WO2020237537A1 - 图像引导方法及装置、医疗设备、计算机可读存储介质 - Google Patents

图像引导方法及装置、医疗设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2020237537A1
WO2020237537A1 PCT/CN2019/089073 CN2019089073W WO2020237537A1 WO 2020237537 A1 WO2020237537 A1 WO 2020237537A1 CN 2019089073 W CN2019089073 W CN 2019089073W WO 2020237537 A1 WO2020237537 A1 WO 2020237537A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
dimensional
patient
shooting
combination
Prior art date
Application number
PCT/CN2019/089073
Other languages
English (en)
French (fr)
Inventor
苟天昌
闫浩
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Priority to CN201980096948.2A priority Critical patent/CN113891740B/zh
Priority to PCT/CN2019/089073 priority patent/WO2020237537A1/zh
Priority to US17/615,063 priority patent/US20220218298A1/en
Publication of WO2020237537A1 publication Critical patent/WO2020237537A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4417Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5223Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data generating planar views from image data, e.g. extracting a coronal view from a 3D image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • A61N2005/1062Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source using virtual X-ray images, e.g. digitally reconstructed radiographs [DRR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1063Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam maintaining the position when the patient is moved from an imaging to a therapy system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Definitions

  • the present disclosure relates to the field of medical imaging, in particular to an image guidance method and device, medical equipment, and computer-readable storage media.
  • image guidance technology can be used to determine the deviation between the focus position of the therapeutic beam and the target area based on the real-time collected images, so that this deviation can be corrected.
  • an X-ray transmission image imaging device can be used to track the current position and state of the target area.
  • the imaging device can include a tube and a detector arranged oppositely, and the X-rays emitted through the tube pass through the patient The target area is received by the detector to form the required X-ray transmission image.
  • the present disclosure provides an image guidance method and device, medical equipment, and computer-readable storage medium, which can help reduce the time interval between two adjacent patient current position state detections.
  • the present disclosure provides an image guidance method applied to a medical device, the medical device includes a patient fixing mechanism and an image mechanism, the image mechanism is configured to be able to rotate around the patient fixing mechanism in several Taking medical images of the patient on the patient fixing mechanism at a shooting angle, and the image guidance method includes:
  • a first image is acquired; wherein, the first image is a medical image of the patient taken by the imaging mechanism at the first shooting angle, and The first shooting angle is the shooting angle to which the imaging mechanism is currently rotated;
  • image guidance is performed on the basis of using the combination of the first image and the second image to indicate the current position of the patient; wherein, the second image
  • the image is a medical image of the patient taken by the imaging mechanism at a second shooting angle, and the second shooting angle is that the angle between the plurality of shooting angles and the first shooting angle is the first
  • the angular interval between any two adjacent shooting angles in the plurality of shooting angles is smaller than the first preset angle.
  • the plurality of shooting angles are consecutive shooting angles with equal angular intervals
  • the controlling the rotation of the imaging mechanism around the patient fixing mechanism includes:
  • the image mechanism is controlled to rotate at a uniform speed around the patient fixing mechanism, so that the image mechanism continuously rotates through the several shooting angles at equal time intervals.
  • the method further includes:
  • said performing image guidance on the basis of using a combination of the first image and the second image to indicate the current position of the patient includes:
  • the relative position deviation between the current position state of the patient and the initial position state of the patient is corrected.
  • the method further includes:
  • the reference three-dimensional image is a three-dimensional reconstruction image based on a computed tomography scan
  • said performing image guidance on the basis of using a combination of the first image and the second image to indicate the current position of the patient includes:
  • Image guidance is performed on the basis of using the reference three-dimensional image to indicate the initial position state of the patient and using the combination of the first image and the second image to indicate the current position state of the patient.
  • the reference three-dimensional image is used to represent the initial position state of the patient and the combination of the first image and the second image is used to represent the current position state of the patient.
  • Conduct image guidance including:
  • the relative position deviation between the current position state of the patient and the initial position state of the patient is corrected.
  • the method further includes:
  • the two-dimensional two-dimensional image combination is a combination between the first image and one of the third images
  • the third image is a medical record of the patient taken by the imaging mechanism at a third shooting angle.
  • the third shooting angle is a shooting angle in which an included angle between the plurality of shooting angles and the second shooting angle is smaller than a second preset angle.
  • using at least one dual two-dimensional image combination to perform error correction on the current position state of the patient represented by the combination of the first image and the second image includes:
  • Error correction is performed on the state parameters calculated based on the combination of the first image and the second image by using the state parameters respectively corresponding to each of the two-dimensional image combination.
  • the present disclosure also provides an image guidance device, which is applied to medical equipment, the medical equipment includes a patient fixing mechanism and an image mechanism, the image mechanism is configured to be able to rotate around the patient fixing mechanism in several Taking medical images of the patient on the patient fixing mechanism under two shooting angles, and the image guiding device includes:
  • a control module for controlling the image mechanism to rotate around the patient fixing mechanism
  • the first acquisition module is configured to acquire a first image when the image mechanism is rotated to any one of the shooting angles; wherein, the first image is the first image taken by the image mechanism at the first shooting angle
  • the first shooting angle is the shooting angle to which the imaging mechanism is currently rotated;
  • the image guidance module is configured to: when at least one second image corresponding to the first image has been obtained, after the second image corresponding to the first image has been obtained, after the first image and
  • the combination of the second image represents image guidance based on the patient’s current position and state; wherein, the second image is a medical image of the patient taken by the imaging mechanism at a second shooting angle, and the second The shooting angle is a shooting angle in which the included angle between the plurality of shooting angles and the first shooting angle is a first preset angle, and the difference between any two adjacent shooting angles in the plurality of shooting angles The angular intervals are all smaller than the first preset angle.
  • the several shooting angles are consecutive several shooting angles with equal angular intervals
  • the control module is further configured to:
  • the image mechanism is controlled to rotate at a uniform speed around the patient fixing mechanism, so that the image mechanism continuously rotates through the several shooting angles at equal time intervals.
  • the device further includes:
  • the second acquisition module is used to acquire the two-dimensional projection image of the three-dimensional reconstructed image of the patient based on the computed tomography scan at each shooting angle;
  • the image guidance module includes:
  • a first registration unit configured to perform two-dimensional-two-dimensional registration between the first image and the two-dimensional projection image at the first shooting angle to obtain a first registration result
  • a second registration unit configured to perform two-dimensional-two-dimensional registration between the second image and the two-dimensional projection image at the second shooting angle to obtain a second registration result
  • the first correction unit is configured to correct the relative position deviation between the current position state of the patient and the initial position state of the patient based on the first registration result and the second registration result.
  • the device further includes:
  • the third acquisition module is configured to acquire a three-dimensional magnetic resonance image of the patient, and the three-dimensional magnetic resonance image is marked with at least one area of interest;
  • the fourth acquisition module is configured to acquire a reference three-dimensional image of the patient, where the reference three-dimensional image is a three-dimensional reconstructed image based on a computed tomography scan;
  • a registration module configured to perform a three-dimensional-three-dimensional registration between the three-dimensional magnetic resonance image and the reference three-dimensional image, so as to complete the mark of the area range of each object of interest in the reference three-dimensional image;
  • the image guidance module is further used for:
  • Image guidance is performed on the basis of using the reference three-dimensional image to indicate the initial position state of the patient and using the combination of the first image and the second image to indicate the current position state of the patient.
  • the image guidance module includes:
  • a third registration unit configured to perform two-dimensional-three-dimensional registration between the combination of the first image and the second image and the reference three-dimensional image to obtain a third registration result
  • the second correction unit is configured to correct the relative position deviation between the current position state of the patient and the initial position state of the patient based on the third registration result.
  • the device further includes:
  • An error correction module configured to use at least one dual two-dimensional image combination to indicate the combination of the first image and the second image after the at least one third image corresponding to the first image has been obtained Error correction for the current position state of the patient;
  • the two-dimensional two-dimensional image combination is a combination between the first image and one of the third images
  • the third image is a medical record of the patient taken by the imaging mechanism at a third shooting angle.
  • the third shooting angle is a shooting angle in which an included angle between the plurality of shooting angles and the second shooting angle is smaller than a second preset angle.
  • the error correction module includes:
  • a calculation unit configured to calculate a state parameter representing the current position state of the patient based on each combination of the two-dimensional images
  • the error correction unit is configured to use the state parameters respectively corresponding to each of the two-dimensional image combination to perform error correction on the state parameters calculated based on the combination of the first image and the second image.
  • the present disclosure also provides a medical device that includes a processor and a memory, the memory stores program instructions, and the processor is configured to call the program instructions in the memory to execute the foregoing Any kind of image guidance method.
  • the present disclosure also provides a computer-readable storage medium, the computer storage medium stores a computer program, the computer program includes program instructions, the program instructions are configured to cause the The processor executes any one of the above-mentioned image guidance methods.
  • the present disclosure can first obtain medical images at some shooting angles for use as the image mechanism rotates, and start from the rotation of the image mechanism to a position where the angle with the starting position is the first preset angle , You can perform image guidance every time you rotate to a shooting angle.
  • the angular interval between two adjacent image guidance is the interval between two adjacent shooting angles, which can be reduced compared to the prior art.
  • the time interval between two adjacent patient current position status detections is reduced to improve the effect of image guidance.
  • FIG. 1 is a schematic flowchart of an image guidance method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of an application scenario of an image guidance method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of an image guidance method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the realization principle of an image guidance method provided by another embodiment of the present disclosure.
  • Fig. 5 is a structural block diagram of an image guiding device provided by an embodiment of the present disclosure.
  • Fig. 6 is a structural block diagram of a medical device provided by an embodiment of the present disclosure.
  • Fig. 1 is a schematic flowchart of an image guidance method provided by an embodiment of the present disclosure.
  • the image guidance method is applied to medical equipment, the medical equipment includes a patient fixing mechanism and an image mechanism, the image mechanism is configured to be able to rotate around the patient fixing mechanism in several shooting angles to the patient fixing mechanism
  • the patients on the site take medical imaging.
  • the image guidance method may be installed on medical equipment (such as medical equipment, imaging equipment, operating table, etc.) in the form of software, so as to realize the image guidance process in medical activities.
  • the execution subject of the method may be, for example, a controller of the medical device, a processor of the medical device, a control device connected to the medical device, or a server connected to the medical device, etc. Wait.
  • the image guidance method may include the following steps.
  • step 101 the image mechanism is controlled to rotate around the patient fixing mechanism.
  • step 102 when the image mechanism is rotated to any one of several shooting angles, a first image is acquired.
  • the above-mentioned first image is a medical image of the patient taken by the imaging mechanism at a first shooting angle
  • the first shooting angle is the shooting angle to which the imaging mechanism is currently rotated.
  • step 103 after the second image corresponding to the first image has been obtained, image guidance is performed on the basis of using the combination of the first image and the second image to indicate the current position of the patient.
  • the second image is a medical image of the patient taken by the imaging mechanism at a second shooting angle
  • the second shooting angle is between the plurality of shooting angles and the first shooting angle
  • the included angle of is a shooting angle of a first preset angle
  • the angular interval between any two adjacent shooting angles in the plurality of shooting angles is smaller than the first preset angle.
  • the method of the embodiments of the present disclosure can be applied to any medical activities that include image guidance, such as image-guided radiotherapy (Image-Guided Radio Therapy, IGRT), intracranial tumor resection surgery, or other operations involving image guidance Surgery, etc.
  • image guidance such as image-guided radiotherapy (Image-Guided Radio Therapy, IGRT), intracranial tumor resection surgery, or other operations involving image guidance Surgery, etc.
  • IGRT Image-Guided Radio Therapy
  • intracranial tumor resection surgery or other operations involving image guidance Surgery, etc.
  • the patient refers to the subject of these medical activities, for example, a patient who needs radiotherapy or surgery, and is not limited to people who are ill.
  • the several shooting angles may be, for example, shooting angles that need to be taken for medical images that are predetermined according to the needs of use (the shooting angles may be expressed as angle values representing the orientation in a planar polar coordinate system, The origin is the point surrounded by the image mechanism 12 when it rotates), such as multiple shooting angles in the same plane from 0 degrees to 180 degrees at intervals of 5 degrees, 10 degrees, 15 degrees, 20 degrees, or 30 degrees (for example, you can select The right side of the patient is 0 degrees).
  • the first preset angle is an angle value preset in order to avoid using two medical images whose shooting angles are too close to represent the current position of the patient.
  • the first preset angle may be in the range of 45 degrees to 135 degrees, for example. Select within.
  • Fig. 2 is a schematic diagram of an application scenario of an image guidance method provided by an embodiment of the present disclosure.
  • the medical equipment includes a patient fixing mechanism 11 and an imaging mechanism 12, wherein the patient fixing mechanism 11 includes a bed on which the patient can lie flat, and the imaging mechanism 12 includes X-rays for shooting medical images. detector. It should be understood that, based on the structure shown in FIG.
  • the imaging mechanism 12 may further include an X-ray emitter that is always opposite to the X-ray detector, and may also A mechanical structure including brackets, fasteners and/or guide rails for fixing the X-ray detector and the X-ray transmitter, etc., and the mechanical structure may be a part of the patient fixing mechanism 11.
  • the imaging mechanism 12 can rotate in a vertical plane within a range of 180 degrees from the left, front, and right of the patient.
  • the shooting angle is 0 degrees when the patient is directly on the right.
  • the camera angle is 90 degrees, and the camera angle is 180 degrees when the patient is on the left.
  • the range of the several shooting angles can be determined according to the needs of use and the limitations of the equipment; in other possible implementations, the imaging mechanism 12 can be located on the left, front, right, and back of the patient. It rotates within a range of 360 degrees, and the plane on which the rotation track is located can be a horizontal plane or an inclined plane, and other planes, not limited to this.
  • the application scenarios and medical equipment shown in Figure 2 are only an example, which can be changed adaptively according to different usage needs.
  • the patient fixing mechanism 11 can also be used to fix the patient in an upright posture.
  • the bracket, the imaging mechanism 12 can also be replaced with other types of medical imaging imaging devices, etc., which will not be listed here.
  • the several shooting angles include 0 degrees, 30 degrees, 60 degrees, 90 degrees, 120 degrees, 150 degrees and from the front right of the patient to the front left.
  • the first preset angle is 90 degrees.
  • the above step 101 may include the process of controlling the image mechanism 12 to rotate at a constant speed according to a path that rotates from 0 degrees to 180 degrees and then from 180 degrees to 0 degrees and repeats this way. In this process, it can be as described in the above step 102.
  • the imaging mechanism 12 rotates to each of the above-mentioned shooting angles, a piece of medical image is obtained separately.
  • the combination of the first image and the corresponding second image indicates the current position of the patient based on image guidance. That is, the process of capturing medical images when the imaging mechanism 12 is rotated to 0 degrees, 30 degrees, and 60 degrees for the first time can be regarded as a preparation process before the image guidance process officially starts, and the imaging mechanism 12 is rotated to 90 degrees for the first time.
  • an image guidance step can be performed after each shooting (for example, the combination of the first image and the second image is registered with the image representing the initial position of the patient, and the patient is corrected based on the position offset obtained by the registration.
  • the relative position deviation between the current position state and the patient's initial position state can be performed every 30 degrees of the imaging mechanism 12, which is much higher than the frequency of the imaging mechanism 12 being performed every 90 degrees of the first preset angle.
  • the embodiment of the present disclosure can first obtain medical images at some shooting angles for use, and rotate the image mechanism to a position where the angle between the image mechanism and the starting position is the first preset angle At the beginning, you can perform image guidance every time you rotate to a shooting angle. In this way, the angular interval between two adjacent image guidance is the interval between two adjacent shooting angles. Compared with the prior art, it can be Reduce the time interval between two adjacent patient current position status detections to improve the effect of image guidance.
  • step 101 does not limit the execution sequence among the foregoing step 101, step 102, and step 103, and can be set arbitrarily within a possible range.
  • FIG. 3 is a schematic flowchart of an image guidance method provided by another embodiment of the present disclosure.
  • the controller in the medical device executes the image guidance method to implement image-guided radiotherapy for lung tumors as an example.
  • the image guidance method may include the following steps.
  • Steps 201 to 204 are the process of detecting the patient's initial position state of the patient.
  • the initial position state of the patient refers to the position state of the patient before or at the beginning of the treatment activity.
  • the position states correspond to each other (the two position states can be represented by, for example, the moving coordinates of the movable bed relative to the bottom support structure).
  • step 201 a three-dimensional magnetic resonance image of the patient is acquired.
  • the three-dimensional magnetic resonance image is marked with at least one area of the object of interest.
  • the three-dimensional magnetic resonance (MR) image may be a three-dimensional image obtained after imaging a patient mainly using MRI technology, which may be obtained by the above-mentioned medical device from an imaging device through a communication connection, or it may be The medical device itself was imaged.
  • the area of the object of interest is artificially selected by the user in the magnetic resonance image, such as the area of the lesion in radiotherapy, the location of a certain anatomical point, or the area of the tumor and its surrounding vascular tissue during intracranial tumor resection Range, etc.
  • the above-mentioned medical device displays the three-dimensional magnetic resonance image and provides a region selection tool, so that the user can select the target of each object of interest through an operation on the medical device. geographic range.
  • the above-mentioned medical device receives a magnetic resonance image in which the region of each object of interest has been marked from the imaging device. Based on the fact that the magnetic resonance image can clearly show the characteristics of the soft tissue distribution, the area of the target of interest marked in the magnetic resonance image can have higher accuracy than in other types of images.
  • the medical staff operates the MRI device to perform three-dimensional imaging of the chest of the patient (lung cancer patient) to obtain a three-dimensional magnetic resonance image of the patient's chest, and then use the magnetic resonance image based on the connection between the devices.
  • the resonance image is transferred to the computer.
  • the medical staff operates the computer to outline each lesion area in the magnetic resonance image as the area range of at least one object of interest marked in the above-mentioned three-dimensional magnetic resonance image.
  • the controller of the medical device receives the magnetic resonance image marked with each lesion area from the computer device, and completes the acquisition of the three-dimensional magnetic resonance image.
  • step 202 a reference three-dimensional image of the patient is acquired.
  • the reference three-dimensional image is a three-dimensional reconstructed image based on computed tomography.
  • the reference three-dimensional image may be a three-dimensional image obtained by three-dimensional reconstruction after imaging the patient using Computed Tomography (CT) imaging technology, which may be the above-mentioned medical device received from the imaging device through a communication connection and processed What is obtained later may also be what the above-mentioned medical device receives from the image processing device through a communication connection, or it may be obtained after imaging and processing by the medical device itself.
  • CT Computed Tomography
  • the technology of computed tomography can be cone beam computed tomography (Cone beam CT, CBCT) technology, single slice spiral computed tomography (Single Slice helieal CT, SSCT) technology, multi-slice spiral computed tomography (MultiSliecs helieal CT) , MSCT) technology and so on.
  • the reference three-dimensional image can be used to compare with the combination of the first image and the second image acquired in real time in the subsequent image guidance process, thereby providing information required for medical activities, such as the focus position of the therapeutic beam and the target in radiotherapy. The deviation between the position of the zone, or whether the part to be removed during the surgical operation has moved, etc.
  • the medical staff before the start of radiotherapy, performs a pre-treatment position of the patient, such as changing the posture and position of the patient under the guidance of the laser line released by the medical device so that the laser line is directed at the corresponding part of the patient.
  • the medical staff operates the CBCT system in the medical equipment to perform CBCT imaging of the patient's chest.
  • the control system of the medical device receives the obtained CBCT image data, so as to obtain the three-dimensional volume data of the patient's chest through three-dimensional reconstruction as the reference three-dimensional image.
  • the medical device can output a prompt to the user to guide the removal of the region of interest (ROI) during the 3D reconstruction process.
  • ROI region of interest
  • there are image artifacts for example, the beginning and the end of the CBCT image), thereby helping to improve the accuracy of the CBCT image.
  • step 203 a three-dimensional-three-dimensional registration is performed between the three-dimensional magnetic resonance image and the reference three-dimensional image, so as to complete the marking of the area range of each object of interest in the reference three-dimensional image.
  • the image registration refers to seeking a (or a series of) spatial transformation for an image, so that it is spatially consistent with the corresponding points on another image. That is, the above-mentioned three-dimensional-three-dimensional registration refers to seeking one or a series of spatial transformations so that the magnetic resonance image can be overlapped with the reference three-dimensional image through this spatial transformation. It should be noted that the 3D-3D registration can be performed only in the spatial area concerned by the medical activity to save algorithm costs; similarly, the magnetic resonance image and the reference 3D image can also be performed only on the spatial area concerned by the medical activity Acquisition to shorten the imaging time and reduce the exposure dose.
  • the result of image registration can be expressed as the relative position coordinates of the same positioning point (or point of the same name, which may include, for example, anatomical points or image feature points) between the images, or as the position between the images
  • the transformation matrix can also be expressed as a table of correspondence between each image area with the same name in the image, and it is not limited to this.
  • the area range of at least one object of interest in the magnetic resonance image can be marked in the reference 3D image.
  • the medical device after acquiring the magnetic resonance image and the reference three-dimensional image, performs three-dimensional-three-dimensional image registration on the magnetic resonance image and the reference three-dimensional image.
  • the above-mentioned 3D-3D image registration includes searching for the best transformation relationship between the magnetic resonance image and the reference 3D image in an iterative manner, and the registration accuracy is used as a sign indicating whether to continue the iteration. When the registration accuracy reaches the specified level, the iteration is stopped, and the obtained transformation relationship is output as the registration result.
  • the area range of each object of interest in the magnetic resonance image can be transformed into the area range of each object of interest in the reference three-dimensional image, so as to complete the area range of each object of interest in the Refer to the mark in the 3D image.
  • the maximum number of iterations is set in the foregoing iteration process, and when the number of iterations reaches the maximum number of iterations and the registration accuracy is still below the specified level, the iteration is stopped and the reference three-dimensional image is returned to before step 202 to reacquire the reference three-dimensional image.
  • the above application condition that is, "the registration accuracy reaches a specified level”
  • the difference between the reference 3D image and the magnetic resonance image at this time is too large to find a reasonable image. Transformation relationship. Therefore, by reacquiring the reference three-dimensional image in this situation and repeating the intermediate process, the accuracy of the area range of each object of interest in the reference three-dimensional image can be improved on the basis of ensuring the registration accuracy.
  • step 204 based on the registration result of the 3D-3D registration, the positioning deviation between the magnetic resonance image and the reference 3D image is corrected.
  • the medical device when the registration accuracy meets the application conditions, can output the registration result to prompt the medical staff to move the bed, and then correct the positioning deviation between the reference three-dimensional image and the magnetic resonance image (ie The deviation of the position state of the patient between the reference three-dimensional image taken of the patient and the magnetic resonance image taken of the patient).
  • the magnetic resonance image Under normal circumstances, it can be considered that the magnetic resonance image is standardized, so the magnetic resonance image can represent the standard positioning position. Therefore, when the registration accuracy of the reference three-dimensional image and the magnetic resonance image meets the application conditions, it can be considered that the registration result represents the deviation between the current positioning position and the standard positioning position, so that it can be performed accordingly Move the bed to achieve the standard position. Based on the above process, it can help reduce the setting deviation.
  • the detection of the patient's initial position state (the detection result is in the form of a reference three-dimensional image) and fixation is completed, and the following steps 205 to step 208 are based on the reference three-dimensional image indicating the patient's initial position state by detecting the patient
  • the current position status is used for the image guidance process.
  • step 205 the image mechanism is controlled to rotate to the next shooting angle.
  • the controller of the medical device sends a rotation control instruction to the image mechanism through the connection with the image mechanism, so that the image mechanism rotates according to the received rotation control instruction.
  • the controller may control the image mechanism to rotate to the starting point of the plurality of shooting angles, for example, the shooting angle of 0 degrees in the range of 0 degrees to 180 degrees.
  • step 206 a first image is acquired.
  • the controller controls it to take medical images of the patient’s lungs on the patient’s fixing mechanism at the current shooting angle through the connection with the imaging mechanism, and receives the photography through the connection with the imaging mechanism
  • the obtained medical image is used as the current first image, and the medical image can undergo processing such as denoising, compression, filtering, and feature extraction. Thereafter, the controller may store the obtained first image in the memory corresponding to the shooting angle.
  • step 207 it is determined whether the second image corresponding to the first image and all third images corresponding to the first image have been obtained.
  • the third image is a medical image of the patient taken by the imaging mechanism at a third shooting angle
  • the third shooting angle is between the plurality of shooting angles and the second shooting angle
  • the included angle of is smaller than the shooting angle of the second preset angle.
  • the first preset angle is 90 degrees
  • the second preset angle is 10 degrees, so that for a situation where the first shooting angle is 130 degrees, the second shooting angle is 40 degrees
  • the third shooting angle includes 30 degrees and 50 degrees.
  • the controller may query the memory in accordance with a preset rule whether the second shooting angle and each third shooting angle are correspondingly stored with medical images, thereby realizing the above judgment process.
  • step 208 is executed.
  • the second shooting angle or any one or more of the third shooting angles do not correspond to the stored medical images, it is determined that the second image corresponding to the first image and all third images corresponding to the first image have not been obtained, and return Before step 205, the process of controlling the rotation of the image mechanism to the next shooting angle is started.
  • step 208 image guidance is performed on the basis of using a reference three-dimensional image to represent the initial position of the patient and using a combination of the first image and the second image to represent the current position of the patient, where the combination of the first image and the second image represents The current position status of the patient has been error corrected using at least one combination of two-dimensional images.
  • the dual two-dimensional image combination is a combination between the first image and one of the third images.
  • this step 208 includes the following process: performing two-dimensional-three-dimensional registration between the combination of the first image and the second image and the reference three-dimensional image to obtain a third registration result;
  • the third registration result corrects the relative position deviation between the current position state of the patient and the initial position state of the patient.
  • the relative position deviation may be derived from the overall movement of the patient during the time period between the shooting of the reference three-dimensional image and the shooting of the two medical images, or the movement of the patient's internal tissues relative to the patient, and may Not limited to this.
  • the above-mentioned relative position deviation specifically refers to the deviation between the current target area position and its reference position (ie, the target area position determined according to the reference three-dimensional image).
  • the above-mentioned relative position deviation can have different meanings, and the purpose of outputting the above-mentioned two-dimensional-three-dimensional registration result can also be not limited to correcting the above-mentioned relative position deviation (it can also be, for example, Track the movement of the object in the patient, or obtain the actual removal of the part to be removed).
  • Each of the above-mentioned two-dimensional-three-dimensional registration process may include: using a ray projection algorithm to generate a digitally reconstructed image based on the reference three-dimensional image under the first shooting angle and the second shooting angle corresponding to the two-dimensional image combination respectively ( Digitally Reconstructed Radiograph, DRR), compares the two sets of digitally reconstructed images with the above-mentioned two-dimensional image combination, optimizes the parameters of the spatial transformation according to the comparison results, and regenerates two sets of one according to the optimized parameters.
  • the above process of correcting the relative position deviation may include: first, referring to the above process, two-dimensional-three-dimensional registration is performed between each combination of two-dimensional images and the reference three-dimensional image. Then, the three-dimensional offset of the geometric center of the tumor area in the same spatial coordinate system can be calculated according to the registration results of each two-dimensional-three-dimensional registration that has been obtained respectively (that is, the geometric center of the tumor area relative to the initial position of the patient The offset vector of the state in space).
  • the controller can, for example, control the treatment At least one of the radiation emitting device and the moving position of the patient fixing device implements the above process; in addition, the controller can also instruct the operator to move the bed or multi-leaf grating blades by outputting the registration result in real time to correct the patient position or radiation Wild position).
  • a predetermined threshold value can be set to compare with the above-mentioned relative position deviation, and when the relative position deviation is greater than or equal to the predetermined threshold value, the treatment can be continued without performing any operation. It should be understood that the predetermined threshold may be determined according to actual application scenarios and application requirements.
  • FIG. 4 is a schematic diagram of the realization principle of the image guidance method provided by another embodiment of the present disclosure.
  • the plurality of shooting angles are 19 shooting angles with an angular interval of 10 degrees in the range of 0 degrees to 180 degrees
  • the first preset angle is 90 degrees
  • the second preset angle is 90 degrees.
  • the path for controlling the rotation of the image mechanism in step 205 is from 0 degrees to 180 degrees and then back to 0 degrees and so on.
  • the process of performing image guidance by detecting the current position and state of the patient in the above-mentioned image guidance method may include the following process: when the image mechanism is rotated to each of 0 degrees to 100 degrees for the first time, due to its corresponding The medical images under the three shooting angles (a second shooting angle and two third shooting angles) have not been obtained yet, so they all enter the process corresponding to the next shooting angle after obtaining the first image (corresponding figure)
  • Step 205 and step 206 are executed in sequence in step 3, and before step 205 is jumped back to step 207).
  • Step 208 is executed once when the image mechanism is controlled to rotate to a first shooting angle, so that the detection of the current position of the patient and the correction of the relative position deviation are performed at the time interval of the time for the image mechanism to rotate 10 degrees during this period.
  • step 208 By repeating the process from step 205 to step 208, the treatment process of all the targets can be completed in sequence, thereby finally completing the entire image-guided process.
  • the initial position state of the patient can also be obtained by the following steps performed before step 205: obtaining the three-dimensional reconstructed image of the patient based on the computed tomography at each shooting angle Two-dimensional projected image.
  • the method for obtaining the three-dimensional reconstructed image based on the computed tomography can refer to the above-mentioned method for obtaining the reference three-dimensional image.
  • projection processing may be performed on the obtained reference three-dimensional image under the several shooting angles respectively to obtain a two-dimensional projection image under each of the shooting angles.
  • said performing image guidance on the basis of using at least one dual two-dimensional image combination to indicate the current position of the patient may include: the two-dimensional projection under the first image and the first shooting angle Two-dimensional-two-dimensional registration is performed between the images to obtain a first registration result; two-dimensional-two-dimensional registration is performed between the second image and the two-dimensional projection image at the second shooting angle To obtain a second registration result; based on the first registration result and the second registration result, correct the relative position deviation between the current position state of the patient and the initial position state of the patient.
  • the medical image at 110 degrees can be used as the first image and the two-dimensional projection image at 110 degrees to perform two-dimensional-two-dimensional registration, so as to obtain the two-dimensional offset at 110 degrees; next, The medical image under 10 degrees can be used as the third image and the two-dimensional projection image under 10 degrees can be two-dimensionally registered to obtain the two-dimensional offset under 10 degrees, and the medical image under 20 degrees can be used as the second The two images are registered with the two-dimensional projection image at 20 degrees to obtain the two-dimensional offset at 20 degrees.
  • the medical image at 30 degrees is used as the third image and the two-dimensional projection at 30 degrees.
  • the image is registered in 2D-2D to obtain the 2D offset at 30 degrees; finally, the 2D offset at 10 degrees, 20 degrees, 30 degrees and 110 degrees can be combined to calculate the 3D offset, and According to the three-dimensional offset, the relative position deviation between the patient's current position state and the patient's initial position state is corrected by any of the above-mentioned methods.
  • the implementation shown in FIG. 2 can use magnetic resonance images to provide accurate positioning of the area of each object of interest, and can help correct the initial positioning error, so that radiotherapy can be more precise and more accurate. Easy to proceed.
  • the implementation shown in FIG. 2 can mark the region of the object of interest with high accuracy in the reference three-dimensional image through the three-dimensional-three-dimensional registration between the magnetic resonance image and the reference three-dimensional image. Therefore, the image guidance process that uses the reference three-dimensional image to represent the initial position of the patient can enjoy the benefits of the high soft tissue contrast resolution of MRI, that is, the introduction of MRI in real-time image guidance can be achieved by using the advantages of MRI technology. Better real-time image guidance.
  • the above-mentioned light transmission algorithm can simulate the attenuation and exposure process of X-rays penetrating different tissues and organs of the human body on the basis of the three-dimensional volume data obtained based on CBCT.
  • the obtained CT value is expressed by the ratio of the attenuation of X-ray to tissue and the attenuation of water:
  • F is the conversion factor
  • is the attenuation coefficient of X-ray in the tissue
  • ⁇ water is the attenuation coefficient of X-ray in water.
  • I 0 is the initial intensity of X-rays
  • ⁇ i is the linear attenuation coefficient of tissue i
  • l i is the length of X-rays passing through tissue i
  • I is the intensity of X-rays passing through the three-dimensional volume data.
  • the cumulative attenuation parameter of each light is calculated according to the above-mentioned cumulative attenuation parameter calculation method, the value obtained cannot accurately reflect the density attenuation information of different tissues, and the magnetic resonance image is not Accurate registration with real-time X-ray transmission images.
  • MRI generally cannot be applied to real-time image guidance, and its high soft tissue contrast resolution cannot be beneficial to the effect of image guidance.
  • the embodiments of the present disclosure in turn use the three-dimensional-three-dimensional registration between the magnetic resonance image and the reference three-dimensional image, so that the advantages of MRI can be indirectly applied to real-time image guidance through the reference three-dimensional image, so that the real-time image guidance does not need to be repeated Performing a large number of time-consuming imaging processes of MRI, while also enjoying the benefits of the advantages of MRI, helps to achieve real-time image guidance with better results.
  • the number of third images corresponding to each first image may also be, for example, three, four, five, or six. and many more.
  • the patient's current position status can not only be represented based on the two medical images of the first image and the second image, but the error can be reduced by averaging between multiple detection results .
  • Fig. 5 is a structural block diagram of an image guiding device provided by an embodiment of the present disclosure.
  • the image guidance device is applied to medical equipment, the medical equipment includes a patient fixing mechanism and an image mechanism, the image mechanism is configured to be able to rotate around the patient fixing mechanism in several shooting angles to the patient fixing mechanism
  • the patients on the site take medical imaging.
  • the image guidance method may be installed on medical equipment (such as medical equipment, imaging equipment, operating table, etc.) in the form of software, so as to realize the image guidance process in medical activities.
  • the image guiding device includes:
  • the control module 31 is used to control the image mechanism to rotate around the patient fixing mechanism
  • the first acquisition module 32 is configured to acquire a first image when the image mechanism is rotated to any one of the shooting angles; wherein, the first image is all shot at the first shooting angle by the image mechanism For the medical image of the patient, the first shooting angle is the shooting angle to which the imaging mechanism is currently rotated;
  • the image guiding module 33 is configured to use the first image after the second image corresponding to the first image has been obtained when at least one second image corresponding to the first image has been obtained.
  • the combination with the second image represents image guidance based on the patient’s current position and state; wherein, the second image is a medical image of the patient taken by the imaging mechanism at a second shooting angle, and the first
  • the second shooting angle is the shooting angle in which the included angle between the first shooting angle and the plurality of shooting angles is the first preset angle, and between any two adjacent shooting angles among the plurality of shooting angles The angular intervals of are all smaller than the first preset angle.
  • the plurality of shooting angles are consecutive shooting angles with equal angular intervals
  • the control module 31 is further configured to:
  • the image mechanism is controlled to rotate at a uniform speed around the patient fixing mechanism, so that the image mechanism continuously rotates through the several shooting angles at equal time intervals.
  • the device further includes:
  • the second acquisition module is used to acquire the two-dimensional projection image of the three-dimensional reconstructed image of the patient based on the computed tomography scan at each shooting angle;
  • the image guiding module 33 includes:
  • a first registration unit configured to perform two-dimensional-two-dimensional registration between the first image and the two-dimensional projection image at the first shooting angle to obtain a first registration result
  • a second registration unit configured to perform two-dimensional-two-dimensional registration between the second image and the two-dimensional projection image at the second shooting angle to obtain a second registration result
  • the first correction unit is configured to correct the relative position deviation between the current position state of the patient and the initial position state of the patient based on the first registration result and the second registration result.
  • the device further includes:
  • the third acquisition module is configured to acquire a three-dimensional magnetic resonance image of the patient, and the three-dimensional magnetic resonance image is marked with at least one area of interest;
  • the fourth acquisition module is configured to acquire a reference three-dimensional image of the patient, where the reference three-dimensional image is a three-dimensional reconstructed image based on a computed tomography scan;
  • a registration module configured to perform a three-dimensional-three-dimensional registration between the three-dimensional magnetic resonance image and the reference three-dimensional image, so as to complete the mark of the area range of each object of interest in the reference three-dimensional image;
  • the image guiding module 33 is further used for:
  • Image guidance is performed on the basis of using the reference three-dimensional image to indicate the initial position state of the patient and using the combination of the first image and the second image to indicate the current position state of the patient.
  • the image guiding module 33 includes:
  • a third registration unit configured to perform two-dimensional-three-dimensional registration between the combination of the first image and the second image and the reference three-dimensional image to obtain a third registration result
  • the second correction unit is configured to correct the relative position deviation between the current position state of the patient and the initial position state of the patient based on the third registration result.
  • the device further includes:
  • An error correction module configured to use at least one dual two-dimensional image combination to indicate the combination of the first image and the second image after the at least one third image corresponding to the first image has been obtained Error correction for the current position state of the patient;
  • the two-dimensional two-dimensional image combination is a combination between the first image and one of the third images
  • the third image is a medical record of the patient taken by the imaging mechanism at a third shooting angle.
  • the third shooting angle is a shooting angle in which an included angle between the plurality of shooting angles and the second shooting angle is smaller than a second preset angle.
  • the error correction module includes:
  • a calculation unit configured to calculate a state parameter representing the current position state of the patient based on each combination of the two-dimensional images
  • the error correction unit is configured to use the state parameters respectively corresponding to each of the two-dimensional image combination to perform error correction on the state parameters calculated based on the combination of the first image and the second image.
  • the image guidance device can implement any one of the above image guidance methods through corresponding structures and configurations, and the specific details will not be repeated.
  • the image guiding device is presented in the form of a functional unit/functional module.
  • the "unit/module” here can refer to an Application Specific Integrated Circuit (ASIC), a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other functions that can provide the above functions Device.
  • ASIC Application Specific Integrated Circuit
  • a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other functions that can provide the above functions Device.
  • at least part of the functions of at least one of the aforementioned units and modules may be implemented by a processor executing program codes stored in the memory.
  • Fig. 6 is a structural block diagram of a medical device provided by an embodiment of the present disclosure.
  • the medical device includes a processor 41 and a memory 42, where program instructions are stored, and the processor 41 is configured to call the program instructions in the memory 42 to execute any of the above-mentioned image guidance method.
  • the processor 41 may include a central processing unit (CPU, single-core or multi-core), a graphics processing unit (GPU), a microprocessor, an Application-Specific Integrated Circuit (ASIC), a digital signal processor (DSP), Digital signal processing device (DSPD), programmable logic device (PLD), field programmable gate array (FPGA), controller, microcontroller, or multiple integrated circuits used to control program execution.
  • CPU central processing unit
  • GPU graphics processing unit
  • ASIC Application-Specific Integrated Circuit
  • DSP digital signal processor
  • DSPD Digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate array
  • controller microcontroller, or multiple integrated circuits used to control program execution.
  • the memory 42 may include read-only memory (Read-Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also include electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can be set independently or integrated with the processor.
  • the processor 41 may include one or more CPUs.
  • the foregoing medical device may include multiple processors.
  • Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the aforementioned medical equipment may include a general-purpose computer equipment or a special-purpose computer equipment.
  • the medical equipment can be any electronic equipment that requires medical image registration, such as medical equipment, image-guided medical equipment, or operating tables.
  • the computer equipment can be a desktop computer, a portable computer, a network server, or a palmtop computer. (Personal Digital Assistant, PDA), mobile phones, tablet computers, wireless terminal devices, communication devices, embedded devices or similar structured devices.
  • PDA Personal Digital Assistant
  • the embodiment of the present disclosure also provides a computer storage medium for storing a computer program used in any of the above-mentioned image guidance methods, and the computer program includes program instructions. By executing the stored program, any one of the above-mentioned image guidance methods provided by the present disclosure can be realized.
  • the embodiments of the present disclosure may be provided as methods, devices (equipment), or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • the computer program is stored/distributed in a suitable medium, provided with other hardware or as a part of the hardware, and can also be distributed in other forms, such as through the Internet or other wired or wireless telecommunication systems.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Multimedia (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本公开提供了一种图像引导方法及装置、医疗设备、计算机可读存储介质。医疗设备包括患者固定机构和图像机构,图像机构被构造为能够通过围绕患者固定机构旋转在若干个拍摄角度下对患者固定机构上的患者进行医学影像的拍摄,图像引导方法包括:控制图像机构围绕患者固定机构旋转;在图像机构旋转至任一拍摄角度时,获取第一图像,第一图像是通过图像机构在第一拍摄角度下拍摄的所述患者的医学影像,第一拍摄角度是图像机构当前所旋转至的拍摄角度;在获取得到与第一图像对应的第二图像时,在采用第一图像和第二图像的组合表示患者当前位置状态的基础上进行图像引导。本公开可以帮助减小相邻两次患者当前位置状态检测之间的时间间隔。

Description

图像引导方法及装置、医疗设备、计算机可读存储介质 技术领域
本公开涉及医学影像领域,特别涉及一种图像引导方法及装置、医疗设备、计算机可读存储介质。
背景技术
在放射治疗过程中,同一治疗分次中靶区运动会导致治疗射束聚焦位置偏离治疗靶区。针对这一问题,可以通过图像引导技术来基于实时采集的图像确定治疗射束聚焦位置与靶区位置之间的偏差,使得这一偏差能够得到校正。
在图像引导过程中,可以采用X光透射图像的成像装置来对靶区的当前位置状态进行追踪,该成像装置可以包括相对设置的球管和探测器,通过球管发出的X射线穿过患者靶区后被探测器接收来形成所需要的X光透射图像。
在采用一套所述成像装置进行图像引导时,为了能够获得患者靶区在空间内的移动和变化情况,需要在两个不同的角度下分别对患者靶区进行成像。两次成像间夹角太小会导致得到的结果误差较大,因此为了减小误差,两次成像间需要保持一定大小的夹角,比如90度。每进行一次当前位置状态的检测,就需要成像装置旋转90度,这样两次图像采集之间的时间间隔就会很长,在此期间出现的偏差就无法及时得到校正。
发明内容
本公开提供一种图像引导方法及装置、医疗设备、计算机可读存储介质,可以帮助减小相邻两次患者当前位置状态检测之间的时间间隔。
第一方面,本公开提供了一种图像引导方法,应用于医疗设备,所述医疗设备包括患者固定机构和图像机构,所述图像机构被构造为能够通过围绕所述患者固定机构旋转在若干个拍摄角度下对所述患者固定机构上的患者进行医学影像的拍摄,所述图像引导方法包括:
控制所述图像机构围绕所述患者固定机构旋转;
在所述图像机构旋转至任一所述拍摄角度时,获取第一图像;其中,所述 第一图像是通过所述图像机构在第一拍摄角度下拍摄的所述患者的医学影像,所述第一拍摄角度是所述图像机构当前所旋转至的拍摄角度;
在已经获取得到与所述第一图像对应的第二图像之后,在采用所述第一图像和所述第二图像的组合表示患者当前位置状态的基础上进行图像引导;其中,所述第二图像是所述图像机构在第二拍摄角度下拍摄的所述患者的医学影像,所述第二拍摄角度是所述若干个拍摄角度中与所述第一拍摄角度之间的夹角为第一预设角度的拍摄角度,所述若干个拍摄角度中任意两个相邻的拍摄角度之间的角度间隔均小于所述第一预设角度。
在一种可能的实现方式中,所述若干个拍摄角度为角度间隔相等的连续若干个拍摄角度,所述控制所述图像机构围绕所述患者固定机构旋转,包括:
控制所述图像机构围绕所述患者固定机构匀速旋转,以使所述图像机构等时间间隔地连续旋转经过所述若干个拍摄角度。
在一种可能的实现方式中,所述方法还包括:
获取所述患者的基于计算机断层扫描的三维重建图像在每一所述拍摄角度下的二维投影图像;
相对应地,所述在采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导,包括:
在所述第一图像和所述第一拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第一配准结果;
在所述第二图像和所述第二拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第二配准结果;
基于所述第一配准结果和所述第二配准结果,校正所述患者当前位置状态与患者初始位置状态之间的相对位置偏差。
在一种可能的实现方式中,所述方法还包括:
获取所述患者的三维的磁共振图像,所述三维的磁共振图像中标记有至少一个关注对象的区域范围;
获取所述患者的参考三维图像,所述参考三维图像是基于计算机断层扫描的三维重建图像;
在所述三维的磁共振图像与所述参考三维图像之间进行三维-三维配准,以在所述参考三维图像中完成每个所述关注对象的区域范围的标记;
相对应地,所述在采用所述第一图像和所述第二图像的组合表示所述患者 当前位置状态的基础上进行图像引导,包括:
在采用所述参考三维图像表示患者初始位置状态和采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导。
在一种可能的实现方式中,所述在采用所述参考三维图像表示所述患者初始位置状态和采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导,包括:
在所述第一图像和所述第二图像的组合与所述参考三维图像之间进行二维-三维配准,以得到第三配准结果;
基于所述第三配准结果,校正所述患者当前位置状态与所述患者初始位置状态之间的相对位置偏差。
在一种可能的实现方式中,所述方法还包括:
在已经获取得到与所述第一图像对应的至少一个第三图像之后,利用至少一个双二维图像组合对所述第一图像和所述第二图像的组合所表示的所述患者当前位置状态进行误差校正;
其中,所述双二维图像组合是所述第一图像与一个所述第三图像之间的组合,所述第三图像是所述图像机构在第三拍摄角度下拍摄的所述患者的医学影像,所述第三拍摄角度是所述若干个拍摄角度中与所述第二拍摄角度之间的夹角小于第二预设角度的拍摄角度。
在一种可能的实现方式中,利用至少一个双二维图像组合对所述第一图像和所述第二图像的组合所表示的所述患者当前位置状态进行误差校正,包括:
分别基于每一个所述双二维图像组合计算表示所述患者当前位置状态的状态参量;
利用分别对应于每一个所述双二维图像组合的所述状态参量,对基于所述第一图像和所述第二图像的组合计算的状态参量进行误差校正。
第二方面,本公开还提供了一种图像引导装置,应用于医疗设备,所述医疗设备包括患者固定机构和图像机构,所述图像机构被构造为能够通过围绕所述患者固定机构旋转在若干个拍摄角度下对所述患者固定机构上的患者进行医学影像的拍摄,所述图像引导装置包括:
控制模块,用于控制所述图像机构围绕所述患者固定机构旋转;
第一获取模块,用于在所述图像机构旋转至任一所述拍摄角度时,获取第一图像;其中,所述第一图像是通过所述图像机构在第一拍摄角度下拍摄的所 述患者的医学影像,所述第一拍摄角度是所述图像机构当前所旋转至的拍摄角度;
图像引导模块,用于在已经获取得到与所述第一图像对应的至少一个第二图像时,在已经获取得到与所述第一图像对应的第二图像之后,在采用所述第一图像和所述第二图像的组合表示患者当前位置状态的基础上进行图像引导;其中,所述第二图像是所述图像机构在第二拍摄角度下拍摄的所述患者的医学影像,所述第二拍摄角度是所述若干个拍摄角度中与所述第一拍摄角度之间的夹角为第一预设角度的拍摄角度,所述若干个拍摄角度中任意两个相邻的拍摄角度之间的角度间隔均小于所述第一预设角度。
在一种可能的实现方式中,所述若干个拍摄角度为角度间隔相等的连续若干个拍摄角度,所述控制模块进一步用于:
控制所述图像机构围绕所述患者固定机构匀速旋转,以使所述图像机构等时间间隔地连续旋转经过所述若干个拍摄角度。
在一种可能的实现方式中,所述装置还包括:
第二获取模块,用于获取所述患者的基于计算机断层扫描的三维重建图像在每一所述拍摄角度下的二维投影图像;
相对应地,所述图像引导模块包括:
第一配准单元,用于在所述第一图像和所述第一拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第一配准结果;
第二配准单元,用于在所述第二图像和所述第二拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第二配准结果;
第一校正单元,用于基于所述第一配准结果和所述第二配准结果,校正所述患者当前位置状态与患者初始位置状态之间的相对位置偏差。
在一种可能的实现方式中,所述装置还包括:
第三获取模块,用于获取所述患者的三维的磁共振图像,所述三维的磁共振图像中标记有至少一个关注对象的区域范围;
第四获取模块,用于获取所述患者的参考三维图像,所述参考三维图像是基于计算机断层扫描的三维重建图像;
配准模块,用于在所述三维的磁共振图像与所述参考三维图像之间进行三维-三维配准,以在所述参考三维图像中完成每个所述关注对象的区域范围的标记;
相对应地,所述图像引导模块进一步用于:
在采用所述参考三维图像表示患者初始位置状态和采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导。
在一种可能的实现方式中,所述图像引导模块包括:
第三配准单元,用于分别在所述第一图像和所述第二图像的组合与所述参考三维图像之间进行二维-三维配准,以得到第三配准结果;
第二校正单元,用于基于所述第三配准结果,校正所述患者当前位置状态与所述患者初始位置状态之间的相对位置偏差。
在一种可能的实现方式中,所述装置还包括:
误差校正模块,用于在已经获取得到与所述第一图像对应的至少一个第三图像之后,利用至少一个双二维图像组合对所述第一图像和所述第二图像的组合所表示的所述患者当前位置状态进行误差校正;
其中,所述双二维图像组合是所述第一图像与一个所述第三图像之间的组合,所述第三图像是所述图像机构在第三拍摄角度下拍摄的所述患者的医学影像,所述第三拍摄角度是所述若干个拍摄角度中与所述第二拍摄角度之间的夹角小于第二预设角度的拍摄角度。
在一种可能的实现方式中,所述误差校正模块包括:
计算单元,用于分别基于每一个所述双二维图像组合计算表示所述患者当前位置状态的状态参量;
误差校正单元,用于利用分别对应于每一个所述双二维图像组合的所述状态参量,对基于所述第一图像和所述第二图像的组合计算的状态参量进行误差校正。
第三方面,本公开还提供了一种医疗设备,所述医疗设备包括处理器和存储器,所述存储器中存储有程序指令,所述处理器配置为调用所述存储器中的程序指令以执行上述任意一种图像引导方法。
第四方面,本公开还提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被配置为在被处理器执行时使所述处理器执行上述任意一种图像引导方法。
由上述技术方案可知,本公开可以在随着图像机构的旋转先获取一些拍摄角度下的医学影像以备使用,而从图像机构旋转至与起始位置夹角为第一预设角度的位置开始,就可以每旋转至一个拍摄角度,就进行一次图像引导,这样, 相邻两次图像引导之间的角度间隔为相邻两次拍摄角度间的间隔,相较于现有技术,就可以减小相邻两次患者当前位置状态检测之间的时间间隔,提升图像引导的效果。
附图说明
图1是本公开一个实施例提供的图像引导方法的流程示意图;
图2是本公开一个实施例提供的图像引导方法的应用场景示意图;
图3是本公开又一实施例提供的图像引导方法的流程示意图;
图4是本公开又一实施例提供的图像引导方法的实现原理示意图;
图5是本公开一个实施例提供的图像引导装置的结构框图;
图6是本公开一个实施例提供的医疗设备的结构框图。
具体实施方式
为使本公开的原理和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。
图1是本公开一个实施例提供的图像引导方法的流程示意图。所述图像引导方法应用于医疗设备,所述医疗设备包括患者固定机构和图像机构,所述图像机构被构造为能够通过围绕所述患者固定机构旋转在若干个拍摄角度下对所述患者固定机构上的患者进行医学影像的拍摄。在一个示例中,所述图像引导方法可以采用软件的形式安装在医疗设备(例如医疗设备、成像设备、手术台等)上,从而实现医疗活动中的图像引导过程。作为一种示例,所述方法的执行主体可以例如是所述医疗设备的控制器、所述医疗设备的处理器、连接所述医疗设备的控制装置,或是连接所述医疗设备的服务器,等等。参见图1,所述图像引导方法可以包括下述步骤。
在步骤101中,控制图像机构围绕患者固定机构旋转。
在步骤102中,在图像机构旋转至若干个拍摄角度中的任一拍摄角度时,获取第一图像。
其中,上述第一图像是通过图像机构在第一拍摄角度下拍摄的所述患者的医学影像,第一拍摄角度是图像机构当前所旋转至的拍摄角度。
在步骤103中,在已经获取得到与所述第一图像对应的第二图像之后,在采用所述第一图像和所述第二图像的组合表示患者当前位置状态的基础上进行图像引导。
其中,所述第二图像是所述图像机构在第二拍摄角度下拍摄的所述患者的医学影像,所述第二拍摄角度是所述若干个拍摄角度中与所述第一拍摄角度之间的夹角为第一预设角度的拍摄角度,所述若干个拍摄角度中任意两个相邻的拍摄角度之间的角度间隔均小于所述第一预设角度。
需要说明的是,本公开实施例的方法可以应用于任意一种包括图像引导的医疗活动中,例如图像引导放射治疗(Image-Guided Radio Therapy,IGRT)、颅内肿瘤切除手术或者其他涉及图像引导的外科手术等。应理解的是,所述患者指的是这些医疗活动的实施对象,例如需要进行放射治疗或外科手术的病人,且不仅限于患病的人。
应理解的是,所述若干个拍摄角度可以例如是根据使用需要预先确定的需要拍摄医学影像的拍摄角度(拍摄角度可以表示为平面极坐标系中代表方位的角度值,该平面极坐标系的原点是图像机构12旋转时所围绕的点),例如同一平面内0度到180度范围内以5度、10度、15度、20度或30度为间隔的多个拍摄角度(可以例如选取患者的正右方为0度)。所述第一预设角度是为了避免采用拍摄角度过于接近的两个医学影像来表示患者当前位置状态而预先设置的一个角度值,该第一预设角度可以例如在45度至135度的范围内选取。
图2是本公开一个实施例提供的图像引导方法的应用场景示意图。参见图2,该应用场景中,医疗设备包括患者固定机构11和图像机构12,其中患者固定机构11包括可以使患者平躺在上面的床体,图像机构12包括用来拍摄医学影像的X光探测器。应理解的是,在图2所示结构的基础上,为了实现例如X光透射图像的医学影像的采集,图像机构12可以还包括与X光探测器始终相对的X光发射器,并可以还包括用于固定X光探测器和X光发射器的支架、紧固件和/或导轨等等的机械结构,且所述机械结构可以是所述患者固定机构11的一部分。如图2所示,图像机构12能够在患者的左方、前方和右方的180度的范围内在竖直平面内旋转,在患者正右方时的拍摄角度为0度,在患者正前方时的拍摄角度为90度,在患者正左方时的拍摄角度为180度。以此为例,可以根据 使用需要和设备上的限制来确定所述若干个拍摄角度的范围;在其他可能的实现方式中,图像机构12可以在患者的左方、前方、右方和后方的360度的范围内旋转,而且其旋转轨迹所在的平面除了可以是竖直平面之外也可以是水平面或是斜平面等其他平面,并可以不仅限于此。以此为例,如图2所示的应用场景和医疗设备仅是一种示例,可以按照使用需要的不同对其进行适应性地改变,比如患者固定机构11还可以是用来固定直立姿态患者的支架,图像机构12还可以替换为其他类型的医学影像的成像装置等等,在此不再一一列举。
参考图2所示的应用场景,在一个示例中,所述若干个拍摄角度包括从患者的正右方到正左方的0度、30度、60度、90度、120度、150度和180度,所述第一预设角度为90度。上述步骤101可以包括控制图像机构12按照从0度旋转到180度再从180度旋转到0度并如此重复的路径匀速旋转的过程,在这一过程中可以按照上述步骤102中所述的那样在图像机构12旋转至上述每个拍摄角度时都分别拍摄得到一张医学影像。而由于可以满足夹角为90度的拍摄角度的组合有“0度和90度”、“30度和120度”、“60度和150度”以及“90度和180度”,因此在图像机构12第一次旋转至90度之前,每次拍摄得到的第一图像都没有与之对应的已获取得到的第二图像;而从图像机构12第一次旋转至90度开始,每次拍摄得到的第一图像都会有与之对应的已获取得到的第二图像(新获取得到的一个拍摄角度下的医学影像可以覆盖先前在该拍摄角度下获取得到的医学影像)。从而,在图像机构12第一次旋转至90度、120度、150度、180度以及此后的每一拍摄角度时,在拍摄得到第一图像之后就可以按照上述步骤103中所述的那样采用第一图像和所对应的第二图像的组合表示患者当前位置状态的基础上进行图像引导。即,图像机构12在第一次旋转至0度、30度和60度时拍摄医学影像的过程可以视作图像引导过程正式开始之前的准备过程,而从图像机构12第一次旋转至90度开始就可以在每次拍摄之后进行一次图像引导的步骤(例如将第一图像和第二图像的组合与表示患者初始位置状态的图像进行配准,并基于配准得到的位置偏移量校正患者当前位置状态与患者初始位置状态之间的相对位置偏差)。如此,患者当前位置状态的检测可以是图像机构12每旋转30度就进行一次,远高于图像机构12每旋转第一预设角度的90度进行一次的频率。
可以看出,本公开实施例可以在随着图像机构的旋转,先获取一些拍摄角度下的医学影像以备使用,而从图像机构旋转至与起始位置夹角为第一预设角 度的位置开始,就可以每旋转至一个拍摄角度,就进行一次图像引导,这样,相邻两次图像引导之间的角度间隔为相邻两次拍摄角度间的间隔,相较于现有技术,就可以减小相邻两次患者当前位置状态检测之间的时间间隔,提升图像引导的效果。
需要说明的是,本申请对上述步骤101、步骤102和步骤103之间的执行顺序不做限定,可以在可能的范围内任意设置。
图3是本公开又一实施例提供的图像引导方法的流程示意图。本实施例以所述医疗设备中的控制器执行图像引导方法,实现针对肺部肿瘤的图像引导放射治疗为例进行说明。参见图3,所述图像引导方法可以包括下述步骤。
步骤201至步骤204是检测患者的患者初始位置状态的过程,所述患者初始位置状态指的是患者在治疗活动之前或开始时所处的位置状态,与治疗活动过程中患者所处的患者当前位置状态彼此对应(两个位置状态可以例如采用可移动病床相对于底部支撑结构的移动坐标来表示)。
在步骤201中,获取患者的三维的磁共振图像。
其中,三维的磁共振图像中标记有至少一个关注对象的区域范围。
所述三维的磁共振(Magnetic Resonance,MR)图像可以是主要利用MRI技术对患者成像后所得到的三维的图像,其可以是上述医疗设备通过通信连接从成像设备处获取得到的,也可以是该医疗设备自身成像得到的。
所述关注对象的区域范围是由用户在磁共振图像中人为选取的,例如放射治疗中病灶的区域范围、某个解剖点的位置,或者颅内肿瘤切除手术中肿瘤及其周边血管组织的区域范围,等等。在一个示例中,上述医疗设备在接收到三维的磁共振图像之后,通过显示所述三维的磁共振图像并提供区域选取工具,使得用户通过在所述医疗设备上的操作选取每个关注对象的区域范围。在又一示例中,上述医疗设备从成像设备处接收已标记每个关注对象的区域范围的磁共振图像。基于磁共振图像能够清晰表示出软组织分布的特点,上述在磁共振图像中标记出来的关注对象的区域范围相比于在其他类型的影像中可具有更高的精确度。
在一个示例中,在治疗开始之前,医疗人员操作MRI设备对患者(肺癌患者)的胸部进行三维成像,以得到患者的胸部的三维的磁共振图像之后,并基于设备之间的连接将该磁共振图像传输到计算机中。此后,医疗人员通过操作计算机在该磁共振图像中勾画各个病灶区,作为上述三维的磁共振图像中标记 的至少一个关注对象的区域范围。在步骤201中,医疗设备的控制器从计算机设备处接收标记有各个病灶区的磁共振图像,完成所述三维的磁共振图像的获取。
在步骤202中,获取患者的参考三维图像。
其中,参考三维图像是基于计算机断层扫描的三维重建图像。参考三维图像可以是利用计算机断层扫描(Computed Tomography,CT)类的成像技术对患者成像后经过三维重建所得到的三维的图像,其可以是上述医疗设备通过通信连接从成像设备处接收并经过处理后得到的,也可以是上述医疗设备通过通信连接从图像处理设备处接收得到的,还可以是该医疗设备自身成像并处理后得到的。其中,计算机断层扫描类的技术可以是锥形束计算机断层扫描(Cone beam CT,CBCT)技术、单层螺旋计算机断层扫描(SingleSlice helieal CT,SSCT)技术、多层螺旋计算机断层扫描(MultiSliecs helieal CT,MSCT)技术等。参考三维图像可以用于在后续图像引导过程中与实时采集的第一图像和第二图像的组合相比较,由此提供进行医疗活动所需要的信息,比如放射治疗中治疗射束聚焦位置与靶区位置之间的偏差,或是外科手术中待切除部分是否发生移动,等等。
在一个示例中,在放射治疗开始之前,医疗人员对患者进行治疗前的摆位,例如在医疗设备释放出的激光线的引导下改变患者的姿势和位置使得激光线对准患者的相应部位。在摆位完成之后,医疗人员操作医疗设备中的CBCT系统,以对患者的胸部进行CBCT成像。在步骤202中,在成像完成之后,医疗设备的控制系统接收所得到的CBCT图像数据,以通过三维重建,得到患者的胸部的三维体数据,作为上述参考三维图像。应理解的是,由于CBCT图像的三维重建可能存在锥束伪影,因此在三维重建过程中的选择感兴趣区域(Region Of Interest,ROI)的环节,医疗设备可以向用户输出提示以引导其去除所述参考三维图像中存在图像伪影的部分(例如CBCT图像的开始和结束部分),从而帮助提升CBCT图像的准确程度。
在步骤203中,在三维的磁共振图像与参考三维图像之间进行三维-三维配准,以在参考三维图像中完成每个关注对象的区域范围的标记。
所述图像配准是指对于一幅图像寻求一种(或一系列的)空间变换,使它与另一幅图像上的对应点达到空间上的一致。即,上述三维-三维配准指的是寻求一种或一系列的空间变换,使得所述磁共振图像能够通过这种空间变换与所 述参考三维图像重合。需要说明的是,三维-三维配准可以仅在医疗活动所关心的空间区域内进行,以节省算法开支;类似地,磁共振图像和参考三维图像也可以仅针对医疗活动所关心的空间区域进行采集,以缩短成像时间并减少曝光剂量。还需要说明的是,图像配准的结果可以表示为同一定位点(或称同名点,可以例如包括解剖点或图像特征点)在图像之间的相对位置坐标,也可以表示为图像之间的变换矩阵,还可以表示为图像中每个同名图像区域之间的对应关系表,并可以不仅限于此。基于所述三维-三维配准的配准结果,磁共振图像中的至少一个关注对象的区域范围可以在参考三维图像中得到标记。可理解的是,即便参考三维图像中表示出的关注对象不清晰或者根本没有表示出关注对象,只要配准精度满足应用需求,都可以基于配准结果完成每个关注对象的区域范围在参考三维图像的标记。
在一个示例中,医疗设备在获取得到所述磁共振图像和所述参考三维图像之后,对所述磁共振图像和所述参考三维图像进行三维-三维图像配准。在一个示例中,上述三维-三维图像配准包括通过迭代的方式寻求磁共振图像和参考三维图像之间的最佳变换关系,并以配准精度作为指示是否继续迭代的标志。在配准精度达到指定水平时,停止迭代,输出所得到的变换关系为配准结果。依照配准结果的变换关系,可以将磁共振图像中每个关注对象的区域范围变换为参考三维图像中的每个关注对象的区域范围,以完成每个所述关注对象的区域范围在所述参考三维图像中的标记。
在一个示例中,在上述迭代过程中设定最大迭代次数,当迭代次数达到最大迭代次数而配准精度仍低于指定水平时,停止迭代并返回步骤202之前以重新获取所述参考三维图像。在该示例中,上述应用条件即“配准精度达到指定水平”,可以依照实际的应用需求进行设定。应理解的是,对于迭代次数达到最大迭代次数而配准精度仍低于指定水平的情形来说,可以认为此时的参考三维图像与磁共振图像之间的差异过大而难以找到合理的图像变换关系。由此,通过在此情形下重新获取参考三维图像并重复中间过程的方式,可以在保证配准精度的基础上提升参考三维图像中每个关注对象的区域范围的准确程度。
在步骤204中,基于三维-三维配准的配准结果,校正所述磁共振图像与参考三维图像之间的摆位偏差。
在一个示例中,在配准精度满足应用条件的情况下,医疗设备可以输出配准结果,以提示医疗人员进行移床,进而校正参考三维图像与磁共振图像之间 的摆位偏差(即在对患者拍摄参考三维图像和对患者拍摄磁共振图像之间所产生的患者位置状态的偏差)。一般情况下,可以认为磁共振图像是经过标准化处理的,因此磁共振图像可以代表标准的摆位位置。由此,在参考三维图像与磁共振图像的配准精度满足应用条件的情况下,可以认为配准结果代表了当前的摆位位置与标准的摆位位置之间的偏差,从而可以依此进行移床以达到标准的摆位位置。基于上述过程,可以帮助减小摆位偏差。
经过上述过程,即完成了患者初始位置状态的检测(检测结果以参考三维图像为形式)和固定,接下来的步骤205至步骤208是在参考三维图像表示患者初始位置状态的基础上通过检测患者当前位置状态来进行图像引导的过程。
在步骤205中,控制图像机构旋转至下一拍摄角度。
在一个示例中,医疗设备的控制器通过与图像机构之间的连接向其发送旋转控制指令,以使图像机构按照接收到的旋转控制指令进行旋转。在步骤204之后,控制器可以控制图像机构旋转至所述若干个拍摄角度中的起点,比如上述0度至180度范围中的0度的拍摄角度。
在步骤206中,获取第一图像。
在一个示例中,控制器通过与图像机构之间的连接控制其在当前的拍摄角度下对患者固定机构上的患者的肺部进行医学影像的拍摄,并通过与图像机构之间的连接接收拍摄得到的医学影像作为当前的第一图像,医学影像可以经过去噪、压缩、滤波、特征提取等处理。此后,控制器可以把获取得到的第一图像在存储器中与拍摄角度对应存储。
在步骤207中,判断是否已经获取得到与第一图像对应的第二图像和与第一图像对应的所有第三图像。
其中,所述第三图像是所述图像机构在第三拍摄角度下拍摄的所述患者的医学影像,所述第三拍摄角度是所述若干个拍摄角度中与所述第二拍摄角度之间的夹角小于第二预设角度的拍摄角度。在一个示例中,所述第一预设角度为90度,所述第二预设角度为10度,从而对于第一拍摄角度为130度的情形来说,其第二拍摄角度为40度,其第三拍摄角度包括30度和50度。在一个示例中,控制器可以依照预先设定的规则查询存储器中第二拍摄角度和每个第三拍摄角度是否对应存储有医学影像,由此实现上述判断过程。在存储器中第二拍摄角度和每个第三拍摄角度均对应存储有医学影像时,确定已经获取得到与第一图像对应的第二图像和与第一图像对应的所有第三图像,执行步骤208。在其中第 二拍摄角度或者任意一个或多个第三拍摄角度没有对应存储有医学影像时,确定没有获取得到与第一图像对应的第二图像和与第一图像对应的所有第三图像,返回步骤205之前开始控制图像机构旋转至下一个拍摄角度的过程。
在步骤208中,在采用参考三维图像表示患者初始位置状态和采用第一图像和第二图像的组合表示患者当前位置状态的基础上进行图像引导,其中第一图像和第二图像的组合所表示的患者当前位置状态已利用至少一个双二维图像组合进行了误差校正。
其中,所述双二维图像组合是所述第一图像与一个所述第三图像之间的组合。在一个示例中,该步骤208包括下述过程:在第一图像和第二图像的组合与所述参考三维图像之间进行二维-三维配准,以得到第三配准结果;基于所述第三配准结果,校正所述患者当前位置状态与患者初始位置状态之间的相对位置偏差。
所述相对位置偏差可能来源于患者在拍摄参考三维图像与拍摄两个医学影像之间的时间段内所发生的整体移动,也可能来源于患者的内部组织相对于患者所发生的移动,并可以不仅限于此。对于上述放射治疗这一应用场景而言,上述相对位置偏差具体指的是当前的靶区位置相对于其参考位置(即根据参考三维图像所确定的靶区位置)之间的偏差。当然,对于放射治疗以外的其他应用场景,上述相对位置偏差可以具有不同的含义,而且输出上述二维-三维配准的配准结果的目的也可以不仅限于校正上述相对位置偏差(还可以例如是跟踪物体在患者内的移动,或是获得所要切除的部分的实际切除情况)。
上述每个二维-三维配准的过程可以包括:分别在双二维图像组合所对应的第一拍摄角度和第二拍摄角度下,采用光线投射算法基于所述参考三维图像生成数字重建影像(Digitally Reconstructed Radiograph,DRR),将得到的两个一组的数字重建影像与上述双二维图像组合进行比较,按照比较结果对空间变换的参数进行优化,从而依照优化后的参数重新生成两个一组的数字重建影像并重复上述过程(迭代),直到满足终止条件时输出优化后的空间变换的参数,以作为所述二维-三维配准的配准结果。
上述校正相对位置偏差的过程可以包括:首先,参照上述过程,分别在每个双二维图像组合与所述参考三维图像之间进行二维-三维配准。然后,可以分别根据已经取得的每个二维-三维配准的配准结果,计算得到肿瘤区域的几何中心在同一空间坐标系中三维偏移量(即肿瘤区域的几何中心相对于患者初始位 置状态在空间中的偏移矢量)。最后,可以在得到的所有三维偏移量之间取平均,并基于平均后的三维偏移量使治疗放射线的照射位置(射野位置)与患者当前位置状态相匹配(控制器可以例如控制治疗放射线的发射装置和患者固定装置的移动位置中的至少一个来实现上述过程;此外,控制器还可以通过实时输出配准结果来指示操作者移动床或多叶光栅叶片,以校正患者位置或射野位置)。
通过随着图像机构的旋转而不断重复上述步骤205至步骤208所述的过程,即可实现肿瘤位置的追踪以及实时的图像引导。当然,可以设定一个预定的阈值与上述相对位置偏差相比较,当相对位置偏差大于或等于该预定的阈值时,则可以不进行任何操作而继续进行治疗。应理解的是,所述预定的阈值可以依照实际应用场景和应用需求进行确定。
可以理解的是,相比于直接使用第一图像和第二图像的组合与所述参考三维图像之间的二维-三维配准的配准结果来校正相对位置偏差,进一步结合多个双二维图像组合的配准结果更有利于误差的减小。
图4是本公开又一实施例提供的图像引导方法的实现原理示意图。参见图4,在一个示例中,所述若干个拍摄角度为0度到180度范围内角度间隔为10度的19个拍摄角度,所述第一预设角度为90度,所述第二预设角度为10度,上述步骤205中控制图像机构旋转的路径是从0度到180度再返回0度如此重复。由此,上述图像引导方法中通过检测患者当前位置状态来进行图像引导的过程可以包括下述过程:在图像机构第一次旋转至0度至100度中的每一个时,由于其所对应的三个拍摄角度(一个第二拍摄角度和两个第三拍摄角度)下的医学影像还没有获取得到,因此均是在获取得到第一图像后就进入到下一个拍摄角度对应的流程(对应图3中依次执行步骤205、步骤206并在步骤207中跳转回步骤205之前)。而在图像机构第一次旋转至100度开始,此后的每一个步骤207中都能确认到当前的第一图像所对应的三个拍摄角度下的医学影像都已获取得到,因此能够在每次控制图像机构旋转至一个第一拍摄角度时都执行一次步骤208,从而在此期间内以图像机构旋转10度所用时间的时间间隔进行患者当前位置状态的检测以及相对位置偏差的校正。
通过重复步骤205至步骤208的过程,可以依次完成所有靶点的治疗过程,从而最终完成整个图像引导的过程。
在又一种实现方式中,所述患者初始位置状态还可以通过在步骤205之前进行的下述步骤得到:获取所述患者的基于计算机断层扫描的三维重建图像在 每一所述拍摄角度下的二维投影图像。该基于计算机断层扫描的三维重建图像的获取方式可以参见上述参考三维图像的获取方式。在一个示例中,可以分别在所述若干个拍摄角度下对得到的参考三维图像进行投影处理,以得到每一所述拍摄角度下的二维投影图像。
相对应地,所述在采用至少一个双二维图像组合表示患者当前位置状态的基础上进行图像引导,可以包括:在所述第一图像和所述第一拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第一配准结果;在所述第二图像和所述第二拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第二配准结果;基于所述第一配准结果和所述第二配准结果,校正所述患者当前位置状态与患者初始位置状态之间的相对位置偏差。在一个示例中,可以将110度下的医学影像作为第一图像与110度下的二维投影图像进行二维-二维配准,从而得到110度下的二维偏移量;接下来,可以对10度下的医学影像作为第三图像与10度下的二维投影图像进行二维-二维配准以得到10度下的二维偏移量,对20度下的医学影像作为第二图像与20度下的二维投影图像进行二维-二维配准以得到20度下的二维偏移量,对30度下的医学影像作为第三图像与30度下的二维投影图像进行二维-二维配准以得到30度下的二维偏移量;最后,可以综合10度、20度、30度以及110度下的二维偏移量计算三维偏移量,并依据该三维偏移量采用上述任意一种方式校正患者当前位置状态与患者初始位置状态之间的相对位置偏差。
可以看出的是,相比于图2中所示的实现方式,该实现方式中可能无法准确定位出各个关注对象的区域范围,这会给放射治疗带来一定的困难和不确定性;而且,初始的摆位误差将不能得到校正,从而可能影响放射治疗的精确程度。因此,相比于该实现方式,图2中所示的实现方式可以利用磁共振图像提供各个关注对象的区域范围的精确定位,并可以帮助校正初始的摆位误差,使得放射治疗能够更加精确而容易进行。
此外,图2中所示的实现方式可以通过磁共振图像与参考三维图像之间的三维-三维配准,来将磁共振图像中精确度很高的关注对象的区域范围标记在参考三维图像当中,从而采用该参考三维图像表示患者初始位置状态的图像引导过程可以享受到MRI的高软组织对比分辨率所带来的好处,即实现了实时图像引导中MRI的引入,可以借助MRI技术的优势来更好地进行实时图像引导。
此外,需要说明的是,在上述任一示例的基础上,直接采用磁共振图像代 替CBCT图像来作为参考三维图像是不可行的。其原因主要在于,上述光线透射算法可以在基于CBCT得到的三维体数据的基础上模拟X光线穿透人体不同组织器官时的衰减和曝光过程。所得到的CT值由X光线对组织的衰减与对水的衰减的比值表示:
μ=(CT/1000+1)·μ water·F
式中,F为转换因子,μ为X光线在组织中的衰减系数,μ water为X光线在水中的衰减系数。在此基础之上,基于X光线穿过不同CT值组成的三维体数据,可以计算每条光线穿过三维体数据后的累积衰减参数:
Figure PCTCN2019089073-appb-000001
式中,I 0为X射线的初始强度,μ i是组织i的线性衰减系数,l i是X射线穿过组织i的长度,I为X射线穿过三维体数据后的强度。基于上述关系,通过将上述I变换为图像灰度值,即可将经过三维重建的CBCT图像变换为二维的数字重建影像。然而,对于磁共振图像来说,其反映的是人体不同组织的氢含量,图像的MRI值与组织的衰减系数之间并不存在类似于上述CT值与组织的衰减系数之间的关系。即便模拟光线穿过MRI值组成的三维体数据,按上述累计衰减参数的计算方法计算每条光线累积衰减参数,得到的值也不能正确的反映不同组织的密度衰减信息,磁共振图像也与无法与实时采集的X光透射图像进行精确配准。
基于上述理由,MRI一般无法应用到实时图像引导中来,其所具有的高软组织对比分辨率也无法有益于图像引导的效果上。然而,本公开实施例则反过来利用磁共振图像与参考三维图像之间的三维-三维配准,使得MRI的优势能够通过参考三维图像间接应用于实时图像引导,使得实时图像引导既不需要重复大量进行MRI的耗时的成像过程,同时也能享受到MRI的优势所带来的好处,有助于实现具有更优效果的实时图像引导。
需要说明的是,在其他可能的实现方式中,依据第二预设角度的不同,每个第一图像所对应的第三图像的数量还可以是例如三个、四个、五个、六个等等。当采用至少一个第三图像来进行误差校正时,患者当前位置状态可以不仅基于第一图像和第二图像两个医学影像来表示,而可以通过多个检测结果之间取平均的方式减小误差。
图5本公开一个实施例提供的图像引导装置的结构框图。所述图像引导装 置应用于医疗设备,所述医疗设备包括患者固定机构和图像机构,所述图像机构被构造为能够通过围绕所述患者固定机构旋转在若干个拍摄角度下对所述患者固定机构上的患者进行医学影像的拍摄。在一个示例中,所述图像引导方法可以采用软件的形式安装在医疗设备(例如医疗设备、成像设备、手术台等)上,从而实现医疗活动中的图像引导过程。参见图5,所述图像引导装置包括:
控制模块31,用于控制所述图像机构围绕所述患者固定机构旋转;
第一获取模块32,用于在所述图像机构旋转至任一所述拍摄角度时,获取第一图像;其中,所述第一图像是通过所述图像机构在第一拍摄角度下拍摄的所述患者的医学影像,所述第一拍摄角度是所述图像机构当前所旋转至的拍摄角度;
图像引导模块33,用于在已经获取得到与所述第一图像对应的至少一个第二图像时,在已经获取得到与所述第一图像对应的第二图像之后,在采用所述第一图像和所述第二图像的组合表示患者当前位置状态的基础上进行图像引导;其中,所述第二图像是所述图像机构在第二拍摄角度下拍摄的所述患者的医学影像,所述第二拍摄角度是所述若干个拍摄角度中与所述第一拍摄角度之间的夹角为第一预设角度的拍摄角度,所述若干个拍摄角度中任意两个相邻的拍摄角度之间的角度间隔均小于所述第一预设角度。
在一种可能的实现方式中,所述若干个拍摄角度为角度间隔相等的连续若干个拍摄角度,所述控制模块31进一步用于:
控制所述图像机构围绕所述患者固定机构匀速旋转,以使所述图像机构等时间间隔地连续旋转经过所述若干个拍摄角度。
在一种可能的实现方式中,所述装置还包括:
第二获取模块,用于获取所述患者的基于计算机断层扫描的三维重建图像在每一所述拍摄角度下的二维投影图像;
相对应地,所述图像引导模块33包括:
第一配准单元,用于在所述第一图像和所述第一拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第一配准结果;
第二配准单元,用于在所述第二图像和所述第二拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第二配准结果;
第一校正单元,用于基于所述第一配准结果和所述第二配准结果,校正所述患者当前位置状态与患者初始位置状态之间的相对位置偏差。
在一种可能的实现方式中,所述装置还包括:
第三获取模块,用于获取所述患者的三维的磁共振图像,所述三维的磁共振图像中标记有至少一个关注对象的区域范围;
第四获取模块,用于获取所述患者的参考三维图像,所述参考三维图像是基于计算机断层扫描的三维重建图像;
配准模块,用于在所述三维的磁共振图像与所述参考三维图像之间进行三维-三维配准,以在所述参考三维图像中完成每个所述关注对象的区域范围的标记;
相对应地,所述图像引导模块33进一步用于:
在采用所述参考三维图像表示患者初始位置状态和采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导。
在一种可能的实现方式中,所述图像引导模块33包括:
第三配准单元,用于分别在所述第一图像和所述第二图像的组合与所述参考三维图像之间进行二维-三维配准,以得到第三配准结果;
第二校正单元,用于基于所述第三配准结果,校正所述患者当前位置状态与所述患者初始位置状态之间的相对位置偏差。
在一种可能的实现方式中,所述装置还包括:
误差校正模块,用于在已经获取得到与所述第一图像对应的至少一个第三图像之后,利用至少一个双二维图像组合对所述第一图像和所述第二图像的组合所表示的所述患者当前位置状态进行误差校正;
其中,所述双二维图像组合是所述第一图像与一个所述第三图像之间的组合,所述第三图像是所述图像机构在第三拍摄角度下拍摄的所述患者的医学影像,所述第三拍摄角度是所述若干个拍摄角度中与所述第二拍摄角度之间的夹角小于第二预设角度的拍摄角度。
在一种可能的实现方式中,所述误差校正模块包括:
计算单元,用于分别基于每一个所述双二维图像组合计算表示所述患者当前位置状态的状态参量;
误差校正单元,用于利用分别对应于每一个所述双二维图像组合的所述状态参量,对基于所述第一图像和所述第二图像的组合计算的状态参量进行误差校正。
应理解的是,根据上文所描述的图像引导方法的可选实现方式,该图像引 导装置可以通过相对应的构造和配置实现上述任意一种的图像引导方法,具体细节不再赘述。
在图5对应的示例中,图像引导装置是以功能单元/功能模块的形式来呈现的。这里的“单元/模块”可以指特定应用集成电路(Application Specific Integrated Circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。示例性的,所述及的单元和模块中的至少一个的至少部分功能可以通过由处理器来执行存储器中存储的程序代码来实现。
图6是本公开一个实施例提供的医疗设备的结构框图。参见图6,所述医疗设备包括处理器41和存储器42,所述存储器42中存储有程序指令,所述处理器41配置为调用所述存储器42中的程序指令以执行上述任意一种图像引导方法。
处理器41可以包括中央处理器(CPU,单核或者多核),图形处理器(GPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器,或者多个用于控制程序执行的集成电路。
存储器42可以包括只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以包括电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立设置的,也可以和处理器集成在一起。
在具体实现中,作为一种实施例,处理器41可以包括一个或多个CPU。在具体实现中,作为一种实施例,上述医疗设备可以包括多个处理器。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述医疗设备可以包括一个通用计算机设备或者一个专用计算机设备。在具体实现中,医疗设备可以例如是医疗设备、图像引导医疗设备或者手术台等任意一种需要进行医学影像图像配准的电子设备,计算机设备可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备或类似结构的设备。
本公开的实施例还提供了一种计算机存储介质,用于储存为上述任意一种图像引导方法所用的计算机程序,所述计算机程序包括程序指令。通过执行存储的程序,可以实现本公开提供的上述任意一种图像引导方法。
本领域技术人员应明白,本公开的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过因特网或其它有线或无线电信系统。
本申请是参照本公开的实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的实施例,并不用以限制本公开,凡在本公开的精神 和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求的保护范围之内。

Claims (16)

  1. 一种图像引导方法,应用于医疗设备,所述医疗设备包括患者固定机构和图像机构,所述图像机构被构造为能够通过围绕所述患者固定机构旋转在若干个拍摄角度下对所述患者固定机构上的患者进行医学影像的拍摄,所述图像引导方法包括:
    控制所述图像机构围绕所述患者固定机构旋转;
    在所述图像机构旋转至任一所述拍摄角度时,获取第一图像;其中,所述第一图像是通过所述图像机构在第一拍摄角度下拍摄的所述患者的医学影像,所述第一拍摄角度是所述图像机构当前所旋转至的拍摄角度;
    在已经获取得到与所述第一图像对应的第二图像之后,在采用所述第一图像和所述第二图像的组合表示患者当前位置状态的基础上进行图像引导;其中,所述第二图像是所述图像机构在第二拍摄角度下拍摄的所述患者的医学影像,所述第二拍摄角度是所述若干个拍摄角度中与所述第一拍摄角度之间的夹角为第一预设角度的拍摄角度,所述若干个拍摄角度中任意两个相邻的拍摄角度之间的角度间隔均小于所述第一预设角度。
  2. 根据权利要求1所述的方法,其中所述若干个拍摄角度为角度间隔相等的连续若干个拍摄角度,所述控制所述图像机构围绕所述患者固定机构旋转,包括:
    控制所述图像机构围绕所述患者固定机构匀速旋转,以使所述图像机构等时间间隔地连续旋转经过所述若干个拍摄角度。
  3. 根据权利要求1所述的方法,还包括:
    获取所述患者的基于计算机断层扫描的三维重建图像在每一所述拍摄角度下的二维投影图像;
    相对应地,所述在采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导,包括:
    在所述第一图像和所述第一拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第一配准结果;
    在所述第二图像和所述第二拍摄角度下的所述二维投影图像之间进行二维- 二维配准,以得到第二配准结果;
    基于所述第一配准结果和所述第二配准结果,校正所述患者当前位置状态与患者初始位置状态之间的相对位置偏差。
  4. 根据权利要求1所述的方法,还包括:
    获取所述患者的三维的磁共振图像,所述三维的磁共振图像中标记有至少一个关注对象的区域范围;
    获取所述患者的参考三维图像,所述参考三维图像是基于计算机断层扫描的三维重建图像;
    在所述三维的磁共振图像与所述参考三维图像之间进行三维-三维配准,以在所述参考三维图像中完成每个所述关注对象的区域范围的标记;
    相对应地,所述在采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导,包括:
    在采用所述参考三维图像表示患者初始位置状态和采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导。
  5. 根据权利要求4所述的方法,其中所述在采用所述参考三维图像表示所述患者初始位置状态和采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导,包括:
    在所述第一图像和所述第二图像的组合与所述参考三维图像之间进行二维-三维配准,以得到第三配准结果;
    基于所述第三配准结果,校正所述患者当前位置状态与所述患者初始位置状态之间的相对位置偏差。
  6. 根据权利要求1所述的方法,还包括:
    在已经获取得到与所述第一图像对应的至少一个第三图像之后,利用至少一个双二维图像组合对所述第一图像和所述第二图像的组合所表示的所述患者当前位置状态进行误差校正;
    其中,所述双二维图像组合是所述第一图像与一个所述第三图像之间的组合,所述第三图像是所述图像机构在第三拍摄角度下拍摄的所述患者的医学影 像,所述第三拍摄角度是所述若干个拍摄角度中与所述第二拍摄角度之间的夹角小于第二预设角度的拍摄角度。
  7. 根据权利要求6所述的方法,其中利用至少一个双二维图像组合对所述第一图像和所述第二图像的组合所表示的所述患者当前位置状态进行误差校正,包括:
    分别基于每一个所述双二维图像组合计算表示所述患者当前位置状态的状态参量;
    利用分别对应于每一个所述双二维图像组合的所述状态参量,对基于所述第一图像和所述第二图像的组合计算的状态参量进行误差校正。
  8. 一种图像引导装置,应用于医疗设备,所述医疗设备包括患者固定机构和图像机构,所述图像机构被构造为能够通过围绕所述患者固定机构旋转在若干个拍摄角度下对所述患者固定机构上的患者进行医学影像的拍摄,所述图像引导装置包括:
    控制模块,用于控制所述图像机构围绕所述患者固定机构旋转;
    第一获取模块,用于在所述图像机构旋转至任一所述拍摄角度时,获取第一图像;其中,所述第一图像是通过所述图像机构在第一拍摄角度下拍摄的所述患者的医学影像,所述第一拍摄角度是所述图像机构当前所旋转至的拍摄角度;
    图像引导模块,用于在已经获取得到与所述第一图像对应的至少一个第二图像时,在已经获取得到与所述第一图像对应的第二图像之后,在采用所述第一图像和所述第二图像的组合表示患者当前位置状态的基础上进行图像引导;其中,所述第二图像是所述图像机构在第二拍摄角度下拍摄的所述患者的医学影像,所述第二拍摄角度是所述若干个拍摄角度中与所述第一拍摄角度之间的夹角为第一预设角度的拍摄角度,所述若干个拍摄角度中任意两个相邻的拍摄角度之间的角度间隔均小于所述第一预设角度。
  9. 根据权利要求8所述的装置,其中所述若干个拍摄角度为角度间隔相等的连续若干个拍摄角度,所述控制模块进一步用于:
    控制所述图像机构围绕所述患者固定机构匀速旋转,以使所述图像机构等时间间隔地连续旋转经过所述若干个拍摄角度。
  10. 根据权利要求8所述的装置,还包括:
    第二获取模块,用于获取所述患者的基于计算机断层扫描的三维重建图像在每一所述拍摄角度下的二维投影图像;
    相对应地,所述图像引导模块包括:
    第一配准单元,用于在所述第一图像和所述第一拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第一配准结果;
    第二配准单元,用于在所述第二图像和所述第二拍摄角度下的所述二维投影图像之间进行二维-二维配准,以得到第二配准结果;
    第一校正单元,用于基于所述第一配准结果和所述第二配准结果,校正所述患者当前位置状态与患者初始位置状态之间的相对位置偏差。
  11. 根据权利要求8所述的装置,还包括:
    第三获取模块,用于获取所述患者的三维的磁共振图像,所述三维的磁共振图像中标记有至少一个关注对象的区域范围;
    第四获取模块,用于获取所述患者的参考三维图像,所述参考三维图像是基于计算机断层扫描的三维重建图像;
    配准模块,用于在所述三维的磁共振图像与所述参考三维图像之间进行三维-三维配准,以在所述参考三维图像中完成每个所述关注对象的区域范围的标记;
    相对应地,所述图像引导模块进一步用于:
    在采用所述参考三维图像表示患者初始位置状态和采用所述第一图像和所述第二图像的组合表示所述患者当前位置状态的基础上进行图像引导。
  12. 根据权利要求11所述的装置,其中所述图像引导模块包括:
    第三配准单元,用于分别在所述第一图像和所述第二图像的组合与所述参考三维图像之间进行二维-三维配准,以得到第三配准结果;
    第二校正单元,用于基于所述第三配准结果,校正所述患者当前位置状态 与所述患者初始位置状态之间的相对位置偏差。
  13. 根据权利要求8所述的装置,还包括:
    误差校正模块,用于在已经获取得到与所述第一图像对应的至少一个第三图像之后,利用至少一个双二维图像组合对所述第一图像和所述第二图像的组合所表示的所述患者当前位置状态进行误差校正;
    其中,所述双二维图像组合是所述第一图像与一个所述第三图像之间的组合,所述第三图像是所述图像机构在第三拍摄角度下拍摄的所述患者的医学影像,所述第三拍摄角度是所述若干个拍摄角度中与所述第二拍摄角度之间的夹角小于第二预设角度的拍摄角度。
  14. 根据权利要求8所述的装置,其中所述误差校正模块包括:
    计算单元,用于分别基于每一个所述双二维图像组合计算表示所述患者当前位置状态的状态参量;
    误差校正单元,用于利用分别对应于每一个所述双二维图像组合的所述状态参量,对基于所述第一图像和所述第二图像的组合计算的状态参量进行误差校正。
  15. 一种医疗设备,其中,所述医疗设备包括处理器和存储器,所述存储器中存储有程序指令,所述处理器配置为调用所述存储器中的程序指令以执行如权利要求1至7中任一所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被配置为在被处理器执行时使所述处理器执行如权利要求1至7中任一项所述的方法。
PCT/CN2019/089073 2019-05-29 2019-05-29 图像引导方法及装置、医疗设备、计算机可读存储介质 WO2020237537A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980096948.2A CN113891740B (zh) 2019-05-29 2019-05-29 图像引导方法及装置、医疗设备、计算机可读存储介质
PCT/CN2019/089073 WO2020237537A1 (zh) 2019-05-29 2019-05-29 图像引导方法及装置、医疗设备、计算机可读存储介质
US17/615,063 US20220218298A1 (en) 2019-05-29 2019-05-29 Method for image guidance, medical device and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089073 WO2020237537A1 (zh) 2019-05-29 2019-05-29 图像引导方法及装置、医疗设备、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020237537A1 true WO2020237537A1 (zh) 2020-12-03

Family

ID=73553568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089073 WO2020237537A1 (zh) 2019-05-29 2019-05-29 图像引导方法及装置、医疗设备、计算机可读存储介质

Country Status (3)

Country Link
US (1) US20220218298A1 (zh)
CN (1) CN113891740B (zh)
WO (1) WO2020237537A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658168A (zh) * 2021-08-25 2021-11-16 上海联影医疗科技股份有限公司 指定剂量区的获取方法、系统、终端及存储介质
CN113704527B (zh) * 2021-09-02 2022-08-12 北京城市网邻信息技术有限公司 三维展示方法及三维展示装置、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232835A (zh) * 2010-04-21 2011-11-09 清华大学 一种影像引导放射治疗的定位方法
CN103068443A (zh) * 2010-08-26 2013-04-24 三菱重工业株式会社 放射线治疗装置控制装置及放射线治疗装置控制方法
CN104888356A (zh) * 2015-06-30 2015-09-09 瑞地玛医学科技有限公司 影像引导及呼吸运动分析方法
CN106408509A (zh) * 2016-04-29 2017-02-15 上海联影医疗科技有限公司 一种配准方法及其装置
WO2018044718A1 (en) * 2016-08-29 2018-03-08 Accuray Incorporated Offline angle selection in rotational imaging and tracking systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150243025A1 (en) * 2012-09-28 2015-08-27 Brainlab Ag Isocentric patient rotation for detection of the position of a moving object
US10342996B2 (en) * 2016-08-29 2019-07-09 Accuray Incorporated Online angle selection in rotational imaging and tracking systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232835A (zh) * 2010-04-21 2011-11-09 清华大学 一种影像引导放射治疗的定位方法
CN103068443A (zh) * 2010-08-26 2013-04-24 三菱重工业株式会社 放射线治疗装置控制装置及放射线治疗装置控制方法
CN104888356A (zh) * 2015-06-30 2015-09-09 瑞地玛医学科技有限公司 影像引导及呼吸运动分析方法
CN106408509A (zh) * 2016-04-29 2017-02-15 上海联影医疗科技有限公司 一种配准方法及其装置
WO2018044718A1 (en) * 2016-08-29 2018-03-08 Accuray Incorporated Offline angle selection in rotational imaging and tracking systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658168A (zh) * 2021-08-25 2021-11-16 上海联影医疗科技股份有限公司 指定剂量区的获取方法、系统、终端及存储介质
CN113658168B (zh) * 2021-08-25 2024-04-16 上海联影医疗科技股份有限公司 指定剂量区的获取方法、系统、终端及存储介质
CN113704527B (zh) * 2021-09-02 2022-08-12 北京城市网邻信息技术有限公司 三维展示方法及三维展示装置、存储介质

Also Published As

Publication number Publication date
CN113891740A (zh) 2022-01-04
CN113891740B (zh) 2024-01-16
US20220218298A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP6894987B2 (ja) 適応型放射線療法に対する3次元位置特定及び追跡
US10791958B2 (en) Magnetic resonance projection imaging
US10863955B2 (en) Coordinated motion of a rotating 2D x-ray imager and a linear accelerator
JP6624695B2 (ja) 適応型放射線療法に対する移動する標的の3次元位置特定
JP6886565B2 (ja) 表面の動きを追跡する方法及び装置
US8306297B2 (en) Precision registration of X-ray images to cone-beam CT scan for image-guided radiation treatment
JP6053792B2 (ja) 可変画像レジストレーションのワークフローにおけるユーザー入力と変形ベクトル場の修正との統合
CN111386555B (zh) 图像引导方法及装置、医疗设备、计算机可读存储介质
US20110176723A1 (en) Motion Correction in Cone-Beam CT by Tracking Internal and External Markers Using Cone-Beam Projection From a kV On-Board Imager: Four-Dimensional Cone-Beam CT and Tumor Tracking Implications
JP2009504245A (ja) 仮想画像を使用した患者トラッキング
AU2018266458B2 (en) Systems and methods of accounting for shape change during radiotherapy
WO2021159519A1 (zh) 图像引导方法、装置、放疗设备和计算机存储介质
US10631778B2 (en) Patient setup using respiratory gated and time resolved image data
WO2020237537A1 (zh) 图像引导方法及装置、医疗设备、计算机可读存储介质
US20220054862A1 (en) Medical image processing device, storage medium, medical device, and treatment system
JP2017192549A (ja) 治療計画装置及び治療計画方法
WO2021184314A1 (zh) 图像配准方法、装置、放疗设备和计算机可读存储介质
WO2022120716A1 (zh) 实时图像引导方法、装置及系统、放射治疗系统
WO2022120707A1 (zh) 实时图像引导方法、装置及系统、放射治疗系统
JP2015000092A (ja) 患者位置決めシステム、および患者位置決め方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931330

Country of ref document: EP

Kind code of ref document: A1