WO2022120707A1 - 实时图像引导方法、装置及系统、放射治疗系统 - Google Patents

实时图像引导方法、装置及系统、放射治疗系统 Download PDF

Info

Publication number
WO2022120707A1
WO2022120707A1 PCT/CN2020/135239 CN2020135239W WO2022120707A1 WO 2022120707 A1 WO2022120707 A1 WO 2022120707A1 CN 2020135239 W CN2020135239 W CN 2020135239W WO 2022120707 A1 WO2022120707 A1 WO 2022120707A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
target
real
time
target object
Prior art date
Application number
PCT/CN2020/135239
Other languages
English (en)
French (fr)
Inventor
闫浩
罗春
王永军
胡尊亭
李金升
Original Assignee
西安大医集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团股份有限公司 filed Critical 西安大医集团股份有限公司
Priority to CN202080107398.2A priority Critical patent/CN116490898A/zh
Priority to PCT/CN2020/135239 priority patent/WO2022120707A1/zh
Publication of WO2022120707A1 publication Critical patent/WO2022120707A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Definitions

  • the present disclosure relates to the technical field of radiotherapy, and in particular, to a real-time image guidance method, device and system, and a radiotherapy system.
  • image guided radiation therapy (IGRT) technology can be used to locate and track the location of a target object (eg, a patient's tumor) in real time to guide radiation therapy.
  • IGRT image guided radiation therapy
  • the IGRT system used to realize the IGRT technology can obtain two-dimensional projection images of the target object at two different angles during the treatment process, and then the two-dimensional projection images can be matched with the reference images at the corresponding angles respectively. Two two-dimensional offsets can be accurately determined, and finally, the three-dimensional offset of the target object can be calculated based on the determined two two-dimensional offsets, so as to track the position of the target object.
  • the reference image may be an image reconstructed by the IGRT system according to the computed tomography (CT) image of the target object when the treatment plan is generated.
  • CT computed tomography
  • the image-guided method of the related art has lower accuracy and less flexibility in tracking position.
  • the embodiments of the present disclosure provide a real-time image guidance method, device and system, and a radiation therapy system, which can solve the problems of low precision and low flexibility in tracking tumor positions in the related art.
  • the technical solution is as follows:
  • a real-time image guidance method comprising:
  • the target reference image is an image determined based on an image acquired by an image guidance device when the positioning of the target object is completed, and the target object includes a marker;
  • real-time image guidance is performed on the target object.
  • a real-time image guidance device comprising:
  • the first acquisition module is configured to acquire a target reference image of the target object, wherein the target reference image is an image determined based on the image collected by the image guidance device under the condition that the positioning of the target object is completed, and the The target object includes a marker;
  • a second acquiring module configured to acquire a real-time projection image of the target object by using the image guidance device
  • An image guidance module configured to perform real-time image guidance on the target object according to the target reference image and the real-time projection image.
  • a real-time image guidance system comprising: an image guidance device, a processor and a memory;
  • the image guidance device is used for collecting images, and instructions are stored in the memory, and the instructions are loaded and executed by the processor to implement the real-time image guidance method described in the above aspects.
  • a storage medium is provided, and instructions are stored in the storage medium, and when the storage medium runs on a processing component, the processing component is caused to execute the real-time image guidance method described in the above aspects.
  • a radiotherapy system comprising: a patient support device, a host, and a real-time image guidance system; the real-time image guidance system is the system according to the above aspect;
  • the host is respectively connected with the real-time image guidance system and the patient support device, and the real-time image guidance system is used for sending the determined target offset of the target object to the host, and the host uses for adjusting the position of the patient support device based on the target offset.
  • the embodiments of the present disclosure provide a real-time image guidance method, device and system, and a radiation therapy system.
  • the image guidance system can perform reliable real-time image guidance for the target object based on the obtained target reference image and real-time projection image of the target object. Since the target object includes markers with better imaging clarity, and the target reference image is collected after the placement is completed, both the target reference image and the real-time projection image include markers. Based on the target reference image including markers The real-time image guidance of the target object and the real-time projection image are more accurate.
  • FIG. 1 is a schematic structural diagram of a radiation therapy system provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a real-time image guidance method provided by an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another real-time image guidance method provided by an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for determining a target reference image provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a marker provided by an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of an image guidance method provided by an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of another image guidance method provided by an embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a real-time image guidance device provided by an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of another real-time image guidance device provided by an embodiment of the present disclosure.
  • FIG. 10 is a block diagram of a real-time image guidance system provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a radiation therapy system provided by an embodiment of the present disclosure.
  • the radiotherapy system may include a patient support device 01 , a host 02 , a real-time image guidance system 03 and a radiotherapy apparatus 04 .
  • the patient support device 01 may be the treatment couch shown in FIG. 1 , such as a three-dimensional treatment couch, a six-dimensional treatment couch, or, of course, other devices for supporting a patient such as a treatment chair.
  • the host 02 may be a control device.
  • the image guidance system 03 may be an IGRT system.
  • the host 02 may establish a communication connection with the patient support device 01 and the image guidance system 03, and the communication connection may be a wired connection as shown in FIG. 1, or may be a wireless connection.
  • the image guidance system 03 can use IGRT technology to track the position of the target object (eg, the patient's tumor) in real time, and send the offset of the target object to the host 02, and the host 02 can base on the received offset
  • the position of the patient support device 01 can be flexibly adjusted to achieve reliable real-time image guidance for the patient.
  • the real-time image guidance system 03 may include an image guidance device 031, and the image guidance device 031 may be a cone beam computed tomography (CBCT) device. That is, the image guidance device 031 can be used to acquire the CBCT image of the target object.
  • CBCT cone beam computed tomography
  • the image guiding device 031 may include: one or more groups of image acquisition components, and each group of image acquisition components may include a detector 0311 and a bulb 0312 arranged oppositely (only schematically shown in FIG. 1 ). A set of image acquisition components).
  • the bulb 0312 can emit rays, such as cone beams, the detector 0311 can receive the rays emitted by the bulb 0312, and the image guiding device 031 can generate a two-dimensional projection image of the target object according to the rays received by the detector 0311.
  • the bulb 0312 may be a bulb capable of emitting kilovolt (KV) X-rays
  • the detector 0311 may be a flat panel detector.
  • the two-dimensional projection image collected by the image guiding device 031 may be a KV-level X projection image.
  • the radiotherapy apparatus 04 may be provided with a plurality of treatment sources 041, each treatment source 041 may emit rays, and the rays emitted by the plurality of treatment sources 041 may be rotated around the rotation axis and focused to the beam focus to treat the target subject.
  • the treatment source 041 may be a gamma ray source, and correspondingly, the rays emitted by the treatment source 041 are ⁇ rays; or, the treatment source 041 may be an X-ray source, and correspondingly, the rays emitted by the treatment source 041 are X rays Rays.
  • the image guidance device 031 described in the above embodiment may also be provided on the radiotherapy apparatus 04 .
  • the real-time image guidance system 03 uses IGRT technology to track the principle of the target object:
  • the reference image and the two-dimensional projection image of the target object are collected by the image guidance device, and the two images are registered.
  • Registering two images may refer to taking a specified image as a reference image and the other image as an image to be registered. The purpose of registration is to make all points on the image to be registered and the reference image consistent. Since the two-dimensional projection image of the target object is generally the image obtained in real time during the radiotherapy process, that is, the image collected on the spot, the two-dimensional projection image of the target object can be used as the image to be registered.
  • the reference image is generally a digitally reconstructed radio (DRR) image generated based on CT image reconstruction of the target object.
  • DRR digitally reconstructed radio
  • the reference image is an image determined based on the image collected by the image guidance device 031 when the positioning is completed, such as a DRR image generated by reconstruction of the CBCT image of the target object. The error caused by the placement of the image when generating the DRR image makes the generated DRR image more accurate, and correspondingly, the registration accuracy is high.
  • the related art usually sets a marker with a clearer image on the target object before acquiring the CT image, that is, before formulating the treatment plan.
  • the acquired CT image can include the marker, and a treatment plan can be formulated for the patient based on the CT image including the marker.
  • the markers may shift due to the patient coughing. Therefore, it will correspondingly lead to a large deviation between the positions of the markers included in the real-time two-dimensional projection images of the target object obtained during the implementation of the treatment plan and the positions of the reference images (for example, generating DRR images based on CT images).
  • the reference image is the image when the positioning is completed, but the marker is also set on the target object during the positioning stage. In this way, the probability of the marker migrating is reduced, and accordingly, the image registration accuracy is ensured, so that the reliability of image guidance based on the marker is better.
  • the treatment space will be smaller.
  • the two-dimensional projection image of the target object at one angle can also be obtained, that is, the three-dimensional offset of the target object can be obtained.
  • the image guidance device 031 only needs to include a set of image acquisition components Can. In this way, the real-time tracking of the position of the target object is ensured, the treatment space is not affected, and the registration accuracy is high.
  • FIG. 2 is a flowchart of a real-time image guidance method provided by an embodiment of the present disclosure, and the method can be applied to the real-time image guidance system 03 shown in FIG. 1 .
  • the method may include:
  • Step 201 Obtain a target reference image of a target object.
  • the target reference image is an image determined based on the image collected by the image guidance device when the positioning of the target object is completed, and the target object includes a marker.
  • Step 202 using an image guidance device to acquire a real-time projected image of the target object.
  • the real-time projection image may be a two-dimensional projection image of the target object captured by an image guidance device at a target capture angle during radiotherapy.
  • Step 203 Perform real-time image guidance on the target object according to the target reference image and the real-time projection image.
  • the image guidance system can perform an image registration operation based on the target reference image and the real-time projection image to obtain the target offset of the target object, and perform real-time image guidance on the target object based on the determined target offset, such as, Reliably adjust the position of the target object.
  • the embodiments of the present disclosure provide a real-time image guidance method.
  • the image guidance system can perform reliable real-time image guidance for the target object based on the obtained target reference image and real-time projection image of the target object. Since the target object includes markers with better imaging clarity, and the target reference image is collected after the placement is completed, both the target reference image and the real-time projection image include markers. Based on the target reference image including markers The real-time image guidance of the target object and the real-time projection image are more accurate.
  • FIG. 3 is a flowchart of a real-time image guidance method provided by an embodiment of the present disclosure, and the method can be applied to the real-time image guidance system 03 shown in FIG. 1 .
  • the method may include:
  • Step 301 Obtain a target reference image of a target object.
  • the target reference image may be an image determined by the real-time image guidance system based on the images collected by the image guidance device under the condition that the positioning of the target object is completed.
  • the target reference image may be a two-dimensional image, or may be a three-dimensional image, such as a CBCT image.
  • the real-time image guidance system may acquire the target reference image in the following manner:
  • Step 3011A When the positioning of the target object is completed, the image guidance device is used to acquire the target two-dimensional projection images of the target object at different shooting angles.
  • the image guidance device can control the bulbs in the set of image acquisition components to emit rays at different shooting angles, correspondingly, the detectors can receive rays at different shooting angles.
  • the image guiding device can generate a plurality of two-dimensional projection images of the target at different shooting angles based on the rays received by the detector at different shooting angles.
  • the image guidance device may also include multiple groups of image acquisition components.
  • a plurality of target two-dimensional projection images can be simultaneously acquired at different shooting angles through the multiple groups of image acquisition components. In this way, the acquisition of different shooting angles can be improved. Efficiency of 2D projected images of multiple targets.
  • the real-time image guidance system can use the image guidance device to perform a full circle scan (that is, scan one circle) in the radiotherapy apparatus 04 to obtain more different shots.
  • a full circle scan that is, scan one circle
  • the real-time image guidance system may use an image guidance device to acquire target two-dimensional projection images of the target object at different shooting angles when receiving an imaging instruction sent by the host.
  • Step 3012A Reconstruct the target two-dimensional projection images of the target object at different shooting angles.
  • the real-time image guidance system can reconstruct and generate target 3D images of the target object based on the multiple target 2D projection images.
  • Step 3013A Determine the reconstructed target three-dimensional image as the target reference image.
  • the real-time image guidance system can determine the reconstructed target 3D image as the target reference image.
  • the positioning of the target object can be completed by means of two-dimensional image and two-dimensional image registration, and the positioning of the target object can also be completed by means of three-dimensional image and three-dimensional image registration. bit.
  • the method may further include:
  • Step A1 Use an image guidance device to acquire candidate two-dimensional projection images of the target object under at least two shooting angles.
  • the real-time image guidance system can use the image guidance device to photograph the target object at at least two shooting angles, so as to obtain the candidate objects of the target object under at least two shooting angles. 2D projection image.
  • the acquisition method reference may be made to the record of the above-mentioned step 3011A, which will not be repeated here.
  • Step A2 Perform image registration on the candidate two-dimensional projection images under at least two shooting angles with the planned digitally reconstructed radiological DRR images reconstructed under the at least two shooting angles based on the planned images.
  • the planning image may be an image obtained by scanning the target object with a planning image acquisition device when making a treatment plan before radiotherapy, and the real-time image guidance system may acquire the planning image sent by the planning image acquisition device.
  • the planned image acquisition device may send the acquired planned image to the real-time image guidance system after receiving the image acquisition instruction sent by the real-time image guidance system.
  • the planned image acquisition device may send the acquired planned image to the real-time image guidance system when receiving an image transmission instruction sent by the host.
  • the planning image may be a CT image or a magnetic resonance (magnetic resonance, MR) image. That is, the planning image acquisition device described above may be a CT device, or an MR device. However, since both CT images and MR images are three-dimensional images, in order to register with the two-dimensional projection image obtained in step A1, the real-time image guidance system can firstly reconstruct and generate at least two images based on the obtained planning image. DRR images at different shooting angles. And the at least two shooting angles are the same as the at least two shooting angles in step A1.
  • the real-time image guidance system can perform image registration on the candidate two-dimensional projection image obtained in step A1 at each shooting angle with the planned DRR image reconstructed based on the planned image at the corresponding shooting angle to determine whether to set the position Finish.
  • the real-time image guidance system may use the planned DRR image under the shooting angle as the reference image, and the alternative two-dimensional projection image under the shooting angle as the image to be registered, and compare the The coordinates of each point in the two images, and based on the comparison results to determine whether the placement is complete.
  • Step A3 When it is determined that the registration result satisfies the registration condition, the positioning of the target object is completed.
  • the registration condition may be: the positional deviation of the target object in the two registered images is less than or equal to a deviation threshold.
  • the deviation threshold can be 0, and the registration condition is that the position deviation of the target object in the two registered images is equal to the deviation threshold, then correspondingly, the registration result satisfying the registration condition may mean that the target object is in the registration process.
  • the positions in the two images are exactly the same.
  • the deviation is generally a three-dimensional deviation, and the above is only a schematic description.
  • step A2 the candidate two-dimensional projection image at each shooting angle is determined, and the registration result of performing image registration with the planned digital reconstructed radiological DRR image reconstructed based on the planned image at the corresponding shooting angle satisfies the above registration conditions , the real-time image guidance system can determine that the positioning is completed at this time, and then can further determine the candidate two-dimensional projection images under at least two shooting angles obtained in step A1 as: the target two-dimensional projection images under different shooting angles, for the execution of step 3011A. That is, after step A3 is executed, step 3011A can be executed immediately.
  • steps A1 to A3 may be continued until the registration result satisfies the registration condition, for example.
  • the method can also include:
  • Step B1 using an image guidance device to acquire a candidate three-dimensional image of the target object.
  • the candidate three-dimensional image may be an image reconstructed based on reference two-dimensional projection images of the target object at different shooting angles.
  • the real-time image guidance system can first use the image guidance device to obtain the reference 2D projection images of the target object at different shooting angles during the positioning process, and then reconstruct the reference 2D projection images of the target object at different shooting angles. , to obtain a candidate 3D image of the target object.
  • step 3011A for the method of using the image guidance device to obtain the reference two-dimensional projection images of the target object at different shooting angles, and details are not described herein again.
  • the candidate three-dimensional image may be a CBCT image.
  • Step B2 Perform image registration on the candidate three-dimensional image and the planned image.
  • the real-time image guidance system can directly configure the selected 3D image and the planned image.
  • the registration method reference may be made to the description of step A2, which will not be repeated here.
  • Step B3 When it is determined that the registration result satisfies the registration condition, the positioning of the target object is completed.
  • the real-time image guidance system may determine that the positioning is completed, and may continue to perform the following step B4.
  • steps B1 to B3 may be continued until the registration result satisfies the registration condition, for example.
  • Step B4 Determine the candidate three-dimensional image as the target reference image (step B4 is another specific example of step 301).
  • the real-time image guidance system can determine the candidate 3D image used for registration as the target 3D image. That is, by means of steps B1 to B4, the target reference image after the placement is completed can be directly determined. It should be noted here that, in steps B1 to B3, the positioning of the target object is completed by means of three-dimensional image and three-dimensional image registration.
  • the real-time image guidance system can The target two-dimensional projection images of the target object at different shooting angles are determined as the target reference image. In this way, in the final registration, the target two-dimensional projection image under the same shooting angle as the shooting angle when collecting the real-time projection image can be obtained from the target two-dimensional projection image under the different shooting angles as the target for final registration. Reference image.
  • the real-time image guidance system may first obtain the positioning registration type of the target object in the positioning stage, and flexibly determine the target reference image based on the positioning registration type.
  • the placement registration type may be 2-dimensional (dimension) D-2D registration or 3D-3D registration. If the placement registration type package is 2D-2D registration, then in combination with the above-mentioned embodiments, the real-time image guidance system can first use an image guidance device to obtain the target two-dimensional projection images of the target object at different shooting angles, and then perform the target object The two-dimensional projection images of the target under different shooting angles are reconstructed, and the reconstructed three-dimensional image of the target is determined as the target reference image. If the placement registration type package is 3D-3D registration, then in combination with the above embodiments, the real-time image guidance system can directly determine the target 3D image registered with the planned image when the placement is completed as the target reference image.
  • the target object may further include a marker.
  • the marker can be a marker attached to the patient's body surface or implanted in the patient's body during the setup stage.
  • all the images obtained in the above embodiments may include the marker, for example, the target reference image includes the marker. Since the imaging of this marker is clearer, subsequent registration accuracy is ensured. And because the marker is set in the setup stage rather than before the treatment plan is formulated, the probability of the marker moving is also reduced, and the subsequent registration accuracy is further ensured.
  • the marker may be a metal marker (referred to as a gold marker) made of a metal material.
  • a metal marker referred to as a gold marker
  • at least three non-collinear markers can be set. In this way, the real-time image guidance system can be enabled to register images with reference to the positions of multiple markers at different shooting angles, thereby further improving the registration accuracy.
  • the target object is a tumor located in the head, and three non-collinear markers are set. Then, referring to FIG. 5 , a marker can be set at the two temples and the tip of the nose of the patient, respectively. If the target object is located on the body, markers can be placed at the patient's spine.
  • Step 302 Store at least two target reference images.
  • one target reference image can be used for real-time image guidance with the real-time projection image
  • the other target reference image can be used for display, for example, can be used to display to the treating physician through the host.
  • the target reference image used for real-time image guidance may be the target reference image including only the marker obtained after the following processing is performed on the target reference image including the marker.
  • the target reference image for display may be an image that includes both markers and other information (eg, bone tissue).
  • Step 303 using an image guidance device to acquire a real-time projected image of the target object.
  • the target reference image of the target object is acquired, it means that the positioning is completed.
  • the patient can be sent into the treatment space of the radiotherapy equipment to perform radiotherapy on the patient.
  • the position of the target object may also be shifted due to unavoidable factors such as patient movement or patient breathing and coughing.
  • Accuracy of treatment to avoid mis-irradiation to other normal tissues it is necessary to use image-guided technology to track the position of the target object in real time during radiotherapy, so as to adjust the patient's position in real time and ensure that the focus of the treatment beam and the treatment target of the target object can be aligned in real time .
  • the real-time image guidance system needs to obtain the current position of the target object first.
  • the real-time image guidance system may use an image guidance device to obtain a real-time projection image of the target object at a target shooting angle, that is, a two-dimensional projection image of the target object.
  • a target shooting angle that is, a two-dimensional projection image of the target object.
  • the real-time image guidance system may start to use the image guidance device to acquire the real-time projection image of the target object after receiving the imaging instruction sent by the host.
  • Step 304 Perform real-time image guidance on the target object according to the target reference image and the real-time projection image.
  • step 304 may include:
  • Step 3041A Segment the markers in the target reference image and the real-time projection image respectively.
  • the segmentation method may be as follows: the real-time image guidance system first performs image blurring processing on the images to be segmented (including the target DRR image and the real-time projection image), so as to blur the markers in the images to be segmented and integrate the markers into the images to be segmented. In the background of the image, get a new image. Then, the real-time image guidance system can use a new image obtained by subtracting the image blurring from the image to be segmented to complete the segmentation of the marker.
  • the image subtraction may refer to: subtracting the pixel value of a certain pixel point in the image to be segmented from the pixel value of the pixel point in the new image obtained by blurring.
  • the real-time image guidance system may first acquire the CT values of each target object and marker in the image to be segmented.
  • the unit of the CT value is Hu, which can be used to measure the absorption rate of radiation by human tissue.
  • a threshold for CT filtering (referred to as a reference threshold) may be preset in the real-time image guidance system. Then, the real-time image guidance system can perform image normalization processing on the to-be-segmented image based on the CT values of each target object and the marker, as well as the reference threshold, to complete the marker segmentation processing. For example, the real-time image guidance system can determine the relationship between the CT value of each target object and the marker and the reference threshold.
  • the real-time image guidance system For the CT value corresponding to the target object whose CT value is greater than the reference threshold, the real-time image guidance system does not change its CT value. For the CT value corresponding to the target object whose CT value is less than the reference threshold, the real-time image guidance system may set it as the first threshold, and may set the CT value of the marker as the second threshold.
  • the target shooting angle of the image to be segmented is obtained, the reconstructed three-dimensional image is obtained, and the target DRR image of the reconstructed three-dimensional image at the target shooting angle is obtained.
  • the reconstructed three-dimensional image may be filtered to obtain a three-dimensional image including only the marker, and a target DRR image of the three-dimensional image including only the marker at the target shooting angle is obtained.
  • construct one or more reference regions of interest (region of interest, ROI) in the target DRR image the reference ROI contains one or more markers, and then map one or more reference ROIs to the image to be segmented , and correspondingly obtain one or more reference target ROIs to complete the segmentation.
  • the above step 3041A may include: the real-time image guidance system first obtains the target shooting angle of the real-time projection image, and the reconstructed target three-dimensional image is under the target shooting angle. The DRR image, and then the markers in the DRR image and the real-time projection image are segmented respectively.
  • the real-time image guidance system can perform image processing (such as the above-mentioned segmentation processing) on the reconstructed target 3D image to obtain a target 3D image that only includes markers, and obtain a target 3D image that only includes markers. DRR image in angle.
  • image processing such as the above-mentioned segmentation processing
  • Step 3042A Perform real-time image guidance on the target object according to the markers in the segmented target reference image and the markers in the real-time projection image.
  • step 3042A may include:
  • the real-time image guidance system performs first target registration on the markers in the segmented target reference image and the markers in the real-time projection image. Secondly, the real-time image guidance determines the target offset of the target object according to the registration result of the first target registration, and adjusts the position of the target object according to the target offset to complete the real-time image guidance.
  • a real-time image guidance system can compare the location of the target point of the marker in the target reference image and the real-time projection image and determine the target offset based on the target point's location.
  • the target point can be the center point of the marker. In this way, contrast accuracy can be ensured.
  • step 3042A may include:
  • the real-time image guidance system can determine the image zoom ratio according to the markers in the target DRR image and the markers in the real-time projection image. Secondly, the real-time image guidance system can determine the target offset of the target object according to the image zoom ratio, and adjust the position of the target object according to the target offset to complete the real-time image guidance.
  • the real-time image guidance system can determine the image zoom ratio of the real-time projected image by comparing the marker in the target DRR image with the marker in the real-time projected image. In this way, only a real-time projection image at one shooting angle is required.
  • the real-time image guidance system can determine the offset of the target object in the shrinking direction based on the image zoom ratio, and can combine the other two offsets determined in the two-dimensional coordinate system to comprehensively obtain the target of the target object. Offset.
  • step 304 may include:
  • Step 3041B Segment the markers in the target reference image and the real-time projection image respectively.
  • step 3041A For this step, reference may be made to the description of the above-mentioned step 3041A, which will not be repeated here.
  • Step 3042B Perform first target registration on the markers in the segmented target reference image and the markers in the real-time projection image.
  • Step 3043B Determine the first reference offset of the target object according to the registration result of the first target registration.
  • Step 3044B Perform second target registration on the bony marker tissue in the target reference image and the bony marker tissue in the real-time projection image.
  • Step 3045B Determine the second reference offset of the target object according to the registration result of the second target registration.
  • step 3042A For this step, reference may be made to the description of the above-mentioned step 3042A, which will not be repeated here.
  • Step 3046B Calculate the target offset of the target object based on the first offset, the weight value of the first offset, the second offset, and the weight value of the second offset.
  • a weight value of the first offset and a weight value of the second offset may be preset in the real-time image guidance system.
  • the image guidance system may use the first offset, the weight value of the first offset, the second offset, and the weight value of the second offset as parameters, the actual offset of the target object is calculated by means of weighted summation.
  • the offset of the target object is determined by combining markers and bone marker tissues, with good reliability and accuracy.
  • Step 3047B Adjust the position of the target object according to the target offset.
  • the real-time image guidance system can reliably adjust the position of the target object based on the determined target offset, so as to realize the real-time image guidance of the target object.
  • the embodiments of the present disclosure provide a real-time image guidance method.
  • the image guidance system can perform reliable real-time image guidance for the target object based on the obtained target reference image and real-time projection image of the target object. Since the target object includes markers with better imaging clarity, and the target reference image is collected after the placement is completed, both the target reference image and the real-time projection image include markers. Based on the target reference image including markers The real-time image guidance of the target object and the real-time projection image are more accurate.
  • FIG. 8 is a block diagram of a real-time image guidance apparatus provided by an embodiment of the present disclosure, and the apparatus may be applied to the real-time image guidance system 03 shown in FIG. 1 .
  • the apparatus may include:
  • the first acquiring module 401 is configured to acquire a target reference image of a target object.
  • the target reference image is an image determined based on an image acquired by the image guidance device when the positioning of the target object is completed, and the target object includes a marker.
  • the second acquiring module 402 is configured to acquire a real-time projection image of the target object by using an image guidance device.
  • the image guidance module 403 is configured to perform real-time image guidance on the target object according to the target reference image and the real-time projection image.
  • the image guidance module 403 may include:
  • the segmentation sub-module is used to segment the landmarks in the target reference image and the real-time projection image respectively.
  • the image guidance sub-module is used for real-time image guidance for the target object according to the markers in the segmented target reference image and the markers in the real-time projection image.
  • the image guidance sub-module can be used to: perform first target registration on the markers in the segmented target reference image and the markers in the real-time projection image, and determine according to the registration result of the first target registration.
  • the target offset of the target object and adjust the position of the target object according to the target offset.
  • the image guidance sub-module can be used to compare the position of the target point of the marker in the target reference image and the real-time projection image, so as to complete the first target registration.
  • the target point can be the center point of the marker.
  • the segmentation sub-module can be used to: obtain the target shooting angle of the real-time projection image, and obtain the DRR of the reconstructed target three-dimensional image at the target shooting angle. images, and segmented the markers in the DRR image and the real-time projection image, respectively.
  • the segmentation sub-module can be used to: perform image processing on the reconstructed 3D image of the target to obtain a 3D image of the target including only markers, and obtain a DRR image of the 3D image of the target including only markers at the target shooting angle. .
  • the target object may further include: bony marker tissue.
  • the image guidance module 403 can be used to:
  • the landmarks in the target reference image and the real-time projection image are segmented, respectively.
  • a first target registration is performed on the markers in the segmented target reference image and the markers in the real-time projection image.
  • the first reference offset of the target object is determined according to the registration result of the first target registration.
  • a second target registration is performed on the bony landmark tissue in the target reference image and the bony landmark tissue in the real-time projection image.
  • the second reference offset of the target object is determined according to the registration result of the second target registration.
  • a target offset of the target object is calculated.
  • the marker can include a metal marker, and the metal marker can be attached to the patient's body surface or implanted in the patient's body during the setup stage.
  • the target object may include: at least three non-collinear markers.
  • the device may further include:
  • the storage module 404 is configured to store at least two copies of the target reference image after acquiring the target reference image of the target object. Among them, one target reference image is used for real-time image guidance with the real-time projection image, and the other target reference image is used for display.
  • the embodiments of the present disclosure provide a real-time image guidance device.
  • the device can perform reliable real-time image guidance for the target object based on the obtained target reference image and real-time projection image of the target object. Since the target object includes markers with better imaging clarity, and the target reference image is collected after the placement is completed, both the target reference image and the real-time projection image include markers. Based on the target reference image including markers The real-time image guidance of the target object and the real-time projection image have higher accuracy.
  • the real-time image guidance system 30 in the radiotherapy system may include: an image guidance device 031 , a processor 032 and a memory 033 .
  • the image guidance device can be used for collecting images. Instructions may be stored in the memory. The instruction is loaded and executed by the processor to realize the real-time image guidance method as shown in FIG. 2 or FIG. 3 .
  • an embodiment of the present disclosure further provides a storage medium, where an instruction may be stored, and when the storage medium runs on the processing component, the processing component may execute the real-time operation shown in FIG. 2 or FIG. 3 .
  • Image-guided method a storage medium, where an instruction may be stored, and when the storage medium runs on the processing component, the processing component may execute the real-time operation shown in FIG. 2 or FIG. 3 .

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本申请提供了一种实时图像引导方法、装置及系统、放射治疗系统,属于放疗技术领域。其中,图像引导系统可以基于获取到的目标对象的目标参考图像和实时投影图像,对目标对象进行可靠的实时图像引导。由于该目标对象包括成像清晰度较好的标志物,且该目标参考图像为摆位完成后采集得到的,因此目标参考图像和实时投影图像中均包括标志物,基于包括标志物的目标参考图像和实时投影图像对目标对象进行实时图像引导的精度较高。

Description

实时图像引导方法、装置及系统、放射治疗系统 技术领域
本公开涉及放疗技术领域,特别涉及一种实时图像引导方法、装置及系统、放射治疗系统。
背景技术
在放射治疗场景下,可以采用图像引导放射治疗(image guided radiation therapy,IGRT)技术实时定位和追踪目标对象(如,患者的肿瘤)位置,以引导放射治疗。
相关技术中,用于实现IGRT技术的IGRT系统可以在治疗过程中获取目标对象在两个不同角度下的二维投影图像,然后可以将该二维投影图像分别与对应角度下的参考图像进行配准以确定出两个二维偏移量,最后可以基于确定出的两个二维偏移量计算得到目标对象的三维偏移量,实现对目标对象位置的追踪。其中,参考图像可以为IGRT系统根据生成治疗计划时目标对象的电子计算机断层扫描(computed tomography,CT)图像重建生成的图像。
但是,相关技术的图像引导方法追踪位置的精度较低,灵活性较差。
发明内容
本公开实施例提供了一种实时图像引导方法、装置及系统、放射治疗系统,可以解决相关技术中追踪肿瘤位置的精度较低,灵活性较差的问题。所述技术方案如下:
一方面,提供了一种实时图像引导方法,所述方法包括:
获取目标对象的目标参考图像,其中,所述目标参考图像为对所述目标对象摆位完成的情况下,基于图像引导装置采集得到的图像确定出的图像,且所述目标对象包括标志物;
采用所述图像引导装置获取所述目标对象的实时投影图像;
根据所述目标参考图像和所述实时投影图像,对所述目标对象进行实时图像引导。
另一方面,提供了一种实时图像引导装置,所述装置包括:
第一获取模块,用于获取目标对象的目标参考图像,其中,所述目标参考图像为对所述目标对象摆位完成的情况下,基于图像引导装置采集得到的图像确定出的图像,且所述目标对象包括标志物;
第二获取模块,用于采用所述图像引导装置获取所述目标对象的实时投影图像;
图像引导模块,用于根据所述目标参考图像和所述实时投影图像,对所述目标对象进行实时图像引导。
又一方面,提供了一种实时图像引导系统,所述实时图像引导系统包括:图像引导装置、处理器和存储器;
其中,所述图像引导装置用于采集图像,所述存储器中存储有指令,所述指令由所述处理器加载并执行以实现如上述方面所述的实时图像引导方法。
再一方面,提供了一种存储介质,所述存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如上述方面所述的实时图像引导方法。
再一方面,提供了一种放射治疗系统,所述放射治疗系统包括:患者支撑装置、主机以及实时图像引导系统;所述实时图像引导系统为如上述方面所述的系统;
其中,所述主机分别与所述实时图像引导系统和所述患者支撑装置连接,所述实时图像引导系统用于将确定出的目标对象的目标偏移量发送至所述主机,所述主机用于基于所述目标偏移量调整所述患者支撑装置的位置。
本公开实施例提供的技术方案至少具有如下有益效果:
综上所述,本公开实施例提供了一种实时图像引导方法、装置及系统、放射治疗系统。其中,图像引导系统可以基于获取到的目标对象的目标参考图像和实时投影图像,对目标对象进行可靠的实时图像引导。由于该目标对象包括成像清晰度较好的标志物,且该目标参考图像为摆位完成后采集得到的,因此目标参考图像和实时投影图像中均包括标志物,基于包括标志物的目标参考图像和实时投影图像对目标对象进行实时图像引导的精度较高。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种放射治疗系统的结构示意图;
图2是本公开实施例提供的一种实时图像引导方法的流程图;
图3是本公开实施例提供的另一种实时图像引导方法的流程图;
图4是本公开实施例提供的一种确定目标参考图像的方法流程图;
图5是本公开实施例提供的一种标志物示意图;
图6是本公开实施例提供的一种图像引导方法流程图;
图7是本公开实施例提供的另一种图像引导方法流程图;
图8是本公开实施例提供的一种实时图像引导装置的框图;
图9是本公开实施例提供的另一种实时图像引导装置的框图;
图10是本公开实施例提供的一种实时图像引导系统的框图。
通过上述附图,已示出本公开明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本公开构思的范围,而是通过参考特定实施例为本领域技术人员说明本公开的概念。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是本公开实施例提供的一种放射治疗系统的结构示意图。如图1所示,该放射治疗系统可以包括患者支撑装置01、主机02、实时图像引导系统03以及放射治疗设备04。
可选的,患者支撑装置01可以为图1所示的治疗床,例如三维治疗床、六维治疗床,当然,也可以为治疗椅等用于支撑患者的其他装置。主机02可以为控制设备。图像引导系统03可以为IGRT系统。主机02可以与患者支撑装置01和图像引导系统03和建立有通信连接,该通信连接可以为图1所示的有线连接,或者也可以为无线连接。在放射治疗过程中,图像引导系统03可 以采用IGRT技术实时追踪目标对象(如,患者的肿瘤)的位置,并将目标对象的偏移量发送至主机02,主机02可以基于接收到的偏移量灵活调整患者支撑装置01的位置,以实现对患者的可靠实时图像引导。
可选的,该实时图像引导系统03可以包括图像引导装置031,且该图像引导装置031可以为锥形束电子扫描(cone beam computed tomography,CBCT)装置。即,该图像引导装置031可以用于采集目标对象的CBCT图像。
例如,参考图1,该图像引导装置031可以包括:一组或多组影像采集组件,每组影像采集组件可以包括相对设置的探测器0311和球管0312(图1仅示意性的示出了一组影像采集组件)。其中,球管0312可以发出射线,例如锥形射束,探测器0311可以接收球管0312发出的射线,图像引导装置031可以根据探测器0311接收到的射线生成目标对象的二维投影图像。
可选的,球管0312可以为能够发出千伏(KV)级X射线的球管,探测器0311可以为平板探测器。相应的,图像引导装置031采集到的二维投影图像即可以为KV级X投影图像。
继续参考图1,该放射治疗设备04上可以设置有多个治疗源041,每个治疗源041均可以发出射线,且该多个治疗源041发出的射线可以绕旋转轴旋转并聚焦至射束焦点,以对目标对象进行治疗。可选的,治疗源041可以为γ射线源,相应的,治疗源041发出的射线即为γ射线;或者,治疗源041可以为X射线源,相应的,治疗源041发出的射线即为X射线。此外,上述实施例记载的图像引导装置031也可以设置于放射治疗设备04上。
在放射治疗过程中,实时图像引导系统03采用IGRT技术追踪目标对象的原理为:
采用图像引导装置采集目标对象的参考图像和二维投影图像,并配准该两幅图像。配准两幅图像可以是指以指定的一幅图像为参考图像,另一幅图像为待配准图像,配准的目的是使待配准图像与参考图像上的所有点均达到一致。因目标对象的二维投影图像一般为放射治疗过程中实时获取到的图像,即为现场采集到的图像,故目标对象的二维投影图像即可以作为待配准图像。
相关技术中,一方面,参考图像一般为基于目标对象的CT图像重建生成的数字重建放射(digitally reconstructed radio,DRR)图像。但是由于CT图像一般是在进行放射治疗前为制定治疗计划拍摄的,即CT图像为摆位前获取到的,且由于在生成DRR图像之前,一般会对患者进行摆位操作,引入误差, 故导致基于CT图像生成的DRR图像的精度较低,进而导致配准精度较低。而在本公开实施例中,参考图像为基于摆位完成时,通过图像引导装置031采集到的图像确定的图像,例如目标对象的CBCT图像重建生成的DRR图像,如此,避免了相关技术由CT图像生成DRR图像时因摆位带来的误差,进而使得生成的DRR图像的精度较高,相应的,配准精度则较高。
另一方面,为提高配准精度,相关技术通常会在获取CT图像,即制定治疗计划之前于目标对象上设置成像较为清晰的标志物。如此,获取到的CT图像即可以包括标志物,并可以基于包括标志物的CT图像再针对患者制定治疗计划。但是,因制定治疗计划到实施治疗计划之间,无法保证标志物的位置固定不变,如,标志物可能会因患者咳嗽而发生偏移。故,会相应的导致实施治疗计划时获取到的目标对象的实时二维投影图像中包括的标志物的位置与参考图像(如,基于CT图像生成DRR图像)的位置存在较大偏差,图像配准精度依然较低,进而会导致基于标志物进行图像引导的可靠性较差。而在本公开实施例中,不仅参考图像为摆位完成时的图像,而且标志物也为在摆位阶段才设置于目标对象上。如此,降低了标志物发生偏移的概率,相应的,确保了图像配准精度,使得基于标志物进行图像引导的可靠性较好。
再一方面,为了得到目标对象的三维偏移量,相关技术中,需要先获取在不同拍摄角度下配准得到的两个二维偏移量。如此,若仅包括一组影像采集组件,则需要控制该组影像采集组件先于一个角度下采集一张目标对象的二维投影图像,再于另一个角度下采集一张目标对象的二维投影图像。该两次采集之间一定具有时间间隔,而在该时间间隔内,患者有可能发生移动,故不仅实时性较差,且采集到的两张二维投影图像很难在同一状态下获取,一致性较差,进而相应的也会导致配准精度较差。而若包括两组影像采集组件,则又会占用较大空间,相应的,治疗空间则会变小。而对于本公开实施例而言,还可以仅获取一个角度下的目标对象的二维投影图像,即得到目标对象的三维偏移量,换言之,图像引导装置031仅需包括一组影像采集组件即可。如此,既保证了目标对象的位置追踪实时性,又不会影响治疗空间,且可以保证配准精度较高。
图2是本公开实施例提供的一种实时图像引导方法的流程图,该方法可以应用于图1所示的实时图像引导系统03中。如图2所示,该方法可以包括:
步骤201、获取目标对象的目标参考图像。
其中,该目标参考图像为对目标对象摆位完成的情况下,基于图像引导装置采集得到的图像确定出的图像,且该目标对象包括标志物。
步骤202、采用图像引导装置获取目标对象的实时投影图像。
可选的,该实时投影图像可以为在放射治疗过程中,在目标拍摄角度下采用图像引导装置拍摄得到的目标对象的二维投影图像。
步骤203、根据目标参考图像和实时投影图像,对目标对象进行实时图像引导。
可选的,图像引导系统可以基于目标参考图像和实时投影图像,进行图像配准操作以得到目标对象的目标偏移量,并基于确定的目标偏移量对目标对象进行实时图像引导,如,可靠调整目标对象的位置。
综上所述,本公开实施例提供了一种实时图像引导方法。该方法中,图像引导系统可以基于获取到的目标对象的目标参考图像和实时投影图像,对目标对象进行可靠的实时图像引导。由于该目标对象包括成像清晰度较好的标志物,且该目标参考图像为摆位完成后采集得到的,因此目标参考图像和实时投影图像中均包括标志物,基于包括标志物的目标参考图像和实时投影图像对目标对象进行实时图像引导的精度较高。
图3是本公开实施例提供的一种实时图像引导方法的流程图,该方法可以应用于图1所示的实时图像引导系统03中。如图3所示,该方法可以包括:
步骤301、获取目标对象的目标参考图像。
其中,该目标参考图像可以为对目标对象摆位完成的情况下,由实时图像引导系统基于图像引导装置采集得到的图像确定出的图像。且,该目标参考图像可以为二维图像,或者,可以为三维图像,如CBCT图像。
作为一种可选的实现方式:若目标参考图像为三维图像,则在本公开实施例中,如图4所示,实时图像引导系统可以采用下述方式获取该目标参考图像:
步骤3011A、对目标对象摆位完成的情况下,采用图像引导装置获取目标对象在不同拍摄角度下的目标二维投影图像。
例如,若图像引导装置包括一组影像采集组件,则图像引导装置可以控制该组影像采集组件中的球管分别在不同拍摄角度下发出射线,相应的,探测器即可以在不同拍摄角度下接收到射线,图像引导装置可以基于探测器在不同拍摄角度下接收到的射线生成不同拍摄角度角下的多个目标二维投影图像。或 者,图像引导装置也可以包括多组影像采集组件,相应的,可以通过该多组影像采集组件在不同拍摄角度下同时获取多个目标二维投影图像,如此,可以提高获取不同拍摄角度下的多个目标二维投影图像的效率。
可选的,为确保后续重建得到的目标参考图像的质量,实时图像引导系统可以采用图像引导装置在放射治疗设备04内作整圈扫描(即,扫描一圈),以获取到较多不同拍摄角度下的目标二维投影图像。
此外,实时图像引导系统可以是在接收到主机发送的成像指令时,采用图像引导装置获取目标对象在不同拍摄角度下的目标二维投影图像。
步骤3012A、对目标对象在不同拍摄角度下的目标二维投影图像进行重建。
在获取到目标对象在不同拍摄角度下的目标二维投影图像后,实时图像引导系统可以基于该多个目标二维投影图像重建生成目标对象的目标三维图像。
步骤3013A、将重建后的目标三维图像确定为目标参考图像。
最后,实时图像引导系统即可以将重建得到的目标三维图像确定为目标参考图像。
这里需要说明的是,在上述方式中,可以采用二维图像和二维图像配准的方式完成对目标对象的摆位,也可以采用三维图像和三维图像配准的方式完成对目标对象的摆位。
以采用二维图像和二维图像配准的方式完成对目标对象的摆位为例,该方法还可以包括:
步骤A1、采用图像引导装置获取目标对象在至少两个拍摄角度下的备选二维投影图像。
可选的,在对患者进行摆位的过程中,实时图像引导系统可以采用图像引导装置在至少两个拍摄角度下对目标对象进行拍摄,以得到目标对象在至少两个拍摄角度下的备选二维投影图像。获取方式可以参考上述步骤3011A的记载,在此不再赘述。
步骤A2、将至少两个拍摄角度下的备选二维投影图像,与基于计划图像在至少两个拍摄角度下重建的计划数字重建放射DRR图像进行图像配准。
可选的,计划图像可以为在放射治疗之前的制定治疗计划时,采用计划图像采集设备对目标对象进行扫描得到的图像,实时图像引导系统可以获取该计划图像采集设备发送的计划图像。例如,计划图像采集设备可以是在接收到实 时图像引导系统发送的图像获取指令后,将采集到的计划图像发送至实时图像引导系统。或者,计划图像采集设备可以是在接收到主机发出的图像传输指令时,将采集到的计划图像发送至实时图像引导系统。
可选的,计划图像可以为CT图像或者核磁共振(magnetic resonance,MR)图像。即,上述记载的计划图像采集设备可以为CT设备,或者,MR设备。但因无论是CT图像还是MR图像,其均为三维图像,故为了与步骤A1获取到的二维投影图像进行配准,实时图像引导系统可以先基于获取到的计划图像,重建生成在至少两个拍摄角度下的DRR图像。且该至少两个拍摄角度与步骤A1中的至少两个拍摄角度的角度大小相同。
然后,实时图像引导系统可以将步骤A1获取到的每个拍摄角度下的备选二维投影图像,与基于计划图像在对应拍摄角度下重建的计划DRR图像进行图像配准,以确定是否摆位完成。可选的,以一个拍摄角度为例,实时图像引导系统可以以该拍摄角度下的计划DRR图像作为参考图像,且以该拍摄角度下的备选二维投影图像作为待配准图像,对比该两幅图像中各点的坐标,并基于对比结果确定摆位是否完成。
步骤A3、确定配准结果满足配准条件时,对目标对象摆位完成。
可选的,配准条件可以为:目标对象在配准的两幅图像中的位置偏差小于等于偏差阈值。例如,若偏差阈值可以为0,配准条件为目标对象在配准的两幅图像中的位置偏差等于偏差阈值,则相应的,配准结果满足配准条件可以是指:目标对象在配准的两幅图像中的位置完全一致。
需要说明的是,本公开实施例记载的应用场景下,偏差一般为三维偏差,以上仅是示意性说明。
若执行步骤A2后,确定每个拍摄角度下的备选二维投影图像,与基于计划图像在对应拍摄角度下重建的计划数字重建放射DRR图像进行图像配准的配准结果满足上述配准条件,则实时图像引导系统此时可以确定摆位完成,然后可以进一步将步骤A1获取到的至少两个拍摄角度下的备选二维投影图像确定为:不同拍摄角度下的目标二维投影图像,以供步骤3011A的执行。即在执行步骤A3后,可以紧接着继续执行步骤3011A。
当然,若配准结果不满足配准条件,则可以继续执行步骤A1至A3,直至配准结果满足配准条件为例。
第二种方式中,直接将目标对象摆位完成时参与配准的重建的三维图像确 定为目标参考图像,为此,在获取目标对象的目标参考图像之前,该方法还可以包括:
步骤B1、采用图像引导装置获取目标对象的备选三维图像。
其中,该备选三维图像可以为基于目标对象在不同拍摄角度下的基准二维投影图像重建的图像。
即,实时图像引导系统可以在摆位过程中,先采用图像引导装置获取目标对象在不同拍摄角度下的基准二维投影图像,然后对目标对象在不同拍摄角度下的基准二维投影图像进行重建,得到目标对象的备选三维图像。
可选的,采用图像引导装置获取目标对象在不同拍摄角度下的基准二维投影图像的方法可以参考步骤3011A,在此不再赘述。且该备选三维图像可以为CBCT图像。
步骤B2、对备选三维图像和计划图像进行图像配准。
因步骤B1得到的是备选三维图像,计划图像也为三维图像,故此时,实时图像引导系统可以直接配准备选三维图像和计划图像。配准方法可以参考步骤A2的描述,在此不再赘述。
步骤B3、确定配准结果满足配准条件时,对目标对象摆位完成。
同步骤A3,在配准结果满足配准条件时,实时图像引导系统可以确定摆位完成,并可以继续执行下述步骤B4。当然,若配准结果不满足配准条件,则可以继续执行步骤B1至B3,直至配准结果满足配准条件为例。
步骤B4、将备选三维图像确定为目标参考图像(步骤B4为步骤301的另一个具体示例)。
最终,实时图像引导系统即可以将配准所用的备选三维图像确定为目标三维图像。即,通过步骤B1至B4的方式,可以直接确定出摆位完成后的目标参考图像。这里需要说明的是,步骤B1至B3即是采用三维图像和三维图像配准的方式完成对目标对象的摆位。
作为另一种可选的实现方式:若目标参考图像为二维图像,则在本公开实施例中,如图5所示,实时图像引导系统可以在对目标对象摆位完成的情况下,将目标对象在不同拍摄角度下的目标二维投影图像确定为目标参考图像。如此,在最后配准时,可以从该不同拍摄角度下的目标二维投影图像中,获取与采集实时投影图像时的拍摄角度相同的拍摄角度下的目标二维投影图像作为最终配准所用的目标参考图像。
作为又一种可选的实现方式:实时图像引导系统可以先获取目标对象在摆位阶段的摆位配准类型,并基于摆位配准类型,灵活确定目标参考图像。可选的,该摆位配准类型可以为2维(dimension)D-2D配准或3D-3D配准。若摆位配准类型包为2D-2D配准,则结合上述实施例记载,实时图像引导系统可以先采用图像引导装置获取目标对象在不同拍摄角度下的目标二维投影图像,然后对目标对象在不同拍摄角度下的目标二维投影图像进行重建,并将重建后的目标三维图像确定为目标参考图像。若该摆位配准类型包为3D-3D配准,则结合上述实施例记载,实时图像引导系统可以将摆位完成时与计划图像进行配准的目标三维图像直接确定为目标参考图像。
此外,在本公开实施例中,该目标对象还可以包括标志物。且,该标志物可以为在摆位阶段,贴于患者体表或植入患者体内的标志物。如此,上述实施例获取到的所有图像中均可以包括该标志物,如目标参考图像包括该标志物。因该标志物的成像更为清晰,故确保了后续的配准精度。且因该标志物是在摆位阶段而不是制定治疗计划前设置的,故,还降低了标志物移动的概率,进一步确保了后续配准精度。
可选的,该标志物可以为金属材料制成的金属标志物(简称,金标)。且,可以设置至少三个不共线的标志物。如此,可以使得实时图像引导系统能够参考不同拍摄角度处的多个标志物的位置配准图像,进一步提高配准精度。
示例的,假设目标对象为位于头部的肿瘤,且共设置了三个不共线的标志物。则参考图5,可以在患者的两个太阳穴和鼻尖处分别设置一个标志物。若目标对象位于体部,则可以在患者的脊柱处设置标志物。
步骤302、存储至少两份目标参考图像。
其中,一份目标参考图像可以用于与实时投影图像进行实时图像引导,另一份目标参考图像可以用于进行显示,如,可以用于通过主机显示给治疗医师。且,用于进行实时图像引导的目标参考图像可以为对包括标志物的目标参考图像进行下述处理后,得到的仅包括标志物的目标参考图像。用于进行显示的目标参考图像可以为既包括标志物又包括其他信息(如,骨骼组织)的图像。
步骤303、采用图像引导装置获取目标对象的实时投影图像。
基于上述实施例记载可知,在获取到目标对象的目标参考图像后,即代表摆位完成,此时,可以将患者送入放疗设备治疗空间内,对患者进行放射治疗。
虽然是在摆位完成后才将患者送入治疗空间内,但是在放射治疗过程中, 目标对象的位置也可能会因为患者移动或患者呼吸、咳嗽等不可避免的因素发生偏移,因此为了确保治疗精度,避免误照射到其他正常组织,需要在放射治疗过程中采用图像引导技术实时追踪目标对象的位置,以实时调整患者位置,确保治疗的射束焦点与目标对象的治疗靶点可以实时对齐。而为了追踪目标对象的位置,实时图像引导系统需要先获取目标对象当前的位置。
例如,实时图像引导系统可以采用图像引导装置在目标拍摄角度下获取目标对象的实时投影图像,即目标对象的二维投影图像。获取方式可以参考上述实施例记载。此外,实时图像引导系统可以是在接收到主机发送的成像指令后,开始采用图像引导装置获取目标对象的实时投影图像。
步骤304、根据目标参考图像和实时投影图像,对目标对象进行实时图像引导。
因目标对象包括标志物,故获取到的目标参考图像和实时投影图像即均包括标志物。若基于标志物进行实时图像引导,则作为一种可选的实现方式,如图6所示,该步骤304可以包括:
步骤3041A、分别对目标参考图像和实时投影图像中的标志物进行分割。
可选的,分割方法可以为:实时图像引导系统先对待分割图像(包括目标DRR图像和实时投影图像)进行图像模糊处理,以将待分割图像中的标志物模糊掉,使标志物融入待分割图像的背景中,得到一副新的图像。然后实时图像引导系统可以采用待分割图像减去图像模糊处理后得到的新的图像,完成对标志物的分割。图像相减可以是指:待分割图像中某像素点的像素值减去模糊处理后得到的新的图像中该像素点的像素值。
或者,实时图像引导系统可以先获取待分割图像中各目标对象和标志物的CT值,该CT值的单位为Hu,可以用于衡量人体组织对射线的吸收率。且实时图像引导系统中可以预置有CT过滤用的阈值(简称,参考阈值)。然后,实时图像引导系统可以基于各目标对象和标志物的CT值,以及参考阈值,对待分割图像进行图像归一化处理,完成标志物分割处理。例如,实时图像引导系统可以判断各目标对象和标志物的CT值和参考阈值的大小关系,对于CT值大于该参考阈值的目标对象对应的CT值,实时图像引导系统不改变其CT值。对于CT值小于该参考阈值的目标对象对应的CT值,实时图像引导系统可以将其设置为第一阈值,并可以标志物的CT值设置为第二阈值。
或者,获取待分割图像的目标拍摄角度,获取重建后的三维图像,获取重 建后的三维图像在目标拍摄角度下的目标DRR图像。可选的,可以对重建后的三维图像进行过滤,得到仅包括标志物的三维图像,并获取仅包括标志物的三维图像在目标拍摄角度下的目标DRR图像。然后,在该目标DRR图像中构建一个或多个参考感兴趣区域(region of interest,ROI),该参考ROI包含一个或多个标志物,再将一个或多个参考ROI映射于待分割图像中,相应得到一个或多个参考目标ROI,完成分割。
需要说明的是,若目标参考图像为重建后的目标三维图像,则上述步骤3041A可以包括:实时图像引导系统先获取实时投影图像的目标拍摄角度,以及重建后的目标三维图像在目标拍摄角度下的DRR图像,然后再分别对该DRR图像和实时投影图像中的标志物进行分割。
可选的,实时图像引导系统可以对重建后的目标三维图像进行图像处理(如上述的分割处理),得到仅包括标志物的目标三维图像,并获取仅包括标志物的目标三维图像在目标拍摄角度下的DRR图像。
步骤3042A、根据分割出来的目标参考图像中的标志物和实时投影图像中的标志物,对目标对象进行实时图像引导。
可选的,作为一种可选的实现方式,步骤3042A可以包括:
首先,实时图像引导系统对分割出来的目标参考图像中的标志物和实时投影图像中的标志物进行第一目标配准。其次,实时图像引导根据第一目标配准的配准结果确定目标对象的目标偏移量,并根据目标偏移量调整目标对象的位置,完成实时图像引导。
例如,实时图像引导系统可以对比标志物的目标点位于目标参考图像和实时投影图像中的位置,并基于目标点的位置确定目标偏移量。可选的,该目标点可以为标志物的中心点。如此,可以确保对比精度。
可选的,作为另一种可选的实现方式,步骤3042A可以包括:
首先,实时图像引导系统可以根据目标DRR图像中的标志物和实时投影图像中的标志物,确定图像缩放倍率。其次,实时图像引导系统可以根据图像缩放倍率确定目标对象的目标偏移量,并根据目标偏移量调整目标对象的位置,完成实时图像引导。
例如,实时图像引导系统可以通过对比目标DRR图像中的标志物和实时投影图像中的标志物,确定实时投影图像的图像缩放倍率。该方式下,仅需获取一个拍摄角度下的实时投影图像即可。
以一个拍摄角度为例,若目标对象在该拍摄角度下下移,则该拍摄角度下当前的实时投影图像相当于未下移前的图像缩小。若目标对象在该拍摄角度下上移,则该拍摄角度下当前的实时投影图像相当于未下移前的图像放大。如此,即可以确定出图像缩放倍率。然后,实时图像引导系统即可以基于该图像缩放倍率确定出目标对象在该收缩方向上的偏移量,并可以结合二维坐标系下确定的其他两个偏移量,综合得到目标对象的目标偏移量。
因目标对象还可以包括骨性标志组织。故若基于标志物和骨性标志组织进行实时图像引导,则作为一另种可选的实现方式,如图7所示,该步骤304可以包括:
步骤3041B、分别对目标参考图像和实时投影图像中的标志物进行分割。
该步骤可以参考上述步骤3041A的描述,在此不再赘述。
步骤3042B、对分割出来的目标参考图像中的标志物和实时投影图像中的标志物进行第一目标配准。
步骤3043B、根据第一目标配准的配准结果确定目标对象的第一参考偏移量。
步骤3042B和3043B均可以参考上述步骤3042A的描述,在此不再赘述。
步骤3044B、对目标参考图像中的骨性标志组织和实时投影图像中的骨性标志组织物进行第二目标配准。
第二目标配准的方式可以参考第一目标配准的方式,在此不再赘述。
步骤3045B、根据第二目标配准的配准结果确定目标对象的第二参考偏移量。
该步骤可以参考上述步骤3042A的描述,在此不再赘述。
步骤3046B、基于第一偏移量、第一偏移量的权重值、第二偏移量以及第二偏移量的权重值,计算得到目标对象的目标偏移量。
可选的,实时图像引导系统中可以预置有第一偏移量的权重值和第二偏移量的权重值。在得到第一偏移量和第二偏移量后,图像引导系统可以以第一偏移量、第一偏移量的权重值、第二偏移量以及第二偏移量的权重值作为参数,通过加权求和的方式,计算得到目标对象的实际偏移量。结合标志物和骨性标志组织的方式共同确定目标对象的偏移量,可靠性和精度均较好。
步骤3047B、根据目标偏移量调整目标对象的位置。
最后,实时图像引导系统即可以基于确定出的目标偏移量可靠调整目标对 象的位置,实现对目标对象的实时图像引导。
需要说明的是,本公开实施例提供的实时图像引导方法步骤先后顺序可以进行适当调整,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供了一种实时图像引导方法。该方法中,图像引导系统可以基于获取到的目标对象的目标参考图像和实时投影图像,对目标对象进行可靠的实时图像引导。由于该目标对象包括成像清晰度较好的标志物,且该目标参考图像为摆位完成后采集得到的,因此目标参考图像和实时投影图像中均包括标志物,基于包括标志物的目标参考图像和实时投影图像对目标对象进行实时图像引导的精度较高。
图8是本公开实施例提供的一种实时图像引导装置的框图,该装置可以应用于图1所示的实时图像引导系统03中。如图8所示,该装置可以包括:
第一获取模块401,用于获取目标对象的目标参考图像。
其中,目标参考图像为对目标对象摆位完成的情况下,基于图像引导装置采集得到的图像确定出的图像,且目标对象包括标志物。
第二获取模块402,用于采用图像引导装置获取目标对象的实时投影图像。
图像引导模块403,用于根据目标参考图像和实时投影图像,对目标对象进行实时图像引导。
可选的,图像引导模块403可以包括:
分割子模块,用于分别对目标参考图像和实时投影图像中的标志物进行分割。
图像引导子模块,用于根据分割出来的目标参考图像中的标志物和实时投影图像中的标志物,对目标对象进行实时图像引导。
可选的,图像引导子模块,可以用于:对分割出来的目标参考图像中的标志物和实时投影图像中的标志物进行第一目标配准,根据第一目标配准的配准结果确定目标对象的目标偏移量,并根据该目标偏移量调整目标对象的位置。
可选的,图像引导子模块,可以用于对比标志物的目标点位于目标参考图像和实时投影图像中的位置,以完成第一目标配准。
可选的,目标点可以为标志物的中心点。
可选的,若目标参考图像为重建后的目标三维图像,则相应的,分割子模 块可以用于:获取实时投影图像的目标拍摄角度,获取重建后的目标三维图像在目标拍摄角度下的DRR图像,并分别对DRR图像和实时投影图像中的标志物进行分割。
可选的,分割子模块可以用于:对重建后的目标三维图像进行图像处理,得到仅包括标志物的目标三维图像,并获取仅包括标志物的目标三维图像在目标拍摄角度下的DRR图像。
可选的,目标对象还可以包括:骨性标志组织。则相应的,图像引导模块403可以用于:
分别对目标参考图像和实时投影图像中的标志物进行分割。
对分割出来的目标参考图像中的标志物和实时投影图像中的标志物进行第一目标配准。
根据第一目标配准的配准结果确定目标对象的第一参考偏移量。
对目标参考图像中的骨性标志组织和实时投影图像中的骨性标志组织物进行第二目标配准。
根据第二目标配准的配准结果确定目标对象的第二参考偏移量。
基于第一偏移量、第一偏移量的权重值、第二偏移量以及第二偏移量的权重值,计算得到目标对象的目标偏移量。
根据目标偏移量调整目标对象的位置。
可选的,标志物可以包括金属标志物,该金属标志物可以在摆位阶段贴于患者体表或者植入患者体内。
可选的,目标对象可以包括:至少三个不共线的标志物。
可选的,如图9所示,该装置还可以包括:
存储模块404,用于在获取目标对象的目标参考图像之后,存储至少两份目标参考图像。其中,一份目标参考图像用于与实时投影图像进行实时图像引导,另一份目标参考图像用于进行显示。
综上所述,本公开实施例提供了一种实时图像引导装置。该装置可以基于获取到的目标对象的目标参考图像和实时投影图像,对目标对象进行可靠的实时图像引导。由于该目标对象包括成像清晰度较好的标志物,且该目标参考图像为摆位完成后采集得到的,因此目标参考图像和实时投影图像中均包括标志物,基于包括标志物的目标参考图像和实时投影图像对目标对象进行实时图像引导的精度较高。
关于上述实施例中的实时图像引导装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
可选的,结合图1和图10,放射治疗系统中的实时图像引导系统30可以包括:图像引导装置031、处理器032和存储器033。其中,图像引导装置可以用于采集图像。该存储器中可以存储有指令。该指令由处理器加载并执行可以实现如图2或图3所示的实时图像引导方法。
可选的,本公开实施例还提供了一种存储介质,该存储介质中可以存储有指令,当存储介质在处理组件上运行时,可以使得处理组件执行如图2或图3所示的实时图像引导方法。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开实施例的保护范围之内。

Claims (16)

  1. 一种实时图像引导方法,其特征在于,所述方法包括:
    获取目标对象的目标参考图像,其中,所述目标参考图像为对所述目标对象摆位完成的情况下,基于图像引导装置采集得到的图像确定出的图像,且所述目标对象包括标志物;
    采用所述图像引导装置获取所述目标对象的实时投影图像;
    根据所述目标参考图像和所述实时投影图像,对所述目标对象进行实时图像引导。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述目标参考图像和所述实时投影图像,对所述目标对象进行实时图像引导,包括:
    分别对所述目标参考图像和所述实时投影图像中的标志物进行分割;
    根据分割出来的所述目标参考图像中的标志物和所述实时投影图像中的标志物,对所述目标对象进行实时图像引导。
  3. 根据权利要求2所述的方法,其特征在于,所述根据分割出来的所述目标参考图像中的标志物和所述实时投影图像中的标志物,对所述目标对象进行实时图像引导,包括:
    对分割出来的所述目标参考图像中的标志物和所述实时投影图像中的标志物进行第一目标配准;
    根据所述第一目标配准的配准结果确定所述目标对象的目标偏移量;
    根据所述目标偏移量调整所述目标对象的位置。
  4. 根据权利要求3所述的方法,其特征在于,所述对分割出来的所述目标参考图像中的标志物和所述实时投影图像中的标志物进行第一目标配准,包括:
    对比所述标志物的目标点位于所述目标参考图像和所述实时投影图像中的位置。
  5. 根据权利要4所述的方法,其特征在于,所述目标点为所述标志物的中心点。
  6. 根据权利要求2所述的方法,其特征在于,所述目标参考图像为重建后的目标三维图像,相应的,所述分别对所述目标参考图像和所述实时投影图像中的标志物进行分割,包括:
    获取所述实时投影图像的目标拍摄角度;
    获取所述重建后的目标三维图像在所述目标拍摄角度下的DRR图像;
    分别对所述DRR图像和所述实时投影图像中的标志物进行分割。
  7. 根据权利要求6所述的方法,其特征在于,所述获取所述重建后的目标三维图像在所述目标拍摄角度下的DRR图像,包括:
    对所述重建后的目标三维图像进行图像处理,得到仅包括所述标志物的目标三维图像;
    获取所述仅包括所述标志物的目标三维图像在所述目标拍摄角度下的DRR图像。
  8. 根据权利要求1所述的方法,其特征在于,所述目标对象还包括:骨性标志组织;相应的,所述根据所述目标参考图像和所述实时投影图像,对所述目标对象进行实时图像引导,包括:
    分别对所述目标参考图像和所述实时投影图像中的标志物进行分割;
    对分割出来的所述目标参考图像中的标志物和所述实时投影图像中的标志物进行第一目标配准;
    根据所述第一目标配准的配准结果确定所述目标对象的第一参考偏移量;
    对所述目标参考图像中的骨性标志组织和所述实时投影图像中的骨性标志组织物进行第二目标配准;
    根据所述第二目标配准的配准结果确定所述目标对象的第二参考偏移量;
    基于所述第一偏移量、所述第一偏移量的权重值、所述第二偏移量以及所述第二偏移量的权重值,计算得到所述目标对象的目标偏移量;
    根据所述目标偏移量调整所述目标对象的位置。
  9. 根据权利要求1所述的方法,其特征在于,所述标志物包括金属标志物,所述金属标志物在摆位阶段贴于患者体表或者植入患者体内。
  10. 根据权利要求1所述的方法,其特征在于,所述目标对象包括:至少三个不共线的标志物。
  11. 根据权利要求1所述的方法,其特征在于,在获取目标对象的目标参考图像之后,所述方法还包括:
    存储至少两份目标参考图像;
    其中,一份目标参考图像用于与所述实时投影图像进行实时图像引导,另一份目标参考图像用于进行显示。
  12. 一种实时图像引导装置,其特征在于,所述装置包括:
    第一获取模块,用于获取目标对象的目标参考图像,其中,所述目标参考图像为对所述目标对象摆位完成的情况下,基于图像引导装置采集得到的图像确定出的图像,且所述目标对象包括标志物;
    第二获取模块,用于采用所述图像引导装置获取所述目标对象的实时投影图像;
    图像引导模块,用于根据所述目标参考图像和所述实时投影图像,对所述目标对象进行实时图像引导。
  13. 一种实时图像引导系统,其特征在于,所述实时图像引导系统包括:图像引导装置、处理器和存储器;
    其中,所述图像引导装置用于采集图像,所述存储器中存储有指令,所述指令由所述处理器加载并执行以实现如权利要求1至11任一所述的实时图像引导方法。
  14. 根据权利要求13所述的系统,其特征在于,所述图像引导装置为目标锥形束电子扫描CBCT装置。
  15. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质在处理组件上运行时,使得处理组件执行如权利要求1至11任一所述的实时图像引导方法。
  16. 一种放射治疗系统,其特征在于,所述放射治疗系统包括:患者支撑装置、主机以及实时图像引导系统;所述实时图像引导系统为如权利要求13所述的系统;
    其中,所述主机分别与所述实时图像引导系统和所述患者支撑装置连接,所述实时图像引导系统用于将确定出的目标对象的目标偏移量发送至所述主机,所述主机用于基于所述目标偏移量调整所述患者支撑装置的位置。
PCT/CN2020/135239 2020-12-10 2020-12-10 实时图像引导方法、装置及系统、放射治疗系统 WO2022120707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080107398.2A CN116490898A (zh) 2020-12-10 2020-12-10 实时图像引导方法、装置及系统、放射治疗系统
PCT/CN2020/135239 WO2022120707A1 (zh) 2020-12-10 2020-12-10 实时图像引导方法、装置及系统、放射治疗系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135239 WO2022120707A1 (zh) 2020-12-10 2020-12-10 实时图像引导方法、装置及系统、放射治疗系统

Publications (1)

Publication Number Publication Date
WO2022120707A1 true WO2022120707A1 (zh) 2022-06-16

Family

ID=81972979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135239 WO2022120707A1 (zh) 2020-12-10 2020-12-10 实时图像引导方法、装置及系统、放射治疗系统

Country Status (2)

Country Link
CN (1) CN116490898A (zh)
WO (1) WO2022120707A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108635681A (zh) * 2018-03-21 2018-10-12 西安大医数码科技有限公司 一种摆位方法、装置、上位机及放射治疗系统
CN110227214A (zh) * 2019-07-12 2019-09-13 江苏瑞尔医疗科技有限公司 一种基于定位标的放射治疗定位方法
WO2020006681A1 (zh) * 2018-07-03 2020-01-09 西安大医集团有限公司 标记数据的获取方法及装置、训练方法及装置、医疗设备
WO2020014934A1 (zh) * 2018-07-19 2020-01-23 西安大医集团有限公司 一种肿瘤定位方法及装置
WO2020087257A1 (zh) * 2018-10-30 2020-05-07 西安大医集团有限公司 图像引导方法及装置、医疗设备、计算机可读存储介质
US20200237226A1 (en) * 2011-12-01 2020-07-30 Varian Medical Systems, Inc. Systems and methods for real-time target validation for image-guided radiation therapy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200237226A1 (en) * 2011-12-01 2020-07-30 Varian Medical Systems, Inc. Systems and methods for real-time target validation for image-guided radiation therapy
CN108635681A (zh) * 2018-03-21 2018-10-12 西安大医数码科技有限公司 一种摆位方法、装置、上位机及放射治疗系统
WO2020006681A1 (zh) * 2018-07-03 2020-01-09 西安大医集团有限公司 标记数据的获取方法及装置、训练方法及装置、医疗设备
WO2020014934A1 (zh) * 2018-07-19 2020-01-23 西安大医集团有限公司 一种肿瘤定位方法及装置
WO2020087257A1 (zh) * 2018-10-30 2020-05-07 西安大医集团有限公司 图像引导方法及装置、医疗设备、计算机可读存储介质
CN110227214A (zh) * 2019-07-12 2019-09-13 江苏瑞尔医疗科技有限公司 一种基于定位标的放射治疗定位方法

Also Published As

Publication number Publication date
CN116490898A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US9724049B2 (en) Radiotherapy system
US11318328B2 (en) Presenting a sequence of images associated with a motion model
US20210049764A1 (en) Manipulation of a respiratory model via adjustment of parameters associated with model images
US8396248B2 (en) Sequential stereo imaging for estimating trajectory and monitoring target position
JP2017144000A (ja) 医用画像処理装置、方法、プログラム及び放射線治療装置
JP6095112B2 (ja) 放射線治療システム
CN113891740B (zh) 图像引导方法及装置、医疗设备、计算机可读存储介质
US20220054862A1 (en) Medical image processing device, storage medium, medical device, and treatment system
US10813205B2 (en) Detecting motion by using a low dose x-ray image
WO2022120707A1 (zh) 实时图像引导方法、装置及系统、放射治疗系统
WO2022120716A1 (zh) 实时图像引导方法、装置及系统、放射治疗系统
US20210295542A1 (en) Method, radiotherapy device, and computer-readable storage medium for image registration
JP7444387B2 (ja) 医用画像処理装置、医用画像処理プログラム、医用装置、および治療システム
CN116529756A (zh) 监测方法、装置及计算机存储介质
WO2022120714A9 (zh) 图像分割方法及装置、图像引导系统、放射治疗系统
CN116407780A (zh) 一种目标区域的位置监测方法、系统及存储介质
US20230347180A1 (en) Medical image processing device, medical image processing method, medical image processing program, and radiation therapy device
JP2021168824A (ja) 位置決め装置、放射線治療装置、位置決め方法及びコンピュータプログラム
CN117547292A (zh) 针对放射治疗系统中的侦查扫描的设置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107398.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964645

Country of ref document: EP

Kind code of ref document: A1