所述移动终端的定位源为卫星定位,获取所述移动终端的卫星定位位置。
若所述移动终端的定位源为WiFi定位、惯性导航定位或基站定位,基于前一次定位的第一定位时间t 1和第一定位位置s 1,以及基于利用定位调度算法返回的本次定位的第三定位时间t'和第三定位位置s',计算预设时间周期T与所述第一定位时间的和,获得所述移动终端本次定位的第二定位时间t 2,以及根据线性插值计算得到所述移动终端本次定位的第二定位位置s 2。具体获取所述移动终端的定位位置的过程参见上述本发明实施例图1公开的步骤S106相对应的内容。
在本发明实施例中,通过获取到的移动终端的加速度,判断移动终端是否处于运动状态。若移动终端处于静止状态,获取前一次移动终端的定位位置。若移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境。若移动终端的定位场景为空旷环境,确定移动终端的定位源为卫星定位。若移动终端的定位场景为非空旷环境,确定当前非空旷环境下移动终端的定位 源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
优选的,参考图6,示出了本发明实施例提供的一种导航定位系统的结构框图,所述第二确定单元503包括:第一处理模块5031、第二处理模块5032和第三处理模块5033。
第一处理模块5031,用于若所述移动终端处于移动状态,确定所述移动终端可识别的卫星个数。
第二处理模块5032,用于若所述移动终端可识别的卫星个数大于等于卫星个数阈值,确定所述移动终端的定位场景为空旷环境。
第三处理模块5033,用于若所述移动终端可识别的卫星个数小于卫星个数阈值,确定所述移动终端的定位场景为非空旷环境。
在本发明实施例中,通过确定移动终端可识别的卫星个数,判断移动终端的定位场景为空旷环境或非空旷环境。根据已确定的定位场景,确定移动终端使用的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
优选的,结合图5,参考图7,示出了本发明实施例提供的一种导航定位系统的结构框图,所述第四确定单元505包括:
第一处理模块5051,用于若所述移动终端的定位场景为非空旷环境,判断所述移动终端的前N次卫星定位的定位结果是否准确,若所述移动终端的前N次卫星定位的定位结果准确,确定所述移动终端的定位源为惯性导航定位,若所述移动终端的前N次卫星定位的定位结果不准确,确定所述移动终端可识别的无线热点个数。
第二处理模块5052,用于当所述移动终端可识别的无线热点个数大于等于热点个数阈值,确定所述移动终端的定位源为WiFi定位,当所述移动终端可识别的无线热点个数小于热点个数阈值,确定所述移动终端的定位源为基站定位。
在本发明实施例中,通过判断移动终端的定位场景是否为空旷环境,以及结合移动终端所处环境的环境信息,确定移动终端的定位源为卫星定位、惯性 导航定位、WiFi定位或基站定位。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
优选的,参考图8,示出了本发明实施例提供的一种导航定位系统的结构框图,所述第一确定单元501包括:第一获取模块5011、第二获取模块5012和校准模块5013。
第一获取模块5011,用于获取移动终端在三维坐标系上的加速度。
第二获取模块5012,用于获取所述移动终端的三维坐标系与大地坐标系的夹角。
校准模块5013,用于基于所述移动终端的X轴、Y轴和Z轴分别与所述大地坐标系的X轴、Y轴和Z轴的夹角,利用公式(4)对所述移动终端在X轴、Y轴和Z轴上的加速度进行校准,得到校准后的所述移动终端在三维坐标系上的加速度。
在本发明实施例中,通过利用移动终端的三维坐标系与大地坐标系之间的夹角,对移动终端的加速度进行校准。根据校准后的加速度判断移动终端的运动状态,当移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境,以及已确定的定位场景下所使用的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定位源,提高定位可靠性、准确性和降低功耗。
综上所述,本发明实施例提供一种导航定位方法及系统,该方法为:根据获取到的移动终端的加速度,确定移动终端是否处于移动状态。若移动终端处于静止状态,获取前一次移动终端的定位位置。若移动终端处于移动状态,确定移动终端的定位场景为空旷环境或非空旷环境。若移动终端的定位场景为空旷环境,确定移动终端的定位源为卫星定位。若移动终端的定位场景为非空旷环境,确定当前非空旷环境下移动终端的定位源。利用定位源,获取移动终端的定位位置。在本方案中,通过获取到的移动终端的加速度,判断移动终端是否处于运动状态。当移动终端处于移动状态时,确定移动终端的定位场景为空旷环境或非空旷环境,以及已确定的定位场景下所使用的定位源。利用定位源获取移动终端的定位位置,不需要人为判断移动终端的定位场景和手动切换定 位源,提高定位可靠性、准确性和降低功耗。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种导航定位方法,其特征在于,所述方法包括:
    根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态;
    若所述移动终端处于静止状态,获取前一次所述移动终端的定位位置;
    若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境;
    若所述移动终端的定位场景为空旷环境,确定所述移动终端的定位源为卫星定位;
    若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源,其中,所述定位源包括惯性导航定位、WiFi定位和基站定位;
    利用所述定位源,获取所述移动终端的定位位置。
  2. 根据权利要求1所述的方法,其特征在于,所述获取移动终端的加速度的过程,包括:
    获取移动终端在三维坐标系上的加速度;
    获取所述移动终端的三维坐标系与大地坐标系的夹角;
    基于所述移动终端的X轴、Y轴和Z轴分别与所述大地坐标系的X轴、Y轴和Z轴的夹角,利用
    Figure PCTCN2020090490-appb-100001
    对所述移动终端在X轴、Y轴和Z轴上的加速度进行校准,得到校准后的所述移动终端在三维坐标系上的加速度;
    其中,x、y和z分别为所述移动终端在X轴、Y轴和Z轴上的加速度,x'、y'和z'分别为校准后的所述移动终端在X轴、Y轴和Z轴上的加速度,p为所述移动终端的Y轴与所述大地坐标系的Y轴的夹角,p=arcsin(-x/g),q 为所述移动终端的X轴与所述大地坐标系的X轴的夹角,
    Figure PCTCN2020090490-appb-100002
    g为重力加速度常量。
  3. 根据权利要求1所述的方法,其特征在于,所述根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态,包括:
    基于所述移动终端在三维坐标系上的X轴、Y轴和Z轴上的加速度,计算所述移动终端的移动幅值;
    若所述移动终端的移动幅值大于运动状态阈值,确定所述移动终端处于移动状态;
    若所述移动终端的移动幅值小于等于运动状态阈值,确定所述移动终端处于静止状态。
  4. 根据权利要求1所述的方法,其特征在于,所述若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境,包括:
    若所述移动终端处于移动状态,确定所述移动终端可识别的卫星个数;
    若所述移动终端可识别的卫星个数大于等于卫星个数阈值,确定所述移动终端的定位场景为空旷环境;
    若所述移动终端可识别的卫星个数小于卫星个数阈值,确定所述移动终端的定位场景为非空旷环境。
  5. 根据权利要求1所述的方法,其特征在于,所述若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源,包括:
    若所述移动终端的定位场景为非空旷环境,判断所述移动终端的前N次卫星定位的定位结果是否准确;
    若所述移动终端的前N次卫星定位的定位结果准确,确定所述移动终端的定位源为惯性导航定位;
    若所述移动终端的前N次卫星定位的定位结果不准确,确定所述移动终端可识别的无线热点个数;
    当所述移动终端可识别的无线热点个数大于等于热点个数阈值,确定所述移动终端的定位源为WiFi定位;
    当所述移动终端可识别的无线热点个数小于热点个数阈值,确定所述移动终端的定位源为基站定位。
  6. 根据权利要求1所述的方法,其特征在于,所述利用所述定位源,获取所述移动终端的定位位置,包括:
    基于前一次定位的第一定位时间t 1和第一定位位置s 1,以及基于利用定位调度算法返回的本次定位的第三定位时间t'和第三定位位置s',计算预设时间周期T与所述第一定位时间的和,获得所述移动终端本次定位的第二定位时间t 2,以及根据线性插值计算得到所述移动终端本次定位的第二定位位置s 2
  7. 一种导航定位系统,其特征在于,所述导航定位系统包括:
    第一确定单元,用于根据获取到的移动终端的加速度,确定所述移动终端是否处于移动状态;
    第一获取单元,用于若所述移动终端处于静止状态,获取前一次所述移动终端的定位位置;
    第二确定单元,用于若所述移动终端处于移动状态,确定所述移动终端的定位场景为空旷环境或非空旷环境;
    第三确定单元,用于若所述移动终端的定位场景为空旷环境,确定所述移动终端的定位源为卫星定位;
    第四确定单元,用于若所述移动终端的定位场景为非空旷环境,确定当前非空旷环境下所述移动终端的定位源,其中,所述定位源包括惯性导航定位、WiFi定位和基站定位;
    第二获取单元,用于利用所述定位源,获取所述移动终端的定位位置。
  8. 根据权利要求7所述的系统,其特征在于,所述第二确定单元,包括:
    第一处理模块,用于若所述移动终端处于移动状态,确定所述移动终端可识别的卫星个数;
    第二处理模块,用于若所述移动终端可识别的卫星个数大于等于卫星个数阈值,确定所述移动终端的定位场景为空旷环境;
    第三处理模块,用于若所述移动终端可识别的卫星个数小于卫星个数阈值,确定所述移动终端的定位场景为非空旷环境。
  9. 根据权利要求7所述的系统,其特征在于,所述第四确定单元,包括:
    第一处理模块,用于若所述移动终端的定位场景为非空旷环境,判断所述移动终端的前N次卫星定位的定位结果是否准确,若所述移动终端的前N次卫星定位的定位结果准确,确定所述移动终端的定位源为惯性导航定位,若所述移动终端的前N次卫星定位的定位结果不准确,确定所述移动终端可识别的无线热点个数;
    第二处理模块,用于当所述移动终端可识别的无线热点个数大于等于热点个数阈值,确定所述移动终端的定位源为WiFi定位,当所述移动终端可识别的无线热点个数小于热点个数阈值,确定所述移动终端的定位源为基站定位。
  10. 根据权利要求7所述的系统,其特征在于,所述第一确定单元具体用于:基于所述移动终端在三维坐标系上的X轴、Y轴和Z轴上的加速度,计算所述移动终端的移动幅值。若所述移动终端的移动幅值大于运动状态阈值,确定所述移动终端处于移动状态。若所述移动终端的移动幅值小于等于运动状态阈值,确定所述移动终端处于静止状态。
PCT/CN2020/090490 2019-05-29 2020-05-15 一种导航定位方法及系统 WO2020238652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910456391.0A CN110177335B (zh) 2019-05-29 2019-05-29 一种导航定位方法及系统
CN201910456391.0 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020238652A1 true WO2020238652A1 (zh) 2020-12-03

Family

ID=67696521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090490 WO2020238652A1 (zh) 2019-05-29 2020-05-15 一种导航定位方法及系统

Country Status (2)

Country Link
CN (1) CN110177335B (zh)
WO (1) WO2020238652A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177335B (zh) * 2019-05-29 2021-05-14 鹏城实验室 一种导航定位方法及系统
CN113825099A (zh) * 2021-09-18 2021-12-21 深圳市几米物联有限公司 基于运动状态检测的低功耗定位方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028317A (ko) * 2011-09-09 2013-03-19 엘에스산전 주식회사 위치 추적용 휴대용 단말기, 위치 추적 서비스 제공 장치 및 위치 추적 시스템
CN103856989A (zh) * 2012-11-28 2014-06-11 中国电信股份有限公司 室内外定位切换的方法和系统、终端以及定位应用平台
US20160146922A1 (en) * 2008-03-31 2016-05-26 Golba Llc Determining the Position of a Mobile Device Using the Characteristics of Received Signals and a Reference Database
CN107402374A (zh) * 2017-07-24 2017-11-28 济南浪潮高新科技投资发展有限公司 一种定位方法、服务器及定位系统
CN107783164A (zh) * 2017-09-13 2018-03-09 深圳先进技术研究院 一种终端设备的室内外定位方法及系统
CN110177335A (zh) * 2019-05-29 2019-08-27 鹏城实验室 一种导航定位方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279404B (zh) * 2010-06-13 2013-11-06 上海伽利略导航有限公司 一种无缝定位方法及装置
US9642110B2 (en) * 2013-05-09 2017-05-02 Marvell World Trade Ltd. GPS and WLAN hybrid position determination
CN103533649B (zh) * 2013-10-25 2016-08-17 北京航空航天大学 一种室内外无缝定位系统
CN103826202B (zh) * 2014-02-25 2017-04-05 中国矿业大学 基于手机传感器信息改进WiFi定位结果跳动的方法
CN105163373B (zh) * 2015-07-13 2019-02-01 Oppo广东移动通信有限公司 一种定位方法和移动终端
CN105682032B (zh) * 2016-01-13 2018-04-06 广东欧珀移动通信有限公司 一种定位模式控制方法、装置及移动终端
CN105848205B (zh) * 2016-05-03 2019-06-25 西安汇龙科技股份有限公司 一种按照通话流程修正的mr定位精度提升方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146922A1 (en) * 2008-03-31 2016-05-26 Golba Llc Determining the Position of a Mobile Device Using the Characteristics of Received Signals and a Reference Database
KR20130028317A (ko) * 2011-09-09 2013-03-19 엘에스산전 주식회사 위치 추적용 휴대용 단말기, 위치 추적 서비스 제공 장치 및 위치 추적 시스템
CN103856989A (zh) * 2012-11-28 2014-06-11 中国电信股份有限公司 室内外定位切换的方法和系统、终端以及定位应用平台
CN107402374A (zh) * 2017-07-24 2017-11-28 济南浪潮高新科技投资发展有限公司 一种定位方法、服务器及定位系统
CN107783164A (zh) * 2017-09-13 2018-03-09 深圳先进技术研究院 一种终端设备的室内外定位方法及系统
CN110177335A (zh) * 2019-05-29 2019-08-27 鹏城实验室 一种导航定位方法及系统

Also Published As

Publication number Publication date
CN110177335B (zh) 2021-05-14
CN110177335A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2020238652A1 (zh) 一种导航定位方法及系统
EP1310770A1 (en) Method, device and system for calibrating angular rate measurement sensors
JP5059933B2 (ja) 移動端末、システム及び方法
WO2013176998A2 (en) Method and apparatus for determining locations of access points
KR20160049447A (ko) 지구 자기장을 이용한 동시 로컬리제이션 및 매핑
AU2015256160B2 (en) Location error radius determination
CN103017767B (zh) 使用测量位置的准确度测量终端的位置的方法和设备
US9554253B2 (en) Locating method, drive test terminal and hand-held terminal
US9568610B2 (en) Positioning method based on reliability and apparatus thereof
JP2012117974A (ja) 移動端末、システム及び方法
JP2006242948A (ja) 個人ナビゲーションシステム及び個人ナビゲーションシステムにおける経路案内方法
CN110617795B (zh) 一种利用智能终端的传感器实现室外高程测量的方法
CN107193820B (zh) 位置信息获取方法、装置及设备
US20120026324A1 (en) Image capturing terminal, data processing terminal, image capturing method, and data processing method
Löchtefeld et al. PINwI: pedestrian indoor navigation without infrastructure
TWI497462B (zh) 產生室內地圖的方法及系統
EP2569958B1 (en) Method, computer program and apparatus for determining an object in sight
Merico et al. Indoor navigation with minimal infrastructure
CN215639486U (zh) 一种惯导和蓝牙aoa融合室内定位系统
CN111337874A (zh) 一种基于地理编码辅助的室内定位方法
CN108989983A (zh) 一种高精度ap定位方法及装置
KR102496664B1 (ko) 실내 측위 방법 및 장치
CN111473766A (zh) 一种智能拍照测距离的方法
JP6972761B2 (ja) 情報処理装置、およびプログラム
Bjornstad et al. Camera Calibration and Optimization for Indoor Location

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813645

Country of ref document: EP

Kind code of ref document: A1