WO2020237901A1 - 热活化延迟荧光蓝光材料,其合成方法及应用 - Google Patents

热活化延迟荧光蓝光材料,其合成方法及应用 Download PDF

Info

Publication number
WO2020237901A1
WO2020237901A1 PCT/CN2019/105069 CN2019105069W WO2020237901A1 WO 2020237901 A1 WO2020237901 A1 WO 2020237901A1 CN 2019105069 W CN2019105069 W CN 2019105069W WO 2020237901 A1 WO2020237901 A1 WO 2020237901A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated delayed
delayed fluorescent
thermally activated
blue light
light material
Prior art date
Application number
PCT/CN2019/105069
Other languages
English (en)
French (fr)
Inventor
罗佳佳
黄金昌
杨林
张曲
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/973,824 priority Critical patent/US11898074B2/en
Publication of WO2020237901A1 publication Critical patent/WO2020237901A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the invention relates to the technical field of organic light-emitting materials, in particular to a thermally activated delayed fluorescent blue light material, its synthesis method and application.
  • Organic Light Emitting Diode (Organic Light Emitting Diode, abbreviated as OLED), invented by Chinese-American professor Deng Qingyun and others, is a sandwich-type device composed of an electrode/light emitting layer/electrode structure. When a current flows, the strong electric field will drive the organic light-emitting layer between the device electrodes to emit light. Based on the electroluminescence phenomenon of OLED, OLED has been widely used in the fields of information display and solid-state lighting.
  • the continuous update of organic light-emitting materials has greatly promoted the development of OLED technology.
  • fluorescent materials are the first generation, and transition metal complex phosphorescent materials are the second generation.
  • the first-generation fluorescent material has a long life, it has low luminous efficiency.
  • the ratio of singlet and triplet excitons in OLED is 1:3, and the theoretical upper limit of internal quantum efficiency is only 25%, which greatly limits fluorescence.
  • As a second-generation transition metal complex phosphorescent material its single state can be transferred to a triplet state (ISC) through intersystem crossing (ISC), and its internal quantum efficiency is almost 100%.
  • the phosphorescent materials need to be doped with precious and rare metals such as Ir and Pt, and the material cost is relatively high, and the service life is short.
  • the performance of phosphorescent blue light materials is unstable and other issues still need to be resolved.
  • Thermally activated delayed fluorescence (TADF) materials are a new type of low-cost and high-efficiency organic light-emitting materials, known as the third generation of organic light-emitting materials.
  • TADF Thermally activated delayed fluorescence
  • the molecule has a small minimum single triplet energy level difference ( ⁇ EST), which can convert triplet excitons into singlet exciton luminescence through thermally excited inverse systems, thereby breaking through the traditional fluorescent material excitation
  • ⁇ EST single triplet energy level difference
  • the theoretical limit of the quantum utilization rate is 25%, and the luminous quantum efficiency of 100% is realized.
  • TADF materials Due to the process involving excitons from the triplet state to the singlet state anti-system, TADF materials usually exhibit photochemical long-lived fluorescence (delayed fluorescence), and the delayed fluorescence lifetime can reach the order of microseconds to milliseconds, which is clearly different from traditional fluorescence. material.
  • TADF material combines the advantages of good stability of organic fluorescent materials and high luminous efficiency of transition metal complex phosphorescent materials. It has a wide range of application prospects and is one of the current research hotspots. For thermally activated delayed fluorescent materials, fast reverse intersystem crossing constant (kRISC) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLEDs.
  • kRISC fast reverse intersystem crossing constant
  • PLQY photoluminescence quantum yield
  • thermally activated delayed fluorescent materials that have both fast reverse intersystem crossing constant (kRISC) and high photoluminescence quantum yield (PLQY), and suitable for blue organic electroluminescence devices. Not only that, due to the very broad spectrum of the thermally activated delayed fluorescent material and the exciton lifetime in the order of microseconds, its application in mass production device structures is greatly restricted.
  • the primary purpose of the present invention is to provide a thermally activated delayed fluorescent blue light material with high luminous efficiency and long service life.
  • thermoly activated delayed fluorescent blue light material conforming to the following general formula:
  • Another object of the present invention is to provide a method for synthesizing thermally activated delayed fluorescent blue light materials as described above. Under the protection of inert gas, raw material 1 and raw material 2 undergo a Buchwald–Hartwig coupling reaction under the action of a palladium catalyst to obtain the The thermally activated delayed fluorescent blue light material;
  • the structural formula of the raw material 1 is as follows:
  • the raw material 2 is selected from 9,10-dihydro-9,9-diphenylacridine, phenoxazine, 3,6-dimethylcarbazole, 10H-spiro[acridine-9,9'-fluorene ], 9,9-dimethyl-9,10-dihydroacridine, 9,10-dihydro-9,9-diphenylsilacridine, 3,7-dimethoxy-10H phenoxazine , 10H-siliro[acridine-9,9'-fluorene], 7H-benzo[C]phenoxazine, 9-phenyl-7H-benzo[c]phenoxazine, 3,6-di- Any one of tert-butyl-9H-carbazole, 1,3,6,8-tetramethyl 9H carbazole, 2-(tert-butyl)-5H-benzo[b]carbazole;
  • the feeding ratio of the raw material 1 and the raw material 2 is 1:(2-6), and the feeding ratio is preferably 1:2.4.
  • the reaction temperature of the Buchwald-Hartwig coupling reaction is 80-160°C, and the reaction time is 12-48 hours; preferably, the reaction temperature is 120°C, and the preferred reaction time is 24 hours.
  • the reaction solvent of the Buchwald-Hartwig coupling reaction is toluene treated with anhydrous and oxygen-free treatment;
  • the palladium catalyst is selected from one of palladium acetate, palladium nitrate, palladium chloride, and palladium sulfate.
  • the obtained reaction product needs to be cooled, extracted, and separated and purified by column chromatography to obtain a thermally activated delayed fluorescent blue light material.
  • Another object of the present invention is to provide a thermally activated delayed fluorescent blue light material prepared according to the above-mentioned thermally activated delayed fluorescent blue material or the above-mentioned synthetic method, and its application in organic electroluminescence, including but It is not limited to its application in electrothermally activated delayed fluorescent devices.
  • the electrothermally activated delayed fluorescent device includes a substrate layer, a light-emitting layer, and a cathode layer that are superimposed, and the light-emitting material used in the light-emitting layer is the above thermally activated delayed fluorescent blue light material or is prepared according to the above synthesis method Thermally activated delayed fluorescent blue light material.
  • the electrothermally activated delayed fluorescent device further includes a hole injection layer formed on the substrate layer, a transport layer formed on the hole injection layer, and an electron transport layer disposed between the light-emitting layer and the cathode layer .
  • the present invention also provides a light emitting device, including the aforementioned electrothermally activated delayed fluorescent device.
  • the beneficial effect of the present invention is to provide a thermally activated delayed fluorescent blue light material with a novel structure, which has a lower single triplet energy level difference, a fast reverse intersystem crossover constant (kRISC) and a high photoluminescence quantum yield (PLQY).
  • kRISC fast reverse intersystem crossover constant
  • PLQY high photoluminescence quantum yield
  • Figure 1 is the photoluminescence spectra of compounds 1 to 3 obtained in Examples 1 to 3 of the present invention in a toluene solution at room temperature;
  • Fig. 2 is a schematic diagram of the structure of an electrothermally activated delayed fluorescence device in an application embodiment of the present invention.
  • Table 1 The lowest singlet state (S1), lowest triplet energy level (T1), and electrochemical energy level of compounds 1 ⁇ 3
  • the photoluminescence spectra of the compounds 1 to 3 obtained in Examples 1 to 3 in the toluene solution at room temperature were detected, and the results are shown in FIG. 1.
  • the waveforms shown from left to right are the photoluminescence spectra of Compound 2, Compound 1, and Compound 3. It can be seen from Figure 1 that the emission spectra of compounds 1 to 3 all fall within the blue range, especially compound 1 and compound 3, which are deep blue light with an emission peak less than 460 nm.
  • An electrothermally activated delayed fluorescence device can be manufactured according to methods known in the art, for example, according to the method disclosed in the reference (Adv. Mater. 2003, 15, 277.). The specific method is as follows: MoO 3 , TCTA, DPEPO + thermally activated delayed fluorescent blue material, TmPyPB, 1nm LiF and 100nm Al are sequentially evaporated on a cleaned conductive glass (ITO) substrate under high vacuum conditions.
  • ITO conductive glass
  • the structure of the electrothermally activated delayed fluorescent device is: referring to Figure 2, it includes a substrate layer 1, a hole injection layer 2 formed on the substrate layer 1, and a transport layer 3 formed on the hole injection layer 2.
  • the light emitting layer 4 formed on the transport layer 3, the electron transport layer 5 formed on the light emitting layer 4, and the cathode layer 6 formed on the electron transport layer 5.
  • the substrate layer 1 is made of glass or conductive glass (ITO), the hole injection layer 2 is made of MoO 3 , the transport layer 3 is made of TCTA, the light emitting layer 4 is made of compound 1 obtained in Example 1, and the transport layer 5 is made of 1 ,3,5-Tris(3-(3-pyridyl)phenyl)benzene (abbreviated as Tm3PyPB), the cathode layer 6 uses lithium fluoride/aluminum.
  • the device 1 with the following structure was formed: ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO: Compound 1 (3% 20nm)/TmPyPB (40nm)/LiF (1nm)/Al (100nm).
  • the difference is that the material used for the light-emitting layer 4 is the compound 2 obtained in example 2, and a device 2 with the following structure is formed: ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO : Compound 2 (3% 20nm)/TmPyPB (40nm)/LiF (1nm)/Al (100nm).
  • the difference is that the material used for the light-emitting layer 4 is the compound 3 obtained in example 3, and a device 3 with the following structure is formed: ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO : Compound 3 (3% 20nm)/TmPyPB (40nm)/LiF (1nm)/Al (100nm).
  • the performance of the devices 1 to 3 obtained in the application examples 1 to 3 was tested.
  • the current-brightness-voltage characteristics of the device are measured by the Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a calibrated silicon photodiode.
  • the electroluminescence spectrum is measured by the SPEX CCD3000 spectrometer from JY, France.
  • the measurement environment is room temperature and atmospheric environment.
  • the test results are shown in Table 2:
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Abstract

本发明涉及有机发光材料技术领域,具体涉及一种热活化延迟荧光蓝光材料,其合成方法及应用;所述热活化延迟荧光蓝光材料具有如下通式(I);本发明提供的热活化延迟荧光蓝光材料,结构新颖,具有较低单三线态能级差,快速的反向系间窜越常数(kRISC)以及高的光致发光量子产率(PLQY);通过对电子受体单元的结构微调,使得它们具有不同的电子接受能力,实现了光谱在深蓝光范围内的微调。

Description

热活化延迟荧光蓝光材料,其合成方法及应用 技术领域
本发明涉及有机发光材料技术领域,具体涉及一种热活化延迟荧光蓝光材料,其合成方法及应用。
背景技术
有机电致发光二极管(Organic Light Emitting Diode,简称OLED),由美籍华裔教授邓青云等人发明的一种由电极/发光层/电极结构构成的三明治型器件。当有电流通过时,强电场会驱动器件电极中间的有机发光层发光。基于OLED的电致发光现象,OLED在信息显示和固体照明等领域有广泛应用。
技术问题
有机发光材料的不断更新大大推动了OLED技术的发展。一般而言,荧光材料为第一世代,过渡金属配合物磷光材料为第二世代。作为第一世代的荧光材料虽然寿命较长,但发光效率低,在OLED中单重态和三重态的激子比例为1:3,内部量子效率理论上限仅25%,极大的限制了荧光电致发光器件的应用。作为第二代的过渡金属配合物磷光材料,其单重态(singlet state)可藉由系统间跨越(intersystem crossing;ISC)移转至三重态(triplet state),内部量子效率几近100%,但一来是磷光材料中需要采用Ir、Pt等贵重稀有金属进行掺杂,材料成本较高,寿命较短,二来是磷光蓝光材料的性能不稳定等问题仍有待解决。
热活化延迟荧光(TADF)材料是一类新型低成本高效率的有机发光材料,被称为第三世代有机发光材料。通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔEST),能够将三线态激子通过热激发反系间窜越转化为单线态激子辐射发光,从而突破传统荧光材料激子利用率25%的理论极限,实现100%的发光量子效率。由于涉 及激子从三线态向单线态反系间窜越的过程,TADF材料通常表现出光化学的长寿命荧光现象(延迟荧光),延迟荧光寿命可达到微秒至毫秒数量级,明显区别于传统荧光材料。TADF材料结合了有机荧光材料稳定性好以及过渡金属配合物磷光材料发光效率高的优点,具有广泛的应用前景,是目前的科研热点之一。对于热活化延迟荧光材料而言,快速的反向系间窜越常数(kRISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。目前,同时具备快速反向系间窜越常数(kRISC)以及高光致发光量子产率(PLQY),且适用于蓝色有机电致发光器件的热活化延迟荧光材料还很缺乏。不仅如此,由于热活化延迟荧光材料非常宽的光谱,以及微秒量级的激子寿命,极大地限制了其在量产器件结构中的应用。
技术解决方案
本发明的首要目的在于提供一种热活化延迟荧光蓝光材料,发光效率高、使用寿命长。
为实现上述目的,本发明采用的技术方案如下:
一种符合如下通式的热活化延迟荧光蓝光材料:
Figure PCTCN2019105069-appb-000001
其中,R为
Figure PCTCN2019105069-appb-000002
Figure PCTCN2019105069-appb-000003
中的一种。
本发明的另一个目的在于提供一种如上所述的热活化延迟荧光蓝光材料的合成方法,在惰性气体保护下,原料1和原料2在钯催化剂作用下发生Buchwald–Hartwig偶联反应,得到所述热活化延迟荧光蓝光材料;
所述原料1的结构式如下:
Figure PCTCN2019105069-appb-000004
所述原料2选自9,10-二氢-9,9-二苯基吖啶、吩噁嗪、3,6-二甲基咔唑、10H-螺[吖啶-9,9'-芴]、9,9-二甲基-9,10-二氢吖啶、9,10-二氢-9,9-二苯基硅吖啶、3,7-二甲氧基-10H吩恶嗪、10H–硅螺[吖啶-9,9'-芴]、7H-苯并[C]吩恶嗪、9-苯基-7H-苯并[c]吩恶嗪、3,6-二-叔-丁基-9H-咔唑、1,3,6,8-四甲基9H咔唑、2-(叔丁基)-5H-苯并[b]咔唑中的任意一种;
所述原料1、原料2的投料比为1:(2~6),优选投料比为1:2.4。
优选的,所述Buchwald–Hartwig偶联反应的反应温度为80~160℃,反应时间为12~48小时;优选反应温度为120℃,优选反应时间为24小时。
优选的,所述Buchwald–Hartwig偶联反应的反应溶剂为经过无水无氧处理的甲苯;所述钯催化剂选用醋酸钯、硝酸钯、氯化钯、硫酸钯中的一种。
优选的,所述Buchwald–Hartwig偶联反应结束后,需要对所得 反应产物依次进行冷却、萃取、柱层析分离纯化处理,得到热活化延迟荧光蓝光材料。
本发明的又一个目的在于提供一种根据如上所述的热活化延迟荧光蓝光材料或根据如上所述的合成方法制备出的热活化延迟荧光蓝光材料,在有机电致发光中的应用,包括但不限于应用在电致热激活延迟荧光器件中。具体而言,所述电致热激活延迟荧光器件,包括叠加设置的衬底层、发光层和阴极层,所述发光层所用发光材料为上述热活化延迟荧光蓝光材料或根据上述合成方法制备出的热活化延迟荧光蓝光材料。
优选的,所述电致热激活延迟荧光器件还包括成形于衬底层上的空穴注入层,成形于空穴注入层上的传输层,以及设置于发光层和阴极层之间的电子传输层。
本发明还提供一种发光装置,包括前述的电致热激活延迟荧光器件。
本发明的有益效果在于:提供一种结构新颖的热活化延迟荧光蓝光材料,具有较低单三线态能级差,快速的反向系间窜越常数(kRISC)以及高的光致发光量子产率(PLQY)。通过对电子受体单元的结构微调,使得它们具有不同的电子接受能力,实现了光谱在深蓝光范围内的微调。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例1~3所得化合物1~3在室温下,甲苯溶液中的光致发光光谱;
图2为本发明应用实施例中电致热激活延迟荧光器件的结构示 意图。
本发明的实施方式
以下结合实施例1~3和应用实施例1~3来对本发明作进一步的
Figure PCTCN2019105069-appb-000005
说明。
实施例1:热活化延迟荧光蓝光材料的合成
合成路线如下图所示:
Figure PCTCN2019105069-appb-000006
分别称取3.19g原料1(5mmol),4.00g 9,10-二氢-9,9-二苯基吖啶(12mmol),0.18g醋酸钯(0.8mmol)和0.68g三叔丁基膦四氟硼酸盐(2.4mmol),倒于250mL二口瓶中,将盛装有反应原料的二口瓶转移至手套箱中,然后在手套箱中向二口瓶里加入2.34gNaOt-Bu(24mmol),之后在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:3)分离纯化,得淡蓝色粉末2.3g,产率51%。
所得产物,即化合物1的核磁氢谱数据为: 1H NMR(300MHz,CD 2Cl 2,δ):8.18(s,1H),7.91(s,1H),7.75-7.63(m,4H),7.51-7.40(m,14H),7.30-7.18(m,17H),6.95-6.89(m,2H),1.69(s,12H).
实施例2:热活化延迟荧光蓝光材料的合成
合成路线如下图所示:
分别称取3.19g原料1(5mmol),2.20g吩噁嗪(12mmol),0.18g 醋酸钯(0.8mmol)和0.68g三叔丁基膦四氟硼酸盐(2.4mmol),倒入250mL二口瓶中,将盛装有反应原料的二口瓶转移至手套箱中,然后在手套箱中向二口瓶里加入2.34gNaOt-Bu(24mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:3)分离纯化,得淡蓝色粉末2.1g,产率49%。
所得产物,即化合物2的核磁氢谱数据为: 1H NMR(300MHz,CD 2Cl 2,δ):8.18(s,1H),7.91(s,1H),7.75-7.63(m,4H),7.51-7.40(m,14H),7.30-7.18(m,13H),6.93-6.89(m,6H).
实施例3:热活化延迟荧光蓝光材料的合成
合成路线如下图所示:
分别称取3.19g原料1(5mmol),2.34g3,6-二甲基咔唑(12mmol),0.18g醋酸钯(0.8mmol)和0.68g三叔丁基膦四氟硼酸盐(2.4mmol)倒入250mL二口瓶中,将盛装有反应原料的二口瓶转移至手套箱中,然后在手套箱中向二口瓶里加入2.34gNaOt-Bu(24mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:3)分
Figure PCTCN2019105069-appb-000007
离纯化,得淡蓝色粉末2.6g,产率60%。
所得产物,即化合物3的核磁氢谱数据为(采用核磁共振频率为300MHz,溶剂为氘代二氯甲烷,冷却使用液氮): 1H NMR(300MHz,CD 2Cl 2,δ):8.80(s,4H),8.18(s,1H),7.89(d,J=6.3Hz,1H),7.75-7.63 (m,4H),7.51-7.46(m,4H),7.36-7.21(m,10H),7.17-7.10(m,4H),6.98(d,J=6.6Hz,4H),2.46(s,12H).
采用对实施例1~3所得化合物1~3的电化学能级等参数进行测定,结果如下表1所示:
表1:化合物1~3的最低单重态(S1)、最低三重态能级(T1)、电化学能级
Figure PCTCN2019105069-appb-000008
检测实施例1~3所得化合物1~3在室温下,甲苯溶液中的光致发光光谱,结果如图1所示。在图1中,从左到右所示波形分别为化合物2、化合物1和化合物3的光致发光光谱图。由图1可以看出:化合物1~3的发射光谱均落入蓝光范围内,特别是化合物1和化合物3,其为发射峰小于460nm的深蓝光。
应用实施例1:电致热激活延迟荧光器件
一种电致热激活延迟荧光器件,可按本领域已知方法制作,如按参考文献(Adv.Mater.2003,15,277.)公开的方法制作。具体方法为:在经过清洗的导电玻璃(ITO)衬底上,高真空条件下依次蒸镀MoO 3,TCTA,DPEPO+热活化延迟荧光的蓝光材料,TmPyPB,1nm的LiF和100nm的Al。
所述电致热激活延迟荧光器件的结构为:参阅附图2,包括衬底层1,在衬底层1上成形的空穴注入层2,在空穴注入层2上成形的传输层3,在传输层3上成形的发光层4,在发光层4上成形的电子传输层5,在电子传输层5上成形的阴极层6。所述衬底层1采用玻璃或导电玻璃(ITO),空穴注入层2所用材料为MoO 3,传输层3采用TCTA,发光层4所用材料为本实施例1所得化合物1,传输层5采用1,3,5-三(3-(3-吡啶基)苯基)苯(简记为Tm3PyPB),阴极层6采用氟化锂/铝。形成如下结构的器件1:ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物1(3%20nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
应用实施例2:电致热激活延迟荧光器件
采用应用实施例1的方法,不同之处在于,所述发光层4所用材料为本实施例2所得化合物2,形成如下结构的器件2:ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物2(3%20nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
应用实施例3:电致热激活延迟荧光器件
采用应用实施例1的方法,不同之处在于,所述发光层4所用材料为本实施例3所得化合物3,形成如下结构的器件3:ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物3(3%20nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
对应用实施例1~3所得器件1~3的性能进行测试。器件的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400 Sourcemeter、Keithley 2000 Currentmeter)完成的,电致发光光谱是由法国JY公司SPEX CCD3000光谱仪测量的,测量环境为室温,大气环境。得到测试结果如表2所示:
表2:器件的性能测试数据
Figure PCTCN2019105069-appb-000009
Figure PCTCN2019105069-appb-000010
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (10)

  1. 一种符合如下通式的热活化延迟荧光蓝光材料:
    Figure PCTCN2019105069-appb-100001
    其中,R为
    Figure PCTCN2019105069-appb-100002
    Figure PCTCN2019105069-appb-100003
    Figure PCTCN2019105069-appb-100004
    中的一种。
  2. 一种根据权利要求1所述的热活化延迟荧光蓝光材料的合成方法,其中:在惰性气体保护下,原料1和原料2在钯催化剂作用下发生Buchwald–Hartwig偶联反应,得到所述热活化延迟荧光蓝光材料;
    所述原料1的结构式如下:
    Figure PCTCN2019105069-appb-100005
    所述原料2选自9,10-二氢-9,9-二苯基吖啶、吩噁嗪、3,6-二甲基咔唑、10H-螺[吖啶-9,9'-芴]、9,9-二甲基-9,10-二氢吖啶、9,10-二氢-9,9-二苯基硅吖啶、3,7-二甲氧基-10H吩恶嗪、10H–硅螺[吖啶-9,9'-芴]、7H-苯并[C]吩恶嗪、9-苯基-7H-苯并[c]吩恶嗪、3,6-二-叔-丁基-9H-咔唑、1,3,6,8-四甲基9H咔唑、2-(叔丁基)-5H-苯并[b]咔唑中的任意一种;
    所述原料1、原料2的投料比为1:(2~6),优选投料比为1:2.4。
  3. 根据权利要求2所述的热活化延迟荧光蓝光材料的合成方法,其中:所述Buchwald–Hartwig偶联反应的反应温度为80~160℃,反应时间为12~48小时;优选反应温度为120℃,优选反应时间为24小时。
  4. 根据权利要求2所述的热活化延迟荧光蓝光材料的合成方法,其中:所述Buchwald–Hartwig偶联反应的反应溶剂为经过无水无氧处理的甲苯;所述钯催化剂选用醋酸钯、硝酸钯、氯化钯、硫酸钯中的一种。
  5. 根据权利要求2所述的热活化延迟荧光蓝光材料的合成方法,其中:所述Buchwald–Hartwig偶联反应结束后,需要对所得反应产物依次进行冷却、萃取、柱层析分离纯化处理,得到热活化延迟荧光蓝光材料。
  6. 一种根据权利要求1所述的热活化延迟荧光蓝光材料在有机电致发光中的应用。
  7. 根据权利要求6所述的应用,其中:所述的热活化延迟荧光蓝光材料应用于电致热激活延迟荧光器件中。
  8. 根据权利要求7所述的应用,其中:所述电致热激活延迟荧光器件包括叠加设置的衬底层(1)、发光层(4)和阴极层(6),发光层(4)所用发光材料为权利要求1所述的热活化延迟荧光蓝光材料。
  9. 根据权利要求8所述的应用,其中:所述电致热激活延迟荧光 器件还包括成形于衬底层(1)上的空穴注入层(2),成形于空穴注入层(2)上的传输层(3),以及设置于发光层(4)和阴极层(6)之间的电子传输层(5)。
  10. 一种发光装置,其包括:权利要求7所述的电致热激活延迟荧光器件。
PCT/CN2019/105069 2019-05-31 2019-09-10 热活化延迟荧光蓝光材料,其合成方法及应用 WO2020237901A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,824 US11898074B2 (en) 2019-05-31 2019-09-10 Blue thermally activated delayed fluorescence material, synthesis method thereof, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910473160.0A CN110305063B (zh) 2019-05-31 2019-05-31 热活化延迟荧光蓝光材料,其合成方法及应用
CN201910473160.0 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020237901A1 true WO2020237901A1 (zh) 2020-12-03

Family

ID=68075071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105069 WO2020237901A1 (zh) 2019-05-31 2019-09-10 热活化延迟荧光蓝光材料,其合成方法及应用

Country Status (3)

Country Link
US (1) US11898074B2 (zh)
CN (1) CN110305063B (zh)
WO (1) WO2020237901A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573507A (zh) * 2022-03-10 2022-06-03 中国科学院大学 一种基于轴手性酮受体的热活化延迟荧光材料及其制备方法与应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516876A (zh) * 2022-03-22 2022-05-20 安徽科技学院 一种基于吲哚[3,2-b]咔唑蓝色荧光材料及其合成方法
CN115093363B (zh) * 2022-04-26 2023-09-22 南京邮电大学 一类有机蓝光小分子及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397318A (zh) * 2016-09-12 2017-02-15 长春海谱润斯科技有限公司 一种10‑氮(杂)蒽衍生物及其制备方法和应用
KR20170057729A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 니트릴계 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279148A (zh) * 2015-05-22 2017-01-04 上海和辉光电有限公司 提升oled器件高温、高电流密度表现的材料及其应用
CN107235898A (zh) * 2017-07-13 2017-10-10 长春海谱润斯科技有限公司 一种吖啶化合物及有机发光器件
CN107245053A (zh) * 2017-07-13 2017-10-13 长春海谱润斯科技有限公司 一种含吖啶类化合物及其有机发光器件
CN109337676B (zh) * 2018-11-15 2020-04-10 武汉华星光电半导体显示技术有限公司 一种深蓝光热活化延迟荧光材料及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170057729A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 니트릴계 화합물 및 이를 포함하는 유기 발광 소자
CN106397318A (zh) * 2016-09-12 2017-02-15 长春海谱润斯科技有限公司 一种10‑氮(杂)蒽衍生物及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573507A (zh) * 2022-03-10 2022-06-03 中国科学院大学 一种基于轴手性酮受体的热活化延迟荧光材料及其制备方法与应用
CN114573507B (zh) * 2022-03-10 2024-01-23 中国科学院大学 一种基于轴手性酮受体的热活化延迟荧光材料及其制备方法与应用

Also Published As

Publication number Publication date
CN110305063A (zh) 2019-10-08
US11898074B2 (en) 2024-02-13
US20210253947A1 (en) 2021-08-19
CN110305063B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN107021926B (zh) 一种含有氮杂螺芴和含氮六元杂环的化合物及其在oled上的应用
TWI510597B (zh) Organic electronic materials and organic electroluminescent devices
CN110483495B (zh) 一种杂环化合物及其有机电致发光器件
CN107936957B (zh) 有机电致发光化合物、有机电致发光器件及其应用
He et al. Asymmetrically twisted anthracene derivatives as highly efficient deep-blue emitters for organic light-emitting diodes
JP2016153394A (ja) 有機エレクトロルミネセンス素子用インデノトリフェニレン系アミン誘導体
CN113336782B (zh) 含咔唑骨架的绿光窄光谱三配位硼发光化合物、制备方法及其应用
TW201204729A (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2020237901A1 (zh) 热活化延迟荧光蓝光材料,其合成方法及应用
Xia et al. Robust and highly efficient blue light-emitting hosts based on indene-substituted anthracene
WO2019056932A1 (zh) 咪唑衍生物、包含该咪唑衍生物的材料和有机电致发光器件
US11515488B2 (en) Thermally activated delayed fluorescence material having red, green, or blue color, synthesis method thereof, and application thereof
Huang et al. Unsymmetrically amorphous 9, 10-disubstituted anthracene derivatives for high-efficiency blue organic electroluminescence devices
Zhan et al. New AIEgens containing dibenzothiophene-S, S-dioxide and tetraphenylethene moieties: similar structures but very different hole/electron transport properties
Liu et al. A novel nicotinonitrile derivative as an excellent multifunctional blue fluorophore for highly efficient hybrid white organic light-emitting devices
WO2022242521A1 (zh) 一种稠合氮杂环化合物及其应用以及包含该化合物的有机电致发光器件
CN111454251A (zh) 一种吡嗪衍生物及其在oled器件中的应用
Wang et al. Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes
CN110294735B (zh) 一种以蒽和菲为核心的化合物及其在有机电致发光器件上的应用
WO2019085759A1 (zh) 一种以氮杂螺芴和芳基酮为核心的化合物、其制备方法及其在oled上的应用
CN109574908B (zh) 一种含螺二甲基蒽芴的化合物及其在有机电致发光器件上的应用
KR20140070360A (ko) 유기 전계 발광 소자용 정공 수송 재료 및 그것을 사용한 유기 전계 발광 소자
CN110183476B (zh) 双硼氧杂二苯并[a,j]蒽衍生物及其应用
Ding et al. Novel spiro-based host materials for application in blue and white phosphorescent organic light-emitting diodes
Jiang et al. Synthesis of new bipolar materials based on diphenylphosphine oxide and triphenylamine units: Efficient host for deep-blue phosphorescent organic light-emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930918

Country of ref document: EP

Kind code of ref document: A1