WO2020237705A1 - 个性化3d打印多孔钛基钽涂层接骨板及其制备方法 - Google Patents
个性化3d打印多孔钛基钽涂层接骨板及其制备方法 Download PDFInfo
- Publication number
- WO2020237705A1 WO2020237705A1 PCT/CN2019/090047 CN2019090047W WO2020237705A1 WO 2020237705 A1 WO2020237705 A1 WO 2020237705A1 CN 2019090047 W CN2019090047 W CN 2019090047W WO 2020237705 A1 WO2020237705 A1 WO 2020237705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bone plate
- titanium
- porous titanium
- porous
- tantalum
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/146—Porous materials, e.g. foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00526—Methods of manufacturing
Definitions
- the invention relates to a medical internal fixation device, in particular to a personalized 3D printing porous titanium-based tantalum-coated bone plate with osteoinductive activity for medical fixation of long bone fractures of limbs and a preparation method thereof.
- the commonly used bone plate material for the treatment of limb fractures is titanium.
- titanium also has excellent toughness, corrosion resistance and excellent fatigue properties, because titanium is a biologically inert material, it lacks biological activity and is easy to use in clinical use.
- the porous design reduces or avoids the occurrence of stress shielding effects
- the porous structure also provides space for the growth of new bone tissue, which helps the implant and bone tissue to form a biologically stable fixation, and ultimately become a whole.
- the nature of titanium materials has not been fundamentally solved. How to improve the osseointegration ability of titanium implants in the body is a problem that materials scientists and clinicians need to solve together.
- the biological binding mechanism is proposed based on the chemical composition of the bone matrix.
- Biological bonding is a complex process involving the mixing of collagen and carbonate-containing apatite.
- collagen fibers can grow freely into the pore structure of the rough surface. Therefore, the biological bonding is greatly affected by the pore structure of the implant surface.
- osteoblasts are very sensitive to stress and strain, and the force on the bonding interface will directly affect the growth of collagen.
- metal tantalum has excellent ductility, toughness and ease of processing, especially its superior corrosion resistance and good biocompatibility, which has attracted wide attention from medical workers.
- due to the high density of tantalum metal it is difficult to process and shape, and its clinical application is limited.
- Zimmer has used chemical vapor deposition technology to prepare porous tantalum metal implant materials for clinical applications, and achieved good clinical results.
- the amount of tantalum used is relatively large, and the high raw material price greatly limits its application. Therefore, the preparation of metallic tantalum coating on the titanium alloy substrate not only takes advantage of the excellent corrosion resistance and biocompatibility of metallic tantalum, but also exerts the advantages of relatively cheap and easy processing of the raw materials of titanium alloy itself.
- the application provides new ideas.
- a personalized 3D printed porous titanium-based tantalum metal-coated bone plate with osteoinductive activity which uses titanium metal powder or titanium alloy metal powder as the substrate and is processed by 3D printing to produce porous titanium-based bone plate with pore structure
- the porous titanium-based tantalum metal coating bone plate has a porosity of 50% to 80%, a bending strength of 50MPa to 150MPa, and a modulus of elasticity of 2GPa to 30GPa.
- the diameter of the tantalum coating is 200 ⁇ m to 800 ⁇ m, and the thickness of the tantalum coating is 30 to 60 ⁇ m.
- the pore structure is a mutually connected porous structure.
- the porous structure is a regular porous structure or a trabecular bone porous structure obtained by Micro-CT scanning.
- the ratio of the porous part to the solid part is about 4 to 5:1, more preferably 5:1.
- the two ends of the porous titanium-based bone plate are arc-shaped, the arc is 15°-90°, preferably 20°-45°, the width of the bone plate is 10mm-30mm, the length is 40-200mm, and the thickness It is 2mm ⁇ 5mm.
- the thickness and pore structure of the bone plate can be adjusted appropriately according to the different requirements of the mechanical properties of the bone plate at different implant sites, and the appropriate width, length and curvature can be adopted according to the characteristics of the implant site.
- the screw hole is a counterbore, which is convenient for fixing the screw without irritating the surrounding tissue due to the protrusion of the screw.
- the diameter of the screw hole is 3mm-5mm.
- the screw hole is located on the center line of the bone plate, and the screw hole pitch at both ends can be adjusted according to the length of the bone plate.
- the heat treatment temperature is 1200-2000°C, and the heating rate is 5°C/min. After reaching the heat treatment temperature Keep heat for 1 hour, then cool with the furnace;
- Step (3) in the Building Processing interface, combine the titanium metal powder or titanium alloy metal powder parameter package with the .stl format file of the 3D geometric image of the target bone plate, and obtain the target bone plate in the 3D printer device A recognizable .mtt format file, input the .mtt format file into a 3D printing device, and 3D print titanium metal powder or titanium alloy metal powder as raw materials to obtain a porous titanium-based bone plate.
- step (5) the method of depositing tantalum metal on the surface of the porous titanium-based bone plate by using the chemical vapor deposition method to obtain the porous titanium-based tantalum metal-coated bone plate includes the following steps:
- Inert gas is introduced into the reaction chamber, the reaction chamber is purged for 10-20 minutes, and the vacuum is evacuated to 200-250 Pa.
- the reaction chamber is heated to 800°C, chlorine and hydrogen are introduced, and the vapor deposition reaction is carried out for 7-10 hours.
- the flow rate of the chlorine gas is 80 mL/min, and the flow rate of the hydrogen gas is 100 mL/min;
- the inert gas in step b) and step c) is one or a mixture of argon or nitrogen.
- the titanium metal powder or titanium alloy metal powder is medical-grade spherical metal powder, and the particle size of the powder is 15 to 45 ⁇ m, preferably 15 to 30 ⁇ m.
- step (3) the abrasive used in the sandblasting treatment is white corundum, the particle size of the white corundum is 50 ⁇ m ⁇ 150 ⁇ m, and the sandblasting pressure is 0.1 ⁇ 1.0MPa , Sandblasting time is 30 ⁇ 120s.
- the surface roughness of the titanium-based bone plate substrate is improved, and the bonding force between the tantalum coating and the substrate is improved.
- the binding force of the tantalum coating prepared by the method of the invention and the titanium-based bone plate reaches more than 43.2Mpa.
- the bone plate Due to the titanium or titanium alloy structure on the periphery and inside of the bone plate, it can ensure that the bone plate has a porous structure with osteoinductive properties while also having sufficient strength to achieve its mechanical support.
- the osteoinductive bone plate of the present invention is processed by 3D printing technology.
- the biomechanical properties of the bone plate can be optimized by adjusting the porosity and pore size of the bone plate.
- the bone plate provides biomechanical internal fixation for the bone tissue at the implantation site, and also It can ensure that the bone tissue is stimulated by sufficient stress to stimulate the self-repair function of the bone tissue; by implanting the bone plate in accordance with the anatomical structure of the fracture, and the bone induction effect of the bone plate, the bone tissue and the bone plate can achieve good
- the osseointegration avoids the problems of easy loosening of the existing bone plate after long-term implantation in the body and the need for a second operation to take out, and reduces the pain of the patient.
- Figure 1 is a schematic diagram of the structure of the bone plate of the present invention.
- Figure 2 is a schematic diagram of the three-dimensional structure of the bone plate of the present invention.
- Figure 3 is a porous titanium-based bone plate made by 3D printing.
- the actual size of the 3D printed bone plate is basically the same as the computer design.
- Figure 5 is a photo of the surface of the porous titanium-based tantalum metal coating bone plate and the elemental analysis results of the coating.
- the porous titanium-based bone plate includes a body, the body includes an outer reinforcing rib located on the peripheral edge of the body, an inner reinforcing rib located inside the outer reinforcing rib, a pore structure, and Screw holes.
- the outer reinforcing ribs are in a continuous structure to form the edge of the body, and the inner reinforcing ribs are in a mesh structure to improve the mechanical strength of the bone plate.
- the pore structure is distributed between the outer reinforcement ribs, the inner reinforcement ribs and the screw holes, and is composed of internally connected diamond-shaped pore structures, the porosity of the pore structure is 70%, and the diameter of the pores is 500 ⁇ m.
- the length of the porous titanium-based bone plate is 72mm, the thickness is 3mm, the arc at both ends is 30°, the axial width is 12mm, the width of the outer rib is 1.5mm, the width of the inner rib is 1mm, and both ends
- the screw hole is a counterbore, which is convenient for fixing the screw without causing irritation to surrounding tissues due to the protrusion of the screw.
- the porous titanium-based tantalum metal-coated bone plate shown in FIGS. 1 to 2 includes a solid part and a porous part as a whole, and the holes in the pore structure and the parts outside the holes in the screw holes are all solid parts.
- the 3D printing process of the porous bone plate as shown in Figure 2 is: merge the titanium metal parameter package with the .stl file on the Building Processing interface to obtain a .mtt format file that can be recognized by the bone plate in the 3D printer device.
- the .mtt format file is input to the 3D printing equipment and printed under the protection of argon atmosphere; the 3D printing conditions are: spreading powder thickness of 30 ⁇ m, laser power of 200W, exposure time of 70 ⁇ s, laser scanning point spacing of 60 ⁇ m, line spacing of 60 ⁇ m;
- the oxygen content in the working chamber is less than 1000ppm;
- the metal coating bone plate specifically includes the following steps:
- the thickness of the tantalum coating is 30 ⁇ m
- the porosity is 70%
- the bending strength is about 110 MPa
- the elastic modulus is about 25 GPa
- the diameter of the pores is 500 ⁇ m.
- Figure 3 is a porous titanium-based bone plate made by 3D printing.
- the actual size of the 3D printed bone plate is basically the same as the computer design.
- Figure 4 shows the preparation of a tantalum metal-coated bone plate on a 3D printed porous titanium-based bone plate by chemical vapor deposition technology.
- the color of the bone plates before and after coating changed significantly. Before coating, the original color of titanium metal on the bone plate is relatively bright; after coating, the color of the bone plate is tantalum, and the color is relatively dark. It can be preliminarily judged that the tantalum metal has been deposited on the porous titanium-based bone plate with a uniform coating on the pore surface.
- Figure 5A shows the scanning electron micrograph of the surface microstructure of the porous titanium-based tantalum metal coating bone plate. It can be seen from Figure 5A that the pore structure before and after the coating is similar to the three-dimensional structure of human trabecular bone. The layer was completely deposited on the inner and outer surfaces of the titanium bone plate, and there was no exposure, cracking or shedding of the coating. In addition, the surface of the bone plate after the tantalum coating is relatively rough. This microstructure feature is determined by the characteristics of rapid prototyping technology, because rapid prototyping technology is a layered accumulation forming technology, and the above-mentioned surface characteristics will inevitably be formed in the layered manufacturing process.
- FIG 5B shows the XRD composition analysis result of the surface of the porous titanium-based tantalum metal coating bone plate.
- the figure shows that the main component is tantalum, which further proves that the surface coating is tantalum metal.
- the thickness of the tantalum metal coating is about 60 microns, and the grain size of Figure 6B is about 10 microns.
- the surface roughness of the tantalum metal formed by this grain size is higher, which is more conducive to cells and macromolecular substances. Adhesion to increase the initial stability of the implant.
- a male goat weighing about 20kg was selected as the experimental animal, and the anatomical structure of the goat’s tibia was understood through CT scanning, and the CT scanning data was reconstructed into a 3D model (ie, geometric image).
- Use AutoCAD, Pro E, Magics software to design the shape and pore structure of the personalized bone plate, obtain the three-dimensional geometric model of the porous target bone plate, and further obtain the .stl format file of the three-dimensional geometric model of the porous target bone plate. Then merge the titanium metal parameter package with the .stl file on the Building Processing interface to obtain the .mtt format file that the bone plate can recognize in the 3D printer device, and input the .mtt format file into the 3D printing device for printing.
- the width of the bone plate It is 1.2cm and the length is 10cm; the diameter of the screw is 2.7mm, and the length is 14mm.
- tantalum metal was deposited on the prepared porous titanium bone plate using chemical vapor deposition technology.
- the 3D printing conditions and the chemical vapor deposition reaction parameters are the same as in Example 2.
- the skin, subcutaneous tissue and fascia are cut in sequence; the tibia of the goat is exposed, the tibia is fractured, and then after traction reduction, anatomical reduction is achieved, the reduction forceps are firmly fixed, and the appropriate choice is
- the bone plate is installed, the periosteum is separated, and the cortical bone at the bone plate is polished with a drill to form a groove the same size as the bone plate. Then the bone plate is placed and the screws are firmly fixed. After washing with normal saline, the periosteum, fascia, and subcutaneous are sutured in sequence. Tissue and skin.
- Tibia X-rays were taken at 4 weeks, 8 weeks, and 12 weeks after the operation to observe the fracture healing (Figure 7).
- the fracture healing was found to be good at 3 months after the operation. There was no fracture malunion or nonunion. , Infection and other postoperative complications.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Vascular Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurology (AREA)
- Inorganic Chemistry (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种具有骨诱导活性的个性化3D打印多孔钛基钽金属涂层接骨板,其以钛金属粉末或钛合金金属粉末为基材,通过在3D打印加工制作的具有孔隙结构的多孔钛基接骨板的表面形成钽涂层而制备得到,多孔钛基钽金属涂层接骨板的孔隙率为50%~80%,抗弯强度为50MPa~150MPa,弹性模量为2GPa~30GPa,孔隙的直径为200μm~800μm,钽涂层的厚度为30~60μm,具备足够的强度,同时具有良好的骨诱导性能。接骨板与骨折处解剖结构相符合地植入接骨板,可与骨组织形成优良的骨整合,避免了现有接骨板长期植入体内后容易松动和断裂的缺陷,从而达到永久性生物内固定。
Description
本发明涉及一种医用内固定器械,特别涉及一种用于治疗四肢长骨骨折医用固定的具有骨诱导活性的个性化3D打印多孔钛基钽涂层接骨板及其制备方法。
对于四肢长骨干骨折,临床多采用切开复位内固定术,传统的骨科手术接骨板弯曲的弧度、螺钉植入过程中,为了确保准确性和避免损伤周围神经、血管、器官等重要结构,往往需要依赖术者的经验以及术中多次透视接骨板、螺钉位置,造成手术时间长、接骨板与骨不能紧密结合、螺钉松动失效的风险。目前治疗四肢骨折常用的接骨板材料为钛金属,虽然钛金属还具有优异的强韧性、抗腐蚀能力和优良的疲劳性能,但由于钛金属属于生物惰性材料,缺乏生物活性,在临床使用中容易出现于骨组织结合强度低,创口不易愈合等问题。这是由于钛金属与骨组织的弹性模量差异巨大,在承载情况下容易出现“应力屏蔽”现象,从而导致手术治疗的失败。
在金属加工技术快速发展的形势下,为了弥补钛合金材料的缺陷,完善其对于骨组织缺损修复重建性能,一些研究者提出多孔金属植入物的设计概念,来解决钛金属植入物的应力遮挡效应,并取得了较好的效果。
虽然多孔化设计减轻或避免应力遮挡效应的发生,同时多孔结构也为新生骨组织长入带来空间,有助于植入体和骨组织形成生物结合的稳定固定,最终成为一个整体。但并没有从根本上解决钛金属材料的性质,如何提高钛金属植入体内的骨整合能力,是材料学家和临床医生需要共同解决的问题。历史上,有两种不同的机制被用于描述骨与种植体的结合:化学键合和生物结合。生物结合机制是基于骨基质的化学组成提出的。生物结合是一个复杂的过程,涉及到胶原蛋白与含碳酸根磷灰石的混合,此外,胶原纤维可以自由生长进粗糙表面的孔结构中,因此,生物结合受到种植体表面孔结构的影响非常显著。尤其是骨修复过程中,成骨细胞对应力和应变十分敏感,结合 界面的受力情况将直接影响骨胶原的生长。
种植体植入后会改变细胞外基质环境,种植体的表面是最早与生物组织接触部分。因此,种植体的表面特征对植入手术的成败起到关键性作用。在对种植体材料的表面进行设计时,必须考虑细胞外基质环境的改变,应当以细胞与细胞外基质的应答机制为设计依据。
近年来,金属钽具有优异的延展性和韧性以及易加工性,特别是它超强的耐腐蚀性、良好的生物相容性,受到医疗工作者的广泛关注。但因钽金属密度高,不易加工成型,临床应用受到限制。随着科学技术的发展和进步,美国捷迈公司利用化学气相沉积技术,制备多孔钽金属植入材料而应用于临床,取得了较好的临床效果。但是,这种方法,钽的使用量比较大,高昂的原料价格大大限制了它的应用。因此,将金属钽涂层制备于钛合金基体上,既利用了金属钽优异的耐腐蚀和生物相容性又发挥了钛合金自身的原料相对低廉且易加工的优势,为金属钽在医疗领域的应用提供了新的思路。
申请号为CN201510338752.3的中国发明专利,公开了一种可植入医疗器件,钽涂层椎弓根螺钉的制备方法,该专利申请中的接骨螺钉可用钽制备金属涂层,在反应温度为950℃情况下,制备的涂层厚度仅为2~4微米,最佳为3微米,制备的涂层厚度极其薄弱,且从附图中可以看出涂层不均匀,有部分脱落。还有,制备出的多孔钽金属涂层的晶体颗粒在40~50微米左右,不利于细胞和大分子物质的粘附。因此,需要一种新的工艺方法,提高钽金属表面的粗糙度、减小晶粒尺寸,更有利于细胞和大分子的粘附,增加植入体的初始稳定性。
发明内容
本发明针对上述传统金属接骨板在材料特性上有很多弊端,毒性金属离子释放造成感染及无菌松动、应力遮挡、二次取出、形状不匹配等的问题,而研究设计一种采用3D打印技术制作多孔钛基接骨板并进行钽涂层,该接骨板可个性化制作、永久植入、避免应力遮挡、具有较高组织相容性和生物力学性能,并可诱导骨组织生成。
本发明采用的技术方案如下:
一种具有骨诱导活性的个性化3D打印多孔钛基钽金属涂层接骨板,其 以钛金属粉末或钛合金金属粉末为基材,通过3D打印加工制作的具有孔隙结构的多孔钛基接骨板的表面形成钽涂层而制备得到,所述多孔钛基钽金属涂层接骨板的孔隙率为50%~80%,抗弯强度为50MPa~150MPa,弹性模量为2GPa~30GPa,所述孔隙的直径为200μm~800μm,所述钽涂层的厚度为30~60μm。
在上述技术方案中,所述孔隙结构为相互连通的多孔结构。所述多孔结构为规则的多孔结构或者通过Micro-CT扫描获得的骨小梁多孔结构。
在上述技术方案中,所述多孔钛基接骨板包括本体,所述本体包括位于所述本体的四周边缘的外加强筋、位于所述外加强筋内侧的内加强筋、孔隙结构以及螺孔。优选地,所述外加强筋呈连续的结构,厚度为1mm~2mm;所述内加强筋呈网状结构,均匀分布于外加强筋内侧的本体中。通过设置外加强筋和内加强筋可加强作为孔隙结构的钛基接骨板的力学强度。在优选的结构中,在所述钛基接骨板中,多孔部分和实体部分的比例约为4~5:1,更优选5:1。在优选的结构中,多孔钛基接骨板的两端为弧形,弧度为15°~90°,优选为20°~45°,接骨板的宽度为10mm~30mm,长度为40~200mm,厚度为2mm~5mm。在通常情况下,可以根据不同植入部位对接骨板力学性能要求不同,适当调整接骨板厚度以及孔隙结构,根据植入部位的特点可以采用合适的宽度、长度与弧度。
在上述技术方案中,所述螺孔为型面沉孔,便于螺钉固定后,不会由于螺钉的突起,对周围组织产生刺激,所述螺孔直径为3mm~5mm。螺孔位于接骨板的中心线,两端的螺孔距可以根据接骨板长度适当调整得到。
本发明还提供一种个性化3D打印多孔钛基钽金属涂层接骨板的制备方法,包括以下步骤:
(1)基于患者骨折处的CT扫描数据,利用三维图像软件获得骨折处的3D几何图像;
(2)基于患者的骨折处的3D几何图像,利用三维图像软件设计出个性化定制的接骨板的外形和孔隙结构,获得目标接骨板的三维几何图像,将该目标接骨板的三维几何图像文件导入到3D打印机,以钛金属粉末或钛合金金属粉末为原料,在氩气气氛保护下进行3D打印,制得多孔钛基接骨板;
(3)将打印制得的钛基接骨板置于喷砂机中喷砂处理,除去表面粘连的 钛金属粉末或钛合金金属粉末,依次使用丙酮、酒精和蒸馏水超声清洗15~30分钟,在40℃下烘干;
(4)将烘干后的多孔钛基接骨板进行热处理,来消除残余应力,并使接骨板表面平滑,所述热处理温度为1200~2000℃,升温速率为5℃/min,达到热处理温度后保温1小时,随炉冷却;
(5)将热处理后的多孔钛基接骨板用无水乙醇浸泡,超声震荡清洗30~60min后,用氮气吹干,利用化学气相沉积方法在多孔钛基接骨板表面沉积钽金属,制得多孔钛基钽金属涂层接骨板。
具体地,在上述制备方法中,基于患者的骨折处的3D几何模型(3D几何图像),使用Auto CAD、Pro E、Magics软件设计获得目标接骨板的3D几何图像以及该3D几何图像的.stl格式文件,在步骤(3)中,在Building Processing界面将钛金属粉末或钛合金金属粉末参数包与上述目标接骨板3D几何图像的.stl格式文件合并,获得该目标接骨板在3D打印机设备中可识别的.mtt格式文件,将该.mtt格式文件输入到3D打印设备,在钛金属粉末或钛合金金属粉末为原料进行3D打印,制得多孔钛基接骨板。
在上述技术方案中,在步骤(2)中,所述3D打印条件为:铺粉厚度为20~50μm,激光功率为120~200w,激光点间距50~100微米,线间距60~100微米,曝光时间60~150微秒。
在上述技术方案中,在步骤(5)中,利用化学气相沉积方法在多孔钛基接骨板表面沉积钽金属,制得多孔钛基钽金属涂层接骨板的方法包括如下步骤:
a)将用氮气吹干后的多孔钛基接骨板置于反应室内、将钽金属置于反应室前端;
b)反应室内通入惰性气体,吹扫反应室10~20min,抽真空至200~250Pa条件下,将反应室加热至800℃,通入氯气和氢气,进行气相沉积反应7~10h,其中所述氯气的流量为80mL/min,所述氢气的流量为100mL/min;
c)反应结束后,关闭氢气及氯气,连接冷却装置,在惰性气体保护下降温至200℃以下,打开反应腔取出钽金属涂层的钛基植入物;
其中,在步骤b)和步骤c)中所述的惰性气体为氩气或氮气中的一种或两种的混合。
在上述技术方案中,在步骤(2)中,所述的钛金属粉末或钛合金金属粉末为医用级球形金属粉末,粉末粒径为15~45μm,优选为15~30μm。
在上述技术方案中,在步骤(3)中,所述的喷砂处理中所使用的磨料为白刚玉,所述白刚玉的粒径为50μm~150μm,喷砂处理作用压力为0.1~1.0MPa,喷砂处理时间30~120s。通过喷砂处理,提高钛基接骨板基体表面的粗糙度,提高钽涂层与基体的结合力。
在上述技术方案中,通过上述步骤a)中用氮气吹干处理的多孔钛基接骨板和作为原料的金属钽置于气相沉积反应室内,通入氯气和氢气进行沉积反应,其中,多孔钛基接骨板放置于反应室内设置的反应托盘内,金属钽放置于反应室前端,这样,当通入氯气和氢气时,首先氯气和气化的钽金属发生化学反应,生成五氯化钽,接着五氯化钽与氢气发生反应,还原为气态钽金属,渗透并沉积至多孔支架内层表面、外层表面,形成钽涂层。所述钽金属为优选采用高纯度钽金属,纯度为99.99%~99.999%。
本发明方法制备得到的钽涂层与钛基接骨板的结合力达到43.2Mpa以上。
本发明基于3D打印技术,首先对患者术进行术前CT扫描、三维重建,确定接骨板弯曲弧度,与骨的解剖标志相吻合,然后打印出与人体解剖结构相符合的植入接骨板。进而,在接骨板上进行钽金属涂层,提高了接骨板的生物活性,使钛基金属植入物的良好力学性能与钽金属优异的生物活性相结合,两者优势互补,达到最优的临床应用效果。
1.采用个性化3D打印技术,更符合人体解剖结构,接骨板的塑性良好,可以根据植入部位骨组织的力学性能实现个性化定制,避免应力遮挡,有助于骨组织愈合。
2.在接骨板外围及内部因为钛或钛合金结构,从而保证接骨板在具备骨诱导性能多孔结构的同时,还能具备足够的强度,实现其力学支撑作用。
3.接骨板具有孔隙结构,适合骨组织长入,有助于提高接骨板和周围骨组织的骨整合性能,实现永久生物内固定,不需二次手术取出。
4.本发明骨诱导接骨板通过3D打印技术加工制作,可以通过调整接骨板的孔隙率与孔隙尺寸优化接骨板的生物力学性能,接骨板为植入部位骨组 织提供生物力学内固定,同时还可以保证骨组织受到足够的应力刺激,激发骨组织的自我修复功能;通过植入与骨折处解剖结构相符合地植入接骨板以及接骨板的骨诱导作用,使骨组织与接骨板实现良好的骨整合,避免了现有接骨板长期植入体内后存在容易松动,需要二次手术取出等问题,减轻了患者的痛苦。
图1是本发明接骨板的结构示意图。
图2是本发明接骨板的三维立体结构示意图。
图3是通过3D打印制作的多孔钛基接骨板,3D打印出来的接骨板实际尺寸与计算机设计基本一致。
图4是通过化学气相沉积技术在3D打印多孔钛基接骨板上制备钽金属涂层后的接骨板照片。
图5是多孔钛基钽金属涂层接骨板表面的显微形貌照片和涂层的元素分析结果。
图6是表示涂层的厚度和涂层的晶粒尺寸的SEM照片。
图7是用接骨板固定骨折部位后按时间观察骨折愈合情况的胫骨X线照片。
符号说明:1、本体,2、外加强筋,3、内加强筋,4、孔隙结构,5、螺孔。
下面结合附图和具体实施方式对本发明作进一步的详细说明,但本发明并不局限于这些实施方式。下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用材料、试剂等均可从生物或化学公司购买。
实施例1
一种具有骨诱导活性的个性化3D打印多孔钛基钽金属涂层接骨板,其以钛金属粉末为基材,通过3D打印加工制作的具有孔隙结构的多孔钛基接骨板的表面形成钽涂层而制备得到。
如图1和图2所示,所述多孔钛基接骨板包括本体,所述本体包括位于所 述本体的四周边缘的外加强筋、位于所述外加强筋内侧的内加强筋、孔隙结构以及螺孔。所述外加强筋呈连续的结构,构成本体的边缘,所述内加强筋呈网状结构,以提高接骨板的力学强度。所述孔隙结构分布在外加强筋、内加强筋以及螺孔之间,是由内部连通的钻石型孔隙结构组成,所述孔隙结构的孔隙率为70%,孔隙的直径为500μm。
具体地,所述多孔钛基接骨板的长度为72mm,厚度为3mm,两端的弧度30°,轴向宽度为12mm,外加强筋的宽度为1.5mm,内加强筋的宽度为1mm,两端各具有3个螺孔,螺孔的直径为3.5mm,螺孔位于骨板长度方向的中心线,两端的螺孔距各自与端部的距离分别为6mm、16mm、26mm。所述螺孔为型面沉孔,便于螺钉固定后,不会由于螺钉的突起,对周围组织产生刺激。
图1~2所示的多孔钛基钽金属涂层接骨板整体上包括实体部分和多孔部分,所述孔隙结构中的孔以及螺孔中的孔之外部分均为实体部分。
实施例2
以高纯钛粉(球形粉末,粒径15μm~30μm)为原料,通过3D打印的方式加工制作,制备得到个性化3D打印钽金属涂层多孔钛金属接骨板,具体包括如下步骤:
(1)通过CT扫描了解患者骨折处的解剖结构,将CT扫描数据重建成3D模型(即3D几何图像);
(2)使用Auto CAD、Pro E、Magics软件设计出个性化定制的接骨板的外形和孔隙结构,获得多孔目标接骨板的三维几何模型(如图2所示),进一步获得该多孔目标接骨板的三维几何模型的.stl格式文件;
(3)如图2所示多孔接骨板的3D打印过程为:在Building Processing界面将钛金属参数包与.stl文件合并,获得接骨板在3D打印机设备中可识别的.mtt格式文件,将该.mtt格式文件输入到3D打印设备,在氩气气氛保护下进行打印;3D打印条件为:铺粉厚度为30μm,激光功率为200W,曝光时间70μs,激光扫描点间距60μm,线间距60μm;在3D打印过程中,工作腔体内的氧气含量小于1000ppm;
(4)将打印件置于喷砂机中喷砂处理,除去表面粘连的钛金属粉末,依次使用丙酮,酒精,蒸馏水超声清洗15分钟,40℃烘干;其中喷砂所用磨料 为白刚玉,白刚玉粒径为50μm-70μm,喷砂加工作用力为0.3MPa,喷砂时间60s;
(5)将烘干后的打印件经过热处理消除残余应力,并使接骨板表面平滑,热处理温度为1500℃,以升温速率5℃/min进行升温,达到热处理温度后保温1小时,随炉冷却;
(6)将3D打印的多孔钛金属板用无水乙醇浸泡,超声震荡清洗30min后,用氮气吹干,利用化学气相沉积方法在多孔钛基接骨板表面沉积钽金属,制得多孔钛基钽金属涂层接骨板,具体包括如下步骤:
a)将用氮气吹干后的多孔钛基接骨板置于反应室内、将钽金属置于反应室前端;
b)反应室内首先通入惰性保护气体氩气,吹扫反应腔10min,抽真空至240Pa条件下,将反应室加热至800℃,通入氯气和氢气,进行气相沉积反应7h,其中所述氯气的流量为80mL/min,所述氢气的流量为100mL/min;
c)反应结束后,关闭氢气及氯气,连接冷却装置,在氩气保护下降温至200℃以下,得多孔钛基钽金属涂层接骨板。
制备得到的多孔钛基钽金属涂层接骨板中,钽涂层的厚度为30μm,孔隙率为70%,抗弯强度约为110MPa,弹性模量约为25GPa,所述孔隙的直径为500μm。
图3是通过3D打印制作的多孔钛基接骨板,3D打印出来的接骨板实际尺寸与计算机设计基本一致。图4是通过化学气相沉积技术在3D打印多孔钛基接骨板上制备钽金属涂层的接骨板。涂层前后接骨板的颜色发生明显变化。涂层前,接骨板展现的钛金属原有的色泽,比较明亮;而涂层后,接骨板展现的是钽金属的颜色,色泽相对较暗淡。可以初步判断,钽金属已经沉积到多孔钛基接骨板的孔隙表面涂层均匀。
图5A表示多孔钛基钽金属涂层接骨板表面显微形貌的扫描电子显微镜照片,从图5A中可以看出,涂层前后的孔隙结构与人体骨小梁的三维结构相似,钽金属涂层完全沉积到钛金属接骨板的内外表面,未见裸露及涂层破裂、脱落现象。另外,钽涂层后的接骨板表面相对粗糙。这种微观结构特征是由快速成形技术特点决定的,因为快速成形技术是分层累积成形技术,在分层制造过程中必然会形成上述表面特征。这些凹凸不平的粗糙表面有利于细胞 的粘附和组织的嵌合,能够增强接骨板与骨组织的连接强度。图5B表示多孔钛基钽金属涂层接骨板表面的XRD成分分析结果,如图显示,其主要成分为钽,更近一步证明了表面涂层为钽金属。图6A可以看出钽金属涂层的厚度约为60微米,图6B晶粒尺寸约为10微米,这种晶粒尺寸形成的钽金属表面粗糙度更高,更有利于细胞和大分子物质的粘附,增加植入物的初始稳定性。
实施例3
选取体重约20kg雄性山羊为实验动物,通过CT扫描了解山羊胫骨的解剖结构,将CT扫描数据重建成3D模型(即几何图像)。使用Auto CAD、Pro E、Magics软件设计出个性化定制的接骨板的外形和孔隙结构,获得多孔目标接骨板的三维几何模型,进一步获得该多孔目标接骨板的三维几何模型的.stl格式文件。然后在Building Processing界面将钛金属参数包与.stl文件合并,获得接骨板在3D打印机设备中可识别的.mtt格式文件,将该.mtt格式文件输入到3D打印设备中进行打印,接骨板宽度为1.2cm,长度为10cm;螺钉直径为2.7mm,长度14mm不等。然后在运用化学气相沉积技术对制备的多孔钛金属接骨板进行钽金属沉积。3D打印条件以及化学气相沉积反应参数与实施例2相同。
将山羊麻醉后,常规消毒、铺单,依次切开皮肤、皮下组织及筋膜;暴露山羊胫骨,对胫骨进行骨折造模,然后在牵引复位,达到解剖复位后,复位钳牢靠固定,选择合适接骨板后,分离骨膜,用磨钻打磨接骨板处皮质骨,形成与接骨板板大小相同的凹槽,然后放置接骨板,螺钉固定牢靠后,生理盐水冲洗,依次缝合骨膜、筋膜、皮下组织及皮肤。
分别在术后4周、8周、12周进行胫骨X线正侧位射片,观察骨折愈合情况(图7),术后3个月可见骨折愈合情况良好,未见骨折畸形愈合、不愈合、感染等术后并发症。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (10)
- 一种具有骨诱导活性的个性化3D打印多孔钛基钽金属涂层接骨板,其以钛金属粉末或钛合金金属粉末为基材,通过3D打印加工制作的具有孔隙结构的多孔钛基接骨板的表面形成钽涂层而制备得到,所述多孔钛基钽金属涂层接骨板的孔隙率为50%~80%,抗弯强度为50MPa~150MPa,弹性模量为2GPa~30GPa,所述孔隙的直径为200μm~800μm,所述钽涂层的厚度为30~60μm。
- 根据权利要求1所述的多孔钛基钽金属涂层接骨板,其特征在于,所述孔隙结构为相互连通的多孔结构。
- 根据权利要求2所述的多孔钛基钽金属涂层接骨板,其特征在于,所述多孔结构为规则的多孔结构或者通过Micro-CT扫描获得的骨小梁多孔结构。
- 根据权利要求1所述的多孔钛基钽金属涂层接骨板,其特征在于,所述多孔钛基接骨板包括本体,以及位于所述本体的四周边缘的外加强筋、位于所述外加强筋内侧的内加强筋、孔隙结构以及螺孔。
- 根据权利要求4所述的多孔钛基钽金属涂层接骨板,其特征在于,所述外加强筋呈连续的结构,所述内加强筋呈网状结构。
- 权利要求1~5的任一项所述的多孔钛基钽金属涂层接骨板的制备方法,包括如下步骤:(1)基于患者骨折处的CT扫描数据,利用三维图像软件获得骨折处的3D几何图像;(2)基于患者的骨折处的3D几何图像,利用三维图像软件设计出个性化定制的接骨板的外形和孔隙结构,获得目标接骨板的三维几何图像,将该目标接骨板的三维几何图像文件导入到3D打印机,以钛金属粉末或钛合金金属粉末为原料,在氩气气氛保护下进行3D打印,制得多孔钛基接骨板;(3)对打印制得的多孔钛基接骨板进行喷砂处理,除去表面粘连的钛金属粉末或钛合金金属粉末,依次使用丙酮、酒精和蒸馏水超声清洗15~30分钟,在40℃下烘干;(4)将烘干后的多孔钛基接骨板进行热处理,所述热处理温度为1200~2000℃,升温速率为5℃/min,达到热处理温度后保温1小时,随炉冷却;(5)将热处理后的多孔钛基接骨板用无水乙醇浸泡,超声震荡清洗30~60min后,用氮气吹干,利用化学气相沉积方法在多孔钛基接骨板表面沉积钽金属,制得多孔钛基钽金属涂层接骨板。
- 根据权利要求6所述的制备方法,其特征在于,在步骤(2)中,所述3D打印条件为:铺粉厚度为20~50μm,激光功率为120~200w,激光点间距50~100微米,线间距60~100微米,曝光时间60~150微秒。
- 根据权利要求6所述的制备方法,其特征在于,在步骤(5)中,利用化学气相沉积方法在多孔钛基接骨板表面沉积钽金属,制得多孔钛基钽金属涂层接骨板的方法包括如下步骤:a)将用氮气吹干后的多孔钛基接骨板置于反应室内、将钽金属置于反应室前端;b)反应室内通入惰性气体,吹扫反应室10~20min,抽真空至200~250Pa条件下,将反应室加热至800℃,通入氯气和氢气,进行气相沉积反应7~10h,其中所述氯气的流量为80mL/min,所述氢气的流量为100mL/min;c)反应结束后,关闭氢气及氯气,连接冷却装置,在惰性气体保护下降温至200℃以下;在步骤b)和步骤c)中所述的惰性气体为氩气或氮气中的一种或两种的混合。
- 根据权利要求6所述的制备方法,其特征在于,在步骤(2)中,所述的钛金属粉末为医用级球形钛金属粉末,粉末粒径为15~45μm。
- 根据权利要求6所述的制备方法,其特征在于,在步骤(3)中,所述的喷砂处理中所使用的磨料为白刚玉,所述白刚玉的粒径为50~150μm,喷砂处理作用力为0.1~1.0MPa。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910472013.1 | 2019-05-31 | ||
CN201910472013.1A CN110090072B (zh) | 2019-05-31 | 2019-05-31 | 个性化3d打印多孔钛基钽涂层接骨板及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020237705A1 true WO2020237705A1 (zh) | 2020-12-03 |
Family
ID=67449959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090047 WO2020237705A1 (zh) | 2019-05-31 | 2019-06-05 | 个性化3d打印多孔钛基钽涂层接骨板及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110090072B (zh) |
WO (1) | WO2020237705A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111803242A (zh) * | 2020-07-06 | 2020-10-23 | 河北春立航诺新材料科技有限公司 | 一种胫骨假体、制备方法及应用 |
CN113210625A (zh) * | 2021-05-08 | 2021-08-06 | 北京市春立正达医疗器械股份有限公司 | 表面沉积钽涂层的3d多孔钛合金材料及其制备方法 |
CN114453593B (zh) * | 2022-02-11 | 2023-07-18 | 西南科技大学 | 一种具有生物活性的个性化定制钛合金植入体支架的制备方法 |
CN115591015B (zh) * | 2022-10-25 | 2024-01-26 | 季华实验室 | 可降解的金属/聚合物复合接骨板及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140004356A1 (en) * | 2012-07-02 | 2014-01-02 | Zimmer, Inc. | Thin film tantalum coating for medical implants |
CN105177523A (zh) * | 2015-10-28 | 2015-12-23 | 赵德伟 | 一种医用多孔钽金属材料及其制备方法 |
CN106421892A (zh) * | 2016-09-30 | 2017-02-22 | 中国人民解放军总医院 | 一种钛基钽涂层生物支架材料及其制备方法 |
CN109172862A (zh) * | 2018-11-15 | 2019-01-11 | 西北有色金属研究院 | 一种医用多孔钛钽复合材料 |
CN109338329A (zh) * | 2018-10-22 | 2019-02-15 | 赵德伟 | 一种钛基钽涂层生物植入物材料的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207785263U (zh) * | 2016-06-06 | 2018-08-31 | 广州雄俊智能科技有限公司 | 一种个性化接骨板 |
CN109338330B (zh) * | 2018-10-22 | 2020-10-02 | 赵德伟 | 超高温度下制备高质量多孔钽金属涂层植入材料的方法 |
CN109793565B (zh) * | 2019-01-22 | 2021-06-08 | 赵德伟 | 一种3d打印多孔钽金属接骨板 |
-
2019
- 2019-05-31 CN CN201910472013.1A patent/CN110090072B/zh active Active
- 2019-06-05 WO PCT/CN2019/090047 patent/WO2020237705A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140004356A1 (en) * | 2012-07-02 | 2014-01-02 | Zimmer, Inc. | Thin film tantalum coating for medical implants |
CN105177523A (zh) * | 2015-10-28 | 2015-12-23 | 赵德伟 | 一种医用多孔钽金属材料及其制备方法 |
CN106421892A (zh) * | 2016-09-30 | 2017-02-22 | 中国人民解放军总医院 | 一种钛基钽涂层生物支架材料及其制备方法 |
CN109338329A (zh) * | 2018-10-22 | 2019-02-15 | 赵德伟 | 一种钛基钽涂层生物植入物材料的制备方法 |
CN109172862A (zh) * | 2018-11-15 | 2019-01-11 | 西北有色金属研究院 | 一种医用多孔钛钽复合材料 |
Also Published As
Publication number | Publication date |
---|---|
CN110090072A (zh) | 2019-08-06 |
CN110090072B (zh) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020237705A1 (zh) | 个性化3d打印多孔钛基钽涂层接骨板及其制备方法 | |
Cizek et al. | Medicine meets thermal spray technology: A review of patents | |
JP3445301B2 (ja) | 海綿骨移植片ならびに細胞および組織受容体のための連続気泡型タンタル構造物 | |
Datta et al. | Advanced materials in biological implants and surgical tools | |
US20230218373A1 (en) | Osseointegrable implants and screws comprising structurally porous surface, process for preparing the implants and screws and uses thereof | |
Gutiérrez Púa et al. | Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review | |
Sridhar | Nanobioceramic coatings for biomedical applications | |
Shayesteh Moghaddam | Toward patient specific long lasting metallic implants for mandibular segmental defects | |
US20180008415A1 (en) | Shapeable porous metal implant | |
CN108578018A (zh) | 假体和假体的制作方法 | |
WO2017063425A1 (zh) | 一种多孔钽金属骨连接器及其应用 | |
WO2008146113A2 (en) | Process for coating a surface of a metal element to increase osteointegration thereof and prosthetic device including said element | |
EP3666932A1 (en) | Production method of a personalised, biocompatible and bioactive orthopaedic implant | |
Wang et al. | Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur | |
Shivgotra et al. | Advancement in Biomaterials in the Form of Implants | |
CN210250039U (zh) | 一种植入型接骨板 | |
RU145527U1 (ru) | Имплантируемое медицинское изделие | |
CN109338330A (zh) | 超高温度下制备高质量多孔钽金属涂层植入材料的方法 | |
CN205814410U (zh) | 一种骨折固定用多孔钽金属螺钉 | |
CN111803242A (zh) | 一种胫骨假体、制备方法及应用 | |
Park et al. | Characterization and biostability of HA/Ti6Al4V ACL anchor prepared by simple heat-treatment | |
CN111803244A (zh) | 一种具有钽金属多孔结构层的骨填充块、制造方法及应用 | |
CN216652428U (zh) | 一种弹性髓内钉 | |
RU184086U1 (ru) | Модуль имплантата для замещения внутрикостных дефектов | |
CN112933292B (zh) | 一种改性的牙科种植体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19930208 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19930208 Country of ref document: EP Kind code of ref document: A1 |