JP6624695B2 - 適応型放射線療法に対する移動する標的の3次元位置特定 - Google Patents
適応型放射線療法に対する移動する標的の3次元位置特定 Download PDFInfo
- Publication number
- JP6624695B2 JP6624695B2 JP2017540137A JP2017540137A JP6624695B2 JP 6624695 B2 JP6624695 B2 JP 6624695B2 JP 2017540137 A JP2017540137 A JP 2017540137A JP 2017540137 A JP2017540137 A JP 2017540137A JP 6624695 B2 JP6624695 B2 JP 6624695B2
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- target
- slice
- processor
- adaptive filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003044 adaptive effect Effects 0.000 title claims description 90
- 238000001959 radiotherapy Methods 0.000 title description 76
- 230000004807 localization Effects 0.000 title description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 89
- 230000015654 memory Effects 0.000 claims description 24
- 230000033001 locomotion Effects 0.000 claims description 20
- 230000006870 function Effects 0.000 claims description 9
- 230000001131 transforming effect Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 description 54
- 238000002595 magnetic resonance imaging Methods 0.000 description 36
- 210000000056 organ Anatomy 0.000 description 36
- 210000000920 organ at risk Anatomy 0.000 description 33
- 230000004044 response Effects 0.000 description 26
- 238000002591 computed tomography Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 210000003484 anatomy Anatomy 0.000 description 14
- 230000000875 corresponding effect Effects 0.000 description 13
- 238000012549 training Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 210000003128 head Anatomy 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 238000002604 ultrasonography Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012636 positron electron tomography Methods 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000000133 brain stem Anatomy 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002786 image-guided radiation therapy Methods 0.000 description 2
- 238000002721 intensity-modulated radiation therapy Methods 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- 210000001328 optic nerve Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008855 peristalsis Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 210000004872 soft tissue Anatomy 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000015592 Involuntary movements Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000012879 PET imaging Methods 0.000 description 1
- 235000013929 Psidium pyriferum Nutrition 0.000 description 1
- 244000236580 Psidium pyriferum Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 210000000695 crystalline len Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000013535 dynamic contrast enhanced MRI Methods 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000012831 peritoneal equilibrium test Methods 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 238000012877 positron emission topography Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 238000002673 radiosurgery Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 206010041232 sneezing Diseases 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000009199 stereotactic radiation therapy Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1037—Treatment planning systems taking into account the movement of the target, e.g. 4D-image based planning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/003—Reconstruction from projections, e.g. tomography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/277—Analysis of motion involving stochastic approaches, e.g. using Kalman filters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/103—Treatment planning systems
- A61N5/1039—Treatment planning systems using functional images, e.g. PET or MRI
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2211/00—Image generation
- G06T2211/40—Computed tomography
- G06T2211/428—Real-time
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Radiology & Medical Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Medical Informatics (AREA)
- Quality & Reliability (AREA)
- Radiation-Therapy Devices (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Description
[0001]
本出願は、2015年1月28日に出願された「適応型放射線療法に対する3次元位置特定及び追跡」と題された代理人整理番号第12475.0059−00000号に関連しており、その全内容は参照により本明細書に組み込まれる。
[0002]
本開示は一般に放射線療法(radiation therapy)又は放射線治療(radiotherapy)に関する。より詳細には、本開示は、放射線治療の間に使用される放射線療法の治療計画を開発する際に使用する腫瘍を3次元追跡するためのシステム及び方法に関する。
放射線治療は、哺乳動物(例えば、ヒト及び動物)の組織に癌や他の病気を治療するために使用される。そのような放射線治療技術は、患者が、標的(例えば、腫瘍)に高強度かつ高精度に収束する多数の低強度のガンマ線により照射される、ガンマナイフ(Gamma Knife)である。他の実施形態において、線形加速器を使用する放射線治療が提供され、それにより、腫瘍が、高エネルギー粒子(例えば、電子、陽子、イオン等)により照射される。放射線ビームの配置及び線量は、腫瘍が処方された(prescribed)放射線を確実に受けるように正確に制御されなければならず、ビームの配置は、周囲の健康な組織(しばしばリスク臓器(OAR)と呼ばれる)への損傷を最小限に抑えるようなものでなければならない。
放射線ビームは、マルチリーフコリメータを使用することにより、腫瘍の形状に適合するように成形されてもよい(例えば、マルチリーフコリメータは、カスタマイズされた放射ビーム形状を作成するために、互いに独立して移動する複数のタングステンのリーフを含む)。放射線は「処方された(prescribed)」と呼ばれる。医師が医学の処方箋と同様に腫瘍及び周囲の器官に所定量の放射線の照射を要求するからである。
伝統的には、各患者に対して、放射線療法治療計画(「治療計画」)が、臨床的及び線量的な目的及び制約(例えば、腫瘍及び重要な臓器への放射線の最大、最小及び平均線量)に基づいて最適化技術を用いて生成される。治療計画手順は、標的領域(例えば、腫瘍)を識別し、腫瘍近傍の重要臓器を識別するために患者の三次元画像を使用することを含むことができる。治療プランの作成は、臨床的に許容される治療計画となるために個々の重要性(例えば、重み付け)を考慮して、プランナが、様々な治療目的又は制約(例えば、投与量ヒストグラム(DVH)目標)を遵守しようとする時間のかかるプロセスである。リスク臓器(OARs)の数が増えるにつれて(例えば、頭頸部治療では13まで)、プロセスの複雑さが増すので、この作業は、様々なリスク臓器(OARs)によって複雑になる、時間のかかる試行錯誤のプロセスである。腫瘍から遠いリスク臓器(OARs)は放射線から容易に逃げることができる一方、標的腫瘍に近いか又は重複するリスク臓器(OARs)は逃げることが困難である。
コンピュータ断層撮影(CT)イメージングは、従来、放射線治療のための治療計画用の画像データの1次ソースとして働く。CT画像は、患者の幾何学(ジオメトリ)の正確な表現を提供し、CT値は、放射線量計算のための電子密度(例えば、ハウンスフィールド(Hounsfield)単位)に直接変換される。しかしながら、CTを使用することは、患者を追加の放射線量にさらすことを引き起こす。CT画像に加え、磁気共鳴画像(MRI)スキャンは、CT画像と比較して優れた軟組織コントラストにより放射線療法で使用することができる。MRIは電離放射線を含まず、例えば組織の代謝及び機能のような、人体の機能情報を捕捉するために使用することができる。
コンピュータ断層撮影(CT)、蛍光透視、及び磁気共鳴画像(MRI)のようなイメージングシステムは、標的(例えば、器官、腫瘍、など)の位置を決定し、追跡するために使用される。MRIは、CTで使用されるような電離放射線を使用せずに優れた軟組織のコントラストを提供するので、一般的に使用されている。イメージングシステムと統合された放射線治療システムの例は、標的(例えば、腫瘍)の3次元(3D)画像を使用するMRIリナック(MRI−Linac)を含んでもよい。MRIリナックのMRI装置は、患者の組織中の水素原子核の部分的マップに対応する複数の画像を提供することができる。患者の画像は、2次元(2D)平面又は3次元(3D)体積で取得することができる。臓器や腫瘍が患者の体内を移動するので、標的の迅速かつ正確な3次元(3D)位置特定は重要である。例えば、標的器官又は腫瘍は、様々な動き(例えば、呼吸器、心臓、蠕動又は他の種類の患者の動き)により移動する。しかし、2DMRスライスは、典型的には患者の身体の特定の位置で取得され、2DMRスライスは、標的器官又は腫瘍の動きによる腫瘍/標的を含まない。したがって、標的腫瘍を取得し、腫瘍の構造及び動きを追跡するシステム及び方法は、取得された2DMRスライスが、位置、向き及び/又は厚さとして標的腫瘍を含み、臨床環境において2DMR上で可視となるように要求される。
この概要は、本出願のいくつかの教示の概要であり、本主題の排他的又は網羅的な処理を意図するものではない。本主題に関するさらなる詳細は、詳細な説明及び添付の特許請求の範囲に記載されている。本発明の他の態様は、以下の詳細な説明を読んで理解し、それらの一部を形成する図面を見れば当業者には明らかであり、それらの各々は限定的な意味で解釈されるべきではない。本発明の範囲は、添付の特許請求の範囲及びその法的均等物によって定義される。
本開示の特定の実施形態は、医用画像処理のための方法に関する。その方法は、コンピュータ実行可能な複数の命令を実行するプロセッサ装置によって実現されてもよい。その方法は、プロセッサにより実行され、3次元ボリューム内に標的の位置を特定する方法であって、画像取得装置から、前記標的の関心領域を含む3次元医用画像を受信するステップと、前記プロセッサにより実行され、前記3次元画像から複数の2次元スライスを抽出するステップと、前記プロセッサにより実行され、前記2次元スライスに対する2次元パッチを決定するステップであって、前記2次元パッチは前記標的と関連する前記2次元スライスの領域に対応しているステップと、前記プロセッサにより実行され、前記関心領域の位置を決定するために前記2次元パッチを適応フィルタモデルに変換するステップとを有する。
本開示の特定の実施形態は、医用画像処理システムに関する。そのシステムは、ボリュームの2次元画像スライスを使用して、前記ボリューム内の3次元標的を追跡するシステムであって、プロセッサと、前記プロセッサに動作可能に結合され、前記プロセッサによって実行されたとき、前記プロセッサに方法を実行させるコンピュータ実行可能命令を格納するメモリとを備え、前記方法は、画像取得装置から、前記標的の関心領域を含む前記3次元ボリュームの3次元医療画像を受信し、前記3次元画像が前記メモリに格納されているステップと、前記プロセッサにより実行され、前記3次元画像から複数の2次元スライスを抽出するステップと、前記プロセッサにより実行され、前記2次元スライスに対する2次元パッチを決定するステップであって、前記2次元パッチは前記標的と関連する前記2次元スライスの領域に対応しているステップと、前記プロセッサにより実行され、前記関心領域の位置を決定するために前記2次元パッチを適応フィルタモデルに変換するステップと有する。
本開示の追加の目的及び利点は、以下の詳細な説明に部分的に記載され、部分的に説明から明らかであり、本開示の実施によって知ることができる。本開示の目的及び利点は、添付の特許請求の範囲において特に指摘された要素及び組合せによって実現され、達成される。
前述の一般的な説明及び以下の詳細な説明は例示的及び説明的なものに過ぎず、特許請求された本発明を限定するものではないことを理解されたい。
必ずしも一定の縮尺で描かれていない図面において、同様の参照番号は、異なる図で類似の構成要素を示すことがある。文字の接尾辞又は異なる文字の接尾辞を有する同様の数字は、同様の構成要素の異なる例を表すことができる。図面は、本明細書で論じられている様々な実施形態を例示として概略的に示すが、これに限定されるものではなく、説明及び図面と共に、開示された実施形態を説明するのに役立つ。適切な場合、同じ参照番号は同じ又は同様の部品を指すために図面全体を通して使用される。このような実施形態は実証的であり、本装置、システム、又は方法の網羅的又は排他的な実施形態を意図しない。
本開示では、放射線療法治療を受けている患者の解剖学的構造内に腫瘍の位置を特定し、追跡するための放射線治療システム及び対応する方法が導入されている。具体的には、放射線治療計画中に、複数の3次元(3D)磁気共鳴画像(MRI)又は4次元(4D)磁気共鳴画像(MRI)がキャプチャされる。標的、例えば、患者の解剖学的構造における腫瘍の正確な位置は、当該技術分野において公知のセグメンテーション手法を用いて、放射線治療システムによって決定することができる。腫瘍の位置が決定された後に、システムは、複数のパッチを生成することができ、パッチの中心から腫瘍へのオフセットを決定することができる。相関又は外観のモデル化技術を使用するなどの様々な方法は、放射線治療システムで使用されて複数のパッチの選択された機能を強化し、複数の適応フィルタモデルをもたらす。これらの適応フィルタモデルは、患者の実際の「オンライン」治療中に放射線治療システムによって使用することができる。
このアプローチの1つの利点は、標的の腫瘍が放射線治療中に位置を特定して追跡することができることである。呼吸、心臓運動、蠕動、患者の不随意運動(例えば、咳、くしゃみなど)によって引き起こされる運動のような様々なタイプの運動や、放射線治療中に治療台上にある患者により引き起こされる自発的な運動のために、腫瘍は、典型的には、患者の解剖構造内を移動する。MRI誘導放射線療法を利用する場合、患者の解剖学的構造の画像の2次元(2D)スライス飲みが利用できる。このアプローチは、どの2次元(2D)スライスが腫瘍を含むかを決定することを可能にし、潜在的な将来の位置を推定することによって腫瘍を追跡する能力を更に有効に提供する。
図1は、放射線療法治療中に標的位置特定及び追跡を実行するための例示的な放射線治療システム100を示している。放射線治療システム100は、インターネット132に接続されたネットワーク130に接続された放射線治療装置110を含むことができる。ネットワーク130は、放射線治療装置110を、データベース140と、病院データベース142と、(例えば、患者情報を提供することができる)腫瘍情報システム(OIS)150と、(例えば、放射線治療装置110によって使用される放射線治療計画を生成する)治療計画システム(TPS)160と、画像取得装置170と、表示装置180と、ユーザインターフェース190に接続する。
放射線治療装置110は、プロセッサ112と、メモリ装置116と、通信インターフェース114とを含むことができる。メモリ装置116は、オペレーティングシステム118と、治療計画ソフトウェア120と、適応フィルタ126を生成するトレーニングモジュール124と、標的位置特定モジュール128のためのコンピュータ実行可能命令や、プロセッサ240によって実行される他のコンピュータ実行可能命令を格納することができる。
プロセッサ112は、メモリ装置116に通信可能に接続することができ、プロセッサ112は、それに格納されたコンピュータ実行可能命令を実行するように構成することができる。例えば、プロセッサ112は、放射線治療の投与中に患者における標的の位置を決定するために、訓練モジュール124と標的位置特定モジュール128の両方の機能を実装するために、訓練モジュール124を実行することができる。更に、プロセッサ112は、訓練モジュール124及び標的位置特定モジュール128とインターフェースすることができる治療計画ソフトウェア120(例えば、Elektaによって製造されたMonaco(登録商標)ソフトウェアなど)を実行することができる。
プロセッサ112は、例えば、マイクロプロセッサ、中央処理装置(CPU)、グラフィック処理ユニット(GPU)、加速処理ユニット(APU)等のような1つ又はそれ以上の汎用処理デバイスを含む、処理装置でもよい。より具体的には、プロセッサ112は、復号命令セットコンピュータ(CISC)マイクロプロセッサ、縮小命令セットコンピュータ(RISC)マイクロプロセッサ、超長命令語(VLIW)マイクロプロセッサ、他の命令セットを実装するプロセッサ、命令セットの結合を実装するプロセッサでもよい。プロセッサ112は、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号プロセッサ(DSP)、システムオンチップ(SoC)などの1つ又はそれ以上の専用処理装置であってもよい。当業者によって理解されるように、いくつかの実施形態において、プロセッサ112は、汎用プロセッサよりも専用プロセッサでもよい。プロセッサ112は、また、Intel(登録商標)により製造された、Pentium(登録商標)、Core(登録商標)、Xeon(登録商標)、又はItanium(登録商標)ファミリー、AMD(登録商標)により製造された、Turion(登録商標)、Athlon(登録商標)、Sempron(登録商標)、Opteron(登録商標)、FX(登録商標)、Phenom(登録商標)ファミリー、又は、Sun Microsystemsにより製造された様々なプロセッサのいずれかからのマイクロプロセッサのような1つ又はそれ以上の処理装置を含んでもよい。プロセッサ112は、また、Nvidia(登録商標)により製造された、GeForce(登録商標)、Quadro(登録商標)、Tesla(登録商標)ファミリー、Intel(登録商標)により製造された、GMA、Iris(登録商標)ファミリー、又は、AMD(登録商標)により製造されたRadeon(登録商標)ファミリーからのGPUのようなグラフィカル処理ユニットを含んでもよい。プロセッサ112は、また、AMD(登録商標)により製造された、Desktop A−4(6,8)シリーズ、Intel(登録商標)により製造された、Xeon Phi(登録商標)ファミリー、のような加速処理ユニットを含んでもよい。開示された実施形態は、いかなるタイプのプロセッサに限定されず、大量の画像データを識別、分析、維持、生成、及び/又は、提供する、又は、そのような画像データを操作して標的を定位及び追跡する、又は、開示された実施形態と一致する他のタイプのデータを操作するような計算命令を満たすように構成されている。更に、用語「プロセッサ」は、例えば、マルチコアデザインの1つのプロセッサ、又は、それぞれがマルチコアデザインを有する複数のプロセッサを含んでもよい。プロセッサ112は、記憶装置116に格納された一連のコンピュータプログラム命令を実行して、以下詳細に説明する様々な動作、処理、方法を実行することができる。
メモリ装置116は、画像取得装置179から受信した画像データ122(例えば、3D MRI、4D MRI、2Dスライス等)、又は、放射線治療装置110が使用することができる任意の他のタイプのデータ/情報を格納することができる。メモリ装置210は、コンピュータ実行可能命令が任意のフォーマットで格納される、読み出し専用メモリ(ROM)、フラッシュメモリ、ランダムアクセスメモリ(RAM)、シンクロナスDRAM(SDRAM)又はラムバスDRAM等のようなダイナミックランダムアクセスメモリ(DRAM)、スタティックメモリ(例えば、フラッシュメモリ、スタティックランダムアクセスメモリ)等を含むことができる。コンピュータプログラム命令は、プロセッサ112によってアクセスされ、ROM又は任意の他の適切な記憶位置から読み出され、プロセッサ112による実行のためにRAMにロードされることができる。例えば、メモリ116は、1つ又はそれ以上のソフトウェアアプリケーションを格納することができる。メモリ116に格納されたソフトウェアアプリケーションは、例えば、ソフトウェア制御される装置と同様の一般的なコンピュータシステムのためのオペレーティングシステム118を含むことができる。更に、メモリ116は、全体のソフトウェアアプリケーション、又は、プロセッサ112によって実行可能なソフトウェアアプリケーションの一部のみを格納することができる。例えば、メモリ装置116は、治療計画システム160によって生成された治療計画ソフトウェア120として、1つ又はそれ以上の放射線療法治療計画を格納することができる。
いくつかの実施形態では、メモリ装置116は機械可読記憶媒体を含むことができる。一実施形態では、機械可読記憶媒体は単一の媒体であってもよいが、用語「機械可読記憶媒体」は、1つ又はそれ以上のコンピュータ実行可能命令又はデータを保存する単一の媒体又は複数の媒体(例えば、集中型又は分散型のデータベース、及び/又は関連するキャッシュ及びサーバ)を含むと解されるべきである。用語「機械可読記憶媒体」は、また、機械による実行のための一連の命令を記憶又は符号化することができ、機械に本開示の1つ又はそれ以上の方法システムを実行させる任意の媒体を含むと解されるであろう。用語「機械可読記憶媒体」は、固体メモリ、光及び磁気媒体を含むと解されるが、それには限定されない。例えば、メモリ/記憶装置210は、1つ又はそれ以上の揮発性、非一時的、又は不揮発性の有形のコンピュータ可読媒体であり得る。
放射線治療装置110は、通信プロセッサ112とメモリ116に通信可能に接続された通信インターフェース114を介してネットワーク130と通信することができる。通信インターフェース114は、例えば、ネットワークアダプタ、ケーブルコネクタ、シリアルコネクタ、USBコネクタ、パラレルコネクタ、高速データ伝送アダプタ(例えば、ファイバ、USB3.0、サンダーボルト等)、無線ネットワークアダプタ(例えば、WiFiアダプタ等)、通信アダプタ(例えば、3G、4G/LTE等)等を含むことができる。通信インターフェース114は、放射線治療装置110がネットワーク130を介して遠隔に配置された構成要素などの他の機械及び装置と通信することを可能にする1つ又はそれ以上のデジタル及び/又はアナログ通信装置を含むことができる。
ネットワーク130は、ローカルエリアネットワーク(LAN)、無線ネットワーク、クラウドコンピューティング環境(例えば、サービスとしてのソフトウェア、サービスとしてのプラットフォーム、サービスとしてのインフラストラクチャ等)、クライアント−サーバ、ワイドエリアネットワーク(WAN)等の機能を提供することができる。したがって、ネットワーク130は、放射線治療装置110と、例えば、治療計画システム160、腫瘍情報システム150、画像取得装置170のような多くの様々な他のシステム及びデバイとの間のデータ伝送を可能にする。さらに、治療計画システム160、OIS150、及び画像取得装置170により生成されたデータは、メモリ116、データベース140、又は病院データベース142に格納されることができる。データは、必要に応じて、プロセッサ112によってアクセスされるために、通信インターフェース114を介して、ネットワーク130を介して送信/受信されることができる。
また、ネットワーク130は、遠隔に存在してインターネットに接続しているサーバやクライアントと通信するためにインターネット132に接続されることができる。説明したように、ネットワーク130は、他のシステムS1(134)、S2(136)、S3(138)を含むことができる。システムS1、S2、及び/又はS3は、システム100と同一であってもよいし、異なるシステムであってもよい。いくつかの実施形態では、ネットワーク130に接続された1つ又はそれ以上のシステムは、患者に放射線療法を提供する他の態様と同様に、画像取得、標的位置取得、標的追跡を共同で実行する分散コンピューティング/シミュレーション環境を形成することができる。
また、放射線治療システム100は、遠隔に格納された1つ又はそれ以上のプログラムを実行するためにデータベース140又は病院データベース142と通信することができる。一例として、データベース140、病院データベース142、又はその両方のデータベースは、Oracle(登録商標)データベース、Sybase(登録商標)データベース、他のデータベースのようなリレーショナルデータベースや、Hadoopシーケンスファイル、HBase、Cassandra、他のデータベースのような非リレーショナルデータベースを含むことができる。そのような遠隔プログラムは、例えば、腫瘍情報システム(OIS)ソフトウェア又は治療計画ソフトウェアを含むことができる。OISソフトウェアは、例えば、病院のデータベース142、データベース140、又はOIS150に格納することができる。治療計画ソフトウェアは、例えば、データベース140、病院データベース142、治療計画システム160、又はOIS150に格納することができる。したがって、例えば、放射線治療装置110は、病院データベース142と通信して、腫瘍情報システム150の機能を実装することができる。
しかし、開示された実施形態のシステム及び方法は、データベースが別々であることに限定されない。一態様では、放射線治療システム100は、データベース220又は病院データベース230を含むことができる。あるいは、データベース220及び/又は病院データベース230は、放射線治療システム100から離れて配置されてもよい。データベース140及び病院データベース142は、データベース140又は病院データベース142のメモリ装置に格納されたデータの要求を受信し、処理し、データベース220又は病院データベース230からデータを提供するように構成されたコンピューティングコンポーネント(たとえば、データベース管理システム、データベースサーバ等)を含むことができる。当業者であれば、データベース140,142は、中央方式又は分散方式のいずれかに配置された複数のデバイスを含むことができることを理解するであろう。
また、放射線治療装置110は、データベース140に格納された複数の各種データを送信/受信するために、ネットワーク130を介してデータベース140と通信することができる。例えば、いくつかの実施形態では、データベース140は、複数の画像(例えば、3D MRI、4D MRI、2D MRIスライス画像、CT画像、2D蛍光透視画像、X線画像、MRスキャン又はCTスキャンからの生データ、画像取得装置140から医療におけるデジタル画像と通信(DIMCOM)データ、等)を格納するように構成することができる。データベース140は、標的位置特定モジュール128、訓練モジュール124、及び治療計画ソフトウェア120によって使用されるデータを格納することができる。放射線治療装置110は、後述するように、複数の適応フィルタモデルを生成するために、データベース120から撮像データ(例えば3D MRI画像、4D MRI画像)を受信することができる。
さらに、放射線治療システム100は、患者の医用画像(例えば、磁気共鳴画像(MRI)画像、3D MRI、2DストリーミングMRI、4D容積型MRI、コンピュータ断層撮影(CT)画像、コーンビームCT、陽電子放射断層撮影(PET)画像、機能的MRI画像(例えば、fMRI、DCE−MRI、拡散MRI)、X線画像、透視画像、超音波画像、放射線治療ポータル画像、単一光子放射断層撮影(SPECT)、など)を取得できる画像取得装置170を含むことができる。画像取得装置170は、例えば、MRI撮像装置、CT撮像装置、PET撮像装置、超音波装置、透視装置、SPECT撮像装置、又は、患者の1つ又はそれ以上の画像を取得する撮像装置である。画像取得装置170により取得された画像は、画像データ及び/又は試験データのいずれかとして、データベース140内に格納することができる。一例として、画像取得装置170によって取得された画像は、放射線治療装置110によってメモリ116に格納されることができる。
一実施形態では、例えば、画像取得装置140は、単一の装置として(例えば、「MRI−Linac」とも呼ばれる線形加速器と組み合わされたMRI装置)、又は、ガンマナイフと組み合された一体型MRI装置として放射線治療装置110と統合されることができる。このようなMRI−Linacは、例えば、放射線療法治療計画に従って放射線療法を所定の標的に向けるなど、患者の標的器官又は標的腫瘍の位置を決定するために使用することができる。
画像取得装置170は、関心領域(例えば、標的器官、標的腫瘍、又はそれら両方)のために患者の解剖学的構造の1つ又はそれ以上の画像を取得するように構成することができる。各2Dスライスは、1つ又はそれ以上のパラメータ(例えば、2Dスライスの厚さ、向き、位置、等)を含むことができる。1つ又はそれ以上のパラメータは、標的を含むように、プロセッサ112を用いて調整することができる。例えば、2次元スライスの選択された特徴は、例えば、勾配又はRF波形の特性を調整することにより、操作することができる。例えば、スライスの位置は、RFパルスの基本周波数を変更し、同じ勾配強度を維持することによって変化させることができる。さらに、スライスの向きは、例えば、物理的に異なる傾斜軸を使用して変化させることができる(例えば、選択されたスライスが適用された勾配に直交させることができる)。一例において、画像取得装置170(例えば、MRI、又はMRI−Linac)は任意の向きでの2Dスライスを得ることができる。例えば、2Dスライスの向きは、矢状方向、冠状方向、又は軸配向を含むことができる。これらの配向は、MRI又はMRI−Linacに関連付けられた磁場勾配(例えば、Gx、Gy、又はGzそれぞれ)に対応することができる。プロセッサ112は、標的器官又は標的腫瘍を含むように、2Dスライスの厚さのようなパラメータを調整することができる。一例では、スライスの厚さは、数式1を使用して、計算して調整することができる。
数式1において、Tは、距離単位(例えば、ミリメートル)で測定されるような2Dスライスの厚さを表す。ΔωSは、特定の周波数(例えば、ヘルツ「Hz」)で適用された無線周波数パルスに対応する励起帯域幅を表す。文字γは、磁気回転比(例えば、プロトンに対して、γは267.54MHz/テスラ)と呼ばれる定数を表す。Gsliceは、(例えば、テスラ/メートルで測定された)磁場勾配を表す。一例において、2Dスライスは、3D MRIボリュームとして情報から決定することができる。例えば、放射線治療装置110を使用する場合、患者が放射線療法の治療を受けている間に、このような2Dスライスは「リアルタイム」で画像取得装置170により取得することができる。
治療計画システム160は、治療すべき特定の患者のための放射線療法治療計画と、他の患者のための放射線療法治療計画と、他の放射線治療情報(例えば、ビーム角度、線量 - ヒストグラム - ボリューム情報、治療中に使用される放射ビーム数、ビーム角度、ビーム当たりの用量、など)とを生成し、格納することができる。例えば、治療計画システム160は、患者に適用される特定の放射線量や、他の放射線関連情報(例えば、画像誘導放射線治療(IGRT)、強度変調放射線療法として(IMRT)、定位放射線療法のような治療の種類)を提供することができる。
治療計画を生成することは、患者の画像にアクセスし、腫瘍のような標的の輪郭を描くために、画像取得装置170(例えば、CT装置、MRI装置、PET装置、X線装置、超音波装置など)と通信することを含む。いくつかの実施形態では、腫瘍の周囲又は腫瘍に近接した健康な組織のような1つ又はそれ以上のリスク臓器(OARs)の輪郭を描くことが求められる。したがって、リスク臓器(OAR)が標的の組織に近いとき、リスク臓器(OAR)のセグメンテーションを行う。また、標的腫瘍がリスク臓器(OAR)に近い場合(例えば、膀胱や直腸に近接した前立腺の場合)、リスク臓器(OAR)のセグメンテーションは、標的内だけでなくリスク臓器(OAR)内に対しても、治療計画システム160が線量分布を研究することを可能にする。
放射線療法を受けている患者の、リスク臓器(OAR)から標的器官又は標的腫瘍の輪郭を描くためには、MRI画像、CT画像、PET画像、fMRI画像、X線画像、超音波画像、放射線療法ポータル画像、SPECT画像等のような医用画像が、画像取得装置170により非侵襲的に得て、人体の内部構造を明らかにすることができる。医用画像からの情報に基づいて、3次元構造を得ることができる。また、治療計画プロセスの間に、多くのパラメータは、標的腫瘍の効率的処置(例えば、標的腫瘍が有効な治療のために十分な放射線量を受け取ることのような)とリスク臓器(OARs)への低い放射線量(例えば、リスク臓器(OARs)ができるだけ低い放射線量を受けることのような)とのバランスや、標的器官及び標的腫瘍の位置と、リスク臓器(OAR)の位置と、リスク臓器(OAR)に対する標的の動きとのバランスを達成することが考慮される。例えば、3D構造は、標的を輪郭付けすることや、各2Dレイヤ又はMRI又はCT画像のスライス内のリスク臓器(OAR)を輪郭付けすること、各2Dレイヤやスライスの輪郭を組み合わせることによって得ることができる。輪郭は、手動で(例えば、医師、線量測定士、又は医療従事者により)、又は自動で(例えば、スウェーデン、ストックホルムのエレクタ アクチボラケット(Elekta,AB)により製造された、アトラスベースの自動セグメンテーションソフトウェア、ABAS.RTMのようなプログラムを使用して)生成することができる。特定の実施形態において、標的腫瘍又はリスク臓器(OAR)の3D構造は、治療計画システム160によって自動的に生成することができる。
標的腫瘍とリスク臓器(OARs)が配置され、描写された後、線量測定士、医師、又は医療従事者は、標的腫瘍と腫瘍に近接する任意のリスク臓器(OAR)(例えば、左右の耳下腺、視神経、眼、水晶体、内耳、脊髄、脳幹など)に適用される放射線量を決定することができる。放射線量が各解剖学的構造(例えば、標的腫瘍、OAR)のために決定された後、逆計画として知られているプロセスは、ボリューム描写(例えば、標的ボリューム、輪郭に敏感な構造を定義する)、標的腫瘍およびリスク臓器(OAR)周辺のマージン、線量制約(例えば、腫瘍標的に対する全線量及び任意のリスク臓器(OAR)に対するゼロ線量であること、PTVに対する線量の95%であること、それと同時に、脊髄に対する45Gy以下の線量、脳幹に対する55Gy以下の線量、視神経構造に対する54Gy未満の線量をそれぞれうけること)、ビーム角度選択、コリメータ設定、ビームオン時間、のような1つ又はそれ以上の治療計画パラメータを決定するために行うことができる。逆計画の結果は、治療計画システム160又はデータベース140に格納することができる放射線療法治療計画を構成することができる。これらの治療パラメータの一部は、相関させることができる。例えば、治療計画を変更しようとして1つのパラメータ(例えば、標的腫瘍への線量を増加させる等さまざまな目的に対する重み)を調整することは、少なくとも1つの他のパラメータに影響を与える可能性があり、それは別の治療計画の開発につながる可能性がある。したがって、治療計画システム160は、放射線治療装置110が患者への放射線治療を提供するために、これらのパラメータを有する調整された放射線療法治療計画を生成することができる。
また、放射線治療システム100は、表示装置180及びユーザインターフェース190を含む。表示装置180は、医用画像、インターフェース情報、治療計画パラメータ(例えば、輪郭、線量、ビーム角度、等)、治療計画、標的、標的の位置を特定及び/又は標的の追跡、又は任意の関連情報をユーザに表示する1つ又はそれ以上の表示画面を含むことができる。ユーザインターフェース190は、ユーザが放射線治療システム100に情報を入力するための、キーボード、キーパッド、タッチスクリーン又は任意のタイプのデバイスを含むことができる。
放射線治療装置110が解剖学的関心領域に標的腫瘍を位置特定し追跡するために、例えば、プロセッサ112は標的位置特定モジュール128を実行することができる。本開示において後述するように、標的取得モジュール120は、訓練モジュール124によって生成された適応フィルタモデル126を利用することができる。さらに、適応フィルタモデルは、特定のドメイン情報(例えば、空間領域又は周波数領域)、位置情報(例えば、ボリューム内の3D位置、3Dオフセット情報、又は2D変位情報)を含むことができる。標的位置特定モジュール128は、以下に説明するように、訓練モジュール124によって生成された少なくとも1つの適応フィルタモデル126を使用する。
更に、放射線治療システム100の任意の及び全ての構成要素は、実施の形態では、仮想マシン(例えば、VMWare、Hyper−V、など)として実装されてもよい。例えば、仮想マシンは、ハードウェアとして機能するソフトウェアであることができる。したがって、仮想マシンは、少なくとも1つ又はそれ以上の仮想プロセッサ、1つ又はそれ以上の仮想メモリ、一緒にハードウェアとして機能する1つ又はそれ以上の仮想通信インターフェースを含むことができる。例えば、OIS150、TPS160、画像取得装置170は、仮想マシンとして実現することができる。処理能力、メモリ、利用可能な計算能力を考えると、全体の放射線治療システムは、仮想マシンとして実現することができる。
図2は、放射線療法治療デバイス200、例えば、スウェーデン、ストックホルムのエレクタ アクチボラケット(Elekta,AB)により製造されたレクセルガンマナイフ(Leksell Gamma Knife)のひとつのタイプの一例を示す。ガンマナイフは、(図1に示された)標的位置特定モジュール128を利用するように構成することができ、標的位置特定モジュール128は、(例えば、画像取得装置170から)遠隔でMRI画像にアクセスして、脳内の標的腫瘍の位置を特定することができる。一実施形態では、画像取得装置170としてのMRI装置は、ガンマナイフと統合することができる。図2に示すように。放射線治療セッションの間に、患者210は手術又は放射線療法を受ける患者の身体部分(例えば、頭部)を安定に保つために座標フレーム220を着用することができる。調整フレーム220と患者位置決めシステム230は、患者を撮像する間、又は放射線手術の間に使用することができる空間座標系を確立することができる。放射線治療装置200は、複数の放射線源250を囲む保護ハウジング240を含むことができる。放射線源250は、ビームチャンネル260を介して複数の放射線ビーム(例えば、ビームレット)を生成することができる。複数の放射線ビームは、異なる方向からアイソセンタ270に焦点を合わせるように構成することができる。個々の放射線ビームは比較的低い強度を有しているが、異なる放射線ビームからの複数の線量がアイソセンタ270に蓄積する場合、アイソセンタ270は放射線の比較的高いレベルを受信することができる。特定の実施形態では、アイソセンタ270は、腫瘍のように手術又は処置下の標的に対応することができる。
図3は、放射線治療装置300のタイプの他の例(例えば、スウェーデン、ストックホルムのエレクタ アクチボラケット(Elekta,AB)により製造されたリナック(LINAC)と呼ばれる線形加速器)を示す。線形加速器300を用いて、患者302は、(図1に示された)治療計画システム160により生成された放射線療法治療計画によって決定される放射線量を受けるように患者テーブル304上に配置することができる。放射線治療計画は、患者302の解剖学的構造内に位置する標的器官又は標的腫瘍のように、ボリューム内の3D標的の位置を特定し、追跡するために使用することができる。
線形加速器300は、患者302の周りを回転するガントリ308に接続された放射ヘッド306を含むことができる。放射ヘッド306は、標的臓器又は標的腫瘍に向けられる放射線ビーム310を生成する。ガントリ308が回転すると、放射ヘッド306は患者302の周りに回転することができる。回転している間、放射ヘッド306は、(図1に示された)治療計画システム160により生成された治療計画に応じて腫瘍の角度と形状と大きさに応じた、複数の変化する線量の放射線を患者302に提供することができる。臓器や腫瘍が患者の体内を移動するので、標的の迅速かつ正確な3次元位置特定は重要である。例えば、標的臓器又は腫瘍は、様々な運動の種類(例えば、呼吸、心臓、蠕動又は他のタイプの患者の動き)のために移動する。したがって、線形加速器300は、標的位置特定モジュール128の使用による放射線治療中に、標的(例えば、臓器又は腫瘍)の位置を特定し、標的を追跡するように構成することができる。
また、患者テーブル304の下方に、フラットパネルシンチレータ検出器312が設けられており、フラットパネルシンチレータ検出器312は、患者32の身体上の標的臓器又は標的腫瘍に位置するアイソセンタ314の周りに放射ヘッド306と同期して回転する。フラットパネルシンチレータは、達成可能な最高の信号対雑音比を有する画像を取得することができ、任意の特定の放射線療法治療セッション中に患者302によって受けられた放射線の量を検証するために使用することができる(例えば、放射線療法治療が放射線治療の複数のセッションを必要とし、各セッションは通常「fraction」と呼ばれる)。さらに、このような画像は、放射ヘッド306に対する患者位置決めの幾何学的な精度を決定するために使用される。
放射ヘッド306によって生成されるビーム310の中心と軸316との交点は、通常「アイソセンタ」と呼ばれる。
患者302の腫瘍部位をアイソセンタ314又はアイソセンタ314に近接して配置することができるように、患者テーブル304を電動で動かすことができる。例えば、患者テーブル304は、放射線ヘッド306に位置する治療用放射線源に対して患者302の長手方向位置又は横手方向位置を上昇し、変化するように、直線加速器300の1つのそれ以上の他のコンポーネントへの相対的な位置を変更することができる。
一実施形態では、線形加速器300は、単一の装置(例えば、MRI−Linac)としての磁気共鳴イメージング装置のような(図1に示されている)画像取得装置170と一体化することができる。このような場合には、放射線療法治療中に患者テーブル304が挿入される孔の大きさにより限定的しか動かないように患者テーブル304が構成されている場合、MRI−Linacは、放射線源に対して患者302の位置合わせを「仮想的に」調整することができる「仮想カウチ」を含むことができる。このような実施形態では、MRI−Linacは、所定の標的に放射線治療を行うためのように、標的位置特定モジュール128を使用して、患者302内の標的の位置を決定し、標的を追跡するために使用することができる。
図4は、適応フィルタモデル126を生成するための訓練モジュール124のプロセス400を示す。(図1に示された)適応フィルタモデル126は、標的の位置を決定し、次に標的を追跡するために、標的位置特定モジュール128によって利用されることができる。
ステップ402では、(図1に示された)訓練モジュール124が、特定の患者のための関心領域の画像取得装置170から複数の画像(例えば、3DMRI、4DMRIなど)を受信する。複数の画像は、例えば、標的(例えば、標的臓器、標的腫瘍、など)を含む関心領域の3DMRI画像、又は4DMRI画像であることができる。
ステップ404では、プロセッサ112を用いる訓練モジュール110が、複数のMRI画像から関心領域内の標的(例えば、標的臓器、標的腫瘍、など)を含む複数のスライス(例えば、2Dスライス)を抽出するように処理する。例えば、2Dスライスの厚さは、放射線療法治療を開始する前に予め決定する(例えば、3DMRIボリューム又は4DMRIボリュームに基づく情報から決定する)ことができる。情報は、2Dスライスが周波数領域又は空間領域内にあるべきか否かを含むことができる。あるいは、患者402が放射線療法で処置されているとき(例えば、リアルタイムで)、訓練モジュール110は2Dスライス情報を受信することができる。例えば、MRI−Linacは、放射線療法で患者402を治療するために使用することができる。この放射線療法のプロセスの間、MRI−Linacは、治療プロセス中の複数の3DMRI画像や複数の4DMRI画像を取ることができる。抽出されたスライスは、標的を取り囲む患者の解剖学的構造の2Dスライスを表す。さらに、抽出された2Dスライスは、標的の運動に対して平行又は垂直のいずれかであることができる。
ステップ406では、プロセッサ112が、抽出された各2Dスライスに対する1つ又はそれ以上の2Dパッチを決定する。一例では、2Dパッチは、標的を含むことができる2Dスライス画像の領域に対応することができる。2Dパッチは、任意の形状に構成することができ(例えば、正方形、長方形、円形、多角形等に)、サイズを変化させることができる(例えば、32×32ピクセルのパッチ、64×64ピクセルのパッチ、等のサイズに)。説明のため、方形パッチは、例えば、512×512ピクセルである2Dスライスにおける標的に対応する32×32ピクセルとすることができる。一例では、2Dパッチは、標的についての情報と、標的を含まない領域(例えば、背景情報)に対応する情報とを含むことができる。
ステップ408では、プロセッサ112が、オフセット値を決定する。オフセット値は、例えば、追跡される標的の中心に2Dパッチの中心からの距離である。2Dパッチは、ドメイン情報(例えば、2Dパッチの空間領域又は周波数領域に関する情報)を含むことができる。さらに、オフセット情報は、基準点(例えば、ボリューム内の標的に対応する基準点)からの2Dパッチの変位のような情報と、標的の形状の変化(例えば、変形)に関する情報とを含むことができる。一例では、基準点は、標的の計算された中心(例えば、腫瘍の重心)を含むことができる。オフセット値は、標的を含む各2Dパッチに対して決定される。したがって、各2Dパッチは、自分の関連付けられたオフセット値を有する。複数のオフセット値及びそれらに関連するパッチは、メモリ116に格納される。
例えば、2Dパッチの中心が座標(例えば、[xp、yp、zp])を有し、標的腫瘍の中心が座標(例えば、[xt、yt、zt])を有すると、標的腫瘍の3D位置に関連する2Dパッチ中心のオフセットは、ベクトル(例えば、[ox、oy、oz]=[xt−xp、yt−yp、zt−zp])となることができる。したがって、プロセッサ112は、標的腫瘍を追跡することができる。追跡の間、プロセッサ112は、新たな患者セットアップのための2Dパッチの中心を見つけることができる(例えば、「オンライン/リアルタイム」を、例えば[xpnew、ypnew、zpnew]とする)。そして、プロセッサ112は、腫瘍の位置を決定することができる(例えば、[xtnew、ytnew、ztnew]=[xpnew+ox、ypnew+oy、zpnew+oz])。
ステップ410では、プロセッサ112が各パッチを適応フィルタモデル126に変換する、1つ又はそれ以上のタイプの適応フィルタ設計技術を用いることができる。例えば、適応フィルタ設計の以下のタイプ、マッチドフィルタ、最大マージン相関フィルタ、合成判別関数フィルタ、最小二乗フィルタ、などを使用することができる。また、適応フィルタモデル126は、ボリューム内の標的に対応する2Dパッチから決定されるドメイン情報とオフセット情報を含むことができる。
一般に、適応フィルタモデル126は、例えば、位置付けられた標的(例えば、腫瘍)を「モデル化」する。複数の適応フィルタモデル126を生成することができる。例えば、腫瘍の上部に対する適応フィルタモデル126と、腫瘍の中部に対する適応フィルタモデル126と、腫瘍の底部に対する適応フィルタモデル126が存在することができる。また、適応フィルタモデル126は、人体解剖学のさまざまな部分(例えば、前立腺、乳房、肺、心臓、脳のような、1つ又はそれ以上の関心のある標的臓器)のために生成することができる。また、適応フィルタモデル126は、関心のある各標的(例えば、肺内の複数の腫瘍のような特定の臓器内の1つ又はそれ以上の腫瘍、又は、がんが転移した場合には、1つ又はそれ以上の臓器内の1つ又はそれ以上の腫瘍)に対して生成することができる。
更に、適応フィルタモデル126は、空間領域又は周波数領域のいずれかで設計することができる。一例では、適応フィルタモデル126の2Dスライスへの適用は、周波数領域において、より計算的に効率的でありうる。適応フィルタモデル126は(図1に示される)メモリ116に格納され、続いて取得された2Dスライスに適用されるべくプロセッサ112によって検索され(例えば、2Dスライスが「リアルタイム」/「オンライン」で取得され)、患者の放射線療法治療中にターゲットの位置を予測する。
図5は、患者の「リアルタイム」/「オンライン」放射線療法治療中に標的を追跡するために、1つ又はそれ以上の適応フィルタモデル126を使用するためのワークフロープロセス500のための例示的なフローチャートを示す。
ステップ502では、プロセス500が始まり、特定の患者に対する標的腫瘍を含む関心領域に対して設計された適応フィルタモデル126を検索する標的位置特定モジュール128に、プロセッサ116を用いる(図1に示す)放射線治療装置10がアクセスする。
ステップ504では、プロセッサ116が、2Dスライスの初期セットを生成するために、画像取得装置170に提供するために取得プロトコルを受信する。プロトコルは、例えば、(例えば、肺、前立腺、脳、腎臓、等)と取られたスライスの位置と、(例えば、取られたスライスに平行又は垂直のような所定の潜在的な器官運動に基づく)スライスの向きと、(例えば、5mmスライス、10mmスライス、15mmスライス、等の)スライスの厚さを含むことができる。ユーザは、ユーザインターフェース190を介して提供される標的の位置の初期推定値を提供することができる。プロセッサ116は、2Dスライスを取って開始する場所の初期位置として、この初期推定値を利用することができる。あるいは、そのような位置情報は、プロセッサ116によって自動的に決定することができる。
ステップ506では、放射線治療装置が、画像取得装置170(例えば、MRI装置又はMRI−Linac装置)からのプロトコルに従って複数の2DMRIスライスを受信する。2D画像は、腫瘍を有する関心領域に対応させることができる。2Dスライスは、腫瘍に対して平行又は直交してもよい。2Dスライスは、腫瘍を囲むことができる。さらに、2Dスライスは、腫瘍の周囲の領域であってもよい。典型的には、MRI装置は、周波数領域での2Dスライスを提供する。
以下の述べるステップ508からステップ514では、プロセッサ116が、2Dスライス上の腫瘍の位置と、3Dボリューム内のその位置とを決定する。
ステップ508では、プロセッサ116が、周波数領域又は空間領域のいずれかに2Dスライスを変換する。2Dスライスは、適応フィルタモデル126のドメインに一致するように変換される。例えば、適応フィルタモデル126が空間領域で作成された場合、例えば、プロセッサ116は空間領域に2Dスライスを変換する。あるいは、適応フィルタモデル126が周波数領域で作成された場合、プロセッサ116は周波数領域に2Dスライスを変換する。
ステップ510では、プロセッサ116が適応フィルタモデル126を適用する。上述したように、適応フィルタモデル126は、訓練モジュール126によって訓練された複数の2Dパッチから生成された複数のモデルである。プロセッサ112は、2Dスライスに複数の適応フィルタモデル126を適用する。2Dスライスと適応フィルタモデルとは、例えば、同一の配向(例えば、動きの方向と直交する、動きの方向に平行である、又はそれら両方)を有する。一例では、2Dスライスに適応フィルタモデル126を適用することは、周波数領域において計算的により効率的である。適応フィルタモデル126が2Dスライスにどのように適用することができるかの例を次に示す。
適応フィルタモデル126は空間領域において2DテンプレートT(x、y)で表すことができ、2Dスライス(例えば、2D画像)はI(x、y)で表すことができる。適応フィルタモデル126を2Dスライスの特定の場所に適用すると、相関関係の「信頼度スコア」を与えることができる。信頼度スコアは、例えば、特定の適応フィルタモデルが2Dスライスの特定の位置にどれだけよく一致したかの指標を提供する。
一例では、適応フィルタモデル126が2Dスライスの特定の場所と相対的によく一致すればするほど、より高い信頼性スコアとなる。信頼度スコアは、標的腫瘍が2Dスライス内に配置されているかどうか、どこに配置されているか予測するために使用することができる。多くの様々なタイプの相関は、状況に応じて信頼度スコアを決定するために利用することができる。例えば、以下のタイプの相関を使用することができる。相互相関、正規化相互相関、又は相関係数である。これらを以下で定義する。
相互相関は次式で定義される。
正規化相互相関は次式で定義される。
相関係数は次式で定義される。
[0074]
上式において、Pはテンプレートの空間領域を表し、Tは、それぞれ、テンプレートTとスライスIの平均値とを表す。さらに、N(x、y)とC(x、y)の両方は、例えば、−1≦N(X、Y)、C(X、Y)≪+1のように有限であり、それらの値は、完全な一致の+1に対する信頼度スコアとして解釈することができる。信頼度スコアは、例えば、上記で定義したR、N、Cのような情報を含むことができる。
3つの相関演算は、例えば、畳み込み定理を適用することにより、周波数領域でも行うことができる。例えば、次式である。
ステップ512では、プロセッサ112が、2Dスライスに適応フィルタモデル126を適用した結果として、応答マップを決定する。単一の2Dスライスに対して、各応答マップが特定の適応フィルタモデルに対応している複数の応答マップを作成することができる。適応フィルタモデルと2Dスライスの両方が同じ方向を持つことができる。応答マップは、空間領域又は周波数領域で生成されることができる。2Dスライスと適応フィルタモデル126の両方は、空間領域において応答マップを生成する空間領域でなくてはならない。同様に、2Dスライスと適応フィルタモデル126の両方は、周波数領域において応答マップを生成する周波数領域でなくてはならない。応答マップは、あらゆる2Dスライスに対して作成することができる。生成された応答マップは、適応フィルタモデル126が与えられた2次元スライス内の様々な位置と一致する程度を示す画像であり得る。
例えば、適応フィルタモデルA(図示せず)は、2Dスライス上のあらゆる場所に、プロセッサ112を適用させることができる。各場所に対して、プロセッサ112は、例えば、適応フィルタAが2Dスライスの特定の場所とどのくらいよく一致しているかを示す信頼性スコアを決定することができる。適応フィルタモデルが2Dスライス上の場所に対してよりよく一致すればするほど、その特定の場所に対する信頼度スコアがより高く(例えば、+1に近く)なる。応答マップ画像上のより明るい領域はより良い一致、したがって、より暗い領域よりも高い信頼度スコア(例えば、2Dスライスの特定の場所における適応フィルタモデルAとの間で)を示すことができる。より明るい領域は、応答マップ内のより暗い領域よりも高い信頼度スコアを持つことができる。適応フィルタモデルAが2Dスライスに適用された後、応答マップAを生成することができる。プロセッサ112は、別の適応フィルタモデルB(図示せず)を検索し、例えば、適応フィルタモデルBをあらゆる場所に適用するプロセスを繰り返し、応答マップBを生成することができる。したがって、標的位置特定モジュールを使用するプロセッサは、2Dスライスに複数の適応フィルタモデルを適用し、メモリ116に格納することができる、複数の応答マップを生成することができる。2Dスライスの各場所で、信頼度スコアが適応フィルタモデルに対応して生成される。高い信頼度スコアは、標的腫瘍が位置する2Dスライス上の位置に対応する。
ステップ514では、プロセッサ112が信頼度スコアに基づいて2Dスライス上の標的腫瘍の位置を予測する。例えば、応答マップ上の特定の位置に対して、各信頼度スコアが特定の適応フィルタモデルに対応する複数の信頼度スコア値が存在し得る。腫瘍の位置を予測するために、プロセッサ112は、2Dスライス上の特定の位置の最大信頼スコア値を選択することができる。あるいは、プロセッサ112は、2Dスライス上の特定の位置い対するすべての信頼度スコアの加重平均を使用することができる。一例では、プロセッサ112は、Nを所定数として、トップN個の信頼度スコアの加重平均を計算することができる。複数の適応フィルタモデルを使用して生成された信頼度スコアを使用すると、予測の精度を高めることができる。したがって、特定の場所に対する高い信頼度スコアは、2Dスライス上の標的の位置を示すことができ、低い信頼度スコアは腫瘍がその位置にないことを示すことができる。+1に最も近い信頼度スコアは、腫瘍の一部又は腫瘍のすべてが2Dスライス上に位置していることを示すことができる。
プロセッサ112が2Dスライスは腫瘍を含んでいないと判断した場合、プロセス500は、矢印501によりステップ506に戻り、別の2Dスライスを取得することができる。プロセス500は、次の2Dスライスを得るために、プロセッサ112が取得プロトコルを調整するようにする。あるいは、腫瘍は、スライスの厚さ、腫瘍のサイズ、腫瘍の方向及び他のファクタに基づいて、1つ又はそれ以上の2Dスライスに含まれてもよい。例えば、腫瘍の底部が2Dスライスに含まれている場合、プロセッサ112は、続いてどの2Dスライスを取得すべきか(例えば、腫瘍の重心を含む2Dスライス又は腫瘍の上部を含む2Dスライス)を決定するオフセット情報を使用することができる。
例えば、特定の適応フィルタモデルとそれに対応する応答マップからの情報を使用して、プロセッサ112は、その前の2Dスライス上の腫瘍の位置を決定することができる。さらに、適応フィルタモデルに関連付けられたオフセット情報を使用して、プロセッサ112は、3Dでの腫瘍の位置(例えば、中心)を推定することができる。例えば、プロセッサ112は、腫瘍が2Dスライスと、例えば(5、10)番目のピクセル位置で交差すること、腫瘍の中心が2Dスライスの中心から法線方向で5mm離れていることを決定することができる。腫瘍の次の位置を推定するために(例えば、それが移動するにつれて腫瘍を追跡する)、又は腫瘍の形状に関するより完全な情報を取得するために(例えば、腫瘍の形状が変更されたかどうか)、プロセッサ112は、さまざまなパラメータを調整することができる(例えば、次の2Dスライスが取得される位置、その前のスライスと平行であるが異なる位置の次の2Dスライスを取得すること、その前のスライスと垂直である2Dスライスを取得すること、次のスライスの厚さを調整すること、など)。さらに、その前の適応フィルタモデルからオフセット情報を用いて、プロセッサ112は、腫瘍の次の位置を推定することもできる。したがって、プロセッサ112は、患者が放射線治療を受けるにつれ、リアルタイムで腫瘍の動きを追跡することができる。
ステップ516では、患者は「リアルタイム」放射線療法治療を受けるにつれ、プロセッサ112が腫瘍を追跡することができる。加えて、プロセッサ112は、複数の2Dスライスが利用される場合、腫瘍の形状を推定することができる。
図6は、標的(例えば、肝臓)の位置を決定するため、2DMRIスライスに適用される例示的な適応フィルタモデルを図式的に示す。図602では、空間領域における適応フィルタモデルの例が図式的に表現されている。(図1に示された)プロセッサ112は、空間領域でもある特定の2Dスライスに適応フィルタモデル602を適用する標的位置特定モジュール128を使用することができる。2Dスライスに、例示的な適応フィルタモデル602を適用することにより、プロセッサ112は、2Dスライスの各位置に対して、例示的な適応フィルタモデル602が2Dスライスの特定の位置にいかによく一致するかを決定することができる。有利には、プロセッサ112は、約300ミリ秒で各2Dスライスを計算することができる。標的位置特定モジュール128は、図604に図式的に示されている例示的な応答マップを生成する。例示的な応答マップ604は、適応フィルタモデル602が2Dスライスのそれぞれの位置にいかによく一致するかを表すことができる。例示的な応答マップ604に示されるより明るい領域は、より良好な一致を示し、したがって、より暗い領域よりも2Dスライスの特定の位置における適応フィルタモデル602との間のより高い信頼度スコアを示す。より明るい領域は、応答マップ604におけるより暗い領域よりも高い信頼度スコアを有することができる。図示のように、応答マップ604は、プロセッサ112によって決定される、この2Dスライスに対して最も高い信頼度スコアに対応する最も明るい領域608を示す。したがって、応答マップ604上の明るい領域608は、この特定の2Dスライス上の標的の位置に対応することができます。したがって、プロセッサ112は、この特定の2Dスライス上に配置されている標的608の位置を決定する。さらに、患者の解剖学的構造の位置は2Dスライスが画像取得装置170によって生成された場所から生成されるので、プロセッサ112は、図606に示す患者の解剖学的構造上に、標的608の位置を決定することができる。図606における赤色の領域は、例えば、患者の解剖学的構造上に重ねた適応フィルタモデル602に対応する。別の実施形態では、例えば、標的は腫瘍を表すことができる。
あるいは、応答マップは、例えば、2Dスライス及び適応フィルタモデルが周波数領域にある場合にはそれに応じて周波数領域で表現することができる。周波数領域での応答マップを生成するために、プロセッサ112は、2Dスライス上で高速フーリエ変換(FFT)を実行することができる。プロセッサ112は、周波数領域におけるポイントごとの乗算を行うことにより、適応フィルタモデルを適用する。応答マップを生成するために、プロセッサ112は逆高速フーリエ変換を実行することができる。
[0084]
本明細書で言及した全ての刊行物、特許、及び特許文献は、個別に参照により組み込まれているかのように、その全体が参照により本明細書に組み込まれる。本明細書と参照により組み込まれる文書との間の矛盾する使用法の場合には、組み込まれた文献の使用法は、本明細書の使用法への補足とみなされるべきであり、相容れない矛盾に対しては、本明細書の使用法が支配する。
例示的な開示された実施形態は、患者が放射線療法治療を受けながら、患者の解剖学的構造内の標的(例えば、腫瘍)を追跡するためのシステム及び方法を記載する。以上の説明は、例示の目的で提示されている。それは網羅的ではなく、開示された厳密な形態又は実施形態に限定されない。実施形態の修正及び適応は、開示された実施形態の明細書及び実施の考察から明らかになるであろう。
本明細書では、「少なくともひとつ」又は「ひとつ又はそれ以上」の他の例(instance)又は使用(usage)とは独立して、ひとつ又はそれ以上のものを含み、特許文書で一般的であるように、用語「a」又は「an」が使用される。本明細書において、「又は」という用語は、特に断らない限り、「A又はB」には「AであってBでない」、「BであってAでない」、「A及びB」を含むように非排他的である。本明細書では、用語「including」及び「in which」は、それぞれ、用語「comprising」「wherein」の平易な英語の等価物として使用される。また、以下の特許請求の範囲において、「含む(including)」及び「含む(comprising)」という用語は、オープンエンドであり、すなわち、そのような用語の後に列挙された要素に、ある要素を含む装置、システム、デバイス、品物、組成、動作、プロセスを要素として加えたクレームは依然としてそのクレームの範囲内にあるとみなされる。さらに、添付の特許請求の範囲において、「第1の」、「第2の」、「第3の」などの用語は、単にラベルとして使用されており、それらに数値的な要件を課すことを意図しない。
本明細書に記載の方法例は、少なくとも部分的に機械的に又はコンピュータで実施することができる。いくつかの実施例は、上記の実施例で説明した方法を実行するように電子デバイスを構成するように動作可能な命令でコード化されたコンピュータ可読媒体又は機械可読媒体を含むことができる。そのような方法の実装には、マイクロコード、アセンブリ言語コード、高水準言語コードなどのコードを含めることができる。様々なプログラム又はプログラムモジュールは、ソフトウェアプログラミングの様々な技術を使用して作成することができる。例えば、プログラムセクション又はプログラムモジュールは、Java(登録商標)、Python、C、C++、アセンブリ言語、又は任意の公知のプログラミング言語を用いて設計することができる。このようなソフトウェアのセクション又はモジュールの1つ以上は、コンピュータシステム及び/又はコンピュータ可読媒体に統合することができる。そのようなソフトウェアコードは、様々な方法を実行するためのコンピュータ可読命令を含むことができる。コードは、コンピュータプログラム製品又はコンピュータプログラムモジュールの一部を形成してもよい。さらに、一例では、ソフトウェアコードは、実行中又は他の時などに、ひとつ又はそれ以上の揮発性、非一時的、又は不揮発性の有形のコンピュータ可読媒体に有形に格納することができる。これらの具体的なコンピュータ可読媒体の例は、ハードディスク、リムーバブル磁気ディスク、取り外し可能な光ディスク(例えば、コンパクトディスク、デジタルビデオディスク)、磁気カセット、メモリカード、メモリスティック、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)などを含む。
更に、例示的な実施形態が本明細書に記載されているが、その範囲は、本開示に基づく、均等物、改変、省略、組み合わせ(例えば、様々な実施形態を横断する態様)、適応、又は変更を有する任意及び全ての実施形態を含む。特許請求の範囲の要素は、特許請求の範囲で使用される言語に基づいて広く解釈されるべきであり、本明細書で記載された実施例に限定されず、それは非排他的と解釈すべきである。さらに、開示された方法のステップは、ステップを並べ替え、又は挿入又はステップを削除することによってなど、任意の方法で変更することが可能である。したがって、本明細書及び実施例は、以下の特許請求の範囲及びその均等物の全範囲によって示される真の範囲及び精神は、例としてのみ考慮されることが意図されている。
上記の説明は例示的なものであり、限定的なものではない。例えば、上記の例(又はそのひとつ又はそれ以上の態様)は、互いに組み合わせて使用されてもよい。上記の説明を検討することにより、当業者によって、他の実施形態を使用することができる。要約は、読者が技術的開示の性質を迅速に確認できるように、米国特許法規則37C.F.R.1.72(b)に準拠するために提供される。クレームの範囲又は意味を解釈又は制限するために使用されないことを理解して提出されている。また、上記の詳細な説明では、開示を合理化するために様々な特徴をグループ化することができる。これは、クレームされていない開示された特徴がクレームに不可欠であることを意図していると解釈されるべきではない。むしろ、本発明の主題は、開示された特定の実施形態のすべての特徴よりも少なくてもよい。したがって、添付の特許請求の範囲は、実施形態又は実施形態としての詳細な説明に組み込まれ、各請求項は別個の実施形態として独立して立証され、そのような実施形態は、様々な組み合わせ又は順列で互いに組み合わせることができる。本発明の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる等価物の全範囲と共に決定されるべきである。
Claims (23)
- プロセッサにより実行され、3次元ボリューム内の3次元の標的を追跡する方法であって、
画像取得装置から、前記標的の関心領域と前記3次元ボリューム内の前記標的の位置を含む3次元医用画像を受信するステップと、
前記プロセッサにより実行され、前記3次元医用画像から複数の2次元スライスを抽出するステップと、
前記プロセッサにより実行され、前記2次元スライスに対する2次元パッチを決定するステップであって、前記2次元パッチは前記標的と関連する前記2次元スライスの領域に対応しているステップと、
前記プロセッサにより実行され、前記2次元パッチの位置と前記3次元ボリューム内の標的の位置との間の距離を反映するオフセット値を決定するステップと、
前記プロセッサにより実行され、前記関心領域内の前記標的の位置を決定するために前記2次元パッチを適応フィルタモデルに変換するステップであって、前記適応フィルタモデルは前記オフセット値を含むステップと
を有することを特徴とする方法。 - 請求項1記載の方法において、
前記2次元パッチを変換するステップは、適応フィルタ技術を使用するステップを含み、
前記適応フィルタ技術は、整合フィルタ、最大マージン相関フィルタ、合成弁別関数フィルタ、及び最小平均2乗フィルタの少なくとも1つを含む
ことを特徴とする方法。 - 請求項1記載の方法において、
前記オフセット値は、前記2次元パッチの位置と前記3次元ボリューム内の前記標的内の基準点との間の距離ベクトルを含む
ことを特徴とする方法。 - 請求項1記載の方法において、
2次元スライスは、前記3次元ボリューム内の前記標的の動きと実質的に平行である
ことを特徴とする方法。 - 請求項1記載の方法において、
2次元スライスは、前記3次元ボリューム内の前記標的の動きと実質的に直交する
ことを特徴とする方法。 - 請求項1記載の方法において、
前記適応フィルタモデルと前記2次元スライスの両方が同一の向きを有する
ことを特徴とする方法。 - 請求項1記載の方法において、
前記適応フィルタモデルと前記2次元スライスの両方が同じ領域内にあり、
前記領域は、周波数領域又は空間領域のいずれかである
ことを特徴とする方法。 - 請求項1記載の方法において、
前記プロセッサにより実行され、前記2次元スライスを前記適応フィルタモデルの領域に変換するステップをさらに有し、
前記領域は、周波数領域又は空間領域のうちの少なくとも1つであり、
前記適応フィルタモデルは前記2次元スライスと同様の向きである
ことを特徴とする方法。 - 請求項1記載の方法において、
前記プロセッサにより実行され、前記3次元医用画像から前記複数の2次元スライスを抽出する前に、パラメータを調整するステップをさらに有する
ことを特徴とする方法。 - 請求項9記載の方法において、
前記パラメータは、標的位置パラメータを有する
ことを特徴とする方法。 - 請求項9記載の方法において、
前記パラメータは、初期標的位置パラメータを有する
ことを特徴とする方法。 - 請求項9記載の方法において、
前記パラメータは、スライス方向パラメータを有する
ことを特徴とする方法。 - 請求項12記載の方法において、
前記スライス方向パラメータは、矢状方向、冠状方向、又は軸方向の少なくとも1つを有する
ことを特徴とする方法。 - 請求項9記載の方法において、
前記パラメータは、スライス厚さパラメータを有する
ことを特徴とする方法。 - 請求項9記載の方法において、
前記パラメータは、前記3次元ボリュームにおける前記標的の動きの方向を有する
ことを特徴とする方法。 - 請求項1記載の方法において、
前記適応フィルタモデルは信頼度スコアを含み、
前記信頼度スコアは、前記適応フィルタモデルと前記2次元スライスの特定位置との間の相対的適合度を示す
ことを特徴とする方法。 - 請求項1記載の方法において、
前記プロセッサは複数の適応フィルタモデルを生成する
ことを特徴とする方法。 - 請求項17記載の方法において、
前記複数の適応フィルタモデルの各々は、前記標的を含む特定の関心領域に対して設計されている
ことを特徴とする方法。 - 請求項17記載の方法において、
前記プロセッサは、2つ又はそれ以上の適応フィルタモデルを組み合わせ、各フィルタモデルは異なるスライス方向に対応している
ことを特徴とする方法。 - 請求項1記載の方法において、
前記2次元パッチは、前記標的を含む前記2次元スライスの領域に対応している
ことを特徴とする方法。 - 請求項1記載の方法において、
前記2次元パッチは、前記標的を取り囲むが前記標的を含まない領域に対応する情報を含むように構成されている
ことを特徴とする方法。 - 請求項1記載の方法において、
3次元の前記標的は、腫瘍である
ことを特徴とする方法。 - 3次元ボリュームの2次元画像スライスを使用して、前記3次元ボリューム内の3次元の標的を追跡するシステムであって、
プロセッサと、
前記プロセッサに動作可能に結合され、前記プロセッサによって実行されたとき、前記プロセッサに方法を実行させるコンピュータ実行可能命令を格納するメモリとを備え、
前記方法は、
画像取得装置から、前記標的の関心領域と前記3次元ボリューム内の前記標的の位置を含む前記3次元ボリュームの3次元医用画像を受信し、前記3次元医用画像が前記メモリに格納されているステップと、
前記プロセッサにより実行され、前記3次元医用画像から複数の2次元スライスを抽出するステップと、
前記プロセッサにより実行され、前記2次元スライスに対する2次元パッチを決定するステップであって、前記2次元パッチは前記標的と関連する前記2次元スライスの領域に対応しているステップと、
前記プロセッサにより実行され、前記2次元パッチの位置と前記3次元ボリューム内の前記標的の位置との間の距離を反映するオフセット値を決定するステップと、
前記プロセッサにより実行され、前記関心領域内の前記標的の位置を決定するために前記2次元パッチを適応フィルタモデルに変換するステップであって、前記適応フィルタモデルは前記オフセット値を含むステップとを有する
ことを特徴とするシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/607,626 | 2015-01-28 | ||
US14/607,626 US9652871B2 (en) | 2015-01-28 | 2015-01-28 | Three dimensional localization of a moving target for adaptive radiation therapy |
PCT/US2016/014302 WO2016122961A1 (en) | 2015-01-28 | 2016-01-21 | Three dimensional localization of a moving target for adaptive radiation therapy |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018506349A JP2018506349A (ja) | 2018-03-08 |
JP2018506349A5 JP2018506349A5 (ja) | 2019-07-18 |
JP6624695B2 true JP6624695B2 (ja) | 2019-12-25 |
Family
ID=55485282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017540137A Active JP6624695B2 (ja) | 2015-01-28 | 2016-01-21 | 適応型放射線療法に対する移動する標的の3次元位置特定 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9652871B2 (ja) |
EP (1) | EP3251089A1 (ja) |
JP (1) | JP6624695B2 (ja) |
CN (1) | CN107530552B (ja) |
AU (1) | AU2016211820B2 (ja) |
RU (1) | RU2699052C2 (ja) |
WO (1) | WO2016122961A1 (ja) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10092251B2 (en) * | 2013-03-15 | 2018-10-09 | Varian Medical Systems, Inc. | Prospective evaluation of tumor visibility for IGRT using templates generated from planning CT and contours |
US9652871B2 (en) | 2015-01-28 | 2017-05-16 | Impac Medical Systems, Inc. | Three dimensional localization of a moving target for adaptive radiation therapy |
US11182907B2 (en) * | 2016-02-02 | 2021-11-23 | Elekta Ltd. | Motion management in image-guided radiotherapy using contour elements |
JP6925364B2 (ja) * | 2016-03-30 | 2021-08-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 適応放射線治療計画 |
US11517768B2 (en) * | 2017-07-25 | 2022-12-06 | Elekta, Inc. | Systems and methods for determining radiation therapy machine parameter settings |
EP3684463A4 (en) | 2017-09-19 | 2021-06-23 | Neuroenhancement Lab, LLC | NEURO-ACTIVATION PROCESS AND APPARATUS |
US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US11478603B2 (en) | 2017-12-31 | 2022-10-25 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
EP3543723A1 (en) * | 2018-03-20 | 2019-09-25 | Siemens Healthcare GmbH | Method for acquiring magnetic resonance image data for image-guided radiotherapy |
US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
CN108875080B (zh) * | 2018-07-12 | 2022-12-13 | 百度在线网络技术(北京)有限公司 | 一种图像搜索方法、装置、服务器及存储介质 |
WO2020056418A1 (en) | 2018-09-14 | 2020-03-19 | Neuroenhancement Lab, LLC | System and method of improving sleep |
US10918885B2 (en) | 2018-09-27 | 2021-02-16 | Varian Medical Systems International Ag | Systems, methods and devices for automated target volume generation |
US12109438B2 (en) * | 2018-12-26 | 2024-10-08 | Our United Corporation | Positioning method realized by computer, and radiotherapy system |
CN110490851B (zh) * | 2019-02-15 | 2021-05-11 | 腾讯科技(深圳)有限公司 | 基于人工智能的乳腺图像分割方法、装置及系统 |
US11141609B2 (en) | 2019-05-15 | 2021-10-12 | Elekta Ab (Publ) | Dose guided real-time adaptive radiotherapy |
WO2021067888A1 (en) | 2019-10-03 | 2021-04-08 | Cornell University | Optimizing bra sizing according to the 3d shape of breasts |
US11077320B1 (en) | 2020-02-07 | 2021-08-03 | Elekta, Inc. | Adversarial prediction of radiotherapy treatment plans |
US20210268313A1 (en) * | 2020-02-27 | 2021-09-02 | Elekta ltd | Image Registration in Treatment Planning |
US11690581B2 (en) * | 2020-09-07 | 2023-07-04 | C-Rad Positioning Ab | Tumor position determination |
US11904186B2 (en) * | 2022-01-12 | 2024-02-20 | Capital Medical University | Radiotherapeutical or radiosurgical system comprising two or more rotatable high-intensity radiation sources and a ring-shaped imager, and methods thereof |
CN114332090B (zh) * | 2022-03-16 | 2022-05-10 | 中南大学 | 多源域自适应脑网络分类方法、系统、设备及存储介质 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002165894A (ja) * | 2000-12-04 | 2002-06-11 | Mitsubishi Electric Corp | 放射線治療システム |
US7577282B2 (en) * | 2002-11-27 | 2009-08-18 | Hologic, Inc. | Image handling and display in X-ray mammography and tomosynthesis |
US20050053267A1 (en) * | 2003-09-05 | 2005-03-10 | Varian Medical Systems Technologies, Inc. | Systems and methods for tracking moving targets and monitoring object positions |
JP4549093B2 (ja) * | 2004-04-12 | 2010-09-22 | キヤノン株式会社 | 画像処理装置及びその方法、プログラム |
US8989349B2 (en) * | 2004-09-30 | 2015-03-24 | Accuray, Inc. | Dynamic tracking of moving targets |
US8042209B2 (en) * | 2005-04-13 | 2011-10-25 | University Of Maryland | Techniques for compensating movement of a treatment target in a patient |
US7894649B2 (en) | 2006-11-02 | 2011-02-22 | Accuray Incorporated | Target tracking using direct target registration |
JP5028528B2 (ja) * | 2008-09-30 | 2012-09-19 | 株式会社日立メディコ | X線ct装置 |
US9433389B2 (en) * | 2011-07-12 | 2016-09-06 | University Of Maryland, Baltimore | Method for monitoring the accuracy of tissue motion prediction from surrogates |
US9336592B2 (en) * | 2012-02-03 | 2016-05-10 | The Trustees Of Dartmouth College | Method and apparatus for determining tumor shift during surgery using a stereo-optical three-dimensional surface-mapping system |
US8837778B1 (en) * | 2012-06-01 | 2014-09-16 | Rawles Llc | Pose tracking |
US9076227B2 (en) * | 2012-10-01 | 2015-07-07 | Mitsubishi Electric Research Laboratories, Inc. | 3D object tracking in multiple 2D sequences |
RU2504329C1 (ru) * | 2012-10-02 | 2014-01-20 | Федеральное государственное бюджетное учреждение "Научный центр неврологии" Российской академии медицинских наук | Способ выявления в коре головного мозга сенсомоторных зон, ответственных за локомоцию |
US10092251B2 (en) | 2013-03-15 | 2018-10-09 | Varian Medical Systems, Inc. | Prospective evaluation of tumor visibility for IGRT using templates generated from planning CT and contours |
JP6351017B2 (ja) * | 2014-02-24 | 2018-07-04 | 国立研究開発法人量子科学技術研究開発機構 | 放射線治療用動体追跡装置、放射線治療用照射領域決定装置および放射線治療装置 |
US10043284B2 (en) * | 2014-05-07 | 2018-08-07 | Varian Medical Systems, Inc. | Systems and methods for real-time tumor tracking |
US20160213948A1 (en) * | 2015-01-22 | 2016-07-28 | Impac Medical Systems, Inc. | System and method to create test objects for radiation therapy |
US9652871B2 (en) | 2015-01-28 | 2017-05-16 | Impac Medical Systems, Inc. | Three dimensional localization of a moving target for adaptive radiation therapy |
-
2015
- 2015-01-28 US US14/607,626 patent/US9652871B2/en active Active
-
2016
- 2016-01-21 CN CN201680013998.6A patent/CN107530552B/zh active Active
- 2016-01-21 AU AU2016211820A patent/AU2016211820B2/en active Active
- 2016-01-21 WO PCT/US2016/014302 patent/WO2016122961A1/en active Application Filing
- 2016-01-21 EP EP16708479.7A patent/EP3251089A1/en active Pending
- 2016-01-21 RU RU2017130025A patent/RU2699052C2/ru active
- 2016-01-21 JP JP2017540137A patent/JP6624695B2/ja active Active
-
2017
- 2017-04-11 US US15/485,189 patent/US10152790B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20170221206A1 (en) | 2017-08-03 |
CN107530552A (zh) | 2018-01-02 |
US10152790B2 (en) | 2018-12-11 |
EP3251089A1 (en) | 2017-12-06 |
RU2017130025A (ru) | 2019-02-28 |
RU2699052C2 (ru) | 2019-09-03 |
AU2016211820A1 (en) | 2017-08-17 |
US9652871B2 (en) | 2017-05-16 |
JP2018506349A (ja) | 2018-03-08 |
AU2016211820B2 (en) | 2019-06-06 |
CN107530552B (zh) | 2020-06-19 |
WO2016122961A1 (en) | 2016-08-04 |
US20160217595A1 (en) | 2016-07-28 |
RU2017130025A3 (ja) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6894987B2 (ja) | 適応型放射線療法に対する3次元位置特定及び追跡 | |
JP6624695B2 (ja) | 適応型放射線療法に対する移動する標的の3次元位置特定 | |
AU2016286520B2 (en) | System and method for target tracking using a quality indicator during radiation therapy | |
AU2018266458B2 (en) | Systems and methods of accounting for shape change during radiotherapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171220 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190614 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190614 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6624695 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |