WO2020238147A1 - 电机冷却系统和具有其的全地形车 - Google Patents

电机冷却系统和具有其的全地形车 Download PDF

Info

Publication number
WO2020238147A1
WO2020238147A1 PCT/CN2019/124632 CN2019124632W WO2020238147A1 WO 2020238147 A1 WO2020238147 A1 WO 2020238147A1 CN 2019124632 W CN2019124632 W CN 2019124632W WO 2020238147 A1 WO2020238147 A1 WO 2020238147A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
cooling
cooling system
water pump
motor housing
Prior art date
Application number
PCT/CN2019/124632
Other languages
English (en)
French (fr)
Inventor
袁章平
陈义文
陈红波
Original Assignee
北京致行慕远科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910471970.2A external-priority patent/CN110492673A/zh
Priority claimed from CN201920823191.XU external-priority patent/CN210404997U/zh
Application filed by 北京致行慕远科技有限公司 filed Critical 北京致行慕远科技有限公司
Publication of WO2020238147A1 publication Critical patent/WO2020238147A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present disclosure relates to the technical field of all-terrain vehicles, and in particular to a motor cooling system and an all-terrain vehicle with the same.
  • the cooling method usually adopted for hybrid power in vehicles is air cooling or water cooling.
  • the engine and the motor share the same cooling system for cooling.
  • the two sets of the engine and the motor generate higher heat during operation, which makes the heat taken away by the coolant Limited, poor cooling effect.
  • hybrid vehicles have the problem of narrow vehicle layout space.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art. For this reason, the present disclosure needs to provide a motor cooling system to improve the cooling effect of the motor.
  • a motor cooling system includes: a motor, the motor has a cooling channel, the cooling channel has a cooling liquid inlet and a cooling liquid outlet; a water cooler, one end of the water cooler is connected to the The coolant outlet is connected; a water pump, the water pump has a water pump inlet and a water pump outlet, the water pump inlet is connected to the other end of the water cooler, the water pump outlet is connected to the coolant inlet, the water pump is used for pumping
  • the cooling liquid is sent so that the cooling liquid circulates only in the cooling channel.
  • the cooling effect of the motor can be improved by setting the water pump to pump the cooling liquid so that the cooling liquid only circulates in the cooling flow channel.
  • the cooling effect of the motor can be further improved, and the space occupied by the motor can be reduced.
  • the motor includes a motor casing
  • the cooling flow passage is formed inside the motor casing
  • the cooling flow passage extends in a serpentine shape along the circumferential direction of the motor casing .
  • the serpentine shape may be an S shape or a bent shape.
  • the motor housing includes: a first housing formed in a ring shape; and a second housing formed in a ring shape and connected to the first housing The body is nested, and the cooling channel is arranged between the first shell and the second shell.
  • the motor cooling system further includes: partition ribs, the coolant inlet and the coolant outlet are respectively located on both sides of the partition ribs to separate the coolant inlet and the cooling fluid The liquid outlet is separated; and a plurality of partition ribs, the plurality of partition ribs are circumferentially spaced and arranged between the first shell and the second shell and arranged in a staggered manner to define the cooling flow channel .
  • a plurality of the partition ribs are evenly spaced and distributed along the circumferential direction of the motor housing.
  • a motor housing body and an end cover, the end covers are respectively fixedly arranged on both axial sides of the motor housing body, the motor housing body and the two end covers
  • the cooling channel is defined together.
  • a sub-channel is defined between the partition rib, the adjacent partition rib and the adjacent two of the plurality of partition ribs, and the sub-channel passes through the electrical
  • the two end caps respectively block the two ends of the sub-flow channel and jointly define the cooling flow channel with a plurality of the sub-flow channels.
  • the two axial ends of the motor housing body are respectively provided with a plurality of mounting parts arranged at intervals in the circumferential direction, and the plurality of mounting parts are connected to the plurality of partition ribs in a one-to-one correspondence,
  • the end caps are respectively fastened to the plurality of mounting parts by a plurality of threaded fasteners.
  • the width of the mounting portion is greater than the width of the partition rib.
  • the cooling liquid inlet and the cooling liquid outlet are both provided on the side surface of the motor housing body.
  • the motor cooling system further includes: a motor controller, the motor controller being communicatively connected with the water pump.
  • the all-terrain vehicle according to an embodiment of the second aspect of the present disclosure includes a vehicle body, a motor provided on the vehicle body, and the motor cooling system according to the embodiment of the first aspect of the present disclosure.
  • Fig. 1 is a schematic diagram of a motor cooling system according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a cooling channel in a motor housing of a motor cooling system according to an embodiment of the present disclosure in an expanded state;
  • Figure 3 is a schematic diagram of a motor housing body according to an embodiment of the present disclosure.
  • Fig. 4 is another schematic diagram of a motor housing body according to an embodiment of the present disclosure.
  • FIG. 5 is another schematic diagram of the motor housing body according to the embodiment of the present disclosure.
  • Figure 6 is an enlarged view of part A circled in Figure 5;
  • Fig. 7 is a perspective view of a motor housing body according to an embodiment of the present disclosure, wherein the second housing is not shown;
  • Fig. 8 is a perspective view of the motor housing body shown in Fig. 7 from another angle, in which the second housing is not shown.
  • Coolant inlet 111
  • Coolant outlet 112
  • Partition rib 141: First partition rib; 142: Second partition rib;
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. Further, in the description of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • the motor cooling system 100 may be applied to a vehicle such as an all-terrain vehicle with hybrid power (not shown in the figure).
  • a vehicle such as an all-terrain vehicle with hybrid power (not shown in the figure).
  • the motor cooling system 100 is applied to an all-terrain vehicle with hybrid power as an example.
  • the motor cooling system 100 can also be applied to other types of vehicles, and is not limited to all-terrain vehicles with hybrid power.
  • the motor cooling system 100 may include a motor 1, a water cooler 2, and a water pump 3.
  • the motor 1 may have a cooling flow channel 11 having a cooling liquid inlet 111 and a cooling liquid outlet 112.
  • the cooling flow passage 11 is arranged inside the motor 1, the cooling liquid inlet 111 is used to pass a cooling liquid such as water into the cooling flow passage 11, and the cooling liquid outlet 112 is used to flow The cooling liquid passing through the cooling runner 11 is discharged.
  • the cooling liquid can be introduced into the cooling channel 11 through the cooling liquid inlet 111, and the cooling liquid can exchange heat with the motor 1 while flowing through the cooling channel 11 , Thereby reducing the temperature of the motor 1, and the cooling liquid after heat exchange is discharged from the cooling liquid outlet 112.
  • the cooling channel 11 in the motor 1 the cooling effect of the motor 1 is better, and the internal space of the motor 1 can be reasonably, effectively and fully utilized.
  • the motor cooling system 100 When the motor cooling system 100 is applied to a vehicle such as a hybrid vehicle In the case of an all-terrain vehicle, the motor cooling system 100 occupies a small space, which saves space for the layout of the engine and the entire vehicle, and effectively solves the problem of the narrow layout of hybrid power on the entire vehicle.
  • arranging the cooling runner 11 inside the motor 1 is more reliable in use, not easy to damage, and can reduce costs.
  • One end of the water cooler 2 (for example, the lower end in FIG. 1) is connected to the cooling liquid outlet 112 of the cooling channel 11, and the water cooler 2 is used to cool the heat exchanged cooling liquid entering it.
  • the structure and working principle of the water cooler 2 are well known to those skilled in the art, and will not be repeated here.
  • the water pump 3 has a water pump inlet 31 and a water pump outlet 32.
  • the water pump inlet 31 of the water pump 3 is connected to the other end of the water cooler 2 (for example, the upper end in FIG. 1), and the water pump outlet 32 of the water pump 3 is connected to the coolant inlet of the cooling channel 11 111 connected.
  • the coolant can circulate between the motor 1, the water cooler 2, and the water pump 3.
  • the coolant that enters the water pump 3 through the water pump inlet 31 can be Under the pumping action of 3, it flows out from the outlet 32 of the water pump, and enters into the cooling channel 11 through the cooling liquid inlet 111 of the cooling channel 11 to cool the motor 1, and the temperature of the cooling liquid after heat exchange with the motor 1 rises.
  • the cooling liquid is discharged through the cooling liquid outlet 112 and enters into the water cooler 2 through the above-mentioned one end of the water cooler 2.
  • the temperature of the cooling liquid decreases in the water cooler 2 and flows out of the water cooler 2 through the other end of the water cooler 2. After that, it returns to the water pump 3 through the water pump inlet 31 again. In this way, cooling of the motor 1 is realized.
  • the water pump 3 is used to pump the cooling liquid so that the cooling liquid circulates only in the cooling channel 11.
  • the water pump 3 may be an independent water pump 3.
  • the independent water pump 3 and water cooler 2 are used to cool the motor 1, which can provide an independent coolant power source for the coolant and ensure its water pressure, so as to achieve better Good cooling effect.
  • the cooling liquid can directly flow into the cooling channel 11 of the motor 1 under the pumping of the water pump 3, thereby further enhancing the cooling effect.
  • the cooling liquid is pumped by the water pump 3 so that the cooling liquid can only circulate in the cooling flow channel 11, so that the cooling effect of the motor 1 is better. Further, by arranging the cooling channel 11 on the motor 1, the cooling effect of the motor 1 can be further improved, and the space occupied by the motor 1 can be reduced.
  • the motor cooling system 100 is applied to a vehicle such as an all-terrain vehicle with hybrid power , Can save space for the layout of the engine and the whole vehicle, so as to realize the reasonable utilization of the limited space of the powertrain.
  • the motor 1 includes a motor housing, a cooling channel 11 is formed inside the motor housing, and the cooling channel 11 is formed along the circumferential direction of the motor housing. S-shaped extension. Therefore, by arranging the cooling flow passage 11 inside the motor housing, the coolant is closer to the area where the temperature of the motor 1 is higher, so that the heat exchange effect is better, and the cooling flow passage 11 is arranged in the motor housing.
  • the motor housing includes a first housing 15 and a second housing 16 that are formed in a substantially annular shape and nested from the inside to the outside, and the cooling channel 11 is arranged in Between the first housing 15 and the second housing 16.
  • the two sides of the rib 13 separate the cooling liquid inlet 111 and the cooling liquid outlet 112, and a plurality of separating ribs are arranged staggered along the circumference of the motor casing to define a serpentine cooling channel 11, which may be S-shaped or bent shape.
  • "plurality" means two or more.
  • the first housing 15 and the second housing 16 of the motor housing may be coaxially arranged, and the first housing 15 may be provided with components such as a stator (not shown), a rotor (not shown), etc.
  • a shell 15 and a second shell 16 are spaced apart from each other to define a cooling cavity.
  • the partition ribs 13 and a plurality of partition ribs are both arranged in the cooling cavity and extend along the axial direction of the motor 1 shell.
  • the separating ribs jointly divide the inside of the cooling cavity into a flow channel in which the cooling liquid flows unidirectionally (ie, the above-mentioned cooling flow channel 11), and the cooling liquid inlet 111 and the cooling liquid outlet 112 are separated in the circumferential direction of the motor housing
  • the ribs 13 are separated, and the plurality of partition ribs may include a plurality of first partition ribs 141 and a plurality of second partition ribs 142, and the plurality of first partition ribs 141 may all be from one axial end of the cooling cavity (for example, FIG. 7 And the upper end in FIG.
  • the plurality of second dividing ribs 142 may all extend from the other axial end of the cooling cavity toward the axial end thereof, and the plurality of second dividing ribs 142 may be spaced apart from the axial end of the cooling cavity.
  • a first dividing rib 141 is provided between two adjacent second dividing ribs 142, so that a plurality of first dividing ribs 141 and a plurality of second dividing ribs 142 define an S-shaped cooling channel 11 in the cooling cavity. .
  • the cooling liquid can adopt the unidirectional circulating cooling path in which the cooling liquid inlet 111 enters and the cooling liquid outlet 112 flows out, so that the cooling liquid and the wall surface of the cooling cavity of the motor 1 are sufficient.
  • the contact ensures that the heat generated during the operation of the motor 1 is fully cooled, and the cooling effect is enhanced.
  • a plurality of separating ribs are evenly spaced along the circumferential direction of the motor housing.
  • the cooling of the entire motor 1 by the coolant can be more uniform.
  • the specific arrangement of the multiple separating ribs in the motor housing can be specifically set according to actual requirements to better meet actual applications.
  • the motor housing includes a motor housing body 12 and two end covers (not shown in the figure) respectively provided at the axial ends of the motor housing body 12, the motor housing body 12 and two The two end caps jointly define a cooling channel 11.
  • a sub-flow channel 113 is defined between the partition rib 13 and two adjacent ones of the plurality of partition ribs, and the sub-flow path 113 penetrates both axial ends of the motor housing body 12.
  • Two end caps respectively block the two ends of the sub-flow channel 113 and jointly define the cooling flow channel 11 with the plurality of sub-flow channels 113. Therefore, by using the above-mentioned motor housing body 12 and two end covers to jointly define the cooling flow passage 11, the processing technology of the cooling flow passage 11 is simplified, and the cost can be reduced.
  • the lengths of the first dividing ribs 141 and the second dividing ribs 142 are the same, so that the two end caps can be directly arranged on the axial ends of the motor housing body 12 to block multiple sub-flows. The ends of Road 113. Therefore, the processing is simple and the cost is low.
  • the present disclosure is not limited to this, and the lengths of the first dividing rib 141 and the second dividing rib 142 may also be different.
  • the length of the first dividing rib 141 is greater than the length of the second dividing rib 142.
  • a groove may be provided at the position of the lower end cover corresponding to the first partition rib 141.
  • the axial ends of the motor housing body 12 are respectively provided with a plurality of mounting portions 121 arranged at intervals in the circumferential direction, and the plurality of mounting portions 121 are connected to a plurality of partitions.
  • the ribs are connected in one-to-one correspondence, and the two end covers are connected to the motor housing body 12 through the cooperation of a plurality of threaded fasteners and a plurality of mounting parts 121.
  • the threaded fastener is a bolt or the like.
  • a plurality of mounting portions 121 are arranged at even intervals along the circumference of the motor housing body 12.
  • Each mounting portion 121 is formed with a threaded hole 1211.
  • the bolts can pass through the end cover and be threadedly connected with the threaded holes 1211 on the corresponding mounting portion 121.
  • FIGS. 3 to 5 show 10 mounting portions 121 at one axial end of the motor housing body 12 (the angle between two adjacent mounting portions 121 is 36°), that is, electrical There are a total of 20 mounting parts 121 at the two axial ends of the casing body 12.
  • this specific example is only used for illustrative purposes, but after reading the technical solution of this application, a person of ordinary skill can obviously understand that other numbers of mounting parts 121 are used in this solution, which also falls under the protection of the present disclosure. Within range.
  • the width of the mounting portion 121 is greater than the width of the partition ribs. Specifically, the width of the mounting portion 121 is greater than the width of the first partition rib 141, and the width of the mounting portion 121 is greater than the width of the second partition rib 142. Therefore, by setting the width of the mounting portion 121 to be wider, the connection strength between the end cover and the motor housing body 12 can be improved. According to an embodiment of the present disclosure, the widths of the first partition ribs 141 and the second partition ribs 142 are made thinner, so that the S-shaped cooling channel 11 is formed while increasing the contact between the coolant and the motor housing. Area, thereby enhancing the cooling effect.
  • the coolant inlet 111 and the coolant outlet 112 are both provided on the side of the motor housing body 12. As a result, the arrangement of the cooling liquid inlet 111 and the cooling liquid outlet 112 is facilitated, and the cooling liquid can be easily passed into the cooling flow channel 11.
  • the motor 1 may be an MG1 motor. It is understandable that "MG1 motor” refers to a motor that has three functions: driving the engine, starting the engine, and generating electricity. But obviously, the present disclosure is not limited to this.
  • the motor cooling system 100 may further include a motor controller 4, and the motor controller 4 may be communicatively connected with the water pump 3.
  • the water pump 3 may be an electric water pump 3.
  • the motor controller 4 and the water pump 3 are connected by a circuit.
  • the motor 1 When the motor 1 is switched on and the water pump 3 is energized, the water pump 3 works to pump the coolant into the motor 1, taking away the heat of the motor 1 and cooling by water
  • the motor 2 is cooled and circulates in this way (the direction of the arrow shown in Figure 1 is the direction of the coolant flow) to control the working temperature of the motor 1 within the normal range.
  • the motor controller 4 powers off the water pump 3, the water pump 3 Stop working.
  • the motor controller 4 controls whether the water pump 3 is working, the automatic control of the water pump 3 can be realized.
  • the motor controller 4 is an MCU (short for Microcontroller Unit, a micro control unit, also known as a single-chip microcomputer or a single chip microcomputer), which appropriately reduces the frequency and specifications of the central processing unit (CPU), and Integrate peripheral interfaces such as memory, counter (Timer), USB, A/D conversion, UART, PLC, DMA, and even LCD drive circuits on a single chip to form a chip-level computer for different applications Different combination control).
  • MCU short for Microcontroller Unit, a micro control unit, also known as a single-chip microcomputer or a single chip microcomputer
  • the all-terrain vehicle according to the embodiment of the second aspect of the present disclosure includes the motor cooling system 100 according to the embodiment of the first aspect of the present disclosure.
  • the motor cooling system 100 can be used to cool the motor of the all-terrain vehicle.
  • the cooling effect on the motor 1 is significant, and the space arrangement is more reasonable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种电机冷却系统,该电机冷却系统包括:电机,电机具有冷却流道,冷却流道具有冷却液进口和冷却液出口;水冷器,水冷器的一端与冷却液出口相连;水泵,水泵具有水泵进口和水泵出口,水泵进口与水冷器的另一端相连,水泵出口与冷却液进口相连,水泵用于泵送冷却液使冷却液仅在冷却流道内循环流动。进一步公开了一种具有该电机冷却系统的全地形车。

Description

电机冷却系统和具有其的全地形车 技术领域
本公开涉及全地形车技术领域,尤其是涉及一种电机冷却系统和具有其的全地形车。
背景技术
相关技术中,车辆中的混合动力通常采用的冷却方式为风冷或水冷。当混合动力采用水冷的方式进行冷却时,发动机和电机共用同一套冷却系统进行冷却,然而,发动机和电机这两套总成在工作过程中产生的热量较高,使得冷却液所带走的热量有限,冷却效果不佳。
进一步地,混合动力车辆存在整车布置空间狭小的问题。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开需要提出一种电机冷却系统,以改进电机的冷却效果。
根据本公开第一方面实施例的电机冷却系统,包括:电机,所述电机具有冷却流道,所述冷却流道具有冷却液进口和冷却液出口;水冷器,所述水冷器的一端与所述冷却液出口相连;水泵,所述水泵具有水泵进口和水泵出口,所述水泵进口与所述水冷器的另一端相连,所述水泵出口与所述冷却液进口相连,所述水泵用于泵送冷却液使所述冷却液仅在所述冷却流道内循环流动。
根据本公开实施例的电机冷却系统,通过设置使水泵用于泵送冷却液使冷却液仅在冷却流道内循环流动,可以使电机的冷却效果更好。此外,通过在电机上布置冷却流道,可以进一步提升电机的冷却效果,且可以减小电机的占用空间,当电机冷却系统应用于车辆例如具有混合动力的全地形车时,可以为发动机和整车的布局节省空间,从而实现对动力总成有限空间的合理利用。
根据本公开的一些实施例,所述电机包括电机壳,所述冷却流道形成在所述电机壳内部,且所述冷却流道沿所述电机壳的周向呈蜿蜒形延伸。
根据本公开的一些实施例,所述蜿蜒形可以为S形或者弯折形。
根据本公开的一些实施例,所述电机壳包括:第一壳体,所述第一壳体形成为环形;以及第二壳体,所述第二壳体形成为环形且与所述第一壳体嵌套设置,且所述冷却流道 设置在所述第一壳体和所述第二壳体之间。
根据本公开的一些实施例,所述电机冷却系统进一步包括:隔断筋,所述冷却液进口和所述冷却液出口分别位于所述隔断筋的两侧以将所述冷却液进口和所述冷却液出口隔开;以及多个分隔筋,所述多个分隔筋周向地间隔设置在所述第一壳体和所述第二壳体之间且交错布置,以限定出所述冷却流道。
根据本公开的一些实施例,多个所述分隔筋沿所述电机壳的周向均匀间隔分布。
根据本公开的一些实施例,电机壳本体;以及端盖,所述端盖分别固定设在所述电机壳本体的轴向两侧,所述电机壳本体和两个所述端盖共同限定出所述冷却流道。
根据本公开的一些实施例,所述隔断筋与相邻的所述分隔筋以及多个所述分隔筋中相邻的两个之间限定出子流道,所述子流道贯穿所述电机壳本体的轴向两端,两个所述端盖分别封堵住所述子流道的两端且与多个所述子流道共同限定出所述冷却流道。
根据本公开的一些实施例,所述电机壳本体的轴向两端分别设有周向间隔设置的多个安装部,多个所述安装部与多个所述分隔筋一一对应相连,其中所述端盖分别通过多个螺纹紧固件与多个所述安装部紧固。
根据本公开的一些实施例,所述安装部的宽度大于所述分隔筋的宽度。
根据本公开的一些实施例,所述冷却液进口和所述冷却液出口均设在所述电机壳本体的侧面。
根据本公开的一些实施例,所述电机冷却系统进一步包括:电机控制器,所述电机控制器与所述水泵通讯连接。
根据本公开第二方面实施例的全地形车,包括车体,设置在该车体上的电机以及根据本公开上述第一方面实施例的电机冷却系统。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开的一个实施例的电机冷却系统的示意图;
图2是根据本公开实施例的电机冷却系统的电机壳内的冷却流道在展开状态下的示意图;
图3是根据本公开实施例的电机壳本体的示意图;
图4是根据本公开实施例的电机壳本体的另一个示意图;
图5是根据本公开实施例的电机壳本体的再一个示意图;
图6是图5中圈示的A部的放大图;
图7是根据本公开实施例的电机壳本体的立体图,其中未示出第二壳体;
图8是图7中所示的电机壳本体的另一个角度的立体图,其中未示出第二壳体。
附图标记:
100:电机冷却系统;
1:电机;11:冷却流道;
111:冷却液进口;112:冷却液出口;
113:子流道;12:电机壳本体;
121:安装部;1211:螺纹孔;
13:隔断筋;141:第一分隔筋;142:第二分隔筋;
15:第一壳体;16:第二壳体;
2:水冷器;3:水泵;
31:水泵进口;32:水泵出口;
4:电机控制器。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面将参照附图详细描述本公开的实施例,需要说明的是,参考附图描述的实施例是示例性的,而非限定性的而非。
下面参考图1-图8描述根据本公开实施例的电机冷却系统100。电机冷却系统100 可以应用于车辆例如具有混合动力的全地形车(图未示出)。在本申请下面的描述中,以电机冷却系统100应用于具有混合动力的全地形车为例进行说明。当然,本领域技术人员可以理解,电机冷却系统100还可以应用于其他类型的车辆,而不限于具有混合动力的全地形车。
如图1-图8所示,根据本公开第一方面实施例的电机冷却系统100可以包括电机1、水冷器2以及水泵3。
具体而言,电机1可以具有冷却流道11,冷却流道11具有冷却液进口111和冷却液出口112。例如,如图3-图8所示,冷却流道11布置在电机1内部,冷却液进口111用于向冷却流道11内通入例如水等的冷却液,冷却液出口112用于将流经冷却流道11内的冷却液排出。在工作过程中,当需要对电机1进行冷却时,可以通过冷却液进口111向冷却流道11内通入冷却液,冷却液在流经冷却流道11的过程中,可以与电机1换热,从而降低电机1的温度,换热后的冷却液从冷却液出口112排出。由此,通过将冷却流道11布置在电机1内,对电机1的冷却效果更好,且电机1内部空间可以得到合理有效充分的利用,当电机冷却系统100应用于车辆例如具有混合动力的全地形车时,电机冷却系统100的占用空间小,从而为发动机和整车的布局节省了空间,有效解决了混合动力在整车上布置空间狭小的问题。另外,将冷却流道11布置在电机1内部,使用更加可靠,不易损坏,且可以降低成本。
水冷器2的一端(例如,图1中的下端)与冷却流道11的冷却液出口112相连,水冷器2用于对进入到其内的换热后的冷却液进行冷却。这里,需要说明的是,水冷器2的结构以及工作原理等已为本领域的技术人员所熟知,在此不再赘述。
水泵3具有水泵进口31和水泵出口32,水泵3的水泵进口31与水冷器2的另一端(例如,图1中的上端)相连,水泵3的水泵出口32与冷却流道11的冷却液进口111相连。当水泵3工作时,通过水泵3的泵送作用,冷却液可以在电机1、水冷器2、水泵3之间循环流动,具体地,通过水泵进口31进入到水泵3内的冷却液可以在水泵3的泵送作用下从水泵出口32流出,经冷却流道11的冷却液进口111进入到冷却流道11内以对电机1进行冷却,与电机1换热后的冷却液温度升高,这些冷却液通过冷却液出口112排出并通过水冷器2的上述一端进入到水冷器2内,冷却液在水冷器2中温度降低,并通过水冷器2的上述另一端流出水冷器2。之后,通过水泵进口31再重新回到水泵3。如此循环,实现对电机1的冷却。
根据本公开的一个实施例,水泵3用于泵送冷却液使冷却液仅在冷却流道11内循环流动。水泵3可以为独立水泵3。与传统的发动机和电机1共用同一套冷却系统相比, 采用独立的水泵3、水冷器2对电机1进行冷却,可以为冷却液提供独立的冷却液动力源并保证其水压,从而达到更好的冷却效果。而且,通过使水泵3的水泵出口32与电机1的冷却流道11的冷却进口相连,冷却液在水泵3的泵送下可以直接流入电机1的冷却流道11,从而可以进一步提升冷却效果。
根据本公开实施例的电机冷却系统100,通过水泵3泵送冷却液,使得冷却液可以仅在冷却流道11内循环流动,从而使电机1的冷却效果更好。进一步地,通过在电机1上布置冷却流道11,可以进一步提升电机1的冷却效果,且可以减小电机1的占用空间,当电机冷却系统100应用于车辆例如具有混合动力的全地形车时,可以为发动机和整车的布局节省空间,从而实现对动力总成有限空间的合理利用。
根据本公开的一些实施例,参照图2并结合图3-图8,电机1包括电机壳,冷却流道11形成在电机壳内部,且冷却流道11沿电机壳的周向呈S形延伸。由此,通过将冷却流道11布置在电机壳内部,冷却液距离电机1的温度较高的区域更近,从而换热效果更好,而且,通过设置使冷却流道11在电机壳的周向呈S形延伸,延长了冷却流道11的路径,延长了冷却液在冷却流道11内停留的时间,从而可以更加充分地与电机1换热,进一步提升了换热效果,且方便了冷却流道11的加工。由此,可以进一步节约成本。
具体而言,例如,如图2-图8所示,电机壳包括形成为大体环形且从内到外嵌套设置的第一壳体15和第二壳体16,冷却流道11设置在第一壳体15和第二壳体16之间。根据本公开的一些实施例,第一壳体15和第二壳体16之间设有周向间隔设置的隔断筋13和多个分隔筋,其中冷却液进口111和冷却液出口112分别位于隔断筋13的两侧以将冷却液进口111和冷却液出口112隔开,多个分隔筋沿电机壳的周向交错布置以限定出蜿蜒形的冷却流道11,该蜿蜒形可以为S形或者弯折形。在本公开的描述中,“多个”的含义是两个或两个以上。例如,电机壳的第一壳体15和第二壳体16可以同轴布置,第一壳体15内可以设有定子(图未示出)、转子(图未示出)等部件,第一壳体15和第二壳体16彼此间隔开以限定出冷却腔体,隔断筋13和多个分隔筋均设在冷却腔体内并沿电机1壳的轴向延伸,隔断筋13和多个分隔筋共同将冷却腔体内部分隔成一条冷却液在其内单向流动的流道(即上述的冷却流道11),冷却液进口111和冷却液出口112在电机壳的周向上被隔断筋13分隔开,多个分隔筋可以包括多个第一分隔筋141和多个第二分隔筋142,多个第一分隔筋141可以均从冷却腔体的轴向一端(例如,图7和图8中的上端)朝向其轴向另一端的(例如,图7和图8中的下端)方向延伸,且多个第一分隔筋141与冷却腔体的上述轴向另一端彼此间隔开,多个第二分隔筋 142可以均从冷却腔体的上述轴向另一端朝向其上述轴向一端的方向延伸,且多个第二分隔筋142与冷却腔体的上述轴向一端彼此间隔开,相邻两个第二分隔筋142之间设有一个第一分隔筋141,从而多个第一分隔筋141和多个第二分隔筋142在冷却腔体内限定出S形的冷却流道11。由此,通过采用上述独特的S形的冷却流道11,冷却液可以采用冷却液进口111进入、冷却液出口112流出的单向循环冷却路径,冷却液与电机1的冷却腔体内的壁面充分接触,确保了电机1工作过程中产生的热量得到充分冷却,增强了冷却效果。
本公开的实施例,根据参照图3-图5,多个分隔筋沿电机壳的周向均匀间隔分布。由此,冷却液对电机1整体的冷却可以更加均匀。可以理解的是,多个分隔筋在电机壳内的具体布置方式可以根据实际要求具体设置,以更好地满足实际应用。
根据本公开的一些具体实施例,电机壳包括电机壳本体12和分别设在电机壳本体12的轴向两端的两个端盖(图未示出),电机壳本体12和两个端盖共同限定出冷却流道11。例如,如图3-图8所示,隔断筋13和多个分隔筋中相邻的两个之间限定出子流道113,子流道113贯穿电机壳本体12的轴向两端,两个端盖分别封堵住子流道113的两端且与多个子流道113共同限定出冷却流道11。由此,通过采用上述的电机壳本体12和两个端盖共同限定出冷却流道11,简化了冷却流道11的加工工艺,从而可以降低成本。
在图7的示例中,第一分隔筋141和第二分隔筋142的长度均相同,从而两个端盖可以直接布置在电机壳本体12的轴向两端,以封堵住多个子流道113的两端。由此,加工简单且成本低。当然,本公开不限于此,第一分隔筋141和第二分隔筋142的长度还可以不同,例如,在图8的示例中,第一分隔筋141的长度大于第二分隔筋142的长度,此时为了保证整个冷却流道11宽度的均匀性,可以在下方端盖的对应第一分隔筋141的位置处设置凹槽。
进一步地,参照图3-图6并结合图7和图8,电机壳本体12的轴向两端分别设有周向间隔设置的多个安装部121,多个安装部121与多个分隔筋一一对应相连,其中两个端盖通过多个螺纹紧固件与多个安装部121的配合实现与电机壳本体12的连接。可选地,螺纹紧固件为螺栓等。例如,如图3-图8所示,多个安装部121沿电机壳本体12的周向均匀间隔排布,每个安装部121上形成有螺纹孔1211,当端盖与电机壳本体12装配时,螺栓可以穿过端盖与对应的安装部121上的螺纹孔1211螺纹连接,通过设置使多个安装部121与多个分隔筋一一对应相连,在保证电机壳本体12与端盖连接可靠的同时,多个安装部121可以承担一部分分隔筋的作用,从而使得电机1内的结构进 一步得到充分利用。
根据本公开的一个实施例,图3-图5中显示了电机壳本体12的轴向一端10个安装部121(相邻两个安装部121之间的夹角为36°),即电机壳本体12的轴向两端共20个安装部121。显然,该具体示例仅用于示例说明的目的,但是普通技术人员在阅读了本申请的技术方案之后、显然可以理解将该方案中采用其它数量的安装部121,这也落入本公开的保护范围之内。
根据本公开的一个实施例,如图7和图8所示,安装部121的宽度大于分隔筋的宽度。具体地,安装部121的宽度大于第一分隔筋141的宽度,且安装部121的宽度大于第二分隔筋142的宽度。由此,通过设置使安装部121的宽度较宽,可以提高端盖与电机壳本体12之间的连接强度。根据本公开的一个实施例,通过设置使第一分隔筋141和第二分隔筋142的宽度较薄,在保证形成S形的冷却流道11的同时,增加了冷却液与电机壳的接触面积,从而增强了冷却效果。
根据本公开的一些实施例,参照图3-图5,冷却液进口111和冷却液出口112均设在电机壳本体12的侧面。由此,方便了冷却液进口111和冷却液出口112的布置,且便于向冷却流道11内通入冷却液。
根据本公开的一个实施例,电机1可以为MG1电机。可以理解的是,“MG1电机”指的是同时具有驱动发动机、启动发动机和发电这三种功能的电机。但显然,本公开不限于此。
根据本公开的一些实施例,如图1所示,电机冷却系统100可以进一步包括电机控制器4,电机控制器4可以与水泵3通讯连接。此时水泵3可以为电动水泵3。根据本公开的一个实施例,电机控制器4和水泵3采用电路连接,当电机1接通水泵3通电,水泵3工作将冷却液泵入电机1内,将电机1的热量带走并通过水冷器2进行冷却,如此循环(图1中所示的箭头方向为冷却液的流动方向),以将电机1的工作温度控制在正常范围内,当电机控制器4对水泵3断电后,水泵3停止工作。由此,通过采用电机控制器4控制水泵3是否工作,可以实现对水泵3的自动控制。
可选地,电机控制器4为MCU(Microcontroller Unit的简称,微控制单元,又称单片微型计算机或者单片机,是把中央处理器(Central Process Unit,CPU)的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制)。
根据本公开第二方面实施例的全地形车,包括根据本公开上述第一方面实施例的电 机冷却系统100,该电机冷却系统100可以用于冷却全地形车的电机,该电机用于驱动全地形车的运输单元(未示出),例如车轮系统。
根据本公开实施例的全地形车,通过采用上述的电机冷却系统100,对电机1的冷却效果显著,且空间布置更加合理。
根据本公开实施例的全地形车的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (14)

  1. 一种电机冷却系统,其特征在于,包括:
    电机,所述电机具有冷却流道,所述冷却流道具有冷却液进口和冷却液出口;
    水冷器,所述水冷器的一端与所述冷却液出口相连;
    水泵,所述水泵具有水泵进口和水泵出口,所述水泵进口与所述水冷器的另一端相连,所述水泵出口与所述冷却液进口相连,所述水泵用于泵送冷却液使所述冷却液仅在所述冷却流道内循环流动。
  2. 根据权利要求1所述的电机冷却系统,其特征在于,所述电机包括:
    电机壳,所述冷却流道形成在所述电机壳内部,且所述冷却流道沿所述电机壳的周向呈蜿蜒形延伸。
  3. 根据权利要求2所述的电机冷却系统,其特征在于,所述蜿蜒形可以为S形或者弯折形。
  4. 根据权利要求2所述的电机冷却系统,其特征在于,所述电机壳包括:
    第一壳体,所述第一壳体形成为环形;以及
    第二壳体,所述第二壳体形成为环形且与所述第一壳体嵌套设置,且所述冷却流道设置在所述第一壳体和所述第二壳体之间。
  5. 根据权利要求4所述的电机冷却系统,其特征在于,进一步包括:
    隔断筋,所述冷却液进口和所述冷却液出口分别位于所述隔断筋的两侧以将所述冷却液进口和所述冷却液出口隔开;以及
    多个分隔筋,所述多个分隔筋周向地间隔设置在所述第一壳体和所述第二壳体之间且交错布置,以限定出所述冷却流道。
  6. 根据权利要求4所述的电机冷却系统,其特征在于,多个所述分隔筋沿所述电机壳的周向均匀间隔分布。
  7. 根据权利要求5所述的电机冷却系统,其特征在于,所述电机壳包括:
    电机壳本体;以及
    端盖,所述端盖分别固定设在所述电机壳本体的轴向两侧,所述电机壳本体和两个所述端盖共同限定出所述冷却流道。
  8. 根据权利要求7所述的电机冷却系统,其特征在于,所述隔断筋与相邻的所述分隔筋以及多个所述分隔筋中相邻的两个之间限定出子流道,其中
    所述子流道贯穿所述电机壳本体的轴向两端,所述端盖分别封堵住所述子流道的两 端且与多个所述子流道共同限定出所述冷却流道。
  9. 根据权利要求7所述的电机冷却系统,其特征在于,所述电机壳本体的轴向两端分别设有周向间隔设置的多个安装部,多个所述安装部与多个所述分隔筋一一对应相连,其中
    所述端盖分别通过多个螺纹紧固件与多个所述安装部紧固。
  10. 根据权利要求9所述的电机冷却系统,其特征在于,所述安装部的宽度大于所述分隔筋的宽度。
  11. 根据权利要求7所述的电机冷却系统,其特征在于,所述冷却液进口和所述冷却液出口均设在所述电机壳本体的侧面。
  12. 根据权利要求1所述的电机冷却系统,其特征在于,进一步包括:
    电机控制器,所述电机控制器与所述水泵通讯连接。
  13. 根据权利要求1-12任一所述的电机冷却系统,其特征在于,所述电机冷却系统用于全地形车。
  14. 一种全地形车,其特征在于,包括:
    车体;
    电机,所述电机设置在所述车体上;以及
    根据权利要求1-12中任一项所述的电机冷却系统,其中所述电机冷却系统用于冷却所述电机。
PCT/CN2019/124632 2019-05-31 2019-12-11 电机冷却系统和具有其的全地形车 WO2020238147A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910471970.2A CN110492673A (zh) 2019-05-31 2019-05-31 电机冷却系统和具有其的全地形车
CN201910471970.2 2019-05-31
CN201920823191.X 2019-05-31
CN201920823191.XU CN210404997U (zh) 2019-05-31 2019-05-31 电机冷却系统和具有其的全地形车

Publications (1)

Publication Number Publication Date
WO2020238147A1 true WO2020238147A1 (zh) 2020-12-03

Family

ID=73552539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124632 WO2020238147A1 (zh) 2019-05-31 2019-12-11 电机冷却系统和具有其的全地形车

Country Status (1)

Country Link
WO (1) WO2020238147A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014093759A1 (en) * 2012-12-14 2014-06-19 Brammo, Inc. High efficiency, low coolant flow electric motor coolant system
CN106059164A (zh) * 2016-07-27 2016-10-26 吴继成 一种节能环保型电机外壳
CN205986450U (zh) * 2016-08-26 2017-02-22 旭利无锡电气技术有限公司 一种新能源汽车用电机的水冷壳体
CN207896811U (zh) * 2018-03-02 2018-09-21 中化重庆涪陵化工有限公司 水冷散热电机
CN208285156U (zh) * 2018-06-22 2018-12-25 杭州翱月科技有限公司 一种有刷直流电机
CN110492673A (zh) * 2019-05-31 2019-11-22 北京致行慕远科技有限公司 电机冷却系统和具有其的全地形车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014093759A1 (en) * 2012-12-14 2014-06-19 Brammo, Inc. High efficiency, low coolant flow electric motor coolant system
CN106059164A (zh) * 2016-07-27 2016-10-26 吴继成 一种节能环保型电机外壳
CN205986450U (zh) * 2016-08-26 2017-02-22 旭利无锡电气技术有限公司 一种新能源汽车用电机的水冷壳体
CN207896811U (zh) * 2018-03-02 2018-09-21 中化重庆涪陵化工有限公司 水冷散热电机
CN208285156U (zh) * 2018-06-22 2018-12-25 杭州翱月科技有限公司 一种有刷直流电机
CN110492673A (zh) * 2019-05-31 2019-11-22 北京致行慕远科技有限公司 电机冷却系统和具有其的全地形车

Similar Documents

Publication Publication Date Title
JP7164618B2 (ja) インテリジェント車両における車載コンピュータ装置及びインテリジェント車両
CN103391017B (zh) 电力转换装置
CN104247010A (zh) 半导体装置
CN203600988U (zh) 一种新能源汽车的电机冷却系统
WO2004025808A1 (ja) 駆動装置
CN101087084B (zh) 一种电动汽车电机的冷却水套及冷却方法
US20090243443A1 (en) Drive unit
WO2017020406A1 (zh) 可扩展逆变器的冷却系统及其机械总成
WO2014093759A1 (en) High efficiency, low coolant flow electric motor coolant system
CN105416035A (zh) 一种集成式电机驱动系统及使用该系统的电动汽车
CN110492673A (zh) 电机冷却系统和具有其的全地形车
CN100533341C (zh)
CN107956571A (zh) 一种发动机冷却系统
WO2020238147A1 (zh) 电机冷却系统和具有其的全地形车
CN210404997U (zh) 电机冷却系统和具有其的全地形车
CN205930239U (zh) 一种电动汽车散热系统
CN216122107U (zh) 一种车用驱动电机硬布线控制器液冷散热装置及冷却系统总成
CN214145882U (zh) 一种电动汽车电池冷却水泵
CN204344224U (zh) 发动机及其发电机冷却循环组件以及具有该发动机的车辆
KR20130096589A (ko) 하이브리드 자동차용 일체형 열교환기
CN209913630U (zh) 混合冷却电机、动力总成、动力设备
CN218228970U (zh) 一种汽车水冷电动滑片空压机制动系统管路布置结构
CN220273436U (zh) 一种新能源汽车用水冷电机壳体
CN217424049U (zh) 一种双低温集成散热器及电动汽车
CN214008023U (zh) 一种汽车电机减速机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930904

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE