WO2020238470A1 - 一种可高效催化合成共轭亚油酸的催化剂、制备方法和催化合成共轭亚油酸的方法 - Google Patents

一种可高效催化合成共轭亚油酸的催化剂、制备方法和催化合成共轭亚油酸的方法 Download PDF

Info

Publication number
WO2020238470A1
WO2020238470A1 PCT/CN2020/085544 CN2020085544W WO2020238470A1 WO 2020238470 A1 WO2020238470 A1 WO 2020238470A1 CN 2020085544 W CN2020085544 W CN 2020085544W WO 2020238470 A1 WO2020238470 A1 WO 2020238470A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
linoleic acid
acid
solution
conjugated linoleic
Prior art date
Application number
PCT/CN2020/085544
Other languages
English (en)
French (fr)
Inventor
肖天存
马望京
Original Assignee
南京科津新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京科津新材料研究院有限公司 filed Critical 南京科津新材料研究院有限公司
Publication of WO2020238470A1 publication Critical patent/WO2020238470A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/12Straight chain carboxylic acids containing eighteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers

Definitions

  • the invention belongs to the field of fine chemicals and organic synthesis, and specifically relates to a catalyst capable of efficiently catalyzing and synthesizing conjugated linoleic acid, a preparation method and a method for synthesizing conjugated linoleic acid.
  • Conjugated linoleic acid is a group of fatty acid isomers with a chain length of 18 carbons and two unmethylated interrupted double bonds. Depending on the position of the double bond and its configuration (cis or trans), different isomers can be obtained. CLA is naturally present in milk fat, the content is 6-16mg/g, and the content is less in various meats. CLA is closely related to nutrition and disease treatment. Studies have shown that CLA isomers have beneficial effects on human and animal health. For example, especially the 9-cis and 11-trans isomers, also known as rumen acid, seems to be the most effective anti-cancer component in cells; 10-trans, 12-cis isomers can promote body fat loss . In most cases, commercial products contain about 50-80% of CLA, and among the isomers, 9-cis, 11-trans, 10-trans, and 12-cis isomers are the most abundant .
  • CLA CLA
  • this reaction cannot be carried out in edible oils such as sunflower oil, soybean oil or safflower oil, which are natural linoleic acid, but must be produced from their corresponding soaps. Conjugation by the action of base will convert it into FFA acid by dilution.
  • the reaction temperature is about 200-250°C, and the obtained FFA is usually purified by distillation at the end of the process.
  • Another method is the dehydration of ricinoleic acid, which contains about 85-90% of ricinoleic acid (12-hydroxy-9-cis 18:1) grease, which can be dehydrated at high temperature under acid catalysis to form new fatty acids.
  • C C.
  • the newly formed double bond can be combined or not combined with the originally existing double bond to produce various CLA isomers and non-conjugated linoleic acid.
  • the present invention provides a catalyst that can efficiently catalyze the synthesis of conjugated linoleic acid, a preparation method, and a method for synthesizing conjugated linoleic acid.
  • the solid heteropolyacid compound prepared by the present invention has a morphology It has a sheet-like structure with hollow particles.
  • the solid heteropoly acid compound prepared by the invention is used as a catalyst, which can efficiently catalyze the synthesis of conjugated linoleic acid, and can dehydrate the linoleic acid under mild conditions and then form conjugated linoleic acid isomers.
  • the catalyst used in the invention is environmentally friendly, the added amount of the catalyst can be as low as one percent, and can be recycled and reused; the reaction conditions are mild, high temperature and high pressure are not required, and the reaction yield can be ⁇ 90%.
  • the present invention provides a method for preparing a catalyst capable of efficiently catalyzing and synthesizing conjugated linoleic acid, including the following steps:
  • Step 1) According to the catalyst to be prepared, select the raw materials used, wherein the prepared catalyst is a solid heteropoly acid compound H 3 PW 12 O 40 ⁇ xH 2 O, the raw material is Na 2 WO 4 ⁇ 2H 2 O, and the mass percentage concentration is 85% H 3 PO 4 and a mass percentage concentration of 32% hydrochloric acid, wherein the molar ratio of Na 2 WO 4 ⁇ 2H 2 O, H 3 PO 4 and hydrochloric acid is 12:1:3; the preparation catalyst is a solid heteropolyacid compound H 3 PMo 12 O 40 ⁇ xH 2 O, the raw material is Na 2 MoO 4 ⁇ 2H 2 O, the mass percentage concentration is 85% H 3 PO 4 and the mass percentage concentration is 32% hydrochloric acid, of which Na 2 MoO 4 ⁇ 2H 2 O, The molar ratio of H 3 PO 4 and hydrochloric acid is 12:1:3; when the preparation catalyst is a solid heteropoly acid compound H 4 SiW 12 O 40 ⁇ xH 2
  • Step 2) Mix the raw materials under magnetic stirring, and react for 3-20 minutes until the solution is light yellow, and the reaction temperature is 70-120°C;
  • Step 3) When preparing the solid heteropoly acid compound H 3 PW 12 O 40 ⁇ xH 2 O or H 4 SiW 12 O 40 ⁇ xH 2 O, let the solution obtained in step 2) stand still, cool to room temperature naturally, and add hydrogen peroxide until The color of the solution becomes colorless; when preparing the solid heteropoly acid compound H 3 PMo 12 O 40 ⁇ xH 2 O, the solution obtained in step 2) is allowed to stand, and the solution is naturally cooled to room temperature until the color of the solution becomes colorless;
  • Step 4) Extraction and separation: Add the obtained colorless solution and ether into a separatory funnel at the same time.
  • the volume ratio of the colorless solution and ether is 1:1-1:10. Shake up and down repeatedly, mix well and let stand for separation. Layer, the solution is divided into three layers, take the lowest layer solution and ether at the same time into the separatory funnel, repeatedly shake up and down, mix well and stand still for layering, and perform secondary extraction;
  • Step 5 Take the lowest layer solution after the second extraction in Step 4), heat and dry, and crystallize to form a solid heteropolyacid compound, and the heating and drying temperature is 90-110°C.
  • the obtained solid heteropoly acid compound is dissolved in an aqueous solution to form a solid heteropoly acid aqueous solution, and then the carrier is soaked in the solution for 5-48 hours, and the mass ratio of the carrier to the solid heteropoly acid compound in the solution is 100 :1-1:100, and then dry at 110-150°C to obtain the solid heteropolyacid compound supported on the carrier.
  • the carrier is selected from one or more of inorganic oxides, boron compounds, porous alumina, kaolin, bentonite, polytetrafluoroethylene, activated carbon or porous glass.
  • the inorganic oxide is selected from one or more of aluminum oxide, zirconium oxide, silicon dioxide, magnesium oxide or chromium oxide.
  • the present invention also provides a catalyst capable of efficiently catalyzing the synthesis of conjugated linoleic acid.
  • the catalyst is one or more solid heteropolyacid compounds prepared by the above preparation method, and the catalyst is in the form of flakes. Structure, mixed with hollow structure particles.
  • the present invention also provides a method for highly efficient catalytic synthesis of conjugated linoleic acid, which is carried out according to the following steps:
  • Step a) Weigh a certain amount of linoleic acid and the catalyst of the present invention.
  • Step b) Put linoleic acid and catalyst into a light-permeable reactor, and put a magnetic stirrer;
  • Step c) Place the reactor in an oil bath, stir under certain pressure and temperature conditions to carry out a catalytic reaction. After a certain time of reaction, 9-cis, 11-trans conjugated linoleic acid and 9-trans are obtained. Formula, 11-cis conjugated linoleic acid mixture.
  • the linoleic acid is ricinoleic acid.
  • the mass ratio of the catalyst to linoleic acid is 10:1 to 1:100.
  • step c) wherein the pressure is 100-1000 kPa, the temperature is 80-200 degrees Celsius, the stirring speed is 50-1000 rpm, and the catalytic reaction time is 30-600 minutes.
  • the catalytic reaction is carried out under illumination conditions, the wavelength of light is ⁇ 700 nanometers, and the illumination time is 30-600 minutes.
  • the present invention provides a method for preparing a catalyst that can efficiently catalyze and synthesize conjugated linoleic acid.
  • the catalyst is one or more solid heteropolyacid compounds H 3 PW 12 O 40 ⁇ xH 2 O, H 3 PMo 12 O 40 ⁇ xH 2 O and H 4 SiW 12 O 40 ⁇ xH 2 O, or solid heteropoly acid compound H 3 PW 12 O supported on a carrier 40 ⁇ xH 2 O, H 3 PMo 12 O 40 ⁇ xH 2 O and H 4 SiW 12 O 40 ⁇ xH 2 O.
  • the XRD of the solid heteropoly acid compound prepared by the present invention is consistent with the standard sample spectrum, confirming that it is a solid heteropoly acid, and its morphology is generally in a sheet-like structure, mixed with hollow structure particles, and its specific surface area is large, which can promote the catalytic reaction It can be carried out efficiently.
  • the solid heteropoly acid compound has only a small amount of crystal water, so it can avoid excessive crystal water from causing adverse effects on the catalytic reaction, and the solid heteropoly acid compound has a single configuration with a purity of 99%.
  • Using the solid heteropolyacid compound prepared by the present invention as a catalyst can efficiently catalyze the synthesis of conjugated linoleic acid.
  • the catalyst has high purity, low crystal water, high catalytic activity, and can efficiently promote the dehydration and isoforms of linoleic acid such as ricinoleic acid. Structured, the minimum addition amount in the catalytic synthesis of conjugated linoleic acid is only one percent, and the catalyst of the present invention has a large specific surface area, which can increase the contact area between linoleic acid and the catalyst and further promote the occurrence of catalytic reactions. Improve conversion rate and recycling times.
  • the method for high-efficiency catalytic synthesis of conjugated linoleic acid provided by the present invention is environmentally friendly, simple to separate, and greatly reduces three wastes emissions.
  • the catalyst in the method can be regenerated and reused.
  • the solid heteropolyacid compound prepared by the invention has good temperature resistance, and the maximum temperature resistance can reach 500 degrees Celsius. The high temperature resistance can make the activation complete, facilitate regeneration, and improve the catalytic performance of the catalyst.
  • Figure 1 shows the SEM image of the solid particles of phosphotungstic heteropolyacid in Example 1 of the present invention
  • Example 2 shows the SEM image of the solid particles of phosphotungstic heteropoly acid in Example 1 of the present invention
  • Figure 3 shows the XRD pattern of phosphotungstic heteropoly acid in Example 1 of the present invention.
  • the preparation of a catalyst that can efficiently catalyze the synthesis of conjugated linoleic acid includes the following steps:
  • the catalyst is a solid heteropoly acid compound H 3 PW 12 O 40 ⁇ xH 2 O, and Na 2 WO 4 ⁇ 2H 2 O, a mass percentage concentration of 85% H 3 PO 4 and a mass percentage concentration of 32% hydrochloric acid are selected as Raw material, in which the molar ratio of Na 2 WO 4 ⁇ 2H 2 O, H 3 PO 4 and hydrochloric acid is 12:1:3;
  • Step 2) Mix the raw materials under magnetic stirring, and react for 3 minutes until the solution is light yellow and the reaction temperature is 120°C;
  • Step 3) Let the solution obtained in step 2) stand, cool to room temperature naturally, and add hydrogen peroxide until the color of the solution becomes colorless;
  • Step 4) Extraction and separation: Add the obtained colorless solution and ether into a separatory funnel at the same time.
  • the volume ratio of the colorless solution and ether is 1:1. Shake up and down repeatedly, mix well, and stand for separation. For three layers, take the lowest layer solution and ether into the separatory funnel at the same time, shake it up and down repeatedly, mix well, stand still for layering, and conduct secondary extraction;
  • Step 5 Take the lowest layer solution after the second extraction in Step 4), heat and dry, and crystallize to form a solid heteropolyacid compound, and the heating and drying temperature is 90°C.
  • the preparation of a catalyst that can efficiently catalyze the synthesis of conjugated linoleic acid includes the following steps:
  • the catalyst is a solid heteropoly acid compound H 3 PMo 12 O 40 ⁇ xH 2 O, and Na 2 MoO 4 ⁇ 2H 2 O, a mass percentage concentration of 85% H 3 PO 4 and a mass percentage concentration of 32% hydrochloric acid are selected as Raw material, where the molar ratio of Na 2 MoO 4 ⁇ 2H 2 O, H 3 PO 4 and hydrochloric acid is 12:1:3;
  • Step 2 Mix the raw materials under magnetic stirring, and react for 10 minutes until the solution is light yellow and the reaction temperature is 100°C;
  • Step 3 Let the solution obtained in step 2) stand, and naturally cool to room temperature, until the color of the solution becomes colorless;
  • Step 4) Extraction and separation: Add the obtained colorless solution and ether into a separatory funnel at the same time.
  • the volume ratio of the colorless solution and ether is 1:5. Shake up and down repeatedly, mix well, and stand for separation. For three layers, take the lowest layer solution and ether into the separatory funnel at the same time, shake it up and down repeatedly, mix well, stand still for layering, and conduct secondary extraction;
  • Step 5 Take the lowest layer solution after the second extraction in Step 4), heat and dry, and crystallize to form a solid heteropolyacid compound, and the heating and drying temperature is 90-110°C.
  • the preparation of a catalyst that can efficiently catalyze the synthesis of conjugated linoleic acid includes the following steps:
  • the catalyst is a solid heteropolyacid compound H 4 SiW 12 O 40 ⁇ xH 2 O, and Na 2 WO 4 ⁇ 2H 2 O, a mass percentage concentration of 60% H 2 SiO 3 and a mass percentage concentration of 32% hydrochloric acid are selected as Raw material, wherein the molar ratio of Na 2 WO 4 ⁇ 2H 2 O, H 2 SiO 3 and hydrochloric acid is 12:1:3;
  • Step 2 Mix the raw materials under magnetic stirring, and react for 20 minutes until the solution is light yellow and the reaction temperature is 70°C;
  • Step 3) Let the solution obtained in step 2) stand, cool to room temperature naturally, and add hydrogen peroxide until the color of the solution becomes colorless;
  • Step 4) Extraction and separation: Add the obtained colorless solution and ether into a separatory funnel at the same time.
  • the volume ratio of the colorless solution and ether is 1:10. Shake up and down repeatedly, mix well and then stand for layering. For three layers, take the lowest layer solution and ether into the separatory funnel at the same time, shake it up and down repeatedly, mix well, stand still for layering, and conduct secondary extraction;
  • Step 5 Take the lowest layer solution after the second extraction in Step 4), heat and dry, and crystallize to form a solid heteropolyacid compound, and the heating and drying temperature is 110°C.
  • the solid heteropoly acid H 3 PW 12 O 40 ⁇ xH 2 O prepared in Example 1, the solid heteropoly acid compound H 3 PMo 12 O 40 ⁇ xH 2 O prepared in Example 2 and the solid heteropoly acid prepared in Example 3 The acid compound H 4 SiW 12 O 40 ⁇ xH 2 O is dissolved in the aqueous solution to form a solid heteropoly acid aqueous solution, and then the carrier is soaked in the solution for 24 hours (may be any time from 5-48 hours), and then at 130°C Drying (can be any temperature between 110-150 degrees Celsius), the solid heteropoly acid compound loaded on the carrier is obtained.
  • the carrier is selected from one or more of inorganic oxides, boron compounds, porous alumina, kaolin, bentonite, polytetrafluoroethylene, activated carbon or porous glass, and the inorganic oxides are selected from two One or more of aluminum, zirconium dioxide, silicon dioxide, magnesium oxide, or chromium trioxide; the mass ratio of the carrier and the solid heteropoly acid compound in the solution is 1:1 (can be 100:1-1: Any ratio in 100).
  • the solid heteropoly acid compound is selected from solid heteropoly acids H 3 PW 12 O 40 ⁇ xH 2 O, H 3 PMo 12 O 40 ⁇ xH 2 O and H 4 SiW 12 O 40 ⁇ xH 2 O
  • the main catalyst one or more of them can efficiently catalyze the synthesis of conjugated linoleic acid.
  • the amount of catalyst affects the conversion rate of the ricinoleic acid isomerization reaction and the number of cycles of catalyst recycling. When the amount of catalyst increases in proportion to the total reactant mass, the conversion rate of the catalytic reaction remains unchanged.
  • the number of catalyst recycling is significantly reduced, and the increase in the catalyst content leads to more frequent polymerization side reactions during the catalysis process, which affects the utilization efficiency of the catalyst; combined with Examples 6, 8, 9 and 10, it can be seen that the addition of different light wavelengths during the catalytic reaction has an effect on ricinoleic acid.
  • the conversion rate of the isomerization reaction and the number of cycles of catalyst recycling, as well as the change of wavelength, will cause the conversion rate of the catalytic reaction to change. Under light conditions, the catalytic conditions can more easily reach the activation energy required for the reaction, which shortens the catalytic reaction time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种可高效催化合成共轭亚油酸的催化剂、制备方法和合成共轭亚油酸的方法。所述催化剂为一种或多种的固体杂多酸化合物H 3PW 12O 40·xH 2O,H 3PMo 12O 40·xH 2O和H 4SiW 12O 40·xH 2O,或负载于载体的固体杂多酸化合物H 3PW 12O 40·xH 2O,H 3PMo 12O 40·xH 2O和H 4SiW 12O 40·xH 2O。制备催化剂时,在磁力搅拌下将原料混合,将经过二次萃取,并加热烘干,结晶形成固体杂多酸化合物。所述固体杂多酸化合物,其形貌大体呈片状结构,夹杂有中空结构颗粒,其比表面积大,可促进催化反应高效进行。所述高效催化合成共轭亚油酸的方法,绿色环保,分离简单,大大减少三废排放,该方法中的催化剂可再生和重复使用。

Description

一种可高效催化合成共轭亚油酸的催化剂、制备方法和催化合成共轭亚油酸的方法 技术领域
本发明属于精细化工和有机合成领域,具体涉及一种可高效催化合成共轭亚油酸的催化剂、制备方法和合成共轭亚油酸的方法。
背景技术
共轭亚油酸(CLA)是一组脂肪酸异构体,链长为18个碳和两个非甲基化的间断双键。根据双键位置及其构型(顺式或反式),可以获得不同的异构体。CLA天然存在于乳脂中,含量为6-16mg/g,各种肉中含量较少。CLA与营养和疾病治疗密切相关,研究表明CLA异构体对人和动物健康具有有益作用。例如,尤其是9-顺式,11-反式异构体也称为瘤胃酸,似乎是细胞中最有效的抗癌成分;10-反式,12-顺式异构体可以促进身体脂肪减少。在大多数情况下,商业产品中含有约50-80%的CLA,并且在异构体中,9-顺式,11-反式和10-反式,12-顺式异构体含量最为丰富。
制备CLA的方法有很多种,最常见是亚油酸的碱性异构化。一般来说,这种反应不能在天然亚油酸即可食用的油类如葵花籽油,大豆油或红花油中进行,而是必须从它们相应的肥皂中生产出来,这些肥皂一旦通过强碱的作用共轭,就会通过稀释而转化为FFA酸。反应温度约为200-250℃,得到的FFA通常在该过程结束时通过蒸馏纯化。另外一种方法是蓖麻油酸的脱水,含有约85-90%的蓖麻油酸(12-羟基-9-顺式18:1)油脂,可以在酸催化下高温脱水,在脂肪链中形成新的C=C。新形成的双键可以与最初存在的双键结合或不结合,产生各种CLA异构体和非共轭亚油酸。
发明内容
针对现有技术中的缺陷,本发明提供一种可高效催化合成共轭亚油酸的催化剂、制备方法和合成共轭亚油酸的方法,本发明制备的固体杂多酸化合物,其形貌大体呈片状结构,夹杂有中空结构颗粒。本发明制备的固体杂多酸化合物作为催化剂,可高效催化合成共轭亚油酸,在温和条件下即可将亚油酸脱水,然后形成共轭亚油酸异构体。本发明所采用的催化剂对环境友好,催化剂添加量可低至百分之一,且可回收重复利用;反应条件温和,不需要高温高压,反应产率即可≥90%。
本发明为实现以上目的所用的技术方案如下:
本发明提供了一种可高效催化合成共轭亚油酸的催化剂的制备方法,包括如下步骤:
步骤1)根据所需制备的催化剂,选取所用的原料,其中制备催化剂为固体杂多酸化合物H 3PW 12O 40·xH 2O,原料为Na 2WO 4·2H 2O、质量百分比浓度为85%H 3PO 4和质量百分比浓度为32%盐酸,其中Na 2WO 4·2H 2O,H 3PO 4和盐酸的摩尔比为12:1:3;制备催化剂为固体杂多酸化合物H 3PMo 12O 40·xH 2O,原料为Na 2MoO 4·2H 2O、质量百分比浓度为85%H 3PO 4和质量百分比浓度为32%盐酸,其中Na 2MoO 4·2H 2O,H 3PO 4和盐酸的摩尔比为12:1:3;制备催化剂为固体杂多酸化合物H 4SiW 12O 40·xH 2O 时,原料为Na 2WO 4·2H 2O、质量百分比浓度为60%H 2SiO 3和质量百分比浓度为32%盐酸,其中Na 2WO 4·2H 2O、H 2SiO 3和盐酸的摩尔比为12:1:3;
步骤2)在磁力搅拌下将原料混合,反应3-20分钟直至溶液呈浅黄色,反应温度为70-120℃;
步骤3)当制备固体杂多酸化合物H 3PW 12O 40·xH 2O或H 4SiW 12O 40·xH 2O时,静置步骤2)获得的溶液,自然冷却至室温,加入双氧水直至溶液颜色变为无色;当制备固体杂多酸化合物H 3PMo 12O 40·xH 2O时,静置步骤2)获得的溶液,自然冷却至室温,直至溶液颜色变为无色;
步骤4)萃取分离:将获得的无色溶液和乙醚同时加入分液漏斗中,所述无色溶液和乙醚的体积比为1:1-1:10,反复上下摇晃,混合均匀后静置分层,溶液分为三层,取最下层溶液和乙醚同时加入分液漏斗中,反复上下摇晃,混合均匀后静置分层,进行二次萃取;
步骤5)取步骤4)二次萃取后的最下层溶液,加热烘干,结晶形成固体杂多酸化合物,所述加热烘干温度为90-110℃。
优选的,将所获得的固体杂多酸化合物溶解在水溶液中形成固体杂多酸水溶液,然后将载体浸泡在该溶液中5-48小时,溶液中载体和固体杂多酸化合物的质量比为100:1-1:100,然后在110-150℃烘干,即得负载于载体的固体杂多酸化合物。
优选的,所述载体选自无机氧化物、硼化合物、多孔矾土、高岭土、膨润土、聚四氟乙烯、活性碳或多孔玻璃中的一种或多种。
优选的,所述无机氧化物选自三氧化二铝、二氧化锆、二氧化硅、氧化镁或三氧化二铬中的一种或多种。
进一步的,本发明还提供了一种可高效催化合成共轭亚油酸的催化剂,该催化剂为一种或多种的由上述的制备方法制备的固体杂多酸化合物,该催化剂为呈片状结构,夹杂有中空结构颗粒。
进一步的,本发明还提供了一种高效催化合成共轭亚油酸的方法,按照如下步骤进行,
步骤a)称取一定量的亚油酸和本发明的催化剂;
步骤b)将亚油酸和催化剂加入可透光的反应器中,放入磁力搅拌子;
步骤c)将反应器置于油浴中,在一定压力和温度条件下,搅拌,进行催化反应,反应一定时间后,得到9-顺式,11-反式共轭亚油酸和9-反式,11-顺式共轭亚油酸混合物。
优选的,亚油酸为蓖麻油酸。
优选的,步骤a)中,所述催化剂与亚油酸的质量比为10:1~1:100。
优选的,步骤c)中,其中,压力为100-1000千帕,温度为80-200摄氏度,搅拌速度为50-1000转/分钟,催化反应时间为30-600分钟。
优选的,步骤c)中,在光照条件下进行所述催化反应,光的波长≤700纳米,光照时间为30-600分钟。
本发明的有益效果为:
本发明提出一种可高效催化合成共轭亚油酸的催化剂的制备方法,该催化剂为一种或多种的固体杂多酸化合物H 3PW 12O 40·xH 2O,H 3PMo 12O 40·xH 2O和H 4SiW 12O 40·xH 2O,或负载于载体的固体杂多酸化合物H 3PW 12O 40·xH 2O,H 3PMo 12O 40·xH 2O和H 4SiW 12O 40·xH 2O。本发明制备的固体杂多酸化合物,其XRD与标准样品图谱一致,确认其为固体杂多酸,其形貌大体呈片状结构,夹杂有中空结构颗粒,其比表面积大,可促进催化反应高效进行,该固体杂多酸化合物仅有少量结晶水,因此能够避免过量结晶水对催化反应造成不良影响,且该固体杂多酸化合物构型单一,纯度可达99%。采用本发明所制备的固体杂多酸化合物作为催化剂可高效催化合成共轭亚油酸,该催化剂纯度高,结晶水少,催化活性高,能够高效促进亚油酸如蓖麻油酸的脱水和异构化,在催化合成共轭亚油酸反应中最少添加量仅为百分之一,而且本发明的催化剂比表面积大,可增加亚油酸与催化剂的接触面积,进一步促进催化反应的发生,提高转化率和循环使用次数。本发明提供的高效催化合成共轭亚油酸的方法,绿色环保,分离简单,大大减少三废排放,该方法中的催化剂可再生和重复使用。本发明制备的固体杂多酸化合物具有良好的耐温性能,最高可耐受温度达500摄氏度,耐受温度高可以使得活化彻底,利于再生,提高催化剂的催化性能。
附图说明
图1示出了本发明实施例1中磷钨杂多酸固体颗粒SEM图;
图2示出了本发明实施例1中磷钨杂多酸固体颗粒大倍率的SEM图;
图3示出了本发明实施例1中磷钨杂多酸的XRD图谱。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
实施例1
制备可高效催化合成共轭亚油酸的催化剂,包括如下步骤:
步骤1)催化剂为固体杂多酸化合物H 3PW 12O 40·xH 2O,选取Na 2WO 4·2H 2O、质量百分比浓度为85%H 3PO 4和质量百分比浓度为32%盐酸作为原料,其中Na 2WO 4·2H 2O,H 3PO 4和盐酸的摩尔比为12:1:3;
步骤2)在磁力搅拌下将原料混合,反应3分钟直至溶液呈浅黄色,反应温度为120℃;
步骤3)静置步骤2)获得的溶液,自然冷却至室温,加入双氧水直至溶液颜色变为无色;
步骤4)萃取分离:将获得的无色溶液和乙醚同时加入分液漏斗中,所述无色溶液和乙醚的体积比为1:1,反复上下摇晃,混合均匀后静置分层,溶液分为三层,取最下层溶液和乙醚同时加入分液漏斗中,反复上下摇晃,混合均匀后静置分层,进行二次萃取;
步骤5)取步骤4)二次萃取后的最下层溶液,加热烘干,结晶形成固体杂多酸化合物,所述加热烘 干温度为90℃。
称量2克上述方法制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和200克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:100),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到95%。
实施例2
制备可高效催化合成共轭亚油酸的催化剂,包括如下步骤:
步骤1)催化剂为固体杂多酸化合物H 3PMo 12O 40·xH 2O,选取Na 2MoO 4·2H 2O、质量百分比浓度为85%H 3PO 4和质量百分比浓度为32%盐酸作为原料,其中Na 2MoO 4·2H 2O,H 3PO 4和盐酸的摩尔比为12:1:3;
步骤2)在磁力搅拌下将原料混合,反应10分钟直至溶液呈浅黄色,反应温度为100℃;
步骤3)静置步骤2)获得的溶液,自然冷却至室温,直至溶液颜色变为无色;
步骤4)萃取分离:将获得的无色溶液和乙醚同时加入分液漏斗中,所述无色溶液和乙醚的体积比为1:5,反复上下摇晃,混合均匀后静置分层,溶液分为三层,取最下层溶液和乙醚同时加入分液漏斗中,反复上下摇晃,混合均匀后静置分层,进行二次萃取;
步骤5)取步骤4)二次萃取后的最下层溶液,加热烘干,结晶形成固体杂多酸化合物,所述加热烘干温度为90-110℃。
称量2克上述方法制备的固体杂多酸H 3PMo 12O 40·хH 2O作为催化剂和200克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:100),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到95%。
实施例3
制备可高效催化合成共轭亚油酸的催化剂,包括如下步骤:
步骤1)催化剂为固体杂多酸化合物H 4SiW 12O 40·xH 2O,选取Na 2WO 4·2H 2O、质量百分比浓度为60%H 2SiO 3和质量百分比浓度为32%盐酸作为原料,其中Na 2WO 4·2H 2O、H 2SiO 3和盐酸的摩尔比为12:1:3;
步骤2)在磁力搅拌下将原料混合,反应20分钟直至溶液呈浅黄色,反应温度为70℃;
步骤3)静置步骤2)获得的溶液,自然冷却至室温,加入双氧水直至溶液颜色变为无色;
步骤4)萃取分离:将获得的无色溶液和乙醚同时加入分液漏斗中,所述无色溶液和乙醚的体积比为 1:10,反复上下摇晃,混合均匀后静置分层,溶液分为三层,取最下层溶液和乙醚同时加入分液漏斗中,反复上下摇晃,混合均匀后静置分层,进行二次萃取;
步骤5)取步骤4)二次萃取后的最下层溶液,加热烘干,结晶形成固体杂多酸化合物,所述加热烘干温度为110℃。
称量2克固体杂多酸H 4SiW 12O 40·xH 2O作为催化剂和200克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:100),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到95%。
实施例4
称量1克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O、1克实施例2制备的固体杂多酸化合物H 3PMo 12O 40·xH 2O和1克实施例3制备的固体杂多酸化合物H 4SiW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为3:100),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到95%。
实施例5
将实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O、实施例2制备的固体杂多酸化合物H 3PMo 12O 40·xH 2O和实施例3制备的固体杂多酸化合物H 4SiW 12O 40·xH 2O,溶解在水溶液中形成固体杂多酸水溶液,然后将载体浸泡在该溶液中24小时(可为5-48小时中任意时间),然后在130℃烘干(可为110-150摄氏度中任意温度),即得负载于载体的固体杂多酸化合物。其中载体所述载体选自无机氧化物、硼化合物、多孔矾土、高岭土、膨润土、聚四氟乙烯、活性碳或多孔玻璃中的一种或多种,所述无机氧化物选自三氧化二铝、二氧化锆、二氧化硅、氧化镁或三氧化二铬中的一种或多种;溶液中载体和固体杂多酸化合物的质量比为1:1(可为100:1-1:100中任意比例)。
称量上述4克的负载于载体的固体杂多酸化合物作为催化剂和200克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:50),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到95%。
实施例6
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240 分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到95%。
实施例7
称量20克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:5),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用15次,转化率达到95%。
实施例8
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下,在波长为400纳米的光照射下反应,搅拌速率设置250转/分钟,光照时长为120分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到98%。
实施例9
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下,在波长为700纳米的光照射下反应,搅拌速率设置250转/分钟,光照时长为120分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到95%。
实施例10
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下,在波长为10纳米的光照射下反应,搅拌速率设置250转/分钟,光照时长为120分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到96%。
实施例11
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为200摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到 94%。
实施例12
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为100摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到94%。
实施例13
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为80摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到92%。
实施例14
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为200千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到96%。
实施例15
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为250千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到97%。
实施例16
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为60分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到92%。
实施例17
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置250转/分钟,反应时长为150分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用23次,转化率达到94%。
实施例18
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置500转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到96%。
实施例19
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置350转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到96%。
实施例20
称量5克实施例1制备的固体杂多酸H 3PW 12O 40·xH 2O作为催化剂和100克的蓖麻油酸(催化剂与蓖麻油酸的质量比为1:20),将上述原料加入光化学反应器,放入磁力搅拌子,盖上石英窗口,然后置于油浴中,在压力为100千帕,温度为150摄氏度条件下反应,搅拌速率设置100转/分钟,反应时长为240分钟,得到9-顺式,11-反式和9-反式,11-顺式混合共轭亚油酸,其中催化剂循环使用20次,转化率达到92%。
结合实施例可知,采用固体杂多酸化合物选自固体杂多酸H 3PW 12O 40·xH 2O,H 3PMo 12O 40·xH 2O和H 4SiW 12O 40·xH 2O中的一种或多种作为主催化剂,可高效催化合成共轭亚油酸。结合实施例1,6,7,可知催化剂用量对蓖麻油酸异构化反应转换率和催化剂循环利用次数的影响,当催化剂用量按照总反应物质量比例递增,催化反应转化率保持不变,而催化剂循环利用次数显著降低,催化剂含量增加导致催化过程中聚合副反应更加频繁,影响催化剂的利用效率;结合实施例6、8、9和10,可知催化反应过程中加入光照波长不同对蓖麻油酸异构化反应转换率和催化剂循环利用次数的影响,波长改变,会导致催化反应转换率的变化,光照条件下,催化条件更容易达到反应所需的活化能,使得催化反应时间缩短。结合实施例 6、11、12和13,可知不同催化反应的温度条件对蓖麻油酸异构化反应转换率和催化剂循环利用次数的影响:催化反应体系的温度从80℃~200℃范围递增时,催化反应转化率先增下降,转化率增大的原因是温度升高加快了反应速率,转化率减小的原因是温度升高增加了副反应的频率,影响反应产物纯度。催化反应的最适合温度为150℃。结合实施例6、14和15,可知不同催化反应的压力对蓖麻油酸异构化反应转换率和催化剂循环利用次数的影响:随着反应体系的压力增加,异构化反应的转换率升高,催化剂循环利用次数不变。结合实施例6、16和17,可知不同催化反应的时间对蓖麻油酸异构化反应转换率和催化剂循环利用次数的影响:随着反应时间增加,反应的转换率增加;结合实施例6、18、19和20,可知不同搅拌转速对蓖麻油酸异构化反应转换率和催化剂循环利用次数的影响,搅拌速度的增加,异构化反应的转化率增加,当增加到一定数值后转化率保持不变,催化剂循环利用次数均保持不变。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (11)

  1. 一种可高效催化合成共轭亚油酸的催化剂的制备方法,包括如下步骤:
    1)根据所需制备的催化剂,选取所用的原料,其中制备催化剂为固体杂多酸化合物H 3PW 12O 40·xH 2O,原料为Na 2WO 4·2H 2O、质量百分比浓度为85%H 3PO 4和质量百分比浓度为32%盐酸,其中Na 2WO 4·2H 2O,H 3PO 4和盐酸的摩尔比为12:1:3;制备催化剂为固体杂多酸化合物H 3PMo 12O 40·xH 2O,原料为Na 2MoO 4·2H 2O、质量百分比浓度为85%H 3PO 4和质量百分比浓度为32%盐酸,其中Na 2MoO 4·2H 2O,H 3PO 4和盐酸的摩尔比为12:1:3;制备催化剂为固体杂多酸化合物H 4SiW 12O 40·xH 2O时,原料为Na 2WO 4·2H 2O、质量百分比浓度为60%H 2SiO 3和质量百分比浓度为32%盐酸,其中Na 2WO 4·2H 2O、H 2SiO 3和盐酸的摩尔比为12:1:3;
    2)在磁力搅拌下将原料混合,反应3-20分钟直至溶液呈浅黄色,反应温度为70-120℃;
    3)当制备固体杂多酸化合物H 3PW 12O 40·xH 2O或H 4SiW 12O 40·xH 2O时,静置步骤2)获得的溶液,自然冷却至室温,加入双氧水直至溶液颜色变为无色;当制备固体杂多酸化合物H 3PMo 12O 40·xH 2O时,静置步骤2)获得的溶液,自然冷却至室温,直至溶液颜色变为无色;
    4)萃取分离:将获得的无色溶液和乙醚同时加入分液漏斗中,所述无色溶液和乙醚的体积比为1:1-1:10,反复上下摇晃,混合均匀后静置分层,溶液分为三层,取最下层溶液和乙醚同时加入分液漏斗中,反复上下摇晃,混合均匀后静置分层,进行二次萃取;
    5)取步骤4)二次萃取后的最下层溶液,加热烘干,结晶形成固体杂多酸化合物,所述加热烘干温度为90-110℃。
  2. 如权利要求1所述的制备方法,其特征在于:将所获得的固体杂多酸化合物溶解在水溶液中形成固体杂多酸水溶液,然后将载体浸泡在该溶液中5-48小时,溶液中载体和固体杂多酸化合物的质量比为100:1-1:100,然后在110-150℃烘干,即得负载于载体的固体杂多酸化合物。
  3. 如权利要求2所述的制备方法,其特征在于:所述载体选自无机氧化物、硼化合物、多孔矾土、高岭土、膨润土、聚四氟乙烯、活性碳或多孔玻璃中的一种或多种。
  4. 如权利要求3所述的制备方法,其特征在于:所述无机氧化物选自三氧化二铝、二氧化锆、二氧化硅、氧化镁或三氧化二铬中的一种或多种。
  5. 一种可高效催化合成共轭亚油酸的催化剂,其特征在于:所述催化剂为一种或多种的由权利要求1-4任一项的制备方法制备的固体杂多酸化合物。
  6. 如权利要求5所述的催化剂,其特征在于:所述催化剂为呈片状结构,夹杂有中空结构颗粒。
  7. 一种高效催化合成共轭亚油酸的方法,其特征在于:按照如下步骤进行,
    a)称取一定量的亚油酸和权利要求5-6任一项所述的催化剂;
    b)将亚油酸和催化剂加入可透光的反应器中,放入磁力搅拌子;
    c)将反应器置于油浴中,在一定压力和温度条件下,搅拌,进行催化反应,反应一定时间后,得到9-顺式, 11-反式共轭亚油酸和9-反式,11-顺式共轭亚油酸混合物。
  8. 如权利要求7所述的方法,其特征在于:所述亚油酸为蓖麻油酸。
  9. 如权利要求7或8所述的方法,其特征在于:所述步骤a)中,所述催化剂与亚油酸的质量比为10:1~1:100。
  10. 如权利要求9所述的方法,其特征在于:所述步骤c)中,其中,压力为100-1000千帕,温度为80-200摄氏度,搅拌速度为50-1000转/分钟,催化反应时间为30-600分钟。
  11. 如权利要求10所述的方法,其特征在于:所述步骤c)中,在光照条件下进行所述催化反应,光的波长≤700纳米,光照时间为30-600分钟。
PCT/CN2020/085544 2019-05-24 2020-04-20 一种可高效催化合成共轭亚油酸的催化剂、制备方法和催化合成共轭亚油酸的方法 WO2020238470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910437704.8 2019-05-24
CN201910437704.8A CN111974425A (zh) 2019-05-24 2019-05-24 一种可高效催化合成共轭亚油酸的催化剂、制备方法和催化合成共轭亚油酸的方法

Publications (1)

Publication Number Publication Date
WO2020238470A1 true WO2020238470A1 (zh) 2020-12-03

Family

ID=73436729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085544 WO2020238470A1 (zh) 2019-05-24 2020-04-20 一种可高效催化合成共轭亚油酸的催化剂、制备方法和催化合成共轭亚油酸的方法

Country Status (2)

Country Link
CN (1) CN111974425A (zh)
WO (1) WO2020238470A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648113A (zh) * 2004-01-19 2005-08-03 中国石油化工股份有限公司 一种固体酸催化异构烷烃与烯烃的烷基化反应方法
US7091152B2 (en) * 2003-01-24 2006-08-15 Conocophillips Company Catalyst composition comprising a heteropoly acid, zinc, and a support component and processes therefor and therewith
US20170001924A1 (en) * 2015-06-30 2017-01-05 Hindustan Petroleum Coporation Ltd. Catalyst composite and preparation thereof for isomerization of paraffins
CN106311298A (zh) * 2015-07-09 2017-01-11 中国石油化工股份有限公司 一种正构烷烃异构化催化剂及其制备方法
CN108290805A (zh) * 2015-11-10 2018-07-17 牛津大学科技创新有限公司 杂多酸催化剂、其制备和光催化工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1311849A (en) * 1969-04-30 1973-03-28 Albright & Wilson Manufacture of phosphotungstic acid
CN1100050C (zh) * 1999-04-29 2003-01-29 中国石油化工集团公司 1,4-丁二醇脱水环化制备四氢呋喃的方法
CN108003008B (zh) * 2017-12-10 2020-07-21 天津市职业大学 一种氧化乙二醛水溶液生产乙醛酸的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091152B2 (en) * 2003-01-24 2006-08-15 Conocophillips Company Catalyst composition comprising a heteropoly acid, zinc, and a support component and processes therefor and therewith
CN1648113A (zh) * 2004-01-19 2005-08-03 中国石油化工股份有限公司 一种固体酸催化异构烷烃与烯烃的烷基化反应方法
US20070118005A1 (en) * 2004-01-19 2007-05-24 Yigong He Process for alkylation of an aromatic hydrocarbon or isoalkane with an olefin over the catalysis of a solid acid
US20170001924A1 (en) * 2015-06-30 2017-01-05 Hindustan Petroleum Coporation Ltd. Catalyst composite and preparation thereof for isomerization of paraffins
CN106311298A (zh) * 2015-07-09 2017-01-11 中国石油化工股份有限公司 一种正构烷烃异构化催化剂及其制备方法
CN108290805A (zh) * 2015-11-10 2018-07-17 牛津大学科技创新有限公司 杂多酸催化剂、其制备和光催化工艺

Also Published As

Publication number Publication date
CN111974425A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
Sharma et al. Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review
Mansir et al. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review
Zhang et al. Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia
Shu et al. Preparation of biodiesel using s-MWCNT catalysts and the coupling of reaction and separation
CN105562041A (zh) 固体碱催化剂的制备方法及其催化合成紫罗兰酮系香料中间体的反应方法
WO2018157815A1 (zh) 选择性加氢催化剂、其制备方法及生成异丁醛的催化评价方法
CN105727930B (zh) 一种用于丙烷脱氢制丙烯的催化剂及其制备方法与应用
CN101823728B (zh) 一种小晶粒sapo-34分子筛的制备方法
JPH10511302A (ja) 複分解触媒用アルミノケイ酸塩担体
CN101830482A (zh) 一种小晶粒sapo-34分子筛的制备方法
Widiarti et al. Upgrading catalytic activity of NiO/CaO/MgO from natural limestone as catalysts for transesterification of coconut oil to biodiesel
Xie et al. Biodiesel preparation from soybean oil by using a heterogeneous Ca x Mg 2− x O 2 catalyst
WO2020238470A1 (zh) 一种可高效催化合成共轭亚油酸的催化剂、制备方法和催化合成共轭亚油酸的方法
CN105622419B (zh) 一种碳水化合物制备乙醇酸酯的方法
CN110694679B (zh) 一种emt/fau核壳分子筛催化剂及其制备方法和应用
CN105460956B (zh) 一种制备规则立方颗粒sapo-34分子筛的方法及其应用
WO2017159371A1 (ja) 共役ジエンの製造方法
CN109701591B (zh) 一种用于α-蒎烯异构化反应的催化剂及其制备方法
CN108067253B (zh) 一种糠醛加氢制备环戊酮的催化剂及其制备方法以及其用于糠醛加氢制备环戊酮的方法
CN111632611A (zh) 一种降解全氟化合物的碘氧化铋异质结光催化材料的制备方法
BRPI0905128B1 (pt) PROCESSO DE PREPARO DE ÉSTERES ALCOÓLICOS A PARTIR DE TRIGLICERÍDEOS E DE ÁLCOOIS POR MEIO DE CATALISADORES HETEROGÊNEOS, ASSOCIANDO PELO MENOS UMA SOLUÇÃO SÓLIDA DE ZnXAl2O3+X E ZnO
CN101480609B (zh) 一种合成生物柴油的核壳结构纳米固体碱催化剂制备方法
CN1234665C (zh) 选择加氢催化剂载体、其制备方法及含该载体的催化剂
CN101817727A (zh) 邻苯基苯酚生产过程中前馏分的处理方法
CN113145102A (zh) 一种负载型催化剂及其制备与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813334

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20813334

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20813334

Country of ref document: EP

Kind code of ref document: A1