WO2020235608A1 - レジスト組成物精製品の製造方法、レジストパターン形成方法、及びレジスト組成物精製品 - Google Patents

レジスト組成物精製品の製造方法、レジストパターン形成方法、及びレジスト組成物精製品 Download PDF

Info

Publication number
WO2020235608A1
WO2020235608A1 PCT/JP2020/019998 JP2020019998W WO2020235608A1 WO 2020235608 A1 WO2020235608 A1 WO 2020235608A1 JP 2020019998 W JP2020019998 W JP 2020019998W WO 2020235608 A1 WO2020235608 A1 WO 2020235608A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resist composition
carbon atoms
preferable
resist
Prior art date
Application number
PCT/JP2020/019998
Other languages
English (en)
French (fr)
Inventor
中田 明彦
未来 安部
弘樹 齋藤
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to JP2021520826A priority Critical patent/JP7195418B2/ja
Priority to EP20810745.8A priority patent/EP3974047A4/en
Priority to CN202080044627.0A priority patent/CN114008525A/zh
Priority to KR1020217037898A priority patent/KR20210154231A/ko
Priority to US17/611,412 priority patent/US20220242821A1/en
Publication of WO2020235608A1 publication Critical patent/WO2020235608A1/ja
Priority to JP2022170596A priority patent/JP2023010711A/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/021Pore shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance

Definitions

  • the present invention relates to a method for producing a purified resist composition product, a method for forming a resist pattern, and a refined resist composition product.
  • the present application claims priority based on Japanese Patent Application No. 2019-096193 filed in Japan on May 22, 2019, the contents of which are incorporated herein by reference.
  • a resist film made of a resist material is formed on a substrate, the resist film is selectively exposed, and a development process is performed to form a resist pattern having a predetermined shape on the resist film.
  • the forming step is performed.
  • a resist material whose exposed portion of the resist film changes to a characteristic that dissolves in a developing solution is called a positive type, and a resist material whose exposed portion of a resist film changes to a characteristic that does not dissolve in a developing solution is called a negative type.
  • pattern miniaturization is rapidly progressing due to advances in lithography technology.
  • the wavelength of an exposure light source is shortened (energy is increased).
  • ultraviolet rays typified by g-rays and i-rays were used, but nowadays, mass production of semiconductor devices using KrF excimer lasers and ArF excimer lasers is being carried out.
  • EUV extreme ultraviolet
  • EB electron beam
  • X-ray etc.
  • the resist material is required to have lithography characteristics such as sensitivity to these exposure light sources and resolvability capable of reproducing a pattern of fine dimensions.
  • a chemically amplified resist composition containing a base material component whose solubility in a developing solution is changed by the action of an acid and an acid generator component that generates an acid by exposure Is used.
  • defects refers to all defects detected when the resist pattern after development is observed from directly above by, for example, a surface defect observation device (trade name "KLA") manufactured by KLA Tencor. ..
  • KLA surface defect observation device
  • This defect is, for example, a defect due to adhesion of foreign matter or deposits on the surface of the resist pattern such as scum (resist residue), bubbles, dust after development, bridges between line patterns, and filling of holes in the contact hole pattern. It refers to defects related to the pattern shape, uneven color of the pattern, etc.
  • various lithographic chemicals such as a resin solution containing a resin, a developing solution, a resist solvent, and a pre-wet solvent are used for forming the resist pattern.
  • a method for removing foreign substances (impurities) such as particles mixed in these chemicals, a method using a filter has been conventionally adopted. As the pattern becomes finer, the influence of impurities present in these chemicals also appears in the pattern formation.
  • the present invention has been made in view of the above circumstances, and is a method for producing a refined resist composition product in which impurities are further reduced and problems such as pattern collapse are less likely to occur, and a resist composition produced by the above-mentioned production method.
  • An object of the present invention is to provide a refined product and a method for forming a resist pattern formed by the refined resist composition product.
  • the present invention has adopted the following configuration.
  • a first aspect of the present invention is a method for producing a refined resist composition product, which comprises a step (i) of filtering the resist composition with a filter having a porous structure in which adjacent spherical cells are communicated with each other.
  • the filter includes a porous film containing at least one resin selected from the group consisting of polyimide and polyamide-imide, and the resist composition is a base material component whose solubility in a developing solution is changed by the action of an acid (the resist composition).
  • a method for producing a refined resist composition product which comprises A), an onium salt, and an organic solvent component (S), and the content of the organic solvent component (S) is 97% by mass or more. Is.
  • a second aspect of the present invention is a step of obtaining a resist composition refined product by the method for producing a resist composition refined product according to the first aspect, and using the resist composition refined product on a support.
  • the resist pattern forming method is characterized by including a step of forming a resist film, a step of exposing the resist film, and a step of developing the exposed resist film to form a resist pattern.
  • a third aspect of the present invention is a refined resist composition containing a base material component (A) whose solubility in a developing solution is changed by the action of an acid, an onium salt, and an organic solvent component (S).
  • the resist composition is a refined product, characterized in that the number of counted bodies having a size of 0.135 ⁇ m or more, which is counted by a light scattering type submerged particle counter, is less than 1 piece / mL.
  • a fourth aspect of the present invention is a refined resist composition containing a base material component (A) whose solubility in a developing solution is changed by the action of an acid, an onium salt, and an organic solvent component (S). It consists of Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W, Au, and Pb. It is a resist composition refined product characterized in that the content of the metal component (M) selected from the group is less than 1.1 ppb.
  • a fifth aspect of the present invention includes a step of forming a resist film on a support using the resist composition refined product according to the third aspect or the fourth aspect, and a step of exposing the resist film.
  • the method for forming a resist pattern which comprises a step of developing a resist film after exposure to form a resist pattern.
  • a method for producing a refined resist composition product in which impurities are further reduced and problems such as pattern collapse are less likely to occur a resist composition refined product produced by the production method, and the resist composition.
  • a method for forming a resist pattern formed by a refined product can be provided.
  • alkyl group shall include linear, branched and cyclic monovalent saturated hydrocarbon groups. The same applies to the alkyl group in the alkoxy group. Unless otherwise specified, the "alkylene group” shall include linear, branched and cyclic divalent saturated hydrocarbon groups.
  • alkyl halide group is a group in which a part or all of the hydrogen atom of the alkyl group is substituted with a halogen atom, and examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • fluorinated alkyl group or fluorinated alkylene group refers to a group in which a part or all of hydrogen atoms of the alkyl group or the alkylene group is substituted with a fluorine atom.
  • the "constituent unit” means a monomer unit (monomer unit) constituting a polymer compound (resin, polymer, copolymer).
  • the “constituent unit derived from the acrylic acid ester” means a structural unit formed by cleaving the ethylenic double bond of the acrylic acid ester.
  • the substituent (R ⁇ 0 ) that replaces the hydrogen atom bonded to the carbon atom at the ⁇ -position is an atom or group other than the hydrogen atom, for example, an alkyl group having 1 to 5 carbon atoms and a halogenation having 1 to 5 carbon atoms. Alkyl groups and the like can be mentioned.
  • itaconic acid diester in which the substituent (R ⁇ 0 ) is substituted with a substituent containing an ester bond
  • ⁇ -hydroxyacrylic ester in which the substituent (R ⁇ 0 ) is substituted with a hydroxyalkyl group or a group modified with a hydroxyl group thereof are also available. It shall include.
  • the carbon atom at the ⁇ -position of the acrylic acid ester is a carbon atom to which the carbonyl group of acrylic acid is bonded, unless otherwise specified.
  • an acrylic acid ester in which a hydrogen atom bonded to a carbon atom at the ⁇ -position is substituted with a substituent may be referred to as an ⁇ -substituted acrylic acid ester.
  • the acrylic acid ester and the ⁇ -substituted acrylic acid ester may be collectively referred to as “( ⁇ -substituted) acrylic acid ester”.
  • the "constituent unit derived from acrylamide” means a structural unit formed by cleavage of the ethylenic double bond of acrylamide.
  • the hydrogen atom bonded to the carbon atom at the ⁇ -position may be substituted with a substituent, or one or both of the hydrogen atoms of the amino group of acrylamide may be substituted with a substituent.
  • the carbon atom at the ⁇ -position of acrylamide is a carbon atom to which the carbonyl group of acrylamide is bonded.
  • the “constituent unit derived from hydroxystyrene” means a structural unit formed by cleaving the ethylenic double bond of hydroxystyrene.
  • the “constituent unit derived from the hydroxystyrene derivative” means a structural unit formed by cleaving the ethylenic double bond of the hydroxystyrene derivative.
  • the "hydroxystyrene derivative” is a concept including a hydrogen atom at the ⁇ -position of hydroxystyrene substituted with another substituent such as an alkyl group or an alkyl halide group, and derivatives thereof.
  • Derivatives thereof include those in which the hydrogen atom at the ⁇ -position may be substituted with a substituent, and the hydrogen atom of the hydroxyl group of hydroxystyrene is substituted with an organic group; even if the hydrogen atom at the ⁇ -position is substituted with a substituent. Examples thereof include those in which a substituent other than the hydroxyl group is bonded to the benzene ring of a good hydroxystyrene.
  • the ⁇ -position carbon atom at the ⁇ -position refers to a carbon atom to which a benzene ring is bonded, unless otherwise specified.
  • substituent substituting the hydrogen atom at the ⁇ -position of hydroxystyrene include the same as those mentioned as the substituent at the ⁇ -position in the ⁇ -substituted acrylic acid ester.
  • Constant unit derived from vinyl benzoic acid or vinyl benzoic acid derivative means a structural unit formed by cleavage of an ethylenic double bond of vinyl benzoic acid or a vinyl benzoic acid derivative.
  • the "vinyl benzoic acid derivative” is a concept including those in which the hydrogen atom at the ⁇ -position of vinyl benzoic acid is substituted with another substituent such as an alkyl group or an alkyl halide group, and derivatives thereof.
  • the hydrogen atom at the ⁇ -position may be substituted with a substituent, and the hydrogen atom of the carboxy group of vinyl benzoic acid is substituted with an organic group; the hydrogen atom at the ⁇ -position is substituted with a substituent.
  • Examples thereof include those in which a substituent other than a hydroxyl group and a carboxy group is bonded to the benzene ring of vinyl benzoic acid.
  • the ⁇ -position (carbon atom at the ⁇ -position) refers to a carbon atom to which a benzene ring is bonded, unless otherwise specified.
  • the "styrene derivative” is a concept including a hydrogen atom at the ⁇ -position of styrene substituted with another substituent such as an alkyl group or an alkyl halide group, and derivatives thereof.
  • these derivatives include those in which a substituent is bonded to the benzene ring of hydroxystyrene in which the hydrogen atom at the ⁇ -position may be substituted with a substituent.
  • the ⁇ -position carbon atom at the ⁇ -position refers to a carbon atom to which a benzene ring is bonded, unless otherwise specified.
  • Constuent unit derived from styrene and “constituent unit derived from styrene derivative” mean a structural unit formed by cleavage of an ethylenic double bond of styrene or a styrene derivative.
  • the alkyl group as the substituent at the ⁇ -position is preferably a linear or branched alkyl group, and specifically, an alkyl group having 1 to 5 carbon atoms (methyl group, ethyl group, propyl group, isopropyl group). , N-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group) and the like.
  • alkyl halide group as the substituent at the ⁇ -position is specifically a group in which a part or all of the hydrogen atom of the above-mentioned "alkyl group as the substituent at the ⁇ -position" is substituted with a halogen atom.
  • a halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is particularly preferable.
  • hydroxyalkyl group as the substituent at the ⁇ -position specifically, a group in which a part or all of the hydrogen atom of the above-mentioned "alkyl group as the substituent at the ⁇ -position" is substituted with a hydroxyl group can be mentioned.
  • the number of hydroxyl groups in the hydroxyalkyl group is preferably 1 to 5, and most preferably 1.
  • the "polyimide-based resin” means one or both of polyimide and polyamide-imide.
  • the polyimide and polyamide-imide may each have at least one functional group selected from the group consisting of a carboxy group, a salt-type carboxy group, and an -NH- bond.
  • a porous membrane containing at least one of polyimide and polyamide-imide may be referred to as a "polyimide-based resin porous membrane".
  • a porous membrane containing polyimide may be referred to as a "polyimide porous membrane”.
  • a porous membrane containing a polyamide-imide may be referred to as a "polyamide-imide porous membrane”.
  • the method for producing a refined resist composition product according to the first aspect of the present invention includes a step (i) of filtering with a filter having a porous structure in which adjacent spherical cells are communicated with each other.
  • the filter comprises a porous membrane containing at least one resin selected from the group consisting of polyimide and polyamide-imide.
  • the resist composition contains a base material component (A) whose solubility in a developing solution changes due to the action of an acid, an onium salt, and an organic solvent component (S), and contains the organic solvent component (S). The amount is 97% by mass or more.
  • step (i) impurities such as particles are removed from the resist composition, and a high-purity resist composition refined product is obtained.
  • a filter having a porous structure in which adjacent spherical cells are communicated with each other and having a porous film containing at least one resin selected from the group consisting of polyimide and polyamide-imide is provided.
  • highly polar components and polymers that have been difficult to remove in the past are sufficiently removed from the resist composition, and among them, the highly polar polymer is specifically removed.
  • the metal component as an impurity is sufficiently removed from the resist composition.
  • This metal component may be originally contained in the components constituting the resist composition, but may also be mixed from the resist composition transfer path such as a pipe of a manufacturing apparatus or a joint.
  • the resist composition transfer path such as a pipe of a manufacturing apparatus or a joint.
  • iron, nickel, zinc, chromium and the like that are easily mixed can be effectively removed from the manufacturing apparatus and the like.
  • Step (i) is a step of filtering the resist composition with a filter having a porous structure in which adjacent spherical cells are communicated with each other.
  • the filter used in this step has a porous structure in which adjacent spherical cells are communicated with each other.
  • the filter may be a single body of a porous membrane in which adjacent spherical cells are communicated with each other, or may be a filter in which another filter medium is used together with the porous membrane.
  • filter media include nylon membranes, polytetrafluoroethylene membranes, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) membranes, and membranes modified thereto.
  • the region of the porous membrane before and after passing the liquid is preferably sealed so that the feed liquid and the filtrate of the resist composition are separated without being mixed.
  • the porous film is processed by adhesion by light (UV) curing, adhesion by heat (including adhesion by anchor effect (heat welding, etc.)), adhesion using an adhesive, or the like. Examples thereof include a method or a method of adhering the porous film and another filter medium by an incorporation method or the like for processing.
  • Examples of such a filter include those provided with the porous film as described above in an outer container made of a thermoplastic resin (polyethylene, polypropylene, PFA, polyether sulfone (PES), polyimide, polyamide-imide, etc.). ..
  • examples of the form of the porous membrane include a planar shape and a pipe shape in which the opposite sides of the porous membrane are combined. The surface of the pipe-shaped porous membrane is preferably pleated from the viewpoint of increasing the area of contact with the feed liquid.
  • the "porous membrane in which adjacent spherical cells are communicated with each other" provided by the filter has a communication hole in which adjacent spherical cells are communicated with each other.
  • the communication holes are formed by individual holes (cells) that impart porosity to the porous membrane.
  • Such a hole includes a hole in which almost the entire inner surface of the hole is a curved surface, and may include a hole having a shape other than this.
  • a hole in which almost the entire inner surface of the hole is a curved surface is referred to as a "spherical cell” or a “substantially spherical hole”.
  • the inner surface of the hole forms a substantially spherical space.
  • the spherical cell is easily formed when the fine particles used in the method for producing a polyimide resin porous film described later are substantially spherical.
  • the "substantially spherical” is a concept including a true sphere, but is not necessarily limited to a true sphere, and is a concept including a substantially spherical one.
  • Substantially spherical means that the sphericity defined by the major axis / minor axis, which is represented by the value obtained by dividing the major axis of the particle by the minor axis, is within 1 ⁇ 0.3. To do.
  • the spherical cell here has such a sphericity of preferably within 1 ⁇ 0.1, and more preferably within 1 ⁇ 0.05.
  • a porous membrane in which adjacent spherical cells communicate with each other at least a part of communication holes is formed between adjacent spherical cells.
  • FIG. 1 schematically shows an embodiment of communication holes constituting a porous membrane.
  • the spherical cells 1a and the spherical cells 1b have almost the entire inner surface of each curved surface, forming a substantially spherical space.
  • the spherical cell 1a and the spherical cell 1b are adjacent to each other, and a communication hole 5 is formed through which the overlapping portion Q of the adjacent spherical cell 1a and the spherical cell 1b penetrates. Then, the object to be filtered flows through the communication hole 5 in the direction (arrow direction) from the spherical cell 1a to the spherical cell 1b, for example.
  • a plurality of pores are connected to form a flow path of the object to be filtered as a whole.
  • the "flow path” is usually formed by the individual “holes” and / or “communication holes” communicating with each other.
  • the individual pores are formed, for example, by removing individual fine particles existing in the polyimide resin-fine particle composite film in a subsequent step in the method for producing a polyimide resin porous film described later.
  • the communication holes are removed in a subsequent step from the portion of the polyimide resin-fine particle composite film in which the individual fine particles are in contact with each other. Adjacent holes formed by this.
  • the porous membrane spherical cells and communication holes in which adjacent spherical cells communicate with each other are formed, and the degree of porosity is increased.
  • the spherical cell or the communication hole opens on the surface of the porous membrane, and the communication hole that opens on one surface communicates with the inside of the porous membrane and opens on the surface of the other (back side).
  • a flow path is formed in which the fluid can pass through the inside of the porous membrane. Then, according to the porous membrane, when the object to be filtered flows through the flow path, the foreign matter contained in the object to be filtered is removed from the object to be filtered before filtration.
  • the porous membrane has a flow path inside in which communication holes formed by spherical cells having a curved surface on the inner surface are continuous, the surface area of the inner surface of the spherical cell is large.
  • the frequency of contact with the inner surface of the spherical cell increases when the object passes while contacting the curved surface of each spherical cell, so that the object to be filtered exists in the object to be filtered.
  • the foreign matter is adsorbed by the inner surface of the spherical cell, and the foreign matter is easily removed from the object to be filtered.
  • the porous membrane preferably has a structure in which spherical cells having an average spherical diameter of 10 to 500 nm communicate with each other.
  • the average spherical diameter of the spherical cell is more preferably 30 to 500 nm, still more preferably 50 to 400 nm.
  • the average spherical diameter of the spherical cell means the average value of the diameters of the communication holes formed from the two adjacent spherical cells.
  • the average spherical diameter of the spherical cell is a value obtained by measuring the diameter of the hole based on the bubble point method using a palm poromometer (for example, manufactured by Porous Materials). Specifically, it can be obtained by the same method as the average pore size in the porous membrane described later.
  • the flow path internally contained in the "porous membrane in which adjacent spherical cells communicate with each other" includes holes having other shapes or communication holes including the spherical cells in addition to the spherical cells and the communication holes between the spherical cells. May have. Further, the spherical cell may further have a recess on its inner surface. For example, a hole having a hole diameter smaller than that of the spherical cell may be formed in the recess, which opens on the inner surface of the spherical cell.
  • porous film in which adjacent spherical cells are communicated with each other examples include those containing a resin, and may be substantially composed of only the resin, preferably 95% by mass or more of the entire porous film. , More preferably 98% by mass or more, still more preferably 99% by mass or more of the resin.
  • the porous film contains a polyimide resin.
  • a porous film containing a polyimide resin is excellent in foreign matter removal property and strength, and stability of lithography characteristics before and after filtration.
  • the porous film contains at least one of polyimide and polyamide-imide as a resin, and preferably contains at least polyimide.
  • the porous film may contain only polyimide as a resin, or may contain only polyamide-imide, but those containing only polyimide are preferable.
  • porous film in which adjacent spherical cells communicate with each other it is particularly preferable that 95% by mass or more of the entire porous film is at least one of polyimide and polyamide-imide.
  • a porous film (polyimide-based resin porous film) in which adjacent spherical cells are communicated with each other, which contains a polyimide-based resin as a resin will be described.
  • the polyimide-based resin may have at least one functional group selected from the group consisting of a carboxy group, a salt-type carboxy group, and an -NH- bond.
  • the polyimide resin preferably has the functional group other than the terminal of the main chain.
  • Preferred examples having the functional group other than the terminal of the main chain include polyamic acid (polyamic acid).
  • salt-type carboxy group means a group in which a hydrogen atom in a carboxy group is replaced with a cation component.
  • the "cation component” It may be entirely cation itself is the ionized state, -COO - and may be a cation component which is the absence of ionic binding to virtually charge However, it may be a cation component having a partial charge, which is an intermediate state between the two.
  • the "cation component” is an M ion component composed of an n-valent metal M
  • the cation itself is represented as M n +
  • the cation component is "M 1 / n " in "-COOM 1 / n ". It is an element represented by.
  • cation component examples include cations when a compound listed as a compound contained in the etching solution described later is ion-dissociated.
  • Typical examples include an ionic component or an organic alkaline ion component.
  • the alkali metal ion component is a sodium ion component
  • the cation itself is a sodium ion (Na + )
  • the cation component is an element represented by "Na" in "-COONa”.
  • the partially charged cation component is Na ⁇ + .
  • the cation component is not particularly limited, inorganic components; NH 4 +, and an organic component of N (CH 3) 4 + and the like.
  • Examples of the inorganic component include alkali metals such as Li, Na and K; and metal elements such as alkaline earth metals such as Mg and Ca.
  • Examples of the organic component include an organic alkaline ion component.
  • As the organic alkali ion component NH 4 +, for example, NR 4 + (representing four R are both organic group, each of which may be the same or different.) Quaternary ammonium cation and the like represented by.
  • As the organic group of R an alkyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • Examples of the quaternary ammonium cation include N (CH 3 ) 4 + and the like.
  • the state of the cation component in the salt-type carboxy group is not particularly limited, and usually depends on the environment in which the polyimide resin is present, for example, whether it is in an aqueous solution, an organic solvent, or dry. To do. If cationic component is a sodium ion component, for example, if an aqueous solution, -COO - and Na + and may have dissociated, if the or dry organic solvent, - It is highly possible that COONa is not dissociated.
  • the polyimide-based resin may have at least one functional group selected from the group consisting of a carboxy group, a salt-type carboxy group, and a -NH- bond, but when it has at least one of these, it is usually used. It has both a carboxy group and / or a salt-type carboxy group and a -NH- bond.
  • the polyimide-based resin may have only a carboxy group, may have only a salt-type carboxy group, or may have a carboxy group and a salt-type carboxy group. You may have both.
  • the ratio of the carboxy group and the salt-type carboxy group of the polyimide resin may vary depending on the environment in which the polyimide resin is present, even if the polyimide resin is the same, and the concentration of the cation component can be adjusted. Is also affected.
  • the total number of moles of the carboxy group and the salt-type carboxy group of the polyimide resin is usually equal to that of the -NH- bond.
  • an -NH- bond is also formed substantially at the same time.
  • the total number of moles of the carboxy group formed and the salt-type carboxy group is equimolar to the -NH-bond formed.
  • the total number of moles of the carboxy group and the salt-type carboxy group in the polyamide-imide is not necessarily the same as that of the -NH- bond, and the etching (opening of the imide bond) described later is performed. It depends on the conditions such as chemical etching in the process.
  • the polyimide resin preferably has, for example, at least one structural unit selected from the group consisting of the structural units represented by the following general formulas (1) to (4).
  • the polyimide it is preferable that the polyimide has at least one structural unit selected from the group consisting of the structural unit represented by the following general formula (1) and the structural unit represented by the following general formula (2).
  • it is a polyamide-imide it is preferable that it has at least one structural unit selected from the group consisting of the structural unit represented by the following general formula (3) and the structural unit represented by the following general formula (4).
  • X 1 ⁇ X 4 which may be different may be identical or different, is a hydrogen atom or a cationic component.
  • R Ar is an aryl group, and is a structural unit represented by the formula (5) constituting the polyamic acid (polyamic acid) described later, or a structural unit represented by the formula (6) constituting the aromatic polyimide, respectively. Examples thereof include those similar to the aryl group represented by RA to which the carbonyl group is bonded.
  • Each of Y 1 to Y 4 is a divalent residue excluding the amino group of the diamine compound, and is a structural unit represented by the formula (5) constituting the polyamic acid described later, or an aromatic polyimide. those in the structural unit represented by the formula (6) constituting the same arylene group represented by R 'Ar which N is attached respectively are exemplified.
  • the polyimide resin porous film is a polyimide resin having at least one functional group selected from the group consisting of a carboxy group, a salt-type carboxy group, and an -NH- bond by opening a part of an imide bond. It may contain.
  • the rate of change when a part of the imide bond is opened is determined by the following procedures (1) to (3).
  • Procedure (1) A polyimide resin porous film that does not undergo the etching (imide bond opening) step described later (however, when the varnish for producing the porous film contains polyamic acid, an unfired composite film is used. It is assumed that the imidization reaction is substantially completed in the firing step.)
  • the area of the peak representing the imide bond measured by the Fourier transform infrared spectroscopy (FT-IR) apparatus is also FT-.
  • the value (X01) represented by the value divided by the area of the peak representing benzene measured by the IR apparatus is obtained.
  • Step (2) An etching (imide bond opening) step described later on a polyimide resin porous film obtained by using the same polymer (crocodile) as the porous film for which the above value (X01) was obtained.
  • the area of the peak representing the imide bond measured by the Fourier transform infrared spectroscopy (FT-IR) device is the peak area representing the benzene also measured by the FT-IR device.
  • the value (X02) represented by the value divided by the area is obtained.
  • the rate of change in the polyimide resin porous membrane is preferably 60% or more, more preferably 70 to 99.5%, and even more preferably 80 to 99%.
  • the rate of change may be 100% because it contains a -NH- bond.
  • the value obtained by dividing the area of the peak representing the imide bond measured by the FT-IR device by the area of the peak representing benzene also measured by the FT-IR device is defined as the "imidization rate". ..
  • the imidization ratio for the value (X02) obtained in the above procedure (2) is preferably 1.2 or more, more preferably 1.2 to 2, and further preferably 1.3 to 1.6. It is particularly preferably 1.30 to 1.55, and most preferably 1.35 or more and less than 1.5.
  • the imidization rate for the value (X01) obtained in the above procedure (1) is preferably 1.5 or more. The larger the number, the larger the number of imide bonds, that is, the smaller the number of ring-opened imide bonds described above.
  • the polyimide-based resin porous film is a step of forming a carboxy group and / or a salt-type carboxy group from a part of imide bonds in polyimide and / or polyamide-imide (hereinafter, "etching"). It can be manufactured by a method including (referred to as "step”). When a carboxy group and / or a salt-type carboxy group is formed from a part of the imide bond in the etching step, an equimolar-NH-bond with these groups is theoretically formed at substantially the same time.
  • the porous film When the resin contained in the polyimide-based resin porous film is substantially composed of polyamide-imide, the porous film already has a -NH- bond even without an etching step, and foreign matter in the object to be filtered. Shows good adsorption power. In such a case, the etching step is not always necessary because it is not necessary to slow down the flow velocity of the object to be filtered, but it is preferable to provide the etching step from the viewpoint of more effectively achieving the object of the present invention.
  • a molding film containing polyimide and / or polyamide-imide as a main component (hereinafter, may be abbreviated as "polyimide-based resin molding film") is prepared, and then an etching step is performed. It is preferable to do so.
  • the polyimide-based resin molding film to be subjected to the etching step may be porous or non-porous.
  • the form of the polyimide resin molding film is not particularly limited, but a thin shape such as a film is preferable and porous in that the degree of porosity in the obtained polyimide resin porous film can be increased. It is more preferable that the shape is thin such as a film.
  • the polyimide resin molding film may be non-porous when the etching step is performed, but in that case, it is preferable to make the polyimide-based resin molding film porous after the etching step.
  • a method for making the polyimide resin molding film porous before or after the etching step a composite film of polyimide and / or polyamideimide and fine particles (hereinafter referred to as "polyimide resin-fine particle composite film") is used.
  • a method including a [removal of fine particles] step of removing the fine particles to make them porous is preferable.
  • Examples of the method for producing the polyimide resin porous film include the following production method (a) or production method (b).
  • Production method (a) A method of etching a composite film of polyimide and / or polyamide-imide and fine particles before the [removal of fine particles] step.
  • Production method (b) after the [removal of fine particles] step.
  • a fine particle dispersion in which fine particles are dispersed in an organic solvent in advance is mixed with polyamic acid, polyimide or polyamide-imide at an arbitrary ratio, or tetracarboxylic acid dianhydride and diamine are polymerized in the fine particle dispersion.
  • a varnish is prepared by using a polyamic acid or by further imidizing the polyamic acid to form a polyimide.
  • the viscosity of the varnish is preferably 300 to 2000 cP (0.3 to 2 Pa ⁇ s), more preferably 400 to 1800 cP (0.4 to 1.8 Pa ⁇ s). If the viscosity of the varnish is within the above range, the film can be formed more uniformly.
  • the viscosity of the varnish can be measured with an E-type rotational viscometer under a temperature condition of 25 ° C.
  • the ratio of the fine particles / polyimide resin is preferably 1 to 4 (mass ratio), more preferably.
  • the resin fine particles and polyamic acid, polyimide or polyamide-imide are mixed so as to have a mass ratio of 1.1 to 3.5 (mass ratio).
  • the volume ratio of the fine particle / polyimide resin is preferably 1.1 to 5, more preferably 1.1 to 4.5.
  • the fine particles are mixed with polyamic acid or polyimide or polyamide-imide.
  • a volume ratio shows a value at 25 degreeC.
  • Fine particles can be used without particular limitation as long as they are insoluble in the organic solvent used for the varnish and can be selectively removed after the film formation.
  • the material of the fine particles include metal oxides such as silica (silicon dioxide), titanium oxide, alumina (Al 2 O 3 ), and calcium carbonate as inorganic materials.
  • organic materials include high molecular weight olefins (polypropylene, polyethylene, etc.), polystyrene, acrylic resins (methyl methacrylate, isobutyl methacrylate, polymethyl methacrylate (PMMA), etc.), epoxy resins, cellulose, polyvinyl alcohol, polyvinyl butyral. , Polyester, polyether, polyethylene and other organic polymers.
  • silica such as colloidal silica is preferable as the inorganic material because minute pores having a curved surface on the inner surface are likely to be formed in the porous film.
  • an acrylic resin such as PMMA is preferable.
  • the resin fine particles can be selected from, for example, ordinary linear polymers and known depolymerizable polymers without particular limitation depending on the intended purpose.
  • Ordinary linear polymers are polymers in which the molecular chains of the polymer are randomly cleaved during thermal decomposition.
  • Depolymerizable polymers are polymers that decompose into monomers during thermal decomposition. Any polymer can be removed from the polyimide resin film by decomposing into a monomer, a low molecular weight substance, or CO 2 when heated.
  • methyl methacrylate or isobutyl methacrylate having a low thermal decomposition temperature alone polymethyl methacrylate or polyisobutyl methacrylate
  • a copolymer polymer containing this as a main component is preferable.
  • the decomposition temperature of the resin fine particles is preferably 200 to 320 ° C, more preferably 230 to 260 ° C.
  • the decomposition temperature is 200 ° C. or higher, film formation can be performed even when a high boiling point solvent is used for the varnish, and the range of selection of firing conditions for the polyimide resin becomes wider.
  • the decomposition temperature is 320 ° C. or lower, only the resin fine particles can be easily eliminated without causing thermal damage to the polyimide resin.
  • the fine particles preferably have a high sphericity ratio because they tend to have a curved surface on the inner surface of the pores in the formed porous film.
  • the particle size (average diameter) of the fine particles used is, for example, preferably 50 to 2000 nm, more preferably 200 to 1000 nm.
  • the average diameter of the fine particles is within the above range, when the object to be filtered is passed through the polyimide-based resin porous membrane obtained by removing the fine particles, the object to be filtered is evenly contacted with the inner surface of the pores in the porous membrane. It is possible to efficiently adsorb foreign substances contained in the object to be filtered.
  • the particle size distribution index (d25 / d75) of the fine particles is preferably 1 to 6, more preferably 1.6 to 5, and even more preferably 2 to 4.
  • the porous membrane can be efficiently filled with fine particles, so that a flow path can be easily formed and the flow velocity is improved.
  • holes of different sizes are likely to be formed, different convections occur, and the adsorption rate of foreign matter is further improved.
  • d25 and d75 are values of particle diameters in which the cumulative frequencies of the particle size distribution are 25% and 75%, respectively, and in the present specification, d25 is the larger particle size.
  • the fine particles (B1) used for the first varnish and the fine particles (B2) used for the second varnish May use the same ones or different ones.
  • the fine particles (B1) In order to make the pores on the side in contact with the substrate more dense, it is preferable that the fine particles (B1) have a smaller or the same particle size distribution index than the fine particles (B2).
  • the fine particles (B1) preferably have a smaller or the same sphericity ratio than the fine particles (B2).
  • the fine particles (B1) preferably have a smaller particle size (average diameter) than the fine particles (B2), and in particular, the fine particles (B1) have 100 to 1000 nm (more preferably 100 to 600 nm) and the fine particles (B2). ) Is 500 to 2000 nm (more preferably 700 to 2000 nm), respectively.
  • the opening ratio of the pores on the surface of the obtained polyimide-based resin porous membrane can be increased, the diameter can be made uniform, and the polyimide can be used.
  • the strength of the porous film can be increased as compared with the case where the entire porous resin film is made of fine particles (B1) alone.
  • a dispersant may be further added to the varnish together with the fine particles for the purpose of uniformly dispersing the fine particles.
  • the polyamic acid or polyimide or polyamide-imide can be mixed more uniformly with the fine particles, and the fine particles can be uniformly distributed in the unfired composite film.
  • the front and back surfaces of the polyimide resin porous membrane finally obtained are communicated with each other so as to provide a dense opening on the surface of the polyimide resin porous membrane and improve the air permeability of the polyimide resin porous membrane. It is possible to efficiently form the communication holes to be used.
  • the above-mentioned dispersant is not particularly limited, and known ones can be used.
  • the dispersant include palm fatty acid salt, castor sulfate oil salt, lauryl sulfate salt, polyoxyalkylene allylphenyl ether sulfate salt, alkylbenzene sulfonic acid, alkylbenzene sulfonate, alkyldiphenyl ether disulfonate, and alkylnaphthalene.
  • Anionic surfactants such as sulfonates, dialkyl sulfosuccinate salts, isopropyl phosphate, polyoxyethylene alkyl ether phosphate salts, polyoxyethylene allylphenyl ether phosphate salts; oleylamine acetate, laurylpyridinium chloride, cetylpyridinium chloride, lauryltrimethyl.
  • Cationic surfactants such as ammonium chloride, stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, didecyldimethylammonium chloride; palm alkyldimethylamine oxide, fatty acid amidepropyldimethylamine oxide, alkylpolyaminoethylglycine hydrochloride, amide betaine type activator , Alanine-type activator, amphoteric surfactant such as lauryliminodipropionic acid; polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, polyoxyethylene laurylamine, polyoxyethylene oleylamine, polyoxyethylene Polystylylphenyl ether, polyoxyalkylene polystyrylphenyl ether and other polyoxyalkylene primary alkyl ethers or polyoxyalkylene secondary alkyl ether-based nonionic surfactants, polyoxyethylene dilau
  • fatty acid alkyl ester examples include polyether polyols such as polyoxyalkylene butyl ether, polyoxyalkylene oleyl ether, and trimethyl prophantris (polyoxyalkylene) ether.
  • polyether polyols such as polyoxyalkylene butyl ether, polyoxyalkylene oleyl ether, and trimethyl prophantris (polyoxyalkylene) ether.
  • the above dispersant can be used alone or in combination of two or more.
  • Polyamic acid examples include those obtained by polymerizing an arbitrary tetracarboxylic dianhydride and a diamine.
  • Tetracarboxylic dianhydride can be appropriately selected from the tetracarboxylic dianhydride conventionally used as a synthetic raw material for polyamic acid.
  • the tetracarboxylic dianhydride may be an aromatic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride.
  • aromatic tetracarboxylic acid dianhydride examples include pyromellitic acid dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, and bis (2,3-dicarboxyphenyl) methane.
  • Examples of the aliphatic tetracarboxylic dianhydride include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexanetetracarboxylic dianhydride, 1, Examples thereof include 2,4,5-cyclohexanetetracarboxylic dianhydride and 1,2,3,4-cyclohexanetetracarboxylic dianhydride.
  • aromatic tetracarboxylic dianhydride is preferable from the viewpoint of heat resistance of the obtained polyimide resin.
  • 3,3', 4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are preferable from the viewpoint of price, availability and the like.
  • the tetracarboxylic dianhydride may be used alone or in admixture of two or more.
  • Diamine can be appropriately selected from diamines conventionally used as synthetic raw materials for polyamic acids.
  • This diamine may be an aromatic diamine or an aliphatic diamine, but an aromatic diamine is preferable from the viewpoint of heat resistance of the obtained polyimide resin.
  • the diamine may be used alone or in combination of two or more.
  • aromatic diamine examples include a diamino compound in which one phenyl group or about 2 to 10 phenyl groups are bonded.
  • aromatic diamine specifically, phenylenediamine or its derivative, diaminobiphenyl compound or its derivative, diaminodiphenyl compound or its derivative, diaminotriphenyl compound or its derivative, diaminonaphthalene or its derivative, aminophenylaminoindane or its derivative.
  • examples thereof include derivatives, diaminotetraphenyl compounds or derivatives thereof, diaminohexaphenyl compounds or derivatives thereof, and cardo-type fluorinamine derivatives.
  • phenylenediamine m-phenylenediamine and p-phenylenediamine are preferable.
  • the phenylenediamine derivative include diamines to which an alkyl group such as a methyl group and an ethyl group is bonded, for example, 2,4-diaminotoluene, 2,4-triphenylene diamine and the like.
  • a diaminobiphenyl compound is a compound in which two aminophenyl groups are bonded to each other.
  • Examples of the diaminobiphenyl compound include 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl and the like.
  • a diaminodiphenyl compound is a compound in which two aminophenyl groups are bonded to each other via other groups.
  • other groups include ether bond, sulfonyl bond, thioether bond, alkylene group or derivative group thereof, imino bond, azo bond, phosphine oxide bond, amide bond, ureylene bond and the like.
  • the alkylene group preferably has about 1 to 6 carbon atoms, and the derivative group thereof is one in which one or more hydrogen atoms of the alkylene group are substituted with a halogen atom or the like.
  • diaminodiphenyl compound examples include 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4, 4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylketone, 3 , 4'-diaminodiphenylketone, 2,2-bis (p-aminophenyl) propane, 2,2'-bis (p-aminophenyl) hexafluor
  • a diaminotriphenyl compound is a compound in which two aminophenyl groups and one phenylene group are bonded via other groups. Other groups include those similar to other groups in diaminodiphenyl compounds. Examples of the diaminotriphenyl compound include 1,3-bis (m-aminophenoxy) benzene, 1,3-bis (p-aminophenoxy) benzene, and 1,4-bis (p-aminophenoxy) benzene.
  • diaminonaphthalene examples include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • aminophenylaminoindane examples include 5- or 6-amino-1- (p-aminophenyl) -1,3,3-trimethylindane.
  • diaminotetraphenyl compound examples include 4,4'-bis (p-aminophenoxy) biphenyl, 2,2'-bis [p- (p'-aminophenoxy) phenyl] propane, and 2,2'-bis [p-. Examples thereof include (p'-aminophenoxy) biphenyl] propane and 2,2'-bis [p- (m-aminophenoxy) phenyl] benzophenone.
  • cardo-type fluorene amine derivative examples include 9,9-bisaniline fluorene.
  • the aliphatic diamine preferably has about 2 to 15 carbon atoms, and specific examples thereof include pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine.
  • the diamine may be a compound in which a hydrogen atom is substituted with at least one substituent selected from the group consisting of a halogen atom, a methyl group, a methoxy group, a cyano group and a phenyl group.
  • a phenylenediamine, a phenylenediamine derivative, and a diaminodiphenyl compound are preferable.
  • p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are particularly preferable from the viewpoint of price, availability, and the like.
  • the method for producing the polyamic acid is not particularly limited, and a known method such as a method of reacting an arbitrary tetracarboxylic dianhydride with a diamine in an organic solvent is used.
  • the reaction of the tetracarboxylic dianhydride with the diamine is usually carried out in an organic solvent.
  • the organic solvent used here is not particularly limited as long as it can dissolve tetracarboxylic dianhydride and diamine, respectively, and does not react with tetracarboxylic dianhydride and diamine.
  • the organic solvent can be used alone or in combination of two or more.
  • organic solvent used for the reaction between the tetracarboxylic acid dianhydride and the diamine examples include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, and the like.
  • Nitrogen-containing polar solvents such as N, N-diethylformamide, N-methylcaprolactam, N, N, N', N'-tetramethylurea; ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valero Lactone-based polar solvents such as lactone, ⁇ -caprolactone and ⁇ -caprolactone; dimethylsulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dioxane, tetrahydrofuran, methylcell solve acetate, ethylcell Ethers such as solve acetate; phenolic solvents such as cresols can be mentioned.
  • the organic solvent it is preferable to use a nitrogen-containing polar solvent from the viewpoint of the solubility of the polyamic acid produced. Further, from the viewpoint of film forming property and the like, it is preferable to use a mixed solvent containing a lactone-based polar solvent.
  • the content of the lactone-based polar solvent is preferably 1 to 20% by mass, more preferably 5 to 15% by mass, based on the entire organic solvent (100% by mass).
  • the organic solvent it is preferable to use one or more selected from the group consisting of a nitrogen-containing polar solvent and a lactone-based polar solvent, and a mixed solvent of a nitrogen-containing polar solvent and a lactone-based polar solvent may be used. More preferred.
  • the amount of the organic solvent used is not particularly limited, but it is preferable that the content of the polyamic acid produced in the reaction solution after the reaction is 5 to 50% by mass.
  • the amount of each of the tetracarboxylic dianhydride and the diamine used is not particularly limited, but it is preferable to use 0.50 to 1.50 mol of the diamine per 1 mol of the tetracarboxylic dianhydride, and 0.60 to 1.50 mol. It is more preferable to use 1.30 mol, and it is particularly preferable to use 0.70 to 1.20 mol.
  • the reaction (polymerization) temperature is generally ⁇ 10 to 120 ° C., preferably 5 to 30 ° C.
  • the reaction (polymerization) time varies depending on the raw material composition used, but is usually 3 to 24 (hours).
  • the intrinsic viscosity of the polyamic acid solution obtained under such conditions is preferably in the range of 1000 to 100,000 cP (centipores) (1 to 100 Pa ⁇ s), more preferably 5000 to 70,000 cP (5 to 70 Pa ⁇ s). is there.
  • the intrinsic viscosity of the polyamic acid solution can be measured by an E-type rotational viscometer under a temperature condition of 25 ° C.
  • polyimide As the polyimide that can be used in the present embodiment, any known polyimide can be used as long as it can be dissolved in the organic solvent used for the varnish, regardless of its structure and molecular weight.
  • the polyimide may have a condensable functional group such as a carboxy group in the side chain, or a functional group that promotes a crosslinking reaction or the like during firing.
  • a monomer for introducing a flexible bent structure into the main chain examples include aliphatic diamines such as ethirediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, and 4,4'-diaminodicyclohexylmethane; 2-methyl-1,4-phenylene.
  • Aromatic diamines such as diamine, o-trizine, m-tridine, 3,3'-dimethoxybenzidine, 4,4'-diaminobenzanilide;Diamine; Polysiloxane Diamine; 2,3,3', 4'-oxydiphthalic acid anhydride, 3,4,3', 4'-oxydiphthalic acid anhydride, 2,2-bis (4-hydroxyphenyl) propandibenzoate -3,3', 4,4'-tetracarboxylic acid dianhydride and the like can be mentioned.
  • a monomer having a functional group that improves the solubility in such an organic solvent examples include fluorinated diamines such as 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl and 2-trifluoromethyl-1,4-phenylenediamine. Can be mentioned. Further, in addition to the monomer having such a functional group, the monomer exemplified in the above description of the polyamic acid can be used in combination as long as the solubility is not impaired.
  • the method for producing polyimide is not particularly limited, and examples thereof include known methods such as a method of chemically imidizing or heat imidizing a polyamic acid and dissolving it in an organic solvent.
  • polyimide examples include aliphatic polyimides (total aliphatic polyimides) and aromatic polyimides, and among them, aromatic polyimides are preferable.
  • the aromatic polyimide is obtained by thermally or chemically closing a ring of a polyamic acid having a structural unit represented by the following general formula (5), or a configuration represented by the following general formula (6). It may be obtained by dissolving a polyimide having a unit in a solvent.
  • R Ar represents an aryl group
  • R'Ar represents an arylene group.
  • R Ar is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 ⁇ electrons, and may be a monocyclic type or a polycyclic type.
  • the number of carbon atoms in the aromatic ring is preferably 5 to 30, more preferably 5 to 20, further preferably 6 to 15, and particularly preferably 6 to 12.
  • Specific examples of the aromatic ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, and phenanthrene; aromatic heterocycles in which some of the carbon atoms constituting the aromatic hydrocarbon ring are replaced with heteroatoms.
  • the hetero atom in the aromatic heterocycle include an oxygen atom, a sulfur atom, a nitrogen atom and the like.
  • aromatic heterocycle examples include a pyridine ring and a thiophene ring.
  • RA is preferably an aromatic hydrocarbon ring, more preferably benzene or naphthalene, and particularly preferably benzene.
  • R'Ar includes a group obtained by removing two hydrogen atoms from the aromatic ring in the above R Ar .
  • R'Ar is preferably a group obtained by removing two hydrogen atoms from an aromatic hydrocarbon ring, more preferably a group obtained by removing two hydrogen atoms from benzene or naphthalene, and phenylene obtained by removing two hydrogen atoms from benzene. Groups are particularly preferred.
  • Aryl group for R Ar, arylene group for R 'Ar may each have a substituent.
  • polyamide-imide As the polyamide-imide that can be used in the present embodiment, any known polyamide-imide can be used as long as it can be dissolved in the organic solvent used for the varnish, regardless of its structure and molecular weight.
  • the polyamide-imide may have a condensable functional group such as a carboxy group in the side chain, or a functional group that promotes a crosslinking reaction or the like during firing.
  • Such a polyamide-imide can be obtained by imidizing a precursor polymer obtained by reacting any trimellitic anhydride with diisocyanate or a reactive derivative of any trimellitic anhydride with a diamine. Anything can be used without particular limitation.
  • trimellitic anhydride halides such as trimellitic anhydride chloride, trimellitic anhydride ester and the like.
  • Examples of the above-mentioned arbitrary diisocyanis include metaphenylenediocyanate, p-phenylenediocyanate, o-trizine diisocyanate, p-phenylenediocyanate, m-phenylenediocyanate, 4,4'-oxybis (phenylisocyanide), 4,4'-diisocyanate.
  • Examples of the above-mentioned optional diamine include the same diamines exemplified in the above description of the polyamic acid.
  • Organic solvent that can be used for preparing the varnish is not particularly limited as long as it can dissolve polyamic acid and / or polyimide resin and does not dissolve fine particles, and is tetracarboxylic dianhydride. Examples thereof include organic solvents used for the reaction between substances and diamines. The organic solvent can be used alone or in combination of two or more.
  • the content of the organic solvent in the varnish is preferably 50 to 95% by mass, more preferably 60 to 85% by mass.
  • the solid content concentration in the varnish is preferably 5 to 50% by mass, more preferably 15 to 40% by mass.
  • the volume of the polyamic acid or polyimide or polyamide-imide (A1) and the fine particles (B1) in the first varnish is preferably 19:81 to 45:55.
  • the volume ratio of the fine particles (B1) is 100 as a whole, if it is 55 or more, the particles are uniformly dispersed, and if it is 81 or less, the particles are easily dispersed without agglomeration. This makes it possible to uniformly form holes on the side surface side of the base material of the polyimide resin molding film.
  • the volume ratio of the polyamic acid or polyimide or polyamide-imide (A2) to the fine particles (B2) in the second varnish is preferably 20:80 to 50:50.
  • the volume ratio of the fine particles (B2) is 100 as a whole, if it is 50 or more, the particles are easily dispersed uniformly, and if it is 80 or less, the particles do not aggregate with each other, and Cracks and the like are less likely to occur on the surface. This facilitates the formation of a polyimide-based resin porous film having good mechanical properties such as stress and elongation at break.
  • the second varnish has a lower fine particle content ratio than the first varnish.
  • the varnish is applied onto a substrate and the temperature is 0 to 120 ° C. (preferably 0) under normal pressure or vacuum. It is dried under the conditions of ( ⁇ 100 ° C.), more preferably 60 to 95 ° C. (more preferably 65 to 90 ° C.) under normal pressure.
  • the coating film thickness is, for example, preferably 1 to 500 ⁇ m, more preferably 5 to 50 ⁇ m.
  • a release layer may be provided on the base material as needed. Further, in the film formation of the unfired composite film, a dipping step in a solvent containing water, a drying step, and a pressing step may be provided as arbitrary steps before the [firing of the unfired composite film] described later.
  • the release layer can be produced by applying a release agent on a base material and drying or baking.
  • a release agent known release agents such as an alkyl phosphate ammonium salt-based release agent, a fluorine-based release agent, and a silicone-based release agent can be used without particular limitation.
  • Examples of the cleaning method include known methods such as a method of immersing the unfired composite film in the cleaning liquid and then taking it out, and a method of shower cleaning.
  • a method of immersing the unfired composite film in the cleaning liquid and then taking it out In order to dry the unfired composite film after washing, for example, the unfired composite film after washing is air-dried at room temperature or heated to an appropriate set temperature in a constant temperature bath. At that time, for example, a method of fixing the end portion of the unfired composite film to a mold made of SUS or the like to prevent deformation can be adopted.
  • the step of forming the release layer and the step of cleaning the unfired composite film can be omitted.
  • the first varnish is applied as it is on a base material such as a glass substrate, and the temperature is 0 to 120 ° C. (preferably 0) under normal pressure or vacuum. It is dried under the conditions of ( ⁇ 90 ° C.), more preferably 10 to 100 ° C. (more preferably 10 to 90 ° C.) at normal pressure to form a first unfired composite film having a film thickness of 1 to 5 ⁇ m.
  • the second varnish is applied onto the first unfired composite film, and similarly, 0 to 80 ° C. (preferably 0 to 50 ° C.), more preferably 10 to 80 ° C. (further) at normal pressure.
  • a two-layer unfired composite film can be formed by drying under the condition of (preferably 10 to 30 ° C.) to form a second unfired composite film having a thickness of 5 to 50 ⁇ m.
  • the unfired composite film After the above [deposition of unfired composite film], the unfired composite film is heat-treated (baked) to form a composite film (polyimide resin-fine particle composite film) composed of a polyimide resin and fine particles. It is formed.
  • the varnish contains polyamic acid, it is preferable to complete the imidization by [calcination of the uncalcined composite film] in this step.
  • the temperature of the heat treatment (firing temperature) varies depending on the structure of the polyamic acid or polyimide or polyamide-imide contained in the unfired composite film and the presence or absence of a condensing agent, but is preferably 120 to 400 ° C., more preferably 150 to 375. °C.
  • the thickness of the polyimide resin-fine particle composite film after heat treatment is, for example, preferably 1 ⁇ m or more, more preferably 5 to 500 ⁇ m, and even more preferably 8 to 100 ⁇ m.
  • the thickness of the polyimide resin-fine particle composite film can be determined by measuring the thicknesses of a plurality of locations using a micrometer and averaging them.
  • This process is an arbitrary process. This step may not be performed, especially when polyimide or polyamide-imide is used for the varnish.
  • the polyimide resin porous film is produced by removing the fine particles from the unfired resin-fine particle composite film.
  • the silica is dissolved and removed by contacting the polyimide resin-fine particle composite membrane with low-concentration hydrogen fluoride (HF) water to obtain a porous membrane.
  • the resin fine particles are resin fine particles, the resin fine particles are decomposed and removed by heating to a temperature equal to or higher than the thermal decomposition temperature of the resin fine particles and lower than the thermal decomposition temperature of the polyimide resin to obtain a porous film.
  • the etching step can be performed by a chemical etching method, a physical removal method, or a method in which these are combined.
  • a conventionally known method can be used for the chemical etching method.
  • the chemical etching method is not particularly limited, and examples thereof include treatment with an etching solution such as an inorganic alkaline solution or an organic alkaline solution. Above all, treatment with an inorganic alkaline solution is preferable.
  • the inorganic alkaline solution examples include a hydrazine solution containing hydrazine hydrate and ethylenediamine; a solution of an alkali metal hydroxide such as potassium hydroxide, sodium hydroxide, sodium carbonate, sodium silicate, and sodium metasilicate; an ammonia solution; Examples thereof include an etching solution containing alkali hydroxide, hydrazine and 1,3-dimethyl-2-imidazolidinone as main components.
  • organic alkaline solution examples include primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; dimethylethanolamine. , Alcohol amines such as triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; alkaline etching solutions such as cyclic amines such as pyrrol and pihelidine.
  • the alkali concentration in the etching solution is, for example, 0.01 to 20% by mass.
  • Pure water and alcohols can be appropriately selected as the solvent for each of the above etching solutions, and a solvent to which an appropriate amount of a surfactant is added can also be used.
  • a dry etching method using plasma oxygen, argon, etc.
  • corona discharge or the like
  • the above-mentioned chemical etching method or physical removal method can be applied before the above-mentioned [removal of fine particles] or after the above-mentioned [removal of fine particles]. Above all, it is preferable to apply after the above [removal of fine particles] because the communication holes inside the polyimide resin porous film are more easily formed and the removability of foreign substances is enhanced.
  • a step of cleaning the polyimide resin porous film may be provided after this step in order to remove excess etching solution.
  • the cleaning after chemical etching may be performed with water alone, but it is preferable to combine acid cleaning and water washing.
  • the polyimide-based resin porous film may be heat-treated (refired) in order to improve the wettability of the surface of the polyimide-based resin porous film with an organic solvent and remove residual organic substances. Good.
  • This heating condition is the same as the condition in the above [firing of unfired composite film].
  • a spherical cell and a communication hole in which adjacent spherical cells communicate with each other are formed, and preferably, a communication hole that opens on one outer surface is formed. It has a communication hole that communicates with the inside of the porous membrane and opens to the outer surface of the other (back side) so as to secure a flow path through which the fluid can pass through the porous membrane.
  • the Garley air permeability of the "porous membrane in which adjacent spherical cells communicate with each other" is, for example, from the viewpoint of efficiently removing foreign substances while maintaining a certain high flow velocity of the object to be filtered passing through the porous membrane. 30 seconds or more is preferable.
  • the Garley air permeability of the porous membrane is more preferably 30 to 1000 seconds, further preferably 30 to 600 seconds, particularly preferably 30 to 500 seconds, and most preferably 30 to 300 seconds. ..
  • the Garley air permeability is not more than the preferable upper limit value in the above range, the degree of porosity (abundance ratio of communication holes, etc.) is sufficiently high, so that the effect of removing foreign matter can be more easily obtained.
  • the Garley air permeability of the porous membrane can be measured according to JIS P 8117.
  • the "porous membrane in which adjacent spherical cells communicate with each other” preferably includes communication pores having a pore diameter of 1 to 200 nm, more preferably 3 to 180 nm, further preferably 5 to 150 nm, and particularly preferably 10 to 130 nm.
  • the hole diameter of the communication hole means the diameter of the communication hole. Since one communication hole is usually formed from two adjacent particles by the above-mentioned manufacturing method, for example, the direction in which the two holes constituting the communication hole are adjacent to each other is defined as the longitudinal direction in the diameter. , The case where the diameter is the direction perpendicular to the longitudinal direction is included. When the above-mentioned etching (ring-opening of imide bond) step is not provided, the pore size of the communication hole tends to be small.
  • the average pore size of the "porous film in which adjacent spherical cells are communicated with each other" is preferably 100 to 2000 nm, more preferably 200 to 1000 nm, and even more preferably 300 to 900 nm.
  • the average pore diameter of the porous film is based on the bubble point method using a palm poromometer (for example, manufactured by Porous Materials Co., Ltd.) for the porous film (for example, polyimide porous film) subjected to the above-mentioned chemical etching. It is a value obtained by measuring the diameter of the communication hole.
  • the average particle size of the fine particles used in the production of the porous film is defined as the average pore size.
  • the "porous membrane in which adjacent spherical cells communicate with each other" is a porous membrane containing pores having an average pore diameter of several hundred nanometers. Therefore, for example, even micromaterials on the order of nanometers can be adsorbed or captured in the pores and / or communication pores in the porous membrane.
  • the pore diameters of the communication holes are such that the pore diameters of the individual holes that impart porosity to the "porous film in which adjacent spherical cells communicate with each other" are broader, and the communication holes are formed between the adjacent holes. Pore diameter tends to be smaller.
  • the porosity of the "porous film in which adjacent spherical cells communicate with each other" is, for example, preferably 50% by mass or more, more preferably 60 to 90% by mass, and further preferably 60. It is about 80% by mass, particularly preferably about 70% by mass. When the porosity is at least a preferable lower limit value in the above range, the effect of removing foreign matter can be more easily obtained.
  • the porosity of the porous film is obtained by calculating the ratio of the mass of the fine particles to the total mass of the resin and the like used in producing the porous film and the fine particles.
  • the "porous membrane in which adjacent spherical cells communicate with each other" preferably includes communication holes having an average pore diameter of 0.01 to 50 nm, which is determined by the BET method, and may include communication holes of 0.05 to 10 nm. More preferred.
  • the average pore diameter of the communication holes is more preferably 0.1 to 40 nm, further preferably 1 to 30 nm, and particularly preferably 1 to 20 nm.
  • a resin used in a semiconductor manufacturing process to obtain a high molecular weight substance for example, a molecule having a molecular weight of 30,000 or more in the molecular weight distribution
  • a high molecular weight substance for example, a molecule having a molecular weight of 30,000 or more in the molecular weight distribution
  • the BET method is a method in which an adsorption isotherm is measured by adsorbing and desorbing an adsorbed molecule (for example, nitrogen) to a porous body, and the measured data is analyzed based on the BET formula represented by the following formula (Be1). is there.
  • the specific surface area A and the total pore volume V can be calculated based on this method, and the average pore diameter can be calculated from the formula [4V / A] based on the obtained specific surface area A and the total pore volume V. it can.
  • the specific surface area determined by the BET method is preferably 15 m 2 / g or more, more preferably 20 m 2 / g or more and 200 m 2 / g or less, and further preferably 25 m 2 / g or more and 100 m 2 / g or less.
  • the adsorption isotherm is obtained by adsorbing and desorbing adsorbed molecules on the porous body.
  • [P / ⁇ Va (P0-P) ⁇ ] is calculated from the obtained adsorption isotherm based on the following formula (B1), and plotted against the equilibrium relative pressure (P / P0).
  • This BET method is a measurement method based on JIS R1626-1996 "Measurement method of specific surface area by gas adsorption BET method of fine ceramic powder".
  • the measuring device by the BET method is not particularly limited, and examples thereof include Micromeritics (manufactured by Shimadzu Corporation).
  • [P / ⁇ V a (P 0- P) ⁇ ] [1 / ( Vm ⁇ C)] + [(C-1) / ( Vm ⁇ C)] (P / P 0 ) ⁇ ⁇ ⁇ (1)
  • V m 1 / (s + i) ⁇ ⁇ ⁇ (2-1)
  • C (s / i) +1 ... (2-2)
  • A (V m ⁇ L ⁇ ⁇ ) / 22414 ⁇ (3)
  • Adsorption amount Vm Adsorption amount of monolayer
  • P0 Pressure at equilibrium of adsorbed molecules
  • P0 Saturated vapor pressure of adsorbed molecules
  • L Avocadro number
  • Adsorption cross-sectional area of adsorbed molecules
  • the average pore size of the "continuous porous film" determined by the poromometer is preferably 100 nm or less, and more preferably 90 nm or less.
  • the maximum value of the pore size distribution (%) determined by the poromometer is preferably 40% or more, more preferably 45% or more, still more preferably 50% or more.
  • the pore diameter (hereinafter referred to as pore diameter A) having the maximum pore diameter distribution (%) is preferably 100 nm or less, and more preferably 90 nm or less. Further, the ratio of the maximum pore diameter (maximum pore diameter / pore diameter A) to the pore diameter A and the pore diameter distribution width determined by the poromometer is preferably 1.4 or less, more preferably 1.3 or less, and further preferably 1.2 or less. preferable.
  • the "porous film in which adjacent spherical cells are communicated with each other" is excellent in mechanical properties such as stress and elongation at break.
  • the stress of the "porous film in which adjacent spherical cells are communicated with each other" provided in the filter is, for example, preferably 10 MPa or more, more preferably 15 MPa or more, and further preferably 15 to 50 MPa.
  • the stress of the porous film is a value measured by preparing a sample having a size of 4 mm ⁇ 30 mm and using a testing machine under a measuring condition of 5 mm / min.
  • the breaking elongation of the "porous film in which adjacent spherical cells are communicated with each other" is, for example, preferably 10% GL or more, and more preferably 15% GL or more.
  • the upper limit of the elongation at break is, for example, preferably 50% GL or less, more preferably 45% GL or less, still more preferably 40% GL or less.
  • the breaking elongation of the porous film is a value measured by preparing a sample having a size of 4 mm ⁇ 30 mm and using a testing machine under measurement conditions of 5 mm / min.
  • the thermal decomposition temperature of the "porous film in which adjacent spherical cells are communicated with each other" is preferably 200 ° C. or higher, more preferably 320 ° C. or higher, and even more preferably 350 ° C. or higher.
  • the thermal decomposition temperature of the porous membrane can be measured by raising the temperature to 1000 ° C. at a heating rate of 10 ° C./min in an air atmosphere.
  • the filter in the present embodiment is not limited to the one provided with the porous membrane in which the communication holes 5 in which the adjacent spherical cells 1a and the spherical cells 1b communicate with each other as shown in FIG. 1 are formed, and in addition to the communication holes 5. It may be provided with a cell or a porous membrane in which communication holes are formed in other forms. Examples of cells having other forms (hereinafter, referred to as “other cells”) include cells having different shapes or pore diameters, and examples thereof include elliptical cells, polyhedral cells, and spherical cells having different pore diameters. Examples of the above-mentioned "communication hole of other forms” include a communication hole in which a spherical cell and another cell communicate with each other.
  • the shape or pore diameter of the other cell may be appropriately determined according to the type of impurities to be removed.
  • the communication hole in which the spherical cell and the other cell communicate with each other can be formed by the above-mentioned material selection of the fine particles, shape control of the fine particles, and the like. According to a filter having a porous film in which cells of other forms or communication holes are formed in addition to communication holes in which adjacent spherical cells communicate with each other, various foreign substances can be more efficiently removed from the object to be filtered. Can be removed.
  • the filter in the present embodiment is replaced with a filter cartridge or the like for removing fine particle impurities which has been installed so far in the supply line of various chemicals or POU (point of use) in the semiconductor manufacturing process, or with this. Can be used in combination. Therefore, various foreign substances can be efficiently removed from the object to be filtered (chemical solution for lithography) by the same apparatus and operation as before, and a high-purity resist composition refined product can be prepared.
  • Filtration of the resist composition by a filter having a porous structure in which adjacent spherical cells are communicated with each other may be performed without differential pressure (that is, the resist composition may be passed through the filter only by gravity. However, it may be performed with a differential pressure provided. Of these, the latter is preferable, and it is preferable to perform an operation of passing the resist composition through the filter by a differential pressure.
  • the "state in which the differential pressure is provided” means that there is a pressure difference between one side and the other side of the polyimide-based resin porous film provided in the filter.
  • pressurization positive pressure
  • depressurization that makes one side (filament side) of the polyimide resin porous membrane negative pressure.
  • filament side filament side
  • the former pressurization is preferable.
  • the pressurization applies pressure to the supply liquid side of the polyimide resin porous membrane in which the resist composition (hereinafter sometimes referred to as “supply liquid”) before passing through the polyimide resin porous membrane exists. is there.
  • supply liquid the resist composition
  • the flow pressure can be generated, for example, by an active flow pressure addition method of a pump (liquid feed pump, circulation pump, etc.).
  • the pump examples include a rotary pump, a diaphragm pump, a metering pump, a chemical pump, a plunger pump, a bellows pump, a gear pump, a vacuum pump, an air pump, a liquid pump and the like.
  • the pump is usually arranged between the feed liquid tank (or the circulation tank) and the polyimide resin porous membrane.
  • the flow pressure may be, for example, the pressure applied to the polyimide resin porous membrane by the feed liquid when the feed liquid is passed through the polyimide resin porous membrane only by gravity, but the above-mentioned positive It is preferable that the pressure is applied by a conventional flow pressure addition method.
  • the gas used for pressurization is preferably a gas that is inert or non-reactive with respect to the feed solution, and specific examples thereof include nitrogen, and a rare gas such as helium and argon.
  • As a method of applying pressure to the supply liquid side it is preferable to use the positive pressure of the gas.
  • the filtrate side that has passed through the polyimide resin porous membrane may be at atmospheric pressure without depressurization.
  • the pressurization may utilize both the flowing pressure and the positive pressure of the gas.
  • the differential pressure may be a combination of pressurization and depressurization, for example, one that utilizes both flow pressure and depressurization, one that utilizes both positive pressure and depressurization of gas, or a flow liquid.
  • the pressure and the positive pressure of the gas and the reduced pressure may be used.
  • the method of providing the differential pressure is combined, the combination of the flow pressure and the positive pressure of the gas and the combination of the flow pressure and the reduced pressure are preferable from the viewpoint of simplification of production and the like.
  • the polyimide-based resin porous film is used, even one method of providing the differential pressure, for example, positive pressure with a gas, is excellent in foreign matter removing performance.
  • the depressurization is to reduce the pressure on the filtrate side that has passed through the polyimide resin porous membrane.
  • the pressure may be reduced by a pump, but it is preferable to reduce the pressure to vacuum.
  • the pressure difference is the film thickness, porosity or average pore size of the polyimide resin porous film used, or the desired degree of purification. It is appropriately set in consideration of the flow rate, the flow velocity, the concentration or viscosity of the feed solution, and the like.
  • the pressure difference is preferably 0.3 MPa or less, for example.
  • the pressure difference is preferably, for example, 1 MPa or less, more preferably 0.3 MPa or less.
  • the lower limit of each pressure difference is preferably 0.01 MPa or more, more preferably 0.05 MPa or more.
  • the operation of passing the resist composition through the filter provided with the polyimide-based resin porous membrane described above can be performed while maintaining a high flow rate of the resist composition (supply liquid).
  • the flow rate in this case is not particularly limited, but for example, the flow rate of pure water when pressurized at 0.08 MPa at room temperature (20 ° C.) is preferably 1 mL / min or more, more preferably 3 mL / min or more. It is more preferably 5 mL / min or more, and particularly preferably 10 mL / min or more.
  • the upper limit of the flow velocity is not particularly limited, and is, for example, 50 mL / min or less.
  • the filter provided with the polyimide-based resin porous film described above since the filter provided with the polyimide-based resin porous film described above is used, filtration can be performed while maintaining a high flow rate in this way, and the removal rate of foreign substances contained in the resist composition is increased. Be done.
  • the operation of passing the resist composition through the filter is preferably performed by setting the temperature of the resist composition to 0 to 30 ° C., and preferably set to 5 to 25 ° C. More preferred.
  • the resist composition may be passed through the filter provided with the polyimide resin porous membrane a plurality of times (or circulation filtration may be performed a plurality of times), or the polyimide resin porous membrane may be provided. It may be passed through a plurality of filters including at least a filter.
  • a solution such as alcohol such as methanol, ethanol or isopropyl alcohol or ketone such as acetone or methyl ethyl ketone, water, a solvent contained in the feed solution or a mixture thereof is brought into contact with the polyimide resin porous film and passed through the solution. You may. In order to bring the above solution into contact with the polyimide resin porous membrane, the polyimide resin porous membrane may be impregnated or immersed in the solution.
  • the solution By bringing the solution into contact with the polyimide-based resin porous membrane, for example, the solution can be permeated into the internal pores of the polyimide-based resin porous membrane.
  • the contact between the solution and the polyimide resin porous membrane may be performed with the above-mentioned differential pressure provided, and in particular, when the solution is allowed to permeate into the internal pores of the polyimide resin porous membrane, it is under pressure. It is preferable to carry out with.
  • the production method according to the present embodiment may include other steps in addition to the step (i).
  • the other step include a step of filtering with a filter other than the filter provided with the polyimide resin porous membrane.
  • the filter other than the filter provided with the polyimide-based resin porous film is not particularly limited, and for example, a nylon film, a polyethylene film, a polypropylene film, a polytetrafluoroethylene (PTFE) film, and a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer weight.
  • PTFE polytetrafluoroethylene
  • tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer weight examples thereof include a filter provided with a porous film of a thermoplastic resin such as a coalesced (PFA) film and a film modified thereto.
  • PFA coalesced
  • the production method according to the present embodiment preferably further includes a step (ii) of filtering with a filter having a porous membrane containing a polyethylene resin, in addition to the step (i).
  • the porous film containing a polyethylene resin (hereinafter, also referred to as “polyethylene resin porous film”) may be composed of only a polyethylene resin, or may contain a polyethylene resin and another resin. , Those made of only polyethylene resin are preferable.
  • the polyethylene resin porous membrane is not particularly limited, and known ones can be used.
  • the polyethylene resin porous membrane is excellent in impact resistance, abrasion resistance, and chemical resistance, it is preferable to use a porous membrane of ultra high molecular weight polyethylene (UPE).
  • the average pore size of the polyethylene resin porous membrane is not particularly limited, but is preferably 0.1 to 100 nm, more preferably 0.3 to 50 nm, and even more preferably 0.5 to 10 nm from the viewpoint of removing fine foreign substances. ..
  • the polyethylene resin porous film is provided in an outer container made of a thermoplastic resin (polyethylene, polypropylene, PFA, polyether sulfone (PES), polyimide, polyamideimide, etc.).
  • a thermoplastic resin polyethylene, polypropylene, PFA, polyether sulfone (PES), polyimide, polyamideimide, etc.
  • the step (ii) is preferably performed after the step (i), and in this case, the average pore size of the polyethylene resin porous membrane is preferably smaller than the average pore diameter of the communication holes of the polyimide-based porous membrane.
  • the step (ii) may be repeated after the step (i).
  • the resist composition supplied liquid
  • the resist composition is constantly circulated and passed through a filter having a polyimide resin porous membrane and a filter having a polyethylene resin porous membrane.
  • both filters are such that the resist composition passes through the filter provided with the polyimide resin porous membrane and then passes through the filter provided with the polyethylene resin porous membrane. It is preferable to be arranged in.
  • the polyethylene resin porous film is washed and the wettability with respect to the feed solution is improved.
  • alcohol such as methanol, ethanol, isopropyl alcohol or acetone, ketone such as methyl ethyl ketone, water, a solvent contained in the feed solution, or a mixture thereof, etc.
  • the solution may be brought into contact with the polyethylene resin porous film to pass the solution.
  • the resist composition to be filtered includes a base material component (A) (hereinafter, also referred to as “(A) component”) whose solubility in a developing solution changes due to the action of an acid, an onium salt, and an organic solvent component (S). ) And.
  • the content of the organic solvent component (S) in the resist composition is 97% by mass or more.
  • the resist composition in which the exposed portion of the resist film is dissolved and removed to form a positive resist pattern is referred to as a positive resist composition, and the unexposed portion of the resist film is dissolved and removed to form a negative resist pattern.
  • the resist composition to be formed is called a negative resist composition.
  • the resist composition may be a positive resist composition or a negative resist composition.
  • the resist composition may be used for an alkaline developing process in which an alkaline developing solution is used for the developing process at the time of forming a resist pattern, and solvent developing using a developing solution (organic developing solution) containing an organic solvent in the developing process. It may be for a process.
  • the resist composition is a "positive resist composition for alkaline development process” that forms a positive resist pattern in the alkali development process, and a “negative type for solvent development process” that forms a negative resist pattern in the solvent development process. "Resist composition”.
  • the resist composition has an acid-generating ability to generate an acid by exposure, and the component (A) may generate an acid by exposure, and an additive component compounded separately from the component (A) is exposed. May generate acid.
  • the resist composition may contain (1) an acid generator component (B) that generates an acid upon exposure (hereinafter referred to as "component (B)"); (2).
  • component (A) may be a component that generates an acid by exposure;
  • component (3) (A) is a component that generates an acid by exposure and further contains a component (B). May be good. That is, in the case of (2) or (3) above, the component (A) is "a base material component that generates an acid by exposure and whose solubility in a developing solution changes by the action of the acid".
  • the component (A) is a base material component that generates an acid by exposure and whose solubility in a developer changes due to the action of the acid
  • the component (A1) described later generates an acid by exposure and the solubility in the developer changes.
  • It is preferably a polymer compound whose solubility in a developing solution changes due to the action of an acid.
  • a copolymer having a structural unit that generates an acid upon exposure can be used.
  • Examples of the structural unit that generates an acid by exposure include known ones.
  • the resist composition is particularly preferably the case of (1) above.
  • the resist composition may contain a base component (hereinafter, also referred to as “(D) component”) that traps the acid generated by exposure (that is, controls the diffusion of the acid).
  • the onium salt contained in the resist composition to be filtered may be contained in the component (B), may be contained in the component (D), or may be contained in the component (A). ..
  • the component (A) is a component that generates an acid upon exposure.
  • the component (A) is a base material component whose solubility in a developing solution changes due to the action of an acid.
  • the “base material component” is an organic compound having a film-forming ability, and an organic compound having a molecular weight of 500 or more is preferably used. When the molecular weight of the organic compound is 500 or more, the film forming ability is improved, and in addition, it becomes easy to form a nano-level resist pattern.
  • Organic compounds used as base material components are roughly classified into non-polymers and polymers. As the non-polymer, those having a molecular weight of 500 or more and less than 4000 are usually used.
  • the term “low molecular weight compound” refers to a non-polymer having a molecular weight of 500 or more and less than 4000.
  • a polymer having a molecular weight of 1000 or more is usually used.
  • the term "resin”, “polymer compound” or “polymer” means a polymer having a molecular weight of 1000 or more.
  • the molecular weight of the polymer the mass average molecular weight in terms of polystyrene by GPC (gel permeation chromatography) shall be used.
  • the resist composition is a "negative resist composition for an alkali developing process” that forms a negative resist pattern in an alkali developing process, or a “positive for a solvent developing process” that forms a positive resist pattern in a solvent developing process.
  • component (A) a base material component (A-2) soluble in an alkaline developer (hereinafter referred to as “component (A-2)") is preferably used, and further. , A cross-linking agent component is blended.
  • the acid acts to cause cross-linking between the component (A-2) and the cross-linking agent component, and as a result, alkali development Solubility in liquid decreases (solubility in organic developer increases). Therefore, in the formation of the resist pattern, when the resist film obtained by applying the resist composition on the support is selectively exposed, the resist film exposed portion is sparingly soluble in an alkaline developer (in an organic developer). On the other hand, the unexposed part of the resist film remains soluble in the alkaline developer (slightly soluble in the organic developer) and does not change, so the negative resist can be developed by developing with the alkaline developer. A pattern is formed.
  • alkali-soluble resin a resin soluble in an alkaline developer
  • alkali-soluble resin examples include ⁇ - (hydroxyalkyl) acrylic acid or an alkyl ester of ⁇ - (hydroxyalkyl) acrylic acid (preferably having 1 to 5 carbon atoms) disclosed in JP-A-2000-206694.
  • 6,949,325, is substituted with a substituent.
  • Acrylic resin in which a hydrogen atom bonded to a carbon atom may be substituted with a substituent; a polycycloolefin resin having a fluorinated alcohol disclosed in JP-A-2006-259582 is good with little swelling. It is preferable because a resist pattern can be formed.
  • ⁇ - (hydroxyalkyl) acrylic acid among the acrylic acids in which the hydrogen atom bonded to the carbon atom at the ⁇ position may be substituted with a substituent, hydrogen is added to the carbon atom at the ⁇ position to which the carboxy group is bonded.
  • a hydroxyalkyl group preferably a hydroxyalkyl group having 1 to 5 carbon atoms
  • cross-linking agent component for example, it is preferable to use an amino-based cross-linking agent such as glycoluryl having a methylol group or an alkoxymethyl group, or a melamine-based cross-linking agent because a good resist pattern with less swelling is easily formed. ..
  • the blending amount of the cross-linking agent component is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the alkali-soluble resin.
  • the resist composition is a "positive resist composition for an alkali developing process” that forms a positive resist pattern in an alkali developing process, or a “negative for a solvent developing process” that forms a negative resist pattern in a solvent developing process.
  • a base material component (A-1) whose polarity is increased by the action of an acid hereinafter referred to as "component (A-1)" is preferably used. ..
  • component (A-1) By using the component (A-1), the polarity of the base material component changes before and after exposure, so that good development contrast can be obtained not only in the alkali development process but also in the solvent development process.
  • the component (A-1) is sparingly soluble in an alkaline developer before exposure.
  • the action of the acid causes the component (B).
  • the polarity increases and the solubility in alkaline developers increases. Therefore, in the formation of the resist pattern, when the resist composition is selectively exposed to the resist film obtained by applying the resist composition on the support, the resist film exposed portion changes from poorly soluble to soluble in an alkaline developer.
  • the unexposed portion of the resist film remains hardly soluble in alkali, a positive resist pattern is formed by developing with alkali.
  • the component (A-1) has high solubility in an organic developer before exposure, and when an acid is generated from the component (B) by exposure, the action of the acid Increases the polarity and reduces the solubility in organic developers. Therefore, in the formation of the resist pattern, when the resist composition is selectively exposed to the resist film obtained by applying the resist composition on the support, the resist film exposed portion becomes soluble to sparingly soluble in an organic developer. While it changes, the unexposed part of the resist film remains soluble and does not change. Therefore, by developing with an organic developer, it is possible to add contrast between the exposed part and the unexposed part, and a negative resist pattern can be obtained. It is formed.
  • the component (A) is preferably the component (A-1). That is, the resist composition is a "positive resist composition for an alkali developing process” that forms a positive resist pattern in an alkali developing process, or a "negative resist composition for a solvent developing process” that forms a negative resist pattern in a solvent developing process. It is preferably a resist composition.
  • the component (A) at least one of a high molecular weight compound and a low molecular weight compound can be used.
  • the component (A-1) preferably contains a resin component (A1) (hereinafter, also referred to as "component (A1)").
  • the component (A1) is preferably a resin component and contains a polymer compound having a structural unit (a1) containing an acid-degradable group whose polarity is increased by the action of an acid.
  • a1 those having a structural unit (a10) containing a hydroxystyrene skeleton in addition to the structural unit (a1) are preferable.
  • the component (A1) in addition to the structural unit (a1), the further lactone-containing cyclic group, -SO 2 - structural unit containing an containing cyclic group or a carbonate-containing cyclic group (a2), a polar group It has a structural unit (a3) containing an aliphatic hydrocarbon group (excluding those corresponding to the structural unit (a1) or the structural unit (a2)) or a structural unit (a6) that generates an acid by exposure. May be.
  • the component (A1) may have a constituent unit other than the constituent unit (a1), the constituent unit (a2), the constituent unit (a3), the constituent unit (a10), and the constituent unit (a6).
  • the structural unit (a1) is a structural unit containing an acid-degradable group whose polarity is increased by the action of an acid.
  • An "acid-degradable group” is a group having an acid-degradable property in which at least a part of the bonds in the structure of the acid-degradable group can be cleaved by the action of an acid.
  • Examples of the acid-degradable group whose polarity is increased by the action of an acid include a group which is decomposed by the action of an acid to produce a polar group.
  • the polar group include a carboxy group, a hydroxyl group, an amino group, a sulfo group (-SO 3 H) and the like.
  • a polar group containing —OH in the structure (hereinafter, may be referred to as “OH-containing polar group”) is preferable, a carboxy group or a hydroxyl group is more preferable, and a carboxy group is particularly preferable.
  • the acid-degradable group include a group in which the polar group is protected by an acid dissociable group (for example, a group in which a hydrogen atom of an OH-containing polar group is protected by an acid dissociable group).
  • the "acid dissociative group” is (i) a group having an acid dissociative property in which the bond between the acid dissociative group and an atom adjacent to the acid dissociative group can be cleaved by the action of an acid. Alternatively, after a part of the bond is cleaved by the action of the acid (ii), a decarbonation reaction is further caused, so that the bond between the acid dissociative group and the atom adjacent to the acid dissociative group is cleaved. It refers to both the basis to obtain.
  • the acid dissociable group constituting the acid-degradable group needs to be a group having a lower polarity than the polar group produced by the dissociation of the acid-dissociable group, whereby the acid-dissociable group due to the action of the acid.
  • a polar group having a higher polarity than the acid dissociative group is generated and the polarity is increased.
  • the polarity of the entire (A1) component increases.
  • the solubility in the developer changes relatively, the solubility increases when the developer is an alkaline developer, and the solubility increases when the developer is an organic developer. Decrease.
  • Examples of the acid dissociative group include those that have been proposed as an acid dissociative group of a base resin for a chemically amplified resist composition. Specifically, as those proposed as acid dissociative groups of the base resin for the chemically amplified resist composition, the "acetal type acid dissociable group" and the “tertiary alkyl ester type acid dissociative group” described below will be described below. Examples include “group” and “tertiary alkyloxycarbonylic acid dissociative group”.
  • Acetal-type acid dissociative group Among the polar groups, the acid dissociable group that protects the carboxy group or the hydroxyl group is, for example, an acid dissociable group represented by the following general formula (a1-r-1) (hereinafter referred to as “acetal type acid dissociative group”). There are times.)
  • Ra '1, Ra' 2 is a hydrogen atom or an alkyl group.
  • Ra '3 is a hydrocarbon group, Ra' 3 is, Ra '1, Ra' combine with either 2 may form a ring.
  • Ra '1 and Ra' of the two it is preferable that at least one of which is hydrogen atom, and more preferably both are hydrogen atoms.
  • Ra '1 or Ra' 2 is an alkyl group, as the alkyl group, in the description of the ⁇ -substituted acrylic acid esters, alkyl groups as binding that may be substituted on the carbon atoms of the ⁇ -position The same can be mentioned, and an alkyl group having 1 to 5 carbon atoms is preferable. Specifically, a linear or branched alkyl group is preferable.
  • methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group and the like can be mentioned, and the methyl group or the ethyl group can be mentioned. More preferably, a methyl group is particularly preferable.
  • the hydrocarbon group of Ra '3 include straight chain or branched chain alkyl group, or a cyclic hydrocarbon group.
  • the linear alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and even more preferably 1 or 2 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group and the like. Among these, a methyl group, an ethyl group or an n-butyl group is preferable, and a methyl group or an ethyl group is more preferable.
  • the branched-chain alkyl group preferably has 3 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms. Specific examples thereof include an isopropyl group, an isobutyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a 1,1-diethylpropyl group and a 2,2-dimethylbutyl group, and an isopropyl group is preferable.
  • the hydrocarbon group may be an aromatic hydrocarbon group with an aliphatic hydrocarbon group, or may be a monocyclic group or polycyclic group.
  • the aliphatic hydrocarbon group which is a monocyclic group a group obtained by removing one hydrogen atom from a monocycloalkane is preferable.
  • the monocycloalkane preferably has 3 to 6 carbon atoms, and specific examples thereof include cyclopentane and cyclohexane.
  • the aliphatic hydrocarbon group which is a polycyclic group a group obtained by removing one hydrogen atom from polycycloalkane is preferable, and the polycycloalkane preferably has 7 to 12 carbon atoms, and specifically.
  • Examples include adamantane, norbornane, isobornane, tricyclodecane, tetracyclododecane and the like.
  • aromatic hydrocarbon group is a hydrocarbon group having at least one aromatic ring.
  • the aromatic ring is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 ⁇ electrons, and may be a monocyclic type or a polycyclic type.
  • the aromatic ring preferably has 5 to 30 carbon atoms, more preferably 5 to 20 carbon atoms, further preferably 6 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • aromatic ring examples include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, and phenanthrene; aromatic heterocycles in which some of the carbon atoms constituting the aromatic hydrocarbon ring are replaced with heteroatoms.
  • aromatic heterocycles examples include an oxygen atom, a sulfur atom, a nitrogen atom and the like.
  • aromatic heterocycle examples include a pyridine ring and a thiophene ring.
  • aromatic hydrocarbon group in ra '3 the aromatic hydrocarbon ring or one hydrogen atom from an aromatic heterocyclic group formed by removing (aryl or heteroaryl group); two or more aromatic rings A group obtained by removing one hydrogen atom from an aromatic compound (for example, biphenyl, fluorene, etc.); a group in which one of the hydrogen atoms of the aromatic hydrocarbon ring or aromatic heterocycle is substituted with an alkylene group (for example, a benzyl group).
  • Arylalkyl groups such as phenethyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, 1-naphthylethyl group, 2-naphthylethyl group, etc.
  • the alkylene group bonded to the aromatic hydrocarbon ring or aromatic heterocycle preferably has 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, and particularly preferably 1 carbon atom. preferable.
  • Cyclic hydrocarbon group in ra '3 may have a substituent.
  • this substituent include -R P1 , -R P2, -O-R P1 , -R P2, -CO-R P1 , -R P2, -CO-OR P1 , -R P2, -O-CO-R P1 , and so on.
  • substituents include -R P2- OH, -R P2- CN or -R P2- COOH (hereinafter, these substituents are collectively referred to as "Ra 05 ”) and the like.
  • RP1 is a monovalent chain saturated hydrocarbon group having 1 to 10 carbon atoms, a monovalent aliphatic cyclic saturated hydrocarbon group having 3 to 20 carbon atoms, or a monovalent aromatic group having 6 to 30 carbon atoms. It is a group hydrocarbon group.
  • RP2 is a single bond, a divalent chain saturated hydrocarbon group having 1 to 10 carbon atoms, a divalent aliphatic cyclic saturated hydrocarbon group having 3 to 20 carbon atoms, or a divalent group having 6 to 30 carbon atoms. It is an aromatic hydrocarbon group of.
  • a chain saturated hydrocarbon group R P1 and R P2 some or all of the hydrogen atoms included in the aliphatic cyclic saturated hydrocarbon group and aromatic hydrocarbon group may be substituted with a fluorine atom.
  • the aliphatic cyclic hydrocarbon group may have one or more of the above-mentioned substituents alone, or may have one or more of the above-mentioned substituents.
  • Examples of the monovalent chain saturated hydrocarbon group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a decyl group. ..
  • Examples of the monovalent aliphatic cyclic saturated hydrocarbon group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group and a cyclododecyl group.
  • Monocyclic aliphatic saturated hydrocarbon group bicyclo [2.2.2] octanyl group, tricyclo [5.2.1.02,6] decanyl group, tricyclo [3.3.1.13,7] decanyl group , Tetracyclo [6.2.1.13, 6.02,7]
  • Polycyclic aliphatic saturated hydrocarbon groups such as dodecanyl group and adamantyl group can be mentioned.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms include a group obtained by removing one hydrogen atom from an aromatic hydrocarbon ring such as benzene, biphenyl, fluorene, naphthalene, anthracene, and phenanthrene.
  • Ra '3 is, Ra' case of forming a ring with either 1, Ra '2 of, a cyclic group, 4- to 7-membered ring is preferred, 4-6 membered ring is more preferable.
  • Specific examples of the cyclic group include a tetrahydropyranyl group and a tetrahydrofuranyl group.
  • Tertiary alkyl ester type acid dissociative group examples include an acid dissociable group represented by the following general formula (a1-r-2). Of the acid dissociative groups represented by the following formula (a1-r-2), those composed of alkyl groups may be hereinafter referred to as "tertiary alkyl ester type acid dissociative groups" for convenience. ..
  • Ra '4 ⁇ Ra' 6 are each a hydrocarbon group, Ra '5, Ra' 6 may be bonded to each other to form a ring.
  • hydrocarbon group ra '4 linear or branched alkyl group, a linear or cyclic alkenyl group, or, cyclic hydrocarbon groups.
  • Linear or branched alkyl group in ra '4, cyclic hydrocarbon group (monocyclic aliphatic hydrocarbon group is a group, a polycyclic aliphatic hydrocarbon group is a group, aromatic hydrocarbon group ) include the same as the Ra '3.
  • Alkenyl group chain or cyclic in ra '4 is preferably an alkenyl group having 2 to 10 carbon atoms.
  • the Ra '5, Ra' 6 hydrocarbon group include the same as the Ra '3.
  • Ra and '5 and Ra' 6 are bonded to each other to form a ring, groups represented by the following general formula (a1-r2-1), the group represented by the following general formula (a1-r2-2) , The group represented by the following general formula (a1-r2-3) is preferably mentioned.
  • Ra '4 ⁇ Ra' 6 are not bonded to each other, when an independent hydrocarbon group, a group represented by the following general formula (a1-R2-4) are preferably exemplified.
  • Ra ' 10 represents an alkyl group, or a group represented by the following general formula (a1-r2-r1) of 1 to 10 carbon atoms.
  • Ra '11 is Ra' represents a group to form an alicyclic group together with the carbon atom to which 10 is bonded.
  • Ya is a carbon atom.
  • Xa is a group that forms a cyclic hydrocarbon group together with Ya. A part or all of hydrogen atoms contained in this cyclic hydrocarbon group may be substituted.
  • Ra 01 to Ra 03 are independently hydrogen atoms, monovalent chain saturated hydrocarbon groups having 1 to 10 carbon atoms, or monovalent aliphatic cyclic saturated hydrocarbon groups having 3 to 20 carbon atoms.
  • a part or all of the hydrogen atoms contained in the chain saturated hydrocarbon group and the aliphatic cyclic saturated hydrocarbon group may be substituted.
  • Two or more of Ra 01 to Ra 03 may be bonded to each other to form a cyclic structure.
  • Ya is a carbon atom.
  • Xaa is a group that forms an aliphatic cyclic group with Yaa.
  • Ra 04 is an aromatic hydrocarbon group which may have a substituent.
  • Ra ' 12 and Ra' 13 each independently represent a monovalent chain-like saturated hydrocarbon group or a hydrogen atom having 1 to 10 carbon atoms.
  • a part or all of hydrogen atoms contained in this chain saturated hydrocarbon group may be substituted.
  • Ra '14 is a hydrocarbon group which may have a substituent. * Indicates a bond (the same applies hereinafter). ]
  • Ra 031 and Ra 032 and Ra 033 are hydrocarbon groups that may independently have substituents. However, one or more of Ra 031 and Ra 032 and Ra 033 are hydrocarbon groups having at least one polar group. ]
  • Ra 'alkyl group having 1 to 10 carbon atoms in 10 Ra in formula (a1-r-1)' as linear or branched alkyl group of 3
  • the listed groups are preferred.
  • Ra '10 is preferably an alkyl group having 1 to 5 carbon atoms.
  • Ya 0 is a quaternary carbon atom. That is, there are four adjacent carbon atoms bonded to Ya 0 (carbon atom).
  • Ra 031 and Ra 032 and Ra 033 are hydrocarbon groups which may independently have a substituent.
  • Examples of the hydrocarbon group in Ra 031 , Ra 032 and Ra 033 include a linear or branched alkyl group, a chain or cyclic alkenyl group, and a cyclic hydrocarbon group, respectively.
  • the linear alkyl group in Ra 031 , Ra 032 and Ra 033 preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and even more preferably 1 or 2 carbon atoms.
  • Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group and the like.
  • a methyl group, an ethyl group or an n-butyl group is preferable, and a methyl group or an ethyl group is more preferable.
  • the branched-chain alkyl group in Ra 031 , Ra 032 and Ra 033 preferably has 3 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms. Specific examples thereof include an isopropyl group, an isobutyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a 1,1-diethylpropyl group, a 2,2-dimethylbutyl group and the like, and an isopropyl group is preferable.
  • the chain or cyclic alkenyl group in Ra 031 , Ra 032 and Ra 033 is preferably an alkenyl group having 2 to 10 carbon atoms.
  • the cyclic hydrocarbon group in Ra 031 , Ra 032 and Ra 033 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and may be a polycyclic group or a monocyclic group.
  • the aliphatic hydrocarbon group which is a monocyclic group a group obtained by removing one hydrogen atom from a monocycloalkane is preferable.
  • the monocycloalkane preferably has 3 to 6 carbon atoms, and specific examples thereof include cyclopentane and cyclohexane.
  • the aliphatic hydrocarbon group which is a polycyclic group a group obtained by removing one hydrogen atom from polycycloalkane is preferable, and the polycycloalkane preferably has 7 to 12 carbon atoms, and specifically.
  • Examples include adamantane, norbornane, isobornane, tricyclodecane, tetracyclododecane and the like.
  • the aromatic hydrocarbon group in Ra 031 , Ra 032 and Ra 033 is a hydrocarbon group having at least one aromatic ring.
  • the aromatic ring is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 ⁇ electrons, and may be a monocyclic type or a polycyclic type.
  • the number of carbon atoms in the aromatic ring is preferably 5 to 30, more preferably 5 to 20, further preferably 6 to 15, and particularly preferably 6 to 12.
  • Specific examples of the aromatic ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, and phenanthrene; aromatic heterocycles in which some of the carbon atoms constituting the aromatic hydrocarbon ring are replaced with heteroatoms. Can be mentioned.
  • hetero atom in the aromatic heterocycle examples include an oxygen atom, a sulfur atom, a nitrogen atom and the like.
  • aromatic heterocycle examples include a pyridine ring and a thiophene ring.
  • the aromatic hydrocarbon group is a group obtained by removing one hydrogen atom from the aromatic hydrocarbon ring or aromatic heterocycle (aryl group or heteroaryl group); an aromatic containing two or more aromatic rings.
  • a group obtained by removing one hydrogen atom from a compound for example, biphenyl, fluorene, etc.
  • a group in which one of the hydrogen atoms of the aromatic hydrocarbon ring or aromatic heterocycle is substituted with an alkylene group for example, a benzyl group or a phenethyl group.
  • alkylene group for example, a benzyl group or a phenethyl group.
  • the carbon number of the alkylene group bonded to the aromatic hydrocarbon ring or aromatic heterocycle is preferably 1 to 4, more preferably 1 to 2, and particularly preferably 1.
  • examples of the substituent include a hydroxy group, a carboxy group, a halogen atom (fluorine atom, chlorine atom, bromine atom and the like). ), An alkoxy group (methoxy group, ethoxy group, propoxy group, butoxy group, etc.), alkyloxycarbonyl group and the like.
  • the hydrocarbon group which may have a substituent in Ra 031 , Ra 032 and Ra 033 is preferably a linear or branched alkyl group which may have a substituent.
  • a linear alkyl group is more preferred.
  • Ra 031 and Ra 032 and Ra 033 are hydrocarbon groups having at least a polar group.
  • the "hydrocarbon group having a polar group” a methylene group constituting the hydrocarbon group (-CH 2 -) which is substituted with a polar group or at least one of the hydrogen atoms constituting the hydrocarbon group Any one substituted with a polar group is included.
  • a functional group represented by the following general formula (a1-p1) is preferable.
  • Ra 07 represents a divalent hydrocarbon group having 2 to 12 carbon atoms.
  • Ra 08 represents a divalent linking group containing a heteroatom.
  • Ra 06 represents a monovalent hydrocarbon group having 1 to 12 carbon atoms.
  • n p0 is an integer of 1 to 6.
  • Ra 07 represents a divalent hydrocarbon group having 2 to 12 carbon atoms.
  • the number of carbon atoms of Ra 07 is 2 to 12, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, further preferably 2 to 4 carbon atoms, and particularly preferably 2 carbon atoms.
  • the hydrocarbon group in Ra 07 is preferably a chain or cyclic aliphatic hydrocarbon group, and more preferably a chain hydrocarbon group.
  • Ra 07 examples include ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1, 7-diyl group, octane-1,8-diyl group, nonan-1,9-diyl group, decane-1,10-diyl group, undecane-1,11-diyl group, dodecane-1,12-diyl group, etc.
  • Linear alcandiyl group propane-1,2-diyl group, 1-methylbutane-1,3-diyl group, 2-methylpropane-1,3-diyl group, pentane-1,4-diyl group, 2 -Branch chain arcandyl group such as methylbutane-1,4-diyl group; cyclobutane-1,3-diyl group, cyclopentane-1,3-diyl group, cyclohexane-1,4-diyl group, cyclooctane-1 , 5-Diyl group and other cycloalkandyl groups; norbornan-1,4-diyl group, norbornan-2,5-diyl group, adamantan-1,5-diyl group, adamantan-2,6-diyl group and the like. Examples thereof include a ring-type divalent alicyclic hydrocarbon group. Among the above, an
  • Ra 08 represents a divalent linking group containing a heteroatom.
  • O- and -C ( O)-are particularly preferable.
  • Ra 06 represents a monovalent hydrocarbon group having 1 to 12 carbon atoms.
  • Ra 06 has 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms, further preferably 1 to 3 carbon atoms, and more preferably 1 to 3 carbon atoms from the viewpoint of solubility in a developing solution. 1 or 2 is particularly preferable, and 1 is most preferable.
  • Examples of the hydrocarbon group in Ra 06 include a chain hydrocarbon group or a cyclic hydrocarbon group, or a hydrocarbon group in which a chain and a cyclic are combined.
  • Examples of the chain hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group and n.
  • the cyclic hydrocarbon group may be an alicyclic hydrocarbon group or an aromatic hydrocarbon group.
  • the alicyclic hydrocarbon group may be either a monocyclic group or a polycyclic group, and the monocyclic alicyclic hydrocarbon group may be, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group or a methyl.
  • Cycloalkyl groups such as cyclohexyl group, dimethylcyclohexyl group, cycloheptyl group, cyclooctyl group, cycloheptyl group and cyclodecyl group can be mentioned.
  • Examples of the polycyclic alicyclic hydrocarbon group include a decahydronaphthyl group, an adamantyl group, a 2-alkyladamantan-2-yl group, a 1- (adamantan-1-yl) alkane-1-yl group, and a norbornyl group.
  • Examples include a group, a methylnorbornyl group, an isobornyl group and the like.
  • aromatic hydrocarbon group examples include a phenyl group, a naphthyl group, an anthryl group, a p-methylphenyl group, a p-tert-butylphenyl group, a p-adamantylphenyl group, a trill group, a xsilyl group, a cumenyl group and a mesityl group.
  • a chain hydrocarbon group is preferable, an alkyl group is more preferable, and a linear alkyl group is further preferable, from the viewpoint of solubility in a developing solution.
  • n p0 is an integer of 1 to 6, preferably an integer of 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • the number of hydrocarbon groups having at least one polar group is one or more, but it is added to the developing solution when forming the resist pattern. It may be appropriately determined in consideration of the solubility of, for example, one or two of Ra 031 and Ra 032 and Ra 033 , and particularly preferably one.
  • the above-mentioned hydrocarbon group having at least a polar group may have a substituent other than the polar group.
  • substituents include a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.) and an alkyl halide group having 1 to 5 carbon atoms.
  • Ra ' (aliphatic cyclic group 11 Ra' 10 is formed together with bonded carbon atoms) is substituted by a monocyclic group Ra '3 in the formula (a1-r-1)
  • the group listed as the aliphatic hydrocarbon group which is a polycyclic group is preferable.
  • the cyclic hydrocarbon group Xa is formed together with Ya, 1 monovalent hydrocarbon group (aliphatic cyclic in formula (a1-r-1) in the Ra '3 A group obtained by further removing one or more hydrogen atoms from the hydrocarbon group) can be mentioned.
  • the cyclic hydrocarbon group that Xa forms with Ya may have a substituent.
  • substituents those similar to the cyclic hydrocarbon group substituents which may be possessed by the above Ra '3 and the like.
  • examples of the monovalent chain saturated hydrocarbon group having 1 to 10 carbon atoms in Ra 01 to Ra 03 include a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl. Examples thereof include a group, a hexyl group, a heptyl group, an octyl group, a decyl group and the like.
  • Examples of the monovalent aliphatic cyclic saturated hydrocarbon group having 3 to 20 carbon atoms in Ra 01 to Ra 03 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group and a cyclodecyl group.
  • Monocyclic aliphatic saturated hydrocarbon groups such as groups and cyclododecyl groups; bicyclo [2.2.2] octanyl group, tricyclo [5.2.1.02,6] decanyl group, tricyclo [3.3.1] Examples thereof include a polycyclic aliphatic saturated hydrocarbon group such as .13,7] decanyl group, tetracyclo [6.2.1.13, 6.02,7] dodecanyl group and adamantyl group.
  • Ra 01 to Ra 03 a hydrogen atom and a monovalent chain saturated hydrocarbon group having 1 to 10 carbon atoms are preferable from the viewpoint of easiness of synthesizing the monomer compound that induces the structural unit (a1). Among them, hydrogen atom, methyl group and ethyl group are more preferable, and hydrogen atom is particularly preferable.
  • Examples of the substituent contained in the chain saturated hydrocarbon group represented by Ra 01 to Ra 03 or the aliphatic cyclic saturated hydrocarbon group include the same group as Ra 05 described above.
  • Examples of the group containing a carbon-carbon double bond formed by two or more of Ra 01 to Ra 03 bonding to each other to form a cyclic structure include a cyclopentenyl group, a cyclohexenyl group, a methylcyclopentenyl group, and a methyl. Examples thereof include a cyclohexenyl group, a cyclopentylidene ethenyl group, a cyclohexylidene ethenyl group and the like.
  • a cyclopentenyl group, a cyclohexenyl group, and a cyclopentylideneetenyl group are preferable from the viewpoint of easiness of synthesizing the monomer compound that induces the constituent unit (a1).
  • Formula (a1-R2-3) in an aliphatic cyclic group which Xaa is formed with Yaa is an aliphatic monocyclic group or polycyclic group of Ra '3 in the formula (a1-r-1) carbide
  • the groups listed as hydrogen groups are preferred.
  • examples of the aromatic hydrocarbon group in Ra 04 include a group obtained by removing one or more hydrogen atoms from an aromatic hydrocarbon ring having 5 to 30 carbon atoms.
  • Ra 04 is preferably a group obtained by removing one or more hydrogen atoms from an aromatic hydrocarbon ring having 6 to 15 carbon atoms, and more preferably a group obtained by removing one or more hydrogen atoms from benzene, naphthalene, anthracene or phenanthrene.
  • Benzene, naphthalene or anthracene with one or more hydrogen atoms removed is more preferred, benzene or naphthalene with one or more hydrogen atoms removed, and benzene with one or more hydrogen atoms removed most. preferable.
  • Examples of the substituent that Ra 04 in the formula (a1-r2-3) may have include a methyl group, an ethyl group, a propyl group, a hydroxyl group, a carboxyl group, and a halogen atom (fluorine atom, chlorine atom, etc.). Bromine atom, etc.), alkoxy group (methoxy group, ethoxy group, propoxy group, butoxy group, etc.), alkyloxycarbonyl group and the like can be mentioned.
  • Ra ' 12 and Ra' 13 each independently represent a monovalent chain-like saturated hydrocarbon group or a hydrogen atom having 1 to 10 carbon atoms.
  • the monovalent linear saturated hydrocarbon group having 1 to 10 carbon atoms in Ra 01 ⁇ ra 03 above, monovalent chain saturated hydrocarbon of 1 to 10 carbon atoms The same as the group can be mentioned. A part or all of hydrogen atoms contained in this chain saturated hydrocarbon group may be substituted.
  • Ra '12 and Ra' 13 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, a methyl group, an ethyl group more preferably, in particular a methyl group preferable. If chain saturated hydrocarbon group represented by Ra '12 and Ra' 13 is substituted, the substituent, for example, include the same groups as Ra 05 described above.
  • Ra ' 14 is a hydrocarbon group which may have a substituent.
  • the hydrocarbon group in the ra '14 include straight chain or branched chain alkyl group, or a cyclic hydrocarbon group.
  • Linear alkyl groups in the ra '14 preferably has 1 to 5 carbon atoms, more preferably 1 to 4, 1 or 2 is more preferred. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group and the like. Among these, a methyl group, an ethyl group or an n-butyl group is preferable, and a methyl group or an ethyl group is more preferable.
  • Branched-chain alkyl group in the ra '14 preferably has a carbon number of 3 to 10, more preferably 3-5. Specific examples thereof include an isopropyl group, an isobutyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a 1,1-diethylpropyl group, a 2,2-dimethylbutyl group and the like, and an isopropyl group is preferable.
  • the hydrocarbon group may be an aromatic hydrocarbon group with an aliphatic hydrocarbon group, or may be a monocyclic group or polycyclic group.
  • the aliphatic hydrocarbon group which is a monocyclic group a group obtained by removing one hydrogen atom from a monocycloalkane is preferable.
  • the monocycloalkane preferably has 3 to 6 carbon atoms, and specific examples thereof include cyclopentane and cyclohexane.
  • the aliphatic hydrocarbon group which is a polycyclic group a group obtained by removing one hydrogen atom from polycycloalkane is preferable, and the polycycloalkane preferably has 7 to 12 carbon atoms, and specifically. Examples include adamantane, norbornane, isobornane, tricyclodecane, tetracyclododecane and the like.
  • the aromatic hydrocarbon group in Ra '14 include the same aromatic hydrocarbon group in Ra 04.
  • Ra '14 is preferably a group obtained by removing one or more hydrogen atoms from an aromatic hydrocarbon ring having 6 to 15 carbon atoms, more benzene, naphthalene, a group obtained by removing one or more hydrogen atoms from anthracene or phenanthrene
  • a group in which one or more hydrogen atoms are removed from benzene, naphthalene or anthracene is more preferable
  • a group in which one or more hydrogen atoms are removed from naphthalene or anthracene is particularly preferable
  • a group in which one or more hydrogen atoms are removed from naphthalene is particularly preferable.
  • the ra '14 substituent which may be possessed are the same as those of the substituent which may be ra 04 has had.
  • Ra '14 in formula (a1-R2-4) is a naphthyl group
  • a position to bind to the tertiary carbon atoms in the formula (a1-R2-4) are the 1-position or 2-position of the naphthyl group It may be either.
  • Ra '14 in formula (a1-R2-4) is anthryl group
  • a position to bind to the tertiary carbon atoms in the formula (a1-R2-4) the 1-position of the anthryl group, 2-position or It may be any of the 9th place.
  • the acid dissociating group that protects the hydroxyl group includes, for example, an acid dissociating group represented by the following general formula (a1-r-3) (hereinafter, for convenience, “tertiary alkyloxycarbonylic acid dissociating group” ”) Can be mentioned.
  • Ra '7 ⁇ Ra' 9 are each an alkyl group.
  • Ra '7 ⁇ Ra' 9 is preferably an alkyl group having 1 to 5 carbon atoms, respectively, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • the total number of carbon atoms of each alkyl group is preferably 3 to 7, more preferably 3 to 5, and most preferably 3 to 4 carbon atoms.
  • a structural unit derived from an acrylic acid ester in which a hydrogen atom bonded to a carbon atom at the ⁇ -position may be substituted with a substituent, a structural unit derived from acrylamide, hydroxystyrene or hydroxy.
  • a structural unit in which at least a part of hydrogen atoms in the hydroxyl group of a structural unit derived from a styrene derivative is protected by a substituent containing the acid-degradable group, a structural unit derived from vinyl benzoic acid or a vinyl benzoic acid derivative- Examples thereof include a structural unit in which at least a part of hydrogen atoms in C ( O) -OH is protected by a substituent containing the acid-degradable group.
  • the structural unit (a1) is preferably a structural unit derived from an acrylic acid ester in which a hydrogen atom bonded to a carbon atom at the ⁇ -position may be substituted with a substituent.
  • a preferable specific example of the structural unit (a1) is a structural unit represented by the following general formula (a1-1) or (a1-2).
  • R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkyl halide group having 1 to 5 carbon atoms.
  • Va 1 is a divalent hydrocarbon group that may have an ether bond.
  • n a1 is an integer of 0 to 2.
  • Ra 1 is an acid dissociative group represented by the above general formula (a1-r-1) or (a1-r-2).
  • Wa 1 is a n a2 + 1 valent hydrocarbon group
  • n a 2 is an integer of 1 to 3
  • Ra 2 is represented by the above general formula (a1-r-1) or (a1-r-3). It is an acid dissociative group.
  • the alkyl group having 1 to 5 carbon atoms of R is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, and specifically, a methyl group or an ethyl group.
  • the alkyl halide group having 1 to 5 carbon atoms is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 5 carbon atoms are substituted with halogen atoms.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is particularly preferable.
  • R a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a fluorinated alkyl group having 1 to 5 carbon atoms is preferable, and a hydrogen atom or a methyl group is most preferable from the viewpoint of industrial availability.
  • the divalent hydrocarbon group in Va 1 may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group as the divalent hydrocarbon group in Va 1 may be saturated or unsaturated, and is usually preferably saturated. More specific examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group, an aliphatic hydrocarbon group having a ring in its structure, and the like.
  • the linear aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 4 carbon atoms, and most preferably 1 to 3 carbon atoms. ..
  • a linear alkylene group is preferable, and specifically, a methylene group [-CH 2- ], an ethylene group [-(CH 2 ) 2- ], a trimethylene group [ - (CH 2) 3 -] , a tetramethylene group [- (CH 2) 4 - ], a pentamethylene group [- (CH 2) 5 - ] , and the like.
  • the branched-chain aliphatic hydrocarbon group preferably has 2 to 10 carbon atoms, more preferably 3 to 6 carbon atoms, further preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms.
  • a branched alkylene group is preferable, and specifically, -CH (CH 3 )-, -CH (CH 2 CH 3 )-, and -C (CH 3 ).
  • Alkylmethylene groups such as 2- , -C (CH 3 ) (CH 2 CH 3 )-, -C (CH 3 ) (CH 2 CH 2 CH 3 )-, -C (CH 2 CH 3 ) 2-, etc.;- CH (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -C (CH 3 ) 2 CH 2- , -CH (CH 2 CH 3 ) CH 2- , -C (CH 2) CH 3 ) 2- CH 2 -etc. Alkylethylene groups; -CH (CH 3 ) CH 2 CH 2- , -CH 2 CH (CH 3 ) CH 2 -etc.
  • Alkyltrimethylene groups -CH (CH 3 )
  • alkylalkylene group such as an alkyltetramethylene group such as CH 2 CH 2 CH 2- , ⁇ CH 2 CH (CH 3 ) CH 2 CH 2- .
  • alkyl group in the alkylalkylene group a linear alkyl group having 1 to 5 carbon atoms is preferable.
  • an alicyclic hydrocarbon group (a group obtained by removing two hydrogen atoms from the aliphatic hydrocarbon ring) and an alicyclic hydrocarbon group are linear or branched. Examples thereof include a group bonded to the terminal of a chain-shaped aliphatic hydrocarbon group and a group in which an alicyclic hydrocarbon group is interposed in the middle of a linear or branched aliphatic hydrocarbon group. Examples of the linear or branched aliphatic hydrocarbon group include the same as the linear aliphatic hydrocarbon group or the branched aliphatic hydrocarbon group.
  • the alicyclic hydrocarbon group preferably has 3 to 20 carbon atoms, and more preferably 3 to 12 carbon atoms.
  • the alicyclic hydrocarbon group may be a polycyclic type or a monocyclic type.
  • As the monocyclic alicyclic hydrocarbon group a group obtained by removing two hydrogen atoms from a monocycloalkane is preferable.
  • the monocycloalkane preferably has 3 to 6 carbon atoms, and specific examples thereof include cyclopentane and cyclohexane.
  • polycyclic alicyclic hydrocarbon group a group obtained by removing two hydrogen atoms from polycycloalkane is preferable, and the polycycloalkane preferably has 7 to 12 carbon atoms, specifically, adamantane. , Norbornane, isobornane, tricyclodecane, tetracyclododecane and the like.
  • the aromatic hydrocarbon group as the divalent hydrocarbon group in Va 1 is a hydrocarbon group having an aromatic ring.
  • the aromatic hydrocarbon group preferably has 3 to 30 carbon atoms, more preferably 5 to 30 carbon atoms, further preferably 5 to 20 carbon atoms, particularly preferably 6 to 15 carbon atoms, and most preferably 6 to 12 carbon atoms. ..
  • the carbon number does not include the carbon number of the substituent.
  • Specific examples of the aromatic ring contained in the aromatic hydrocarbon group include aromatic hydrocarbon rings such as benzene, biphenyl, fluorene, naphthalene, anthracene, and phenanthrene; some of the carbon atoms constituting the aromatic hydrocarbon ring are hetero.
  • aromatic heterocycles substituted with atoms examples include aromatic heterocycles substituted with atoms.
  • the hetero atom in the aromatic heterocycle include an oxygen atom, a sulfur atom, a nitrogen atom and the like.
  • the aromatic hydrocarbon group is a group obtained by removing two hydrogen atoms from the aromatic hydrocarbon ring (arylene group); a group obtained by removing one hydrogen atom from the aromatic hydrocarbon ring (aryl group).
  • an alkylene group for example, a benzyl group, a phenethyl group, a 1-naphthylmethyl group, a 2-naphthylmethyl group, a 1-naphthylethyl group, a 2-naphthylethyl group, etc.
  • alkylene group alkyl chain in the arylalkyl group
  • the alkylene group preferably has 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, and particularly preferably 1 carbon atom.
  • Ra 1 is an acid dissociative group represented by the above formula (a1-r-1) or (a1-r-2).
  • n a2 +1 monovalent hydrocarbon group for Wa 1 may be an aliphatic hydrocarbon group may be an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group means a hydrocarbon group having no aromaticity, and may be saturated or unsaturated, and is usually preferably saturated.
  • Examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group, an aliphatic hydrocarbon group containing a ring in the structure, and a linear or branched aliphatic hydrocarbon group. Examples thereof include a group in combination with an aliphatic hydrocarbon group containing a ring in the structure.
  • the na2 + 1 valence is preferably 2 to 4 valences, more preferably 2 or 3 valences.
  • Ra 2 is an acid dissociative group represented by the above general formula (a1-r-1) or (a1-r-3).
  • R ⁇ represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the structural unit (a1) contained in the component (A1) may be one type or two or more types.
  • the structural unit represented by the above formula (a1-1) is more preferable because the characteristics (sensitivity, shape, etc.) in lithography by electron beam or EUV can be more easily enhanced.
  • the structural unit (a1) those including the structural unit represented by the following general formula (a1-1-1) are particularly preferable.
  • Ra 1 is an acid dissociative group represented by the general formula (a1-r2-1), (a1-r2-3) or (a1-r2-4)].
  • R, Va 1 and n a1 is, R in the formula (a1-1), the same as Va 1 and n a1.
  • the description of the acid dissociative group represented by the general formula (a1-r2-1), (a1-r2-3) or (a1-r2-4) is as described above.
  • the ratio of the constituent unit (a1) in the component (A1) is 5 to 80 mol with respect to the total (100 mol%) of all the constituent units constituting the component (A1) in that the effect of the present invention is improved. % Is preferred, 10-75 mol% is more preferred, and 30-70 mol% is even more preferred.
  • the component (A1) preferably has a structural unit (a10) containing a hydroxystyrene skeleton in addition to the structural unit (a1).
  • a structural unit (a10) for example, a structural unit represented by the following general formula (a10-1) is preferably mentioned.
  • R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkyl halide group having 1 to 5 carbon atoms.
  • Ya x1 is a single bond or divalent linking group.
  • Wa x1 is a (n ax1 + 1) valent aromatic hydrocarbon group.
  • n ax1 is an integer of 1 to 3.
  • R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkyl halide group having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 5 carbon atoms of R is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, or n-. Examples thereof include a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a neopentyl group.
  • the alkyl halide group having 1 to 5 carbon atoms in R is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 5 carbon atoms are substituted with halogen atoms.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is particularly preferable.
  • R a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a fluorinated alkyl group having 1 to 5 carbon atoms is preferable, and a hydrogen atom or a methyl group is most preferable from the viewpoint of industrial availability.
  • Ya x1 is a single bond or a divalent linking group.
  • a divalent hydrocarbon group which may have a substituent and a divalent linking group containing a heteroatom are preferable.
  • a divalent hydrocarbon group that may have a substituent When Ya x1 is a divalent hydrocarbon group which may have a substituent, the hydrocarbon group may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group means a hydrocarbon group having no aromaticity.
  • the aliphatic hydrocarbon group may be saturated or unsaturated, and is usually preferably saturated.
  • Examples of the aliphatic hydrocarbon group include a linear or branched aliphatic hydrocarbon group, an aliphatic hydrocarbon group containing a ring in the structure, and the like.
  • linear or branched aliphatic hydrocarbon group The linear aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and carbon. Numbers 1 to 4 are more preferable, and carbon numbers 1 to 3 are most preferable.
  • a linear alkylene group is preferable, and specifically, a methylene group [-CH 2- ], an ethylene group [-(CH 2 ) 2- ], a trimethylene group [ - (CH 2) 3 -] , a tetramethylene group [- (CH 2) 4 - ], a pentamethylene group [- (CH 2) 5 - ] , and the like.
  • the branched-chain aliphatic hydrocarbon group preferably has 2 to 10 carbon atoms, more preferably 3 to 6 carbon atoms, further preferably 3 or 4 carbon atoms, and most preferably 3 carbon atoms.
  • a branched alkylene group is preferable, and specifically, -CH (CH 3 )-, -CH (CH 2 CH 3 )-, and -C (CH 3 ).
  • Alkylmethylene groups such as 2- , -C (CH 3 ) (CH 2 CH 3 )-, -C (CH 3 ) (CH 2 CH 2 CH 3 )-, -C (CH 2 CH 3 ) 2-, etc.;- CH (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -C (CH 3 ) 2 CH 2- , -CH (CH 2 CH 3 ) CH 2- , -C (CH 2) CH 3 ) 2- CH 2 -etc. Alkylethylene groups; -CH (CH 3 ) CH 2 CH 2- , -CH 2 CH (CH 3 ) CH 2 -etc.
  • Alkyltrimethylene groups -CH (CH 3 )
  • alkylalkylene group such as an alkyltetramethylene group such as CH 2 CH 2 CH 2- , ⁇ CH 2 CH (CH 3 ) CH 2 CH 2- .
  • alkyl group in the alkylalkylene group a linear alkyl group having 1 to 5 carbon atoms is preferable.
  • the linear or branched aliphatic hydrocarbon group may or may not have a substituent.
  • substituents include a fluorine atom, a fluorinated alkyl group having 1 to 5 carbon atoms substituted with a fluorine atom, a carbonyl group and the like.
  • a cyclic aliphatic hydrocarbon group may contain a substituent containing a hetero atom in the ring structure.
  • a group obtained by removing two hydrogen atoms from an aliphatic hydrocarbon ring a group in which the cyclic aliphatic hydrocarbon group is bonded to the terminal of a linear or branched aliphatic hydrocarbon group, the cyclic fat Examples thereof include a group in which the group hydrocarbon group is intervening in the middle of the linear or branched aliphatic hydrocarbon group.
  • Examples of the linear or branched aliphatic hydrocarbon group include the same groups as described above.
  • the cyclic aliphatic hydrocarbon group preferably has 3 to 20 carbon atoms, and more preferably 3 to 12 carbon atoms.
  • the cyclic aliphatic hydrocarbon group may be a polycyclic group or a monocyclic group.
  • As the monocyclic alicyclic hydrocarbon group a group obtained by removing two hydrogen atoms from a monocycloalkane is preferable.
  • the monocycloalkane preferably has 3 to 6 carbon atoms, and specific examples thereof include cyclopentane and cyclohexane.
  • the polycyclic alicyclic hydrocarbon group is preferably a group obtained by removing two hydrogen atoms from a polycycloalkane, and the polycycloalkane is preferably one having 7 to 12 carbon atoms, specifically. Examples thereof include adamantane, norbornane, isobornane, tricyclodecane, tetracyclododecane and the like.
  • the cyclic aliphatic hydrocarbon group may or may not have a substituent.
  • substituents include an alkyl group, an alkoxy group, a halogen atom, an alkyl halide group, a hydroxyl group, a carbonyl group and the like.
  • alkyl group an alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group, an ethyl group, a propyl group, an n-butyl group and a tert-butyl group are most preferable.
  • an alkoxy group having 1 to 5 carbon atoms is preferable, and a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group and a tert-butoxy group are more preferable.
  • the methoxy group and the ethoxy group are most preferable.
  • the halogen atom as the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • alkyl halide group examples include a group in which a part or all of the hydrogen atom of the alkyl group is substituted with the halogen atom.
  • the cyclic aliphatic hydrocarbon group may be substituted with a substituent containing a hetero atom as a part of the carbon atom constituting the ring structure.
  • the aromatic hydrocarbon group is a hydrocarbon group having at least one aromatic ring.
  • the aromatic ring is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 ⁇ electrons, and may be a monocyclic type or a polycyclic type.
  • the aromatic ring preferably has 5 to 30 carbon atoms, more preferably 5 to 20 carbon atoms, further preferably 6 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms. However, the carbon number does not include the carbon number of the substituent.
  • aromatic ring examples include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, and phenanthrene; aromatic heterocycles in which some of the carbon atoms constituting the aromatic hydrocarbon ring are replaced with heteroatoms.
  • hetero atom in the aromatic heterocycle examples include an oxygen atom, a sulfur atom, a nitrogen atom and the like.
  • aromatic heterocycle examples include a pyridine ring and a thiophene ring.
  • the aromatic hydrocarbon group is a group obtained by removing two hydrogen atoms from the aromatic hydrocarbon ring or aromatic heterocycle (arylene group or heteroarylene group); an aromatic compound containing two or more aromatic rings.
  • a group obtained by removing two hydrogen atoms from for example, biphenyl, fluorene, etc.
  • one of the hydrogen atoms of the group (aryl group or heteroaryl group) obtained by removing one hydrogen atom from the aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • Hydrogen from an aryl group in an arylalkyl group such as a group substituted with an alkylene group (for example, a benzyl group, a phenethyl group, a 1-naphthylmethyl group, a 2-naphthylmethyl group, a 1-naphthylethyl group, a 2-naphthylethyl group).
  • the alkylene group bonded to the aryl group or the heteroaryl group preferably has 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, and particularly preferably 1 carbon number.
  • the hydrogen atom contained in the aromatic hydrocarbon group may be substituted with a substituent.
  • the hydrogen atom bonded to the aromatic ring in the aromatic hydrocarbon group may be substituted with a substituent.
  • the substituent include an alkyl group, an alkoxy group, a halogen atom, an alkyl halide group, a hydroxyl group and the like.
  • the alkyl group as the substituent an alkyl group having 1 to 5 carbon atoms is preferable, and a methyl group, an ethyl group, a propyl group, an n-butyl group and a tert-butyl group are most preferable.
  • the alkoxy group, halogen atom and alkyl halide group as the substituent include those exemplified as the substituent for substituting the hydrogen atom of the cyclic aliphatic hydrocarbon group.
  • the H may be substituted with a substituent such as an alkyl group or an acyl.
  • the substituent alkyl group, acyl group, etc. preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 5 carbon atoms.
  • the divalent hydrocarbon group is mentioned in the description as the divalent linking group. (A divalent hydrocarbon group which may have a substituent) is mentioned.
  • a linear aliphatic hydrocarbon group is preferable, a linear alkylene group is more preferable, a linear alkylene group having 1 to 5 carbon atoms is further preferable, and a methylene group or an ethylene group is particularly preferable.
  • a linear or branched aliphatic hydrocarbon group is preferable, and a methylene group, an ethylene group or an alkyl methylene group is more preferable.
  • the alkyl group in the alkylmethylene group is preferably a linear alkyl group having 1 to 5 carbon atoms, more preferably a linear alkyl group having 1 to 3 carbon atoms, and most preferably a methyl group.
  • Formula - [Y 21 -C ( O ) -O] m "-Y 22 -
  • m is an integer of 0 to 3, preferably an integer of 0 to 2, 0 Or 1 is more preferable, and 1 is particularly preferable.
  • a ' is from 1 to 10 Is an integer of 1 to 8, preferably an integer of 1 to 5, more preferably 1 or 2, and most preferably 1.
  • b' is an integer of 1 to 10 and of 1 to 8. An integer is preferred, an integer of 1 to 5 is more preferred, 1 or 2 is even more preferred, and 1 is most preferred.
  • Wa x1 is an aromatic hydrocarbon group having a ( nax1 + 1) valence.
  • Examples of the aromatic hydrocarbon group in Wa x1 include a group obtained by removing (n ax1 + 1) hydrogen atoms from the aromatic ring.
  • the aromatic ring here is not particularly limited as long as it is a cyclic conjugated system having 4n + 2 ⁇ electrons, and may be a monocyclic type or a polycyclic type.
  • the aromatic ring preferably has 5 to 30 carbon atoms, more preferably 5 to 20 carbon atoms, further preferably 6 to 15 carbon atoms, and particularly preferably 6 to 12 carbon atoms.
  • aromatic ring examples include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, and phenanthrene; aromatic heterocycles in which some of the carbon atoms constituting the aromatic hydrocarbon ring are replaced with heteroatoms.
  • aromatic heterocycles examples include an oxygen atom, a sulfur atom, a nitrogen atom and the like.
  • aromatic heterocycle examples include a pyridine ring and a thiophene ring.
  • n ax1 is an integer of 1 to 3, preferably 1 or 2, and more preferably 1.
  • R ⁇ represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the structural unit (a10) contained in the component (A1) may be one type or two or more types.
  • the ratio of the constituent unit (a10) to the component (A1) is, for example, 0 with respect to the total (100 mol%) of all the constituent units constituting the component (A1) in that the effect of the present invention is improved. It is -80 mol%, preferably 10-80 mol%, more preferably 20-70 mol%, and particularly preferably 30-60 mol%.
  • [Structural unit (a2)] (A1) component in addition to the structural unit (a1), the further lactone-containing cyclic group, -SO 2 - structural unit containing an containing cyclic group or a carbonate-containing cyclic group (a2) (provided that the structural units ( It may have) (excluding those corresponding to a1). Lactone-containing cyclic group of the structural unit (a2), -SO 2 - containing cyclic group or a carbonate-containing cyclic group, when used for forming a resist film (A1) component, the adhesion of the resist film and the substrate It is effective in enhancing sex.
  • the structural unit (a2) for example, the acid diffusion length is appropriately adjusted, the adhesion of the resist film to the substrate is enhanced, the solubility during development is appropriately adjusted, the etching resistance is improved, and the like. Due to the effect of the above, the lithography characteristics and the like are improved.
  • the lactone ring is counted as the first ring, and when it has only a lactone ring, it is called a monocyclic group, and when it has another ring structure, it is called a polycyclic group regardless of its structure.
  • the lactone-containing cyclic group may be a monocyclic group or a polycyclic group.
  • the lactone-containing cyclic group in the structural unit (a2) is not particularly limited, and any lactone-containing cyclic group can be used. Specifically, the groups represented by the following general formulas (a2-r-1) to (a2-r-7) can be mentioned.
  • R " is a hydrogen atom, an alkyl group, a lactone-containing cyclic group, a carbonate-containing cyclic group, or -SO 2 -containing cyclic group;
  • A” is an oxygen atom (-O-) or a sulfur atom (-O-). It is an alkylene group having 1 to 5 carbon atoms, an oxygen atom or a sulfur atom which may contain S-), n'is an integer of 0 to 2, and m'is 0 or 1. ]
  • the alkyl group in Ra '21 preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group is preferably linear or branched. Specific examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, a neopentyl group and a hexyl group.
  • a methyl group or an ethyl group is preferable, and a methyl group is particularly preferable.
  • the alkoxy group in the ra '21 preferably an alkoxy group having 1 to 6 carbon atoms.
  • the alkoxy group is preferably linear or branched.
  • groups of the the Ra 'group and an oxygen atom mentioned as the alkyl group in 21 (-O-) are linked and the like.
  • a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a fluorine atom is preferable.
  • the Ra' Ra part or all of the hydrogen atoms of the alkyl group in 21 can be mentioned it has been substituted with the aforementioned halogen atoms.
  • the alkyl halide group an alkyl fluorinated group is preferable, and a perfluoroalkyl group is particularly preferable.
  • Ra '-COOR in 21 ", - OC ( O ) R" in, R "is also hydrogen either is an alkyl group, a lactone-containing cyclic group, a carbonate-containing cyclic group, or -SO 2 - containing cyclic group Is.
  • the alkyl group in “R” may be linear, branched or cyclic, and the number of carbon atoms is preferably 1 to 15.
  • R "is a linear or branched alkyl group it preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, and particularly preferably a methyl group or an ethyl group. preferable.
  • R " is a cyclic alkyl group, it preferably has 3 to 15 carbon atoms, more preferably 4 to 12 carbon atoms, and most preferably 5 to 10 carbon atoms.
  • a fluorine atom e.g., a group obtained by removing one or more hydrogen atoms from a monocycloalkane that may or may not be substituted with an alkyl fluorinated group; a polycycloalkane such as bicycloalkane, tricycloalkane, or tetracycloalkane. Examples thereof include a group obtained by removing one or more hydrogen atoms from the group.
  • a group obtained by removing one or more hydrogen atoms from a polycycloalkane such as cyclodecane and tetracyclododecane examples include the same groups as those represented by the general formulas (a2-r-1) to (a2-r-7).
  • the carbonate-containing cyclic group in “R” is the same as the carbonate-containing cyclic group described later, and specifically, the groups represented by the general formulas (ax3-r-1) to (ax3-r-3), respectively. Can be mentioned.
  • the groups represented by are listed.
  • Ra 'The hydroxyalkyl group in the 21, preferably has a carbon number of 1-6, specifically, the Ra' at least one of the hydrogen atoms of the alkyl group include groups substituted with a hydroxyl group in the 21 ..
  • the alkylene group having 1 to 5 carbon atoms in A has a linear or branched alkylene group.
  • An alkylene group is preferable, and examples thereof include a methylene group, an ethylene group, an n-propylene group, and an isopropylene group.
  • the alkylene group contains an oxygen atom or a sulfur atom, specific examples thereof include the terminal or carbon of the alkylene group.
  • atoms -O- or -S- can be mentioned a group intervening, for example, -O-CH 2 -, - CH 2 -O-CH 2 -, - S-CH 2 -, - CH 2 -S-CH 2 - such as .A "which include, an alkylene group or -O- is preferable of 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and most preferably a methylene group.
  • -SO 2 containing cyclic group shows a cyclic group containing a ring containing, in particular, -SO 2 - sulfur atom (S) is in A cyclic group that forms part of the cyclic skeleton of the cyclic group.
  • a ring containing -SO 2- in its ring skeleton is counted as the first ring, and if it is only the ring, it is a monocyclic group, and if it has another ring structure, it is a polycyclic group regardless of its structure. It is called.
  • the -SO 2 -containing cyclic group may be a monocyclic group or a polycyclic group.
  • -SO 2 - containing cyclic group in particular, -O-SO 2 - within the ring skeleton cyclic group containing, i.e. -O-SO 2 - -O-S- medium is a part of the ring skeleton It is preferably a cyclic group containing a sultone ring to be formed.
  • -SO 2 - containing cyclic group and more specifically, include groups respectively represented by the following formula (a5-r-1) ⁇ (a5-r-4).
  • R " is a hydrogen atom, an alkyl group, a lactone-containing cyclic group, a carbonate-containing cyclic group, or a -SO 2 -containing cyclic group;
  • A" is a carbon that may contain an oxygen atom or a sulfur atom. It is an alkylene group of the number 1 to 5, an oxygen atom or a sulfur atom, and n'is an integer of 0 to 2.
  • a "is a general formula (a2-r-2), (a2-r-3), (a2-r-5). It is the same as A "inside. Alkyl group in ra '51, an alkoxy group, a halogen atom, a halogenated alkyl group, -COOR ", - OC ( O) R", The hydroxyalkyl group, each of the general formulas (a2-r-1) ⁇ ( a2-r-7) as in the same as those exemplified in the description of the Ra '21 of the like. Specific examples of the groups represented by the general formulas (a5-r-1) to (a5-r-4) are given below. "Ac" in the formula indicates an acetyl group.
  • the carbonate ring is counted as the first ring, and when it has only a carbonate ring, it is called a monocyclic group, and when it has another ring structure, it is called a polycyclic group regardless of its structure.
  • the carbonate-containing cyclic group may be a monocyclic group or a polycyclic group.
  • any one can be used without particular limitation. Specific examples thereof include groups represented by the following general formulas (ax3-r-1) to (ax3-r-3).
  • R is a hydrogen atom, an alkyl group, a lactone-containing cyclic group, a carbonate-containing cyclic group, or a -SO 2 -containing cyclic group
  • A is a carbon that may contain an oxygen atom or a sulfur atom. It is an alkylene group of the number 1 to 5, an oxygen atom or a sulfur atom, p'is an integer of 0 to 3, and q'is 0 or 1.
  • a "is a general formula (a2-r-2), (a2-r-3), (a2-r-5). It is the same as A "inside. Alkyl group in ra '31, an alkoxy group, a halogen atom, a halogenated alkyl group, -COOR ", - OC ( O) R", The hydroxyalkyl group, each of the general formulas (a2-r-1) ⁇ ( a2-r-7) as in the same as those exemplified in the description of the Ra '21 of the like. Specific examples of the groups represented by the general formulas (ax3-r-1) to (ax3-r-3) are given below.
  • the structural unit (a2) a structural unit derived from an acrylic acid ester in which a hydrogen atom bonded to a carbon atom at the ⁇ -position may be substituted with a substituent is preferable.
  • the structural unit (a2) is preferably a structural unit represented by the following general formula (a2-1).
  • R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkyl halide group having 1 to 5 carbon atoms.
  • Ya 21 is a single bond or divalent linking group.
  • La 21 is -O-, -COO-, -CON (R')-, -OCO-, -CONHCO- or -CONHCS-, where R'represents a hydrogen atom or a methyl group.
  • Ra 21 represents a lactone-containing cyclic group, a carbonate-containing cyclic group, or an -SO 2 - containing cyclic group.
  • R is the same as the above.
  • a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a fluorinated alkyl group having 1 to 5 carbon atoms is preferable, and a hydrogen atom or a methyl group is particularly preferable from the viewpoint of industrial availability.
  • the divalent linking group of Ya 21 is not particularly limited, but is a divalent hydrocarbon group which may have a substituent and a divalent linking group containing a heteroatom. Etc. are preferably mentioned.
  • the description of the divalent hydrocarbon group which may have a substituent and the divalent linking group containing a hetero atom in Ya 21 is described in the above-mentioned substitution in Ya x1 in the general formula (a10-1). The same applies to the description of the divalent hydrocarbon group which may have a group and the divalent linking group containing a hetero atom, respectively.
  • Ra 21 is a lactone-containing cyclic group
  • -SO 2 - is containing cyclic group or a carbonate-containing cyclic group.
  • a lactone-containing cyclic group or -SO 2 - containing cyclic group are preferred, the formula (a2-r-1), (a2-r-2), (a2-r-6) or (a5-r
  • the groups represented by -1) are more preferable.
  • the chemical formulas (r-lc-1-1) to (r-lc-1-7), (r-lc-2-1) to (r-lc-2-18), (r- One of the groups represented by lc-6-1), (r-sl-1-1), and (r-sl-1-18) is more preferable.
  • the structural unit (a2) contained in the component (A1) may be one type or two or more types.
  • the ratio of the constituent unit (a2) is 0 to 50 mol% with respect to the total (100 mol%) of all the constituent units constituting the component (A1). It is preferably 5 to 45 mol%, more preferably 10 to 40 mol%, and particularly preferably 10 to 30 mol%.
  • the component (A1) corresponds to the constituent unit (a3) containing the polar group-containing aliphatic hydrocarbon group in addition to the constituent unit (a1) (however, the constituent unit (a1) and the constituent unit (a2). ) May have.
  • the component (A1) having the constituent unit (a3) for example, the acid diffusion length is appropriately adjusted, the adhesion of the resist film to the substrate is enhanced, the solubility during development is appropriately adjusted, and the etching resistance is improved. Due to the effect of improvement and the like, the lithography characteristics and the like are improved.
  • Examples of the polar group include a hydroxyl group, a cyano group, a carboxy group, a hydroxyalkyl group in which a part of hydrogen atoms of the alkyl group is replaced with a fluorine atom, and the like, and a hydroxyl group is particularly preferable.
  • Examples of the aliphatic hydrocarbon group include a linear or branched hydrocarbon group having 1 to 10 carbon atoms (preferably an alkylene group) and a cyclic aliphatic hydrocarbon group (cyclic group).
  • the cyclic group may be a monocyclic group or a polycyclic group, and for example, in the resin for the resist composition for ArF excimer laser, it can be appropriately selected and used from a large number of proposed ones.
  • the cyclic group is preferably a polycyclic group, and more preferably has 7 to 30 carbon atoms.
  • the polycyclic group include a group obtained by removing two or more hydrogen atoms from a bicycloalkane, a tricycloalkane, a tetracycloalkane, or the like.
  • Specific examples thereof include groups obtained by removing two or more hydrogen atoms from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • polycyclic groups there are a group in which two or more hydrogen atoms are removed from adamantane, a group in which two or more hydrogen atoms are removed from norbornane, and a group in which two or more hydrogen atoms are removed from tetracyclododecane. Industrially preferable.
  • the structural unit (a3) is not particularly limited as long as it contains a polar group-containing aliphatic hydrocarbon group, and any unit can be used.
  • the structural unit (a3) is a structural unit derived from an acrylic acid ester in which a hydrogen atom bonded to a carbon atom at the ⁇ -position may be substituted with a substituent, and includes a polar group-containing aliphatic hydrocarbon group. Constituent units are preferred.
  • the hydrocarbon group in the polar group-containing aliphatic hydrocarbon group is a linear or branched hydrocarbon group having 1 to 10 carbon atoms, it is derived from the hydroxyethyl ester of acrylic acid.
  • the structural unit to be formed is preferable.
  • the structural unit (a3) when the hydrocarbon group in the polar group-containing aliphatic hydrocarbon group is a polycyclic group, the structural unit represented by the following formula (a3-1), the formula (a3).
  • the structural unit represented by -2) and the structural unit represented by the formula (a3-3) are preferable.
  • R is the same as above, j is an integer of 1 to 3, k is an integer of 1 to 3, t'is an integer of 1 to 3, and l is an integer of 1 to 5. And s is an integer of 1 to 3. ]
  • j is preferably 1 or 2, and more preferably 1.
  • j is 2, it is preferable that the hydroxyl group is bonded to the 3- and 5-positions of the adamantyl group.
  • j is 1, it is preferable that the hydroxyl group is bonded to the 3-position of the adamantyl group.
  • j is preferably 1 and the hydroxyl group is particularly preferably bonded to the 3-position of the adamantyl group.
  • k is preferably 1.
  • the cyano group is preferably attached to the 5- or 6-position of the norbornyl group.
  • t' is preferably 1.
  • l is preferably 1.
  • s is preferably 1.
  • a 2-norbornyl group or a 3-norbornyl group is bonded to the terminal of the carboxy group of acrylic acid.
  • the fluorinated alkyl alcohol is preferably bonded to the 5- or 6-position of the norbornyl group.
  • the structural unit (a3) contained in the component (A1) may be one type or two or more types.
  • the component (A1) has a constituent unit (a3), it is preferably 0 to 40 mol%, more preferably 2 to 30 mol%, based on the total of all the constituent units constituting the component (A1). 5 to 25 mol% is more preferable, and 5 to 20 mol% is particularly preferable.
  • the ratio of the constituent unit (a3) By setting the ratio of the constituent unit (a3) to be equal to or higher than the preferable lower limit value, the effect of containing the constituent unit (a3) can be sufficiently obtained, and when it is not more than the upper limit value, the balance with other constituent units is achieved. It is possible to improve various lithography characteristics.
  • the component (A1) may further have a structural unit (a6) that generates an acid by exposure in addition to the structural unit (a1).
  • the structural unit (a6) is not particularly limited as long as it generates an acid by exposure, and is, for example, an acid generator for a conventional chemically amplified resist that can be copolymerized with the structural unit (a1) or the like.
  • a structural unit in which the structure proposed as is introduced can be used.
  • the structural unit that can be copolymerized with the structural unit (a1) and the like a structural unit derived from (meth) acrylic acid ester, a structural unit derived from hydroxystyrene, and the like are preferable.
  • the structural unit into which the structure proposed as the acid generator for the chemically amplified resist has been introduced, the structural unit into which the structure of the component (B) described later is introduced is preferable.
  • Examples of the structural unit (a6) include a structural unit (a6a) having an anionic group that generates an acid by exposure in the side chain, and a structural unit (a6c) having a cation group decomposed by exposure in the side chain. ..
  • the structural unit (a6a) is a structural unit having an anion group that generates an acid by exposure in the side chain.
  • the anion group that generates an acid by exposure is not particularly limited, but a sulfonic acid anion, an amide anion, and a methide anion are preferable.
  • the structural unit (a6a) is preferably a structural unit having an anionic group represented by the following general formula (a6a-r-11).
  • R f1 and R f2 are independently hydrogen atoms, alkyl groups, fluorine atoms or alkyl fluorinated groups, and at least one of R f1 and R f2 is a fluorine atom or alkyl fluorinated group.
  • p0 is an integer from 1 to 8.
  • R f1 and R f2 are independently hydrogen atoms, alkyl groups, fluorine atoms or fluorinated alkyl groups, and at least one of R f1 and R f2 is fluorine. It is an atom or an alkyl fluorinated group.
  • an alkyl group having 1 to 5 carbon atoms is preferable, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and tert-butyl.
  • R f1 and R f2 groups in which part or all of the hydrogen atoms of the alkyl group of the R f1, R f2 is substituted with a fluorine atom is preferred. It is preferable that R f1 and R f2 are independently fluorine atoms or fluorinated alkyl groups, respectively.
  • p0 is an integer of 1 to 8, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • Examples of the cation that may form a salt with the anion group of the structural unit (a6a) include an organic cation.
  • the organic cation is not particularly limited, and onium cation is preferable, and sulfonium cation and iodonium cation are more preferable, and they are represented by the general formulas (ca-1) to (ca-4) described later, respectively.
  • the organic cation to be produced is particularly preferable.
  • R ⁇ represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • (M m + ) 1 / m represents an m-valent organic cation forming a salt with an anion group.
  • the structural unit (a6c) is a structural unit having a cation group decomposed by exposure in the side chain.
  • the cation group decomposed by exposure is not particularly limited, but a group represented by the following general formula (a6c-r-1) is preferable.
  • Ra'61c and Ra'62c may independently have an aryl group which may have a substituent, an alkyl group which may have a substituent, or a substituent. Represents a good alkenyl group.
  • Va'61c represents an arylene group, an alkylene group or an alkenylene group. However, the Ra '61c and Ra' 62c and Va '61c may form a ring with the sulfur atom bonded to each other.
  • Ra '61c and Ra' 62c are each independently an optionally substituted aryl group, which may have a substituent alkyl group or substituted, Represents an alkenyl group which may have a group.
  • Ra'61c and Ra'62c are aryl groups which may have a substituent and alkyl groups which may have a substituent in R 201 to R 203 in the formula (ca-1) described later. Alternatively, the same as the alkenyl group which may have a substituent can be mentioned.
  • Va'61c represents an arylene group, an alkylene group or an alkenylene group, and examples thereof include a group obtained by removing one hydrogen atom from the aryl group, alkyl group or alkenyl group in Ra'61c and Ra'62c .
  • the Ra '61c and Ra' 62c and Va '61c may form a ring with the sulfur atom bonded to each other.
  • the ring structure formed here includes a group obtained by removing one hydrogen atom from the ring formed by combining R 201 to R 203 in the formula (ca-1) described later with the sulfur atom in the formula. Be done.
  • the anion that may form a salt with the cation portion of the structural unit (a6c) is not particularly limited, and the general formula (b-1), which is exemplified in the description of the component (B) described later,
  • Examples thereof include an anion portion of an onium salt-based acid generator represented by (b-2) or (b-3), and an anion portion of an onium salt-based acid generator represented by the general formula (b-1).
  • R ⁇ represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • a ⁇ represents a counter anion that forms a salt with a cation group.
  • the structural unit (a6) contained in the component (A1) may be one type or two or more types.
  • the ratio of the constituent unit (a6) in the component (A1) is preferably 0 to 30 mol%, preferably 1 to 20 mol%, based on the total of all the constituent units constituting the component (A1). Is more preferable, and 1.5 to 15 mol% is particularly preferable.
  • the component (A1) may have other structural units other than the above-mentioned structural unit (a1), structural unit (a10), structural unit (a2), structural unit (a3), and structural unit (a6).
  • Other structural units include, for example, a structural unit (a9) represented by the general formula (a9-1) described later, a structural unit derived from styrene, and a structural unit derived from a styrene derivative (however, the structural unit (a10). ), Constituent units containing acid-non-dissociable aliphatic cyclic groups, etc. can be mentioned.
  • Structural unit (a9) The structural unit (a9) is a structural unit represented by the following general formula (a9-1).
  • R is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an alkyl halide group having 1 to 5 carbon atoms.
  • Ya 91 is a single bond or divalent linking group.
  • Ya 92 is a divalent linking group.
  • R 91 is a hydrocarbon group which may have a substituent.
  • R is the same as described above.
  • a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or a fluorinated alkyl group having 1 to 5 carbon atoms is preferable, and a hydrogen atom or a methyl group is particularly preferable from the viewpoint of industrial availability.
  • the divalent linking group in Ya 91 may be the same as the divalent linking group in Ya x1 in the general formula (a10-1) described above. Above all, the Ya 91 is preferably a single bond.
  • the divalent linking group in Ya 92 may be the same as the divalent linking group of Ya x1 in the general formula (a10-1) described above.
  • the divalent hydrocarbon group which may have a substituent a linear or branched aliphatic hydrocarbon group is preferable.
  • examples of the hydrocarbon group in R 91 include an alkyl group, a monovalent alicyclic hydrocarbon group, an aryl group, and an aralkyl group.
  • the alkyl group in R 91 preferably has 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 4 carbon atoms, and may be linear or branched. Specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group and the like are preferable.
  • the monovalent alicyclic hydrocarbon group in R 91 preferably has 3 to 20 carbon atoms, more preferably 3 to 12 carbon atoms, and may be a polycyclic type or a monocyclic type.
  • a group obtained by removing one or more hydrogen atoms from a monocycloalkane is preferable.
  • the monocycloalkane preferably has 3 to 6 carbon atoms, and specific examples thereof include cyclobutane, cyclopentane, and cyclohexane.
  • the polycyclic alicyclic hydrocarbon group is preferably a group obtained by removing one or more hydrogen atoms from a polycycloalkane, and the polycycloalkane is preferably one having 7 to 12 carbon atoms, specifically. Examples thereof include adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • the aryl group in R 91 preferably has 6 to 18 carbon atoms, more preferably 6 to 10 carbon atoms, and specifically preferably a phenyl group.
  • an aralkyl group in which an alkylene group having 1 to 8 carbon atoms and the above-mentioned “aryl group in R 91 " are bonded is preferable, and an alkylene group having 1 to 6 carbon atoms and the above-mentioned “aryl group in R 91 " are preferable.
  • the aralkyl group in which "" is bonded is more preferable, and the aralkyl group in which the alkylene group having 1 to 4 carbon atoms and the above "aryl group in R 91 " are bonded is particularly preferable.
  • the hydrocarbon group in R 91 preferably has a part or all of the hydrogen atom of the hydrocarbon group substituted with a fluorine atom, and 30 to 100% of the hydrogen atom of the hydrocarbon group is substituted with a fluorine atom. Is more preferable. Among them, it is particularly preferable that all the hydrogen atoms of the above-mentioned alkyl group are perfluoroalkyl groups substituted with fluorine atoms.
  • the hydrocarbon group in R 91 may have a substituent.
  • a part of the carbon atoms constituting the hydrocarbon group may be substituted with a substituent containing a hetero atom.
  • 2- O- can be mentioned.
  • examples of the hydrocarbon group having a substituent include lactone-containing cyclic groups represented by the above general formulas (a2-r-1) to (a2-r-7), respectively.
  • the structural unit represented by the following general formula (a9-1-1) is preferable.
  • R is the same as above, Ya 91 is a single bond or divalent linking group, R 91 is a hydrocarbon group which may have a substituent, and R 92 is an oxygen atom or It is a sulfur atom. ]
  • R ⁇ represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the structural unit (a9) contained in the component (A1) may be one kind or two or more kinds.
  • the ratio of the constituent unit (a9) is 0 to 40 mol% with respect to the total (100 mol%) of all the constituent units constituting the component (A1). Is more preferable, 3 to 30 mol% is more preferable, 5 to 25 mol% is further preferable, and 10 to 20 mol% is particularly preferable.
  • the ratio of the structural unit (a9) to the lower limit value or more, for example, the acid diffusion length is appropriately adjusted, the adhesion of the resist film to the substrate is enhanced, the solubility during development is appropriately adjusted, and the etching resistance.
  • the value is not more than the upper limit value, the balance with other constituent units can be obtained, and various lithography characteristics are improved.
  • Constituent unit (a4) is a structural unit containing an acid non-dissociative aliphatic cyclic group.
  • the "acid non-dissociative cyclic group" in the structural unit (a4) refers to the acid when an acid is generated in the resist composition by exposure (for example, when an acid is generated from the component (B) described later). It is a cyclic group that remains in the constituent unit as it is without dissociation even if it acts.
  • the structural unit (a4) for example, a structural unit derived from an acrylic acid ester containing an acid non-dissociative aliphatic cyclic group is preferable.
  • cyclic group a large number of those conventionally known as those used for the resin component of the resist composition for ArF excimer laser, KrF excimer laser (preferably for ArF excimer laser) and the like can be used. ..
  • at least one selected from a tricyclodecyl group, an adamantyl group, a tetracyclododecyl group, an isobornyl group, and a norbornyl group is preferable in that it is easily available industrially.
  • These polycyclic groups may have a linear or branched alkyl group having 1 to 5 carbon atoms as a substituent.
  • structural unit (a4) specifically, the structural units represented by the following general formulas (a4-1) to (a4-7) can be exemplified.
  • the component (A1) contained in the resist composition one type may be used alone, or two or more types may be used in combination.
  • the component (A1) preferably contains a polymer compound (A1-1) having a structural unit (a1) (hereinafter, also referred to as “component (A1-1)”).
  • Preferred (A1-1) components include, for example, a polymer compound having a repeating structure of a structural unit (a1) and a structural unit (a10), and a repeating structure of a structural unit (a1) and a structural unit (a3).
  • Examples thereof include a polymer compound, a polymer compound having a repeating structure of a structural unit (a1) and a structural unit (a2), a polymer compound having a repeating structure of a structural unit (a1) and a structural unit (a6), and the like.
  • the structural units described above may be combined as a third or three or more structural units as appropriate according to a desired effect.
  • Examples of the combination of three or more structural units include a combination of the structural unit (a1), the structural unit (a10), and the structural unit (a3), and the structural unit (a1), the structural unit (a10), and the structural unit (a2).
  • Examples include a combination with the unit (a6).
  • the structural unit (a6) is preferably a structural unit (a6a) or a structural unit (a6c).
  • the component (A1) contains at least one of the structural unit (a6a) and the structural unit (a6c)
  • the component (A1) is not only the base material component (A) but also an onium salt.
  • the component (A1) a monomer inducing each structural unit is dissolved in a polymerization solvent, and radical polymerization of, for example, azobisisobutyronitrile (AIBN) or dimethyl azobisisobutyrate (for example, V-601) is started. It can be produced by adding an agent and polymerizing.
  • the component (A1) is a precursor of a monomer that induces a structural unit (a1) and, if necessary, a monomer that induces a structural unit other than the structural unit (a1) (the functional group of the monomer is protected).
  • Monomer) and (monomer) are dissolved in a polymerization solvent, a radical polymerization initiator as described above is added thereto for polymerization, and then a deprotection reaction is carried out to produce the monomer.
  • a combination of chain transfer agent such as HS-CH 2 -CH 2 -CH 2 -C (CF 3) 2 -OH, -C terminated (CF 3) 2- OH groups may be introduced.
  • the copolymer in which the hydroxyalkyl group in which a part of the hydrogen atom of the alkyl group is replaced with the fluorine atom is introduced can reduce development defects and LER (line edge roughness: non-uniform unevenness of the line side wall). It is effective in reducing the amount of water.
  • the mass average molecular weight (Mw) of the component (A1) is not particularly limited, and is preferably 1000 to 50000, more preferably 2000 to 30000, and 3000 to 3000. 20000 is even more preferred.
  • Mw of the component (A1) is not more than a preferable upper limit value in this range, there is sufficient solubility in a resist solvent to be used as a resist, and when it is more than a preferable lower limit value in this range, dry etching resistance and dry etching resistance
  • the resist pattern has a good cross-sectional shape.
  • the dispersity (Mw / Mn) of the component (A1) is not particularly limited, and is preferably 1.0 to 4.0, more preferably 1.0 to 3.0, and particularly preferably 1.1 to 2.0. .. Mn indicates a number average molecular weight.
  • the resist composition is a base material component (hereinafter referred to as "(A2) component"), which does not correspond to the component (A1) and whose solubility in a developing solution changes due to the action of an acid. .) May be used together.
  • the component (A2) is not particularly limited, and may be arbitrarily selected and used from a large number of conventionally known base material components for chemically amplified resist compositions.
  • As the component (A2) one kind of high molecular weight compound or low molecular weight compound may be used alone, or two or more kinds may be used in combination.
  • the ratio of the component (A1) to the component (A) is preferably 25% by mass or more, more preferably 50% by mass or more, further preferably 75% by mass or more, and 100% by mass with respect to the total mass of the component (A). It may be.
  • the ratio is 25% by mass or more, a resist pattern excellent in various lithography characteristics such as high sensitivity, resolution, and roughness improvement is likely to be formed. Such an effect is particularly remarkable in lithography using an electron beam or EUV.
  • the content of the component (A) in the resist composition may be adjusted according to the resist film thickness to be formed and the like.
  • the component (B) is an acid generator component that generates an acid upon exposure.
  • the component (B) is not particularly limited, and those previously proposed as an acid generator for a chemically amplified resist composition can be used.
  • Examples of such an acid generator include onium salt-based acid generators such as iodonium salt and sulfonium salt, and oxime sulfonate-based acid generators; diazomethanes such as bisalkyl or bisarylsulfonyldiazomethanes and poly (bissulfonyl) diazomethanes.
  • Acid generators Various types such as nitrobenzyl sulfonate-based acid generators, iminosulfonate-based acid generators, and disulfonate-based acid generators can be mentioned.
  • Examples of the onium salt-based acid generator include a compound represented by the following general formula (b-1) (hereinafter, also referred to as “component (b-1)”) and a general formula (b-2). Examples thereof include a compound (hereinafter, also referred to as “(b-2) component”) or a compound represented by the general formula (b-3) (hereinafter, also referred to as “(b-3) component”).
  • R 101 and R 104 to R 108 each independently have a cyclic group which may have a substituent, a chain alkyl group which may have a substituent, or a substituent. It is also a good chain alkenyl group.
  • R 104 and R 105 may be coupled to each other to form a ring.
  • R 102 is a fluorine atom or a fluorinated alkyl group having 1 to 5 carbon atoms.
  • Y 101 is a single bond or a divalent linking group containing an oxygen atom.
  • V 101 to V 103 are independently single bonds, alkylene groups or fluorinated alkylene groups, respectively.
  • L 101 to L 102 are independently single bonds or oxygen atoms, respectively.
  • L 103 to L 105 are independently single-bonded, -CO- or -SO 2- .
  • m is an integer of 1 or more
  • M'm + is an m-valent onium cation.
  • R 101 is a cyclic group which may have a substituent, a chain alkyl group which may have a substituent, or a substituent. It is a chain alkenyl group which may have a group.
  • Cyclic group which may have a substituent The cyclic group is preferably a cyclic hydrocarbon group, and the cyclic hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group. Aliphatic hydrocarbon groups mean hydrocarbon groups that do not have aromaticity. Further, the aliphatic hydrocarbon group may be saturated or unsaturated, and is usually preferably saturated.
  • the aromatic hydrocarbon group in R 101 is a hydrocarbon group having an aromatic ring.
  • the aromatic hydrocarbon group preferably has 3 to 30 carbon atoms, more preferably 5 to 30 carbon atoms, further preferably 5 to 20 carbon atoms, particularly preferably 6 to 15 carbon atoms, and most preferably 6 to 10 carbon atoms.
  • the carbon number does not include the carbon number of the substituent.
  • benzene, fluorene, naphthalene, anthracene, phenanthrene, biphenyl, or a part of carbon atoms constituting these aromatic rings was substituted with a heteroatom. Examples include aromatic heterocycles.
  • hetero atom in the aromatic heterocycle examples include an oxygen atom, a sulfur atom, a nitrogen atom and the like.
  • aromatic hydrocarbon group in R 101 a group obtained by removing one hydrogen atom from the aromatic ring (aryl group: for example, a phenyl group, a naphthyl group, etc.) and one of the hydrogen atoms of the aromatic ring are alkylene.
  • Examples thereof include groups substituted with a group (for example, an arylalkyl group such as a benzyl group, a phenethyl group, a 1-naphthylmethyl group, a 2-naphthylmethyl group, a 1-naphthylethyl group, a 2-naphthylethyl group, etc.).
  • the alkylene group (alkyl chain in the arylalkyl group) preferably has 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms, and particularly preferably 1 carbon atom.
  • Examples of the cyclic aliphatic hydrocarbon group in R 101 include an aliphatic hydrocarbon group containing a ring in the structure.
  • an aliphatic hydrocarbon group (a group obtained by removing one hydrogen atom from the aliphatic hydrocarbon ring) and an alicyclic hydrocarbon group are linear or branched. Examples thereof include a group bonded to the terminal of a chain-shaped aliphatic hydrocarbon group and a group in which an alicyclic hydrocarbon group is interposed in the middle of a linear or branched aliphatic hydrocarbon group.
  • the alicyclic hydrocarbon group preferably has 3 to 20 carbon atoms, and more preferably 3 to 12 carbon atoms.
  • the alicyclic hydrocarbon group may be a polycyclic group or a monocyclic group.
  • the monocyclic alicyclic hydrocarbon group a group obtained by removing one or more hydrogen atoms from a monocycloalkane is preferable.
  • the monocycloalkane preferably has 3 to 6 carbon atoms, and specific examples thereof include cyclopentane and cyclohexane.
  • the polycyclic alicyclic hydrocarbon group is preferably a group obtained by removing one or more hydrogen atoms from a polycycloalkane, and the polycycloalkane is preferably one having 7 to 30 carbon atoms.
  • the polycycloalkane includes a polycycloalkane having a polycyclic skeleton of a bridged ring system such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane; a fused ring system such as a cyclic group having a steroid skeleton.
  • Polycycloalkanes having a polycyclic skeleton of are more preferred.
  • cyclic aliphatic hydrocarbon group in R 101 a group obtained by removing one or more hydrogen atoms from monocycloalkane or polycycloalkane is preferable, and a group obtained by removing one hydrogen atom from polycycloalkane is more preferable.
  • an adamantyl group and a norbornyl group are particularly preferable, and an adamantyl group is most preferable.
  • the linear or branched aliphatic hydrocarbon group which may be bonded to the alicyclic hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and 1 to 4 carbon atoms. Is more preferable, and 1 to 3 are most preferable.
  • a linear alkylene group is preferable, and specifically, a methylene group [-CH 2- ], an ethylene group [-(CH 2 ) 2- ], a trimethylene group [ - (CH 2) 3 -] , a tetramethylene group [- (CH 2) 4 - ], a pentamethylene group [- (CH 2) 5 - ] , and the like.
  • a branched alkylene group is preferable, and specifically, -CH (CH 3 )-, -CH (CH 2 CH 3 )-, and -C (CH 3 ).
  • Alkylmethylene groups such as 2- , -C (CH 3 ) (CH 2 CH 3 )-, -C (CH 3 ) (CH 2 CH 2 CH 3 )-, -C (CH 2 CH 3 ) 2-, etc.;- CH (CH 3 ) CH 2- , -CH (CH 3 ) CH (CH 3 )-, -C (CH 3 ) 2 CH 2- , -CH (CH 2 CH 3 ) CH 2- , -C (CH 2) CH 3 ) 2- CH 2 -etc.
  • Alkylethylene groups -CH (CH 3 ) CH 2 CH 2- , -CH 2 CH (CH 3 ) CH 2 -etc. Alkyltrimethylene groups; -CH (CH 3 ) Examples thereof include an alkylalkylene group such as an alkyltetramethylene group such as CH 2 CH 2 CH 2- , ⁇ CH 2 CH (CH 3 ) CH 2 CH 2- .
  • alkyl group in the alkylalkylene group a linear alkyl group having 1 to 5 carbon atoms is preferable.
  • the cyclic hydrocarbon group in R 101 may contain a hetero atom such as a heterocycle.
  • Examples of the substituent in the cyclic group of R 101 include an alkyl group, an alkoxy group, a halogen atom, an alkyl halide group, a hydroxy group, a carbonyl group, a nitro group and the like.
  • an alkyl group as the substituent an alkyl group having 1 to 12 carbon atoms is preferable, and a methyl group, an ethyl group, a propyl group, an n-butyl group and a tert-butyl group are most preferable.
  • an alkoxy group having 1 to 5 carbon atoms is preferable, a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group and a tert-butoxy group are more preferable, and methoxy.
  • Groups and ethoxy groups are most preferred.
  • the halogen atom as the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • alkyl halide group as a substituent, a part or all of hydrogen atoms such as an alkyl group having 1 to 5 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, and a tert-butyl group are described above. Examples include groups substituted with halogen atoms.
  • the carbonyl group as a substituent is a group that substitutes the methylene group (-CH 2- ) constituting the cyclic hydrocarbon group.
  • Chain alkyl group which may have a substituent The chain-like alkyl group of R 101 may be either linear or branched.
  • the linear alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and most preferably 1 to 10 carbon atoms.
  • Examples thereof include a group, a pentadecyl group, a hexadecyl group, an isohexadecyl group, a heptadecyl group, an octadecyl group, a nonadecil group, an icosyl group, a henicosyl group and a docosyl group.
  • the branched-chain alkyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and most preferably 3 to 10 carbon atoms.
  • 1-methylethyl group 1-methylpropyl group, 2-methylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, Examples thereof include 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group and 4-methylpentyl group.
  • Chain alkenyl group which may have a substituent The chain alkenyl group of R 101 may be either linear or branched, preferably having 2 to 10 carbon atoms, more preferably 2 to 5, further preferably 2 to 4, and 3 Is particularly preferable.
  • Examples of the linear alkenyl group include a vinyl group, a propenyl group (allyl group), a butynyl group and the like.
  • Examples of the branched alkenyl group include a 1-methylvinyl group, a 2-methylvinyl group, a 1-methylpropenyl group, a 2-methylpropenyl group and the like.
  • a linear alkenyl group is preferable, a vinyl group and a propenyl group are more preferable, and a vinyl group is particularly preferable.
  • Examples of the substituent in the chain alkyl group or alkenyl group of R 101 include an alkoxy group, a halogen atom, an alkyl halide group, a hydroxy group, a carbonyl group, a nitro group, an amino group, and a cyclic group in R 101 . Can be mentioned.
  • R 101 is preferably a cyclic group which may have a substituent, and more preferably a cyclic hydrocarbon group which may have a substituent.
  • substituent a hydroxy group, a carbonyl group, a nitro group, and an amino group are preferable, and among these, a hydroxy group is more preferable because it is easily distributed on the substrate side in the resist film.
  • cyclic hydrocarbon group specifically, a phenyl group, a naphthyl group, a group obtained by removing one or more hydrogen atoms from a polycycloalkane; the above-mentioned general formulas (a02-r1-1), (a02-r1-).
  • -SO 2 -containing cyclic group and the like are preferable.
  • Y 101 is a divalent linking group containing a single bond or an oxygen atom.
  • the Y 101 may contain an atom other than the oxygen atom.
  • atoms other than oxygen atoms include carbon atoms, hydrogen atoms, sulfur atoms, nitrogen atoms and the like.
  • Oxygen atom-containing linking group of the system examples thereof include a combination of the oxygen atom-containing linking group of the non-hydrogen system and an alkylene group.
  • a sulfonyl group (-SO 2- ) may be further linked to this combination.
  • Examples of the divalent linking group containing such an oxygen atom include linking groups represented by the following general formulas (y-al-1) to (y-al-7), respectively.
  • V'101 is a single bond or an alkylene group having 1 to 5 carbon atoms
  • V'102 is a divalent saturated hydrocarbon group having 1 to 30 carbon atoms.
  • Divalent saturated hydrocarbon group in V '102 is an alkylene group of preferably an alkylene group having 1 to 30 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, 1 to 5 carbon atoms Is more preferable.
  • the alkylene group for V '101 and V' 102 may be linear well branched alkylene group with an alkylene group, a linear alkylene group is preferable.
  • a part of the methylene groups in the alkylene group for V '101 or V' 102 may be substituted by a divalent aliphatic cyclic group having 5 to 10 carbon atoms.
  • a divalent group obtained by further removing one hydrogen atom is preferable, and a cyclohexylene group, a 1,5-adamantylene group or a 2,6-adamantylene group is more preferable.
  • a divalent linking group containing an ester bond or a divalent linking group containing an ether bond is preferable, and they are represented by the above formulas (y-al-1) to (y-al-5), respectively. Linking groups are more preferred.
  • V 101 is a single bond, an alkylene group or a fluorinated alkylene group.
  • the alkylene group and the fluorinated alkylene group in V 101 preferably have 1 to 4 carbon atoms.
  • Examples of the fluorinated alkylene group in V 101 include a group in which a part or all of hydrogen atoms of the alkylene group in V 101 are substituted with a fluorine atom.
  • V 101 is preferably a single bond or a fluorinated alkylene group having 1 to 4 carbon atoms.
  • R 102 is a fluorine atom or a fluorinated alkyl group having 1 to 5 carbon atoms.
  • R 102 is preferably a fluorine atom or a perfluoroalkyl group having 1 to 5 carbon atoms, and more preferably a fluorine atom.
  • anion portion of the component (b-1) include fluorinated alkyl sulfonate anions such as trifluoromethanesulfonate anion and perfluorobutane sulfonate anion when Y 101 is a single bond; Y 101 is In the case of a divalent linking group containing an oxygen atom, an anion represented by any of the following formulas (an-1) to (an-3) can be mentioned.
  • R " 101 is an aliphatic cyclic group which may have a substituent, a group represented by the above formulas (r-hr-1) to (r-hr-6), or a substitution. It is a chain alkyl group which may have a group.
  • R " 102 is an aliphatic cyclic group which may have a substituent, the above-mentioned general formulas (a02-r1-1), (a02). -R1-2), lactone-containing cyclic groups represented by (a2-r-2) to (a2-r-7), respectively, or the general formulas (a5-r-1) to (a5-r-4). ) Represented by -SO 2 -containing cyclic group.
  • R " 103 is an aromatic cyclic group which may have a substituent, an aliphatic cyclic group which may have a substituent, or a chain alkenyl group which may have a substituent.
  • V " 101 is a single bond, an alkylene group having 1 to 4 carbon atoms, or a fluorinated alkylene group having 1 to 4 carbon atoms.
  • R 102 is a fluorine atom or a fluorinated alkyl group having 1 to 5 carbon atoms.
  • v is an integer of 0 to 3 independently
  • q is an integer of 1 to 20 independently
  • n is an integer of 0 or 1.”
  • the aliphatic cyclic group which may have a substituent of R " 101 , R" 102 and R " 103 is preferably the group exemplified as the cyclic aliphatic hydrocarbon group in R 101 .
  • substituents include those similar to those in which the cyclic aliphatic hydrocarbon group in R 101 may be substituted. Among these, a hydroxy group, a carbonyl group, a nitro group and an amino group are preferable, and these are preferable. Of these, a hydroxy group is more preferable because it is easily distributed on the substrate side in the resist film.
  • the aromatic cyclic group which may have a substituent in R " 103 is preferably a group exemplified as an aromatic hydrocarbon group in the cyclic hydrocarbon group in R 101.
  • the substituent is preferably a group. , R 101 , the same as the substituent which may replace the aromatic hydrocarbon group.
  • the chain-like alkyl group which may have a substituent at R " 101 is preferably a group exemplified as the chain-like alkyl group at R 101. It has a substituent at R " 103 .
  • the good chain alkenyl group is preferably the group exemplified as the chain alkenyl group in R 101 .
  • V "101 is a single bond, an alkylene group having 1 to 4 carbon atoms, or a is .V fluorinated alkylene group of 1 to 4 carbon atoms" 101 ,
  • a single bond, an alkylene group having 1 carbon atom (methylene group), or a fluorinated alkylene group having 1 to 3 carbon atoms is preferable.
  • R 102 is a fluorine atom or a fluorinated alkyl group having 1 to 5 carbon atoms.
  • the perfluoroalkyl group having 1 to 5 carbon atoms is preferably a fluorine atom, and more preferably a fluorine atom.
  • v is an integer of 0 to 3, preferably 0 or 1.
  • q is an integer of 1 to 20, preferably 1. It is an integer of up to 10, more preferably an integer of 1 to 5, still more preferably 1, 2 or 3, and particularly preferably 1 or 2.
  • n is 0 or 1.
  • R 104 and R 105 may independently have a substituent, even if they have a cyclic group and a substituent. Examples thereof include a good chain alkyl group and a chain alkenyl group which may have a substituent, respectively, which are similar to R 101 in the formula (b-1). However, R 104 and R 105 may be coupled to each other to form a ring. R 104 and R 105 are preferably chain-like alkyl groups which may have a substituent, and are linear or branched-chain alkyl groups, or linear or branched-chain fluorinated alkyl groups. Is more preferable.
  • the chain alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 7 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • the carbon number of the chain alkyl group of R 104 and R 105 is preferably as small as possible because the solubility in the resist solvent is also good within the above carbon number range. Further, in the chain alkyl groups of R 104 and R 105, the larger the number of hydrogen atoms substituted with fluorine atoms, the stronger the acid strength, and the stronger the acid strength, and the higher the strength of the acid with respect to high-energy light or electron beam of 200 nm or less. It is preferable because it improves transparency.
  • the ratio of fluorine atoms in the chain alkyl group is preferably 70 to 100%, more preferably 90 to 100%, and most preferably all hydrogen atoms are substituted with fluorine atoms. It is a perfluoroalkyl group.
  • V 102 and V 103 are independently single bond, alkylene group, or fluorinated alkylene group, respectively, and the same as V 101 in formula (b-1), respectively. Can be mentioned.
  • L 101 and L 102 are independently single bonds or oxygen atoms, respectively.
  • R 106 to R 108 may independently have a substituent, even if they have a cyclic group or a substituent. Examples thereof include a good chain alkyl group and a chain alkenyl group which may have a substituent, respectively, which are similar to R 101 in the formula (b-1).
  • L 103 to L 105 are independently single-bonded, -CO- or -SO 2- .
  • m is an integer of 1 or more
  • M'm + is an m-valent onium cation
  • sulfonium cation and iodonium cation are preferable. Examples thereof include organic cations represented by the above general formulas (ca-1) to (ca-4), respectively.
  • R 201 to R 207 and R 211 to R 212 may independently have an aryl group which may have a substituent, an alkyl group which may have a substituent, or a substituent. Represents a good alkenyl group.
  • R 201 to R 203 , R 206 to R 207 , and R 211 to R 212 may be bonded to each other to form a ring together with the sulfur atom in the formula.
  • R 208 to R 209 may independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, or may be bonded to each other to form a ring together with a sulfur atom in the formula.
  • R 210 may have an aryl group which may have a substituent, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent —SO 2-. It is a containing cyclic group.
  • Each of the plurality of Y 201 independently represents an arylene group, an alkylene group or an alkenylene group.
  • x is 1 or 2.
  • W 201 represents a linking group of (x + 1) valence. ]
  • Examples of the aryl group in R 201 to R 207 and R 211 to R 212 include an aryl group having 6 to 20 carbon atoms, and a phenyl group and a naphthyl group are preferable.
  • the alkyl group in R 201 to R 207 and R 211 to R 212 is preferably a chain or cyclic alkyl group having 1 to 30 carbon atoms.
  • the alkenyl group in R 201 to R 207 and R 211 to R 212 preferably has 2 to 10 carbon atoms.
  • R 201 to R 207 and R 211 to R 212 may have include, for example, an alkyl group, a halogen atom, an alkyl halide group, a carbonyl group, a cyano group, an amino group, an aryl group, and the following general groups. Examples thereof include groups represented by the formulas (ca-r-1) to (ca-r-7).
  • R '201 have each independently, a hydrogen atom, which may have a substituent cyclic group which may have a substituent chain alkyl group, or a substituent It is a chain alkenyl group that may be present.
  • R '201 which may have a substituent cyclic group, substituent having optionally also good chain alkyl group, or have a substituent which may chain alkenyl group, later
  • examples of the cyclic group which may have a substituent or the chain alkyl group which may have a substituent are described above.
  • the same as the acid dissociable group represented by the formula (a1-r-2) of the above can also be mentioned.
  • R 201 to R 203 , R 206 to R 207 , and R 211 to R 212 are bonded to each other to form a ring together with the sulfur atom in the formula, heteroatoms such as sulfur atom, oxygen atom, and nitrogen atom, and heteroatoms such as sulfur atom and nitrogen atom, and carbonyl group, -SO -, - SO 2 - , - SO 3 -, - COO -, - CONH- , or -N (R N) - (. the R N is an alkyl group having 1 to 5 carbon atoms), etc. It may be bonded via a functional group of.
  • one ring containing a sulfur atom in its ring skeleton, including the sulfur atom is preferably a 3- to 10-membered ring, and particularly preferably a 5- to 7-membered ring. preferable.
  • the ring to be formed include, for example, a thiophene ring, a thiazole ring, a benzothiophene ring, a thianthrene ring, a benzothiophene ring, a dibenzothiophene ring, a 9H-thioxanthene ring, a thioxanthone ring, a thianthrene ring, a phenoxatiin ring, and a tetrahydro.
  • examples thereof include a thiophenium ring and a tetrahydrothiopyranium ring.
  • R 208 to R 209 independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and when they are alkyl groups, they are bonded to each other.
  • a ring may be formed.
  • R 210 may have an aryl group which may have a substituent, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent.
  • -SO 2 -Containing cyclic group examples include an unsubstituted aryl group having 6 to 20 carbon atoms, and a phenyl group and a naphthyl group are preferable.
  • the alkyl group in R 210 is preferably a chain or cyclic alkyl group having 1 to 30 carbon atoms.
  • the alkenyl group in R 210 preferably has 2 to 10 carbon atoms. Table is preferably the general formula (a5-r-1)
  • the content cyclic group, - at R 210, which may have -SO 2 substituents "- containing polycyclic group - SO 2" Is more preferred.
  • Y 201 independently represents an arylene group, an alkylene group or an alkenylene group.
  • the arylene group in Y 201 include a group obtained by removing one hydrogen atom from the aryl group exemplified as the aromatic hydrocarbon group in R 101 in the formula (b-1) described later.
  • the alkylene group and the alkenylene group in Y 201 include a chain alkyl group in R 101 in the formula (b-1) described later and a group in which one hydrogen atom is removed from the group exemplified as the chain alkenyl group. ..
  • W 201 is a (x + 1) valence, i.e., a divalent or trivalent linking group.
  • a divalent hydrocarbon group which may have a substituent is preferable, and has a substituent similar to that of Ya 21 in the above general formula (a2-1).
  • An example is a divalent hydrocarbon group which may be used.
  • the divalent linking group in W 201 may be linear, branched or cyclic, and is preferably cyclic. Of these, a group in which two carbonyl groups are combined at both ends of the arylene group is preferable.
  • Examples of the arylene group include a phenylene group and a naphthylene group, and a phenylene group is particularly preferable.
  • Examples of the trivalent linking group in W 201 include a group obtained by removing one hydrogen atom from the divalent linking group in W 201 , and a group in which the divalent linking group is further bonded to the divalent linking group. Can be mentioned.
  • As the trivalent linking group in W 201 a group in which two carbonyl groups are bonded to an arylene group is preferable.
  • the suitable cations represented by the formula (ca-1) are the following chemical formulas (ca-1-1) to (ca-1-78), (ca-1-101) to (ca-). Examples thereof include cations represented by 1-149).
  • g1 indicates the number of repetitions, and g1 is an integer of 1 to 5.
  • g2 indicates the number of repetitions, and g2 is an integer of 0 to 20.
  • g3 indicates the number of repetitions, and g3 is an integer of 0 to 20.
  • R " 201 is a hydrogen atom or a substituent.
  • the alkyl group and the halogen mentioned as the substituents that R 201 to R 207 and R 211 to R 212 may have.
  • Atoms, alkyl halide groups, carbonyl groups, cyano groups, amino groups, aryl groups, and groups represented by the general formulas (ca-r-1) to (ca-r-7) can be mentioned.
  • cations represented by the above formula (ca-2) cations represented by the following formulas (ca-2-1) to (ca-2-2), diphenyliodonium cations, and bis ( 4-tert-Butylphenyl) iodonium cations can be mentioned.
  • Suitable cations represented by the above formula (ca-3) include cations represented by the following formulas (ca-3-1) to (ca-3-7).
  • Suitable cations represented by the above formula (ca-4) include cations represented by the following formulas (ca-4-1) to (ca-4-2).
  • the cation portion ((M m + ) 1 / m ) is preferably a cation represented by the general formula (ca-1), and the chemical formulas (ca-1-1) to (ca-1-78), ( The cations represented by ca-1-101) to (ca1-1149) are more preferable.
  • the component (b-1) is particularly preferable among the components (b-1), (b-2) and (b-3) described above.
  • the component (B) may be used alone or in combination of two or more.
  • the content of the component (B) in the resist composition is preferably 0 parts by mass or more, preferably 20 to 80 parts by mass with respect to 100 parts by mass of the component (A). Is more preferable, and 30 to 70 parts by mass is further preferable.
  • the resist composition in the present embodiment further contains a base component (hereinafter referred to as “component (D)”) in addition to the component (A) or in addition to the components (A) and (B). You may.
  • the component (D) acts as a quencher (acid diffusion control agent) that traps the acid generated by exposure in the resist composition.
  • the component (D) may be a photodisintegrating base (D1) (hereinafter referred to as “component (D1)”) that is decomposed by exposure and loses acid diffusion controllability, and includes a component (D1) that does not correspond to the component (D1). It may be a nitrogen organic compound (D2) (hereinafter referred to as “(D2) component”).
  • the component (D1) is not particularly limited as long as it is decomposed by exposure and loses acid diffusion controllability, and is a compound represented by the following general formula (d1-1) (hereinafter, “component (d1-1)”).
  • component (d1-1) a compound represented by the following general formula (d1-1)
  • the compound represented by the following general formula (d1-2) hereinafter referred to as "(d1-2) component”
  • compound represented by the following general formula (d1-3) hereinafter referred to as "(d1-d1-) component”.
  • One or more compounds selected from the group consisting of "components" are preferable.
  • the components (d1-1) to (d1-3) do not act as a quencher because they decompose in the exposed part of the resist film and lose the acid diffusion controllability (basicity), and the quenching occurs in the unexposed part of the resist film. Acts as a char.
  • Rd 1 to Rd 4 have a cyclic group which may have a substituent, a chain alkyl group which may have a substituent, or a chain which may have a substituent. It is an alkenyl group of. However, it is assumed that the fluorine atom is not bonded to the carbon atom adjacent to the S atom in Rd 2 in the formula (d1-2).
  • Yd 1 is a single bond or divalent linking group.
  • m is an integer of 1 or more
  • M m + is an independently m-valent organic cation.
  • Rd 1 has a cyclic group which may have a substituent, a chain alkyl group which may have a substituent, or a substituent. is also a good chain alkenyl groups include respective the same as the R '201. Among these, Rd 1 may have an aromatic hydrocarbon group which may have a substituent, an aliphatic cyclic group which may have a substituent, or a substituent. A chain alkyl group is preferred.
  • Substituents that these groups may have include hydroxyl groups, oxo groups, alkyl groups, aryl groups, fluorine atoms, alkyl fluorinated groups, and the above general formulas (a2-r-1) to (a2-r-). Examples thereof include a lactone-containing cyclic group represented by 7), an ether bond, an ester bond, or a combination thereof. When an ether bond or an ester bond is contained as a substituent, an alkylene group may be used as a substituent, and the substituent in this case is represented by the above formulas (y-al-1) to (y-al-5), respectively. Linking groups are preferred.
  • Preferred examples of the aromatic hydrocarbon group include a polycyclic structure containing a phenyl group, a naphthyl group, and a bicyclooctane skeleton (a polycyclic structure composed of a bicyclooctane skeleton and a ring structure other than the bicyclooctane skeleton).
  • the aliphatic cyclic group is more preferably a group obtained by removing one or more hydrogen atoms from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
  • the chain alkyl group preferably has 1 to 10 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and the like.
  • Linear alkyl groups such as nonyl group and decyl group; 1-methylethyl group, 1-methylpropyl group, 2-methylpropyl group, 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylbutyl
  • Examples thereof include branched alkyl groups such as a group, a 2-ethylbutyl group, a 1-methylpentyl group, a 2-methylpentyl group, a 3-methylpentyl group, and a 4-methylpentyl group.
  • the chain-like alkyl group is a fluorinated alkyl group having a fluorine atom or a fluorinated alkyl group as a substituent
  • the fluorinated alkyl group preferably has 1 to 11 carbon atoms, more preferably 1 to 8 carbon atoms. ⁇ 4 is more preferable.
  • the fluorinated alkyl group may contain an atom other than the fluorine atom. Examples of atoms other than fluorine atoms include oxygen atoms, sulfur atoms, nitrogen atoms and the like.
  • Rd 1 is preferably a fluorinated alkyl group in which some or all of the hydrogen atoms constituting the linear alkyl group are substituted with fluorine atoms, and Rd 1 is a hydrogen atom constituting the linear alkyl group. It is particularly preferable that all of them are fluorinated alkyl groups (linear perfluoroalkyl groups) substituted with fluorine atoms.
  • a preferable specific example of the anion portion of the component (d1-1) is shown below.
  • M m + is an m-valent organic cation.
  • the same cations as those represented by the general formulas (ca-1) to (ca-4) are preferably mentioned, and are represented by the general formula (ca-1).
  • the cations are more preferable, and the cations represented by the formulas (ca-1-1) to (ca-1-78) and (ca-1-101) to (ca-1-149) are even more preferable.
  • the component (d1-1) one type may be used alone, or two or more types may be used in combination.
  • Rd 2 has a cyclic group which may have a substituent, a chain alkyl group which may have a substituent, or a substituent. is also a good chain alkenyl group include the same as the R '201.
  • the fluorine atom is not bonded (fluorine-substituted) to the carbon atom adjacent to the S atom in Rd 2 .
  • the anion of the component (d1-2) becomes an appropriate weak acid anion, and the quenching ability as the component (D) is improved.
  • Rd 2 is preferably a chain alkyl group which may have a substituent or an aliphatic cyclic group which may have a substituent.
  • the chain-like alkyl group preferably has 1 to 10 carbon atoms, and more preferably 3 to 10 carbon atoms.
  • As the aliphatic cyclic group a group obtained by removing one or more hydrogen atoms from adamantane, norbornane, isobornane, tricyclodecane, tetracyclododecane, etc. (may have a substituent); one from camphor, etc. More preferably, it is a group excluding the above hydrogen atom.
  • the hydrocarbon group of Rd 2 may have a substituent, and the substituent may be a hydrocarbon group (aromatic hydrocarbon group, aliphatic cyclic group) in Rd 1 of the above formula (d1-1). , The same as the substituent which the chain alkyl group may have.
  • M m + is an m-valent organic cation, which is the same as M m + in the above formula (d1-1).
  • component (d1-2) one type may be used alone, or two or more types may be used in combination.
  • Rd 3 has a cyclic group which may have a substituent, a chain alkyl group which may have a substituent, or a substituent. is also a good chain alkenyl group, wherein R '201 like can be mentioned a cyclic group containing a fluorine atom, chain alkyl group, or is preferably a chain alkenyl group. Of these, an alkyl fluorinated group is preferable, and the same group as the alkyl fluorinated group of Rd 1 is more preferable.
  • Rd 4 may have a cyclic group which may have a substituent, a chain alkyl group which may have a substituent, or a substituent.
  • a chain alkenyl group include the same as the R '201.
  • an alkyl group, an alkoxy group, an alkenyl group, or a cyclic group which may have a substituent is preferable.
  • the alkyl group in Rd 4 is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, or an isobutyl group.
  • the alkoxy group in Rd 4 is preferably an alkoxy group having 1 to 5 carbon atoms, and specifically, the alkoxy group having 1 to 5 carbon atoms is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, or n-. Examples thereof include a butoxy group and a tert-butoxy group. Of these, a methoxy group and an ethoxy group are preferable.
  • Alkenyl group for Rd 4, the R '201 the same as the alkenyl group and the like in a vinyl group, a propenyl group (allyl group), 1-methyl propenyl group, 2-methyl-propenyl group.
  • These groups may further have an alkyl group having 1 to 5 carbon atoms or an alkyl halide group having 1 to 5 carbon atoms as a substituent.
  • the cyclic group for Rd 4, the R '201 the same as the cyclic groups are exemplified in, cyclopentane, cyclohexane, adamantane, norbornane, isobornane, tricyclodecane, 1 or more from a cycloalkane such as tetracyclododecane
  • An alicyclic group excluding the hydrogen atom of the above, or an aromatic group such as a phenyl group or a naphthyl group is preferable.
  • Rd 4 is an alicyclic group
  • the resist composition is well dissolved in an organic solvent, so that the lithography characteristics are improved.
  • Rd 4 is an aromatic group
  • the resist composition has excellent light absorption efficiency and good sensitivity and lithography characteristics in lithography using EUV or the like as an exposure light source.
  • Yd 1 is a single bond or divalent linking group.
  • the divalent linking group in Yd 1 is not particularly limited, but includes a divalent hydrocarbon group (aliphatic hydrocarbon group, aromatic hydrocarbon group) which may have a substituent and a hetero atom 2
  • Examples include valuation linkage groups. Each of these includes a divalent hydrocarbon group and a heteroatom which may have a substituent, which are mentioned in the description of the divalent linking group in Ya 21 in the above formula (a2-1). Examples thereof include those similar to divalent linking groups.
  • Yd 1 is preferably a carbonyl group, an ester bond, an amide bond, an alkylene group, or a combination thereof.
  • the alkylene group is more preferably a linear or branched alkylene group, and even more preferably a methylene group or an ethylene group.
  • M m + is an m-valent organic cation, which is the same as M m + in the above formula (d1-1).
  • the component (d1-3) one type may be used alone, or two or more types may be used in combination.
  • the component (D1) only one of the above components (d1-1) to (d1-3) may be used, or two or more of them may be used in combination.
  • the content of the component (D1) in the resist composition is preferably 0 to 40 parts by mass with respect to 100 parts by mass of the component (A), preferably 1 to 30 parts by mass. Parts are more preferable, and 5 to 25 parts by mass are even more preferable.
  • the content of the component (D1) is at least a preferable lower limit value, particularly good lithography characteristics and a resist pattern shape can be easily obtained. On the other hand, when it is not more than the upper limit value, the sensitivity can be maintained well and the throughput is also excellent.
  • the method for producing the component (d1-1) and the component (d1-2) is not particularly limited, and the component (d1-1) and the component (d1-2) can be produced by a known method. Further, the method for producing the component (d1-3) is not particularly limited, and for example, it is produced in the same manner as the method described in US2012-01499116.
  • a nitrogen-containing organic compound component (hereinafter referred to as "(D2) component") that does not correspond to the above component (D1) may be contained.
  • the component (D2) is not particularly limited as long as it acts as an acid diffusion control agent and does not correspond to the component (D1), and any known component may be used.
  • aliphatic amines are preferable, and among them, secondary aliphatic amines and tertiary aliphatic amines are more preferable.
  • the aliphatic amine is an amine having one or more aliphatic groups, and the aliphatic group preferably has 1 to 12 carbon atoms.
  • Examples of the aliphatic amine include an amine (alkylamine or alkylalcoholamine) in which at least one hydrogen atom of ammonia NH 3 is replaced with an alkyl group or a hydroxyalkyl group having 12 or less carbon atoms, or a cyclic amine.
  • alkylamines and alkylalcohol amines include monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine; diethylamine, di-n-propylamine, di.
  • Dialkylamines such as -n-heptylamine, di-n-octylamine, dicyclohexylamine; trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine , Tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decylamine, tri-n-dodecylamine and other trialkylamines; diethanolamine, triethanolamine, diisopropanolamine, tri Alkyl alcohol amines such as isopropanolamine, di-n-octanolamine and tri-n-octanolamine can be mentioned. Among these, trialkylamines having 5 to 10 carbon atoms are more preferable, and tri-n-pentylamine or tri-n-octylamine is
  • the cyclic amine examples include a heterocyclic compound containing a nitrogen atom as a hetero atom.
  • the heterocyclic compound may be a monocyclic compound (aliphatic monocyclic amine) or a polycyclic compound (aliphatic polycyclic amine).
  • Specific examples of the aliphatic monocyclic amine include piperidine and piperazine.
  • the aliphatic polycyclic amine preferably has 6 to 10 carbon atoms, and specifically, 1,5-diazabicyclo [4.3.0] -5-nonen and 1,8-diazabicyclo [5. 4.0] -7-undecene, hexamethylenetetramine, 1,4-diazabicyclo [2.2.2] octane and the like can be mentioned.
  • aliphatic amines include tris (2-methoxymethoxyethyl) amine, tris ⁇ 2- (2-methoxyethoxy) ethyl ⁇ amine, tris ⁇ 2- (2-methoxyethoxymethoxy) ethyl ⁇ amine, and tris ⁇ 2.
  • an aromatic amine may be used as the component (D2).
  • the aromatic amine include 4-dimethylaminopyridine, pyrrole, indole, pyrazole, imidazole or a derivative thereof, tribenzylamine, 2,6-diisopropylaniline, N-tert-butoxycarbonylpyrrolidin and the like.
  • the component (D2) one type may be used alone, or two or more types may be used in combination.
  • the content of the component (D2) in the resist composition is usually used in the range of 0 to 5 parts by mass with respect to 100 parts by mass of the component (A). .. Within the above range, the shape of the resist pattern, stability over time, and the like are improved.
  • Component (E) At least one compound selected from the group consisting of organic carboxylic acids, phosphorus oxo acids and derivatives thereof
  • the resist composition is selected from the group consisting of organic carboxylic acids, phosphorus oxo acids, and derivatives thereof as arbitrary components for the purpose of preventing sensitivity deterioration, improving the resist pattern shape, stability over time, and the like.
  • At least one compound (E) (hereinafter referred to as “component (E)”) can be contained.
  • organic carboxylic acid for example, acetic acid, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, hydroxybenzoic acid, salicylic acid, phthalic acid, terephthalic acid, isophthalic acid and the like are suitable.
  • the oxo acid of phosphorus include phosphoric acid, phosphonic acid, phosphinic acid and the like, and among these, phosphonic acid is particularly preferable.
  • the derivative of the oxo acid of phosphorus include an ester in which the hydrogen atom of the oxo acid is replaced with a hydrocarbon group, and the hydrocarbon group includes an alkyl group having 1 to 5 carbon atoms and 6 to 6 carbon atoms.
  • Examples include 15 aryl groups.
  • Examples of the phosphoric acid derivative include phosphoric acid esters such as phosphoric acid di-n-butyl ester and phosphoric acid diphenyl ester.
  • Examples of the phosphonic acid derivative include phosphonic acid esters such as phosphonic acid dimethyl ester, phosphonic acid-di-n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, and phosphonic acid dibenzyl ester.
  • Examples of the derivative of phosphinic acid include phosphinic acid ester and phenylphosphinic acid.
  • the component (E) is preferably an organic carboxylic acid, more preferably an aromatic carboxylic acid.
  • benzoic acid, hydroxybenzoic acid, salicylic acid, phthalic acid, terephthalic acid, and isophthalic acid are preferable, and salicylic acid is more preferable.
  • the component (E) may be used alone or in combination of two or more.
  • the content of the component (E) is preferably 0 to 5 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the component (A). It is preferable, and 0.1 to 4 parts by mass is more preferable.
  • the resist composition in the present embodiment may contain a fluoridant component (hereinafter referred to as "component (F)") in order to impart water repellency to the resist film or to improve the lithography characteristics.
  • component (F) fluoridant component
  • Examples of the component (F) are described in JP-A-2010-002870, JP-A-2010-032994, JP-A-2010-277043, JP-A-2011-13569, and JP-A-2011-128226.
  • Fluorine-containing polymer compounds can be used. More specifically, as the component (F), a polymer having a structural unit (f11) represented by the following general formula (f1-1) or a structural unit (f12) represented by the following general formula (f1-2). Can be mentioned.
  • a polymer having a structural unit (f11) represented by the following general formula (f1-1) a polymer (homopolymer) composed of only the structural unit (f11) represented by the following formula (f1-1); A copolymer of the structural unit (f11) and the structural unit (a1); a copolymer of the structural unit (f11) and a structural unit derived from acrylic acid or methacrylic acid and the structural unit (a1).
  • the structural unit (a1) copolymerized with the structural unit (f11) a structural unit derived from 1-methyl-1-adamantyl (meth) acrylate is preferable, and 1-methyl-1-adamantyl is preferable. Building blocks derived from (meth) acrylate are more preferred.
  • a polymer having a structural unit (f12) represented by the following general formula (f1-2) a polymer (homopolymer) composed of only the structural unit (f12) represented by the following formula (f1-2);
  • examples thereof include a copolymer of the structural unit (f12) and the structural unit (a01); a copolymer of the structural unit (f12) and the structural unit (a1), and the like.
  • the copolymer is a copolymer of the structural unit (f12) and the structural unit (a01).
  • Rf 102 and Rf 103 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 5 carbon atoms or an alkyl halide group having 1 to 5 carbon atoms, and Rf 102 and Rf 103 are different even if they are the same. May be.
  • nf 1 is an integer of 0 to 5
  • Rf 101 is an organic group containing a fluorine atom.
  • Rf 11 to Rf 12 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or fluorinated alkyl groups having 1 to 4 carbon atoms.
  • Rf 13 is a fluorine atom or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • Rf 14 is a linear or branched alkyl group having 1 to 4 carbon atoms or a linear fluorinated alkyl group having 1 to 4 carbon atoms.
  • R bonded to the carbon atom at the ⁇ -position is the same as described above.
  • R a hydrogen atom or a methyl group is preferable.
  • examples of the halogen atom of Rf 102 and Rf 103 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is particularly preferable.
  • examples of the alkyl group having 1 to 5 carbon atoms of Rf 102 and Rf 103 include those similar to the above-mentioned alkyl group having 1 to 5 carbon atoms of R, and a methyl group or an ethyl group is preferable.
  • alkyl halide group having 1 to 5 carbon atoms of Rf 102 and Rf 103 include a group in which some or all of the hydrogen atoms of the alkyl group having 1 to 5 carbon atoms are substituted with halogen atoms. Be done.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is particularly preferable.
  • Rf 102 and Rf 103 a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 5 carbon atoms is preferable, and a hydrogen atom, a fluorine atom, a methyl group, or an ethyl group is preferable.
  • nf 1 is an integer of 1 to 5, preferably an integer of 1 to 3, and more preferably 1 or 2.
  • Rf 101 is an organic group containing a fluorine atom, and preferably a hydrocarbon group containing a fluorine atom.
  • the hydrocarbon group containing a fluorine atom may be linear, branched or cyclic, and preferably has 1 to 20 carbon atoms, and more preferably 1 to 15 carbon atoms. , 1 to 10 carbon atoms are particularly preferable.
  • the hydrocarbon group containing a fluorine atom it is preferable that 25% or more of the hydrogen atoms in the hydrocarbon group are fluorinated, more preferably 50% or more is fluorinated, and 60% or more is fluorinated.
  • Rf 101 more preferably a fluorinated hydrocarbon group having 1 to 6 carbon atoms, trifluoromethyl group, -CH 2 -CF 3, -CH 2 -CF 2 -CF 3, -CH (CF 3 ) 2 , -CH 2- CH 2- CF 3 , -CH 2- CH 2- CF 2- CF 2- CF 3- are more preferable, and -CH 2- CF 3 is particularly preferable.
  • R bonded to the carbon atom at the ⁇ -position is the same as described above.
  • R a hydrogen atom or a methyl group is preferable.
  • Rf 11 to Rf 12 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, or fluorinated alkyl groups having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms in Rf 11 to Rf 12 may be linear, branched or cyclic, and is preferably a linear or branched alkyl group, specifically. , Methyl group and ethyl group are preferable, and ethyl group is particularly preferable.
  • the fluorinated alkyl group having 1 to 4 carbon atoms in Rf 11 to Rf 12 is a group in which a part or all of hydrogen atoms in the alkyl group having 1 to 4 carbon atoms are substituted with a fluorine atom.
  • the alkyl group in a state not substituted with a fluorine atom may be linear, branched chain or cyclic, and the above-mentioned "alkyl group having 1 to 4 carbon atoms in Rf 11 to Rf 12 " may be used. The same thing can be mentioned.
  • Rf 11 to Rf 12 are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, and one of Rf 11 to Rf 12 is a hydrogen atom and the other is an alkyl having 1 to 4 carbon atoms. It is particularly preferable that it is a group.
  • Rf 13 is a fluorine atom or a fluorinated alkyl group having 1 to 4 carbon atoms.
  • the fluorinated alkyl group having 1 to 4 carbon atoms in Rf 13 include the same group as the above-mentioned "fluorinated alkyl group having 1 to 4 carbon atoms in Rf 11 to Rf 12 ", and the fluorinated alkyl group has 1 to 3 carbon atoms. Is preferable, and the number of carbon atoms is more preferably 1 to 2.
  • the ratio of the number of fluorine atoms to the total number of fluorine atoms and hydrogen atoms contained in the fluorinated alkyl group is 30 to 100%. It is preferably 50 to 100%, and more preferably 50 to 100%. The higher the fluorination rate, the higher the hydrophobicity of the resist film.
  • Rf 13 is preferably a fluorine atom.
  • Rf 14 is a linear or branched alkyl group having 1 to 4 carbon atoms or a linear fluorinated alkyl group having 1 to 4 carbon atoms, and has 1 to 4 carbon atoms. It is preferably a linear alkyl group of 1 to 4 and a linear fluorinated alkyl group having 1 to 4 carbon atoms. Specific examples of the alkyl group in Rf 14 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group and tert-butyl group, and among them, methyl group and ethyl group are preferable. , Methyl group is most preferred.
  • fluorinated alkyl group in Rf 14 for example, -CH 2- CF 3 , -CH 2- CH 2- CF 3 , -CH 2- CF 2- CF 3 , -CH 2- CF 2- CF 2- CF 3 is mentioned as preferable, and among them, -CH 2- CH 2- CF 3 is particularly preferable.
  • the weight average molecular weight (Mw) (polystyrene conversion standard by gel permeation chromatography) of the component (F) is preferably 1000 to 50,000, more preferably 5000 to 40,000, and most preferably 10,000 to 30,000. If it is less than the upper limit of this range, it has sufficient solubility in a resist solvent for use as a resist, and if it is more than the lower limit of this range, the dry etching resistance and the cross-sectional shape of the resist pattern are good. ..
  • the dispersity (Mw / Mn) of the component (F) is preferably 1.0 to 5.0, more preferably 1.0 to 3.0, and most preferably 1.0 to 2.5.
  • the component (F) may be used alone or in combination of two or more.
  • the content of the component (F) is usually used in a ratio of 0 to 10 parts by mass with respect to 100 parts by mass of the component (A).
  • the resist composition in the present embodiment can be produced by dissolving a resist material in an organic solvent component (hereinafter referred to as "(S) component").
  • the component (S) may be any component as long as it can dissolve each component to be used to form a uniform solution, and any conventionally known solvent for the chemically amplified resist composition may be appropriately used. It can be selected and used.
  • component (S) examples include lactones such as ⁇ -butyrolactone; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl-n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, ethylene carbonate and propylene carbonate; ethylene.
  • lactones such as ⁇ -butyrolactone
  • ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl-n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, ethylene carbonate and propylene carbonate
  • ethylene examples include lactones such as ⁇ -butyrolactone; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl-n-pentyl ketone, methyl isopentyl ketone, 2-heptanone, ethylene
  • Polyhydric alcohols such as glycol, diethylene glycol, propylene glycol, dipropylene glycol; compounds having an ester bond such as ethylene glycol monoacetate, diethylene glycol monoacetate, propylene glycol monoacetate, or dipropylene glycol monoacetate, the polyhydric alcohols
  • a derivative of a polyhydric alcohol such as a monomethyl ether, a monoethyl ether, a monopropyl ether, a monoalkyl ether such as a monobutyl ether, or a compound having an ether bond such as a monophenyl ether of the compound having an ester bond
  • cyclic ethers such as dioxane, methyl lactate, ethyl lactate (EL), methyl acetate, ethyl acetate, butyl acetate
  • Esters such as methyl acid, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate; anisole, ethylbenzyl ether, cresylmethyl ether, diphenyl ether, dibenzyl ether, phenetol, butylphenyl ether, ethylbenzene, diethylbenzene, pentylbenzene , Aromatic organic solvents such as isopropylbenzene, toluene, xylene, simene, mesityrene, dimethylsulfoxide (DMSO) and the like.
  • DMSO dimethylsulfoxide
  • the component (S) may be used alone or as a mixed solvent of two or more kinds.
  • PGMEA, PGME, ⁇ -butyrolactone, propylene carbonate, EL and cyclohexanone are preferable, and PGMEA, PGME and ⁇ -butyrolactone are more preferable.
  • a mixed solvent in which PGMEA and a polar solvent are mixed is also preferable.
  • the compounding ratio (mass ratio) may be appropriately determined in consideration of the compatibility between PGMEA and the polar solvent, but is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. It is preferably within the range.
  • the mass ratio of PGMEA: EL or cyclohexanone is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. ..
  • the mass ratio of PGMEA: PGME is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2, and even more preferably 3: 7 to 7 :. It is 3.
  • a mixed solvent of PGMEA, PGME and cyclohexanone is also preferable.
  • a mixed solvent of at least one selected from PGMEA and EL and at least one selected from ⁇ -butyrolactone and propylene carbonate is also preferable.
  • the mass ratio of the former to the latter is preferably 60:40 to 99: 1, and more preferably 70:30 to 95: 5.
  • the content of the component (S) is 97% by mass or more with respect to the total mass (100% by mass) of the resist composition.
  • the content of the component (S) is preferably 97 to 99.9% by mass, more preferably 97 to 99.9% by mass, and even more preferably 97 to 98.5% by mass.
  • the resist composition may further include, if desired, miscible additives such as additional resins for improving the performance of the resist film, dissolution inhibitors, plasticizers, stabilizers, colorants, antihalation agents, dyes and the like. It can be added and contained as appropriate.
  • miscible additives such as additional resins for improving the performance of the resist film, dissolution inhibitors, plasticizers, stabilizers, colorants, antihalation agents, dyes and the like. It can be added and contained as appropriate.
  • the resist composition contains the above-mentioned component (A), an onium salt, and an organic solvent component (S).
  • the onium salt may be a component (A), a component (B), or a component (D).
  • the resist composition includes, for example, a component (A) containing an onium salt and an organic solvent component (S); a component (A) containing an onium salt, a component (D) containing an onium salt, and an organic substance.
  • a solvent component (S) those containing a solvent component (S); those containing an onium salt-containing (A) component, an onium salt-containing (B) component, an onium salt-containing (D) component, and an organic solvent component (S).
  • the resist composition preferably contains the component (E) in addition to these components.
  • the resist composition preferably contains two or more kinds of onium salts from the viewpoint of suppressing pattern collapse and the like.
  • Preferred examples include, for example, a component (A) and a component (D) containing an onium salt; a component (B) and a component (D) containing an onium salt; and the like.
  • the content of the onium salt is preferably 0.05 to 2.9% by mass with respect to the total mass (100% by mass) of the resist composition.
  • the content of the onium salt is more preferably 0.1 to 2% by mass, further preferably 0.5 to 1.5% by mass.
  • the content of the onium salt is within the above range, the pattern collapse can be suppressed, and the change in the pattern size before and after the step (i) can be suppressed.
  • the resist composition contains two or more kinds of onium salts
  • the content of the onium salts is the total value of the total contents of the onium salts contained in the resist composition.
  • the content of the component (A) is 0.05 to 0.05 to the total mass (100% by mass) of the resist composition. 2.9% by mass is preferable, and 0.1 to 2.8% by mass is more preferable.
  • the content of the component (B) is 0.05 to 0.05 to the total mass (100% by mass) of the resist composition. 1.6% by mass is preferable, and 0.5 to 1.4% by mass is more preferable.
  • the content of the component (D) is 0.05 to 0.05 to the total mass (100% by mass) of the resist composition.
  • the total content of the component (A) and the component (D) is the total mass of the resist composition. It is preferably 0.05 to 2.9% by mass with respect to (100% by mass). Among them, the content of the component (A) is preferably 0.04 to 2.8% by mass, more preferably 0.5 to 2.8% by mass. The content of the component (D) is preferably 0.01 to 0.2% by mass, more preferably 0.03 to 0.18% by mass.
  • the total content of the component (A) and the component (B) is the total mass of the resist composition. It is preferably 0.05 to 2.9% by mass with respect to (100% by mass). Among them, the content of the component (A) is preferably 0.04 to 2.8% by mass, more preferably 0.5 to 2.8% by mass. The content of the component (B) is preferably 0.01 to 1.6% by mass, more preferably 0.05 to 1.1% by mass. Further, for example, when the resist composition contains the component (B) and the component (D) as an onium salt, the total content of the component (B) and the component (D) is the total mass of the resist composition.
  • the content of the component (B) is preferably 0.04 to 1.6% by mass, more preferably 0.08 to 1.4.
  • the content of the component (D) is preferably 0.01 to 0.5% by mass, more preferably 0.01 to 0.3% by mass.
  • the resist composition contains the component (A), the component (B) and the component (D) as an onium salt, the component (A), the component (B) and the component (D) are contained.
  • the total amount is preferably 0.05 to 2.9% by mass with respect to the total mass (100% by mass) of the resist composition.
  • the content of the component (A) is preferably 0.04 to 2.8% by mass, more preferably 0.5 to 2.8% by mass.
  • the content of the component (B) is preferably 0.01 to 1.6% by mass, more preferably 0.01 to 1.4% by mass.
  • the content of the component (D) is preferably 0.01 to 0.5% by mass, more preferably 0.01 to 0.2% by mass.
  • the object to be filtered has a porous structure in which adjacent spherical cells communicate with each other. And it is filtered by a filter provided with a porous film containing at least one resin skeleton selected from the group consisting of polyimide and polyamide-imide.
  • a filter provided with a porous film containing at least one resin skeleton selected from the group consisting of polyimide and polyamide-imide.
  • step (i) the metal component as an impurity is sufficiently removed from the object to be filtered.
  • various foreign substances are efficiently removed by such a production method, and a high-purity resist composition refined product can be obtained.
  • step (i) the component (A), the onium salt, and the component (S) are contained, and the content of the component (S) is contained.
  • the resist composition having a content of 97% by mass or more is filtered.
  • step (i) before and after the step (i) (or step (i) and step (ii))), only impurities are removed, and the component variation of the resist composition is small. Therefore, the steps (i) (or step (i) and Fluctuations in pattern dimensions can be suppressed before and after the step (ii))).
  • the filter in this embodiment is not limited to the one provided with a porous membrane having a communication hole 5 in which the adjacent spherical cells 1a and the spherical cells 1b communicate with each other as shown in FIG. 1, and the spherical cells 1a and 1b
  • cells of other forms or a porous film in which the communicating holes are formed may be provided.
  • Examples of cells having other forms include cells having different shapes or pore diameters, and examples thereof include elliptical cells, polyhedral cells, and spherical cells having different pore diameters.
  • Examples of the above-mentioned "communication hole of other forms” include a communication hole in which a spherical cell and another cell communicate with each other.
  • the shape or pore diameter of the other cell may be appropriately determined according to the type of impurities to be removed.
  • the communication hole in which the spherical cell and the other cell communicate with each other can be formed by selecting the material of the fine particles described above or controlling the shape of the fine particles. According to a filter having a porous film in which cells of other forms or communication holes are formed in addition to communication holes in which adjacent spherical cells communicate with each other, various foreign substances can be more efficiently removed from the object to be filtered. Can be removed.
  • the filter provided with the polyimide resin porous film used in the filtration step is used in the supply line of the resist composition in the semiconductor manufacturing process or in the POU (point of use) for removing fine particle impurities which have been installed so far. It can be used in place of or in combination with the filter cartridge or the like. Therefore, various foreign substances can be efficiently removed from the object to be filtered by the same apparatus and operation as before, and a high-purity resist composition refined product can be produced.
  • the resist pattern forming method uses the step of obtaining the resist composition refined product by the method for producing the resist composition refined product according to the first aspect, and the resist composition refined product. It includes a step of forming a resist film on the support, a step of exposing the resist film, and a step of developing the resist film after the exposure to form a resist pattern.
  • the resist pattern forming method of this embodiment can be performed as follows, for example. First, a resist composition refined product is obtained by the method for producing a resist composition refined product according to the first aspect. Next, the resist composition refined product is applied onto the support with a spinner or the like, and a bake (post-apply bake (PAB)) treatment is carried out, for example, under a temperature condition of 80 to 150 ° C. for 40 to 120 seconds, preferably. Is applied for 60 to 90 seconds to form a resist film. Next, the resist film is exposed or masked through a mask (mask pattern) on which a predetermined pattern is formed by using an exposure device such as an ArF exposure device, an electron beam drawing device, or an EUV exposure device.
  • PAB post-apply bake
  • baking post-exposure baking (PEB) treatment is performed, for example, under a temperature condition of 80 to 150 ° C. for 40 to 120 seconds, preferably 60 to 60 to. Apply for 90 seconds.
  • the resist film is developed.
  • the developing process is performed using an alkaline developing solution, and in the case of the solvent developing process, a developing solution containing an organic solvent (organic developing solution) is used.
  • a rinsing treatment is preferably performed.
  • the rinsing treatment is preferably a water rinse using pure water, and in the case of the solvent development process, it is preferable to use a rinse solution containing an organic solvent.
  • a treatment for removing the developing solution or the rinsing solution adhering to the pattern with a supercritical fluid may be performed.
  • the drying is performed.
  • a baking process post-baking may be performed after the development process. In this way, the resist pattern can be formed.
  • the support is not particularly limited, and conventionally known ones can be used. Examples thereof include a substrate for electronic components and a support having a predetermined wiring pattern formed therein. More specifically, silicon wafers, metal substrates such as copper, chromium, iron, and aluminum, glass substrates, and the like can be mentioned. As the material of the wiring pattern, for example, copper, aluminum, nickel, gold and the like can be used. Further, the support may be one in which an inorganic and / or organic film is provided on the substrate as described above. Examples of the inorganic film include an inorganic antireflection film (inorganic BARC). Examples of the organic film include an organic antireflection film (organic BARC) and an organic film such as a lower organic film in the multilayer resist method.
  • inorganic BARC inorganic antireflection film
  • organic BARC organic antireflection film
  • organic film organic film such as a lower organic film in the multilayer resist method.
  • Wavelength used for the exposure is not particularly limited, ArF excimer laser, KrF excimer laser, F 2 excimer laser, EUV (extreme ultraviolet), VUV (vacuum ultraviolet), EB (electron beam), X-rays, and soft X-rays It can be done using radiation.
  • the resist composition refined product is highly useful for KrF excimer laser, ArF excimer laser, EB or EUV, and is particularly useful for EB or EUV.
  • the exposure method of the resist film may be a normal exposure (dry exposure) performed in an inert gas such as air or nitrogen, or an immersion exposure (Liquid Immersion Lithography).
  • immersion exposure the space between the resist film and the lens at the lowest position of the exposure apparatus is previously filled with a solvent (immersion medium) having a refractive index larger than the refractive index of air, and exposure (immersion exposure) is performed in that state.
  • a solvent immersion medium
  • a solvent having a refractive index larger than that of air and smaller than the refractive index of the resist film to be exposed is preferable.
  • the refractive index of such a solvent is not particularly limited as long as it is within the above range.
  • Examples of the solvent having a refractive index larger than the refractive index of air and smaller than the refractive index of the resist film include water, a fluorine-based inert liquid, a silicon-based solvent, and a hydrocarbon-based solvent.
  • Specific examples of the fluorine-based inert liquid include fluorine-based compounds such as C 3 HCl 2 F 5 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , and C 5 H 3 F 7 as main components.
  • Examples thereof include liquids, which have a boiling point of 70 to 180 ° C., and more preferably 80 to 160 ° C.
  • the fluorine-based inert liquid has a boiling point in the above range because the medium used for immersion can be removed by a simple method after the end of exposure.
  • a perfluoroalkyl compound in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms is particularly preferable.
  • Specific examples of the perfluoroalkyl compound include a perfluoroalkyl ether compound and a perfluoroalkylamine compound.
  • the perfluoroalkyl ether compound may include perfluoro (2-butyl-tetrahydrofuran) (boiling point 102 ° C.), and the perfluoroalkylamine compound may include perfluorotributylamine (perfluorotributylamine). Boiling point 174 ° C.).
  • water is preferably used from the viewpoints of cost, safety, environmental problems, versatility and the like.
  • Examples of the alkaline developer used in the developing process in the alkaline developing process include a 0.1 to 10 mass% tetramethylammonium hydroxide (TMAH) aqueous solution.
  • the organic solvent contained in the organic developer used in the developing process in the solvent developing process may be any known organic solvent as long as it can dissolve the component (A) (component (A) before exposure). It can be selected as appropriate. Specific examples thereof include ketone solvents, ester solvents, alcohol solvents, nitrile solvents, amide solvents, polar solvents such as ether solvents, and hydrocarbon solvents.
  • the alcohol solvent is an organic solvent containing an alcoholic hydroxyl group in its structure.
  • "Alcoholic hydroxyl group” means a hydroxyl group bonded to a carbon atom of an aliphatic hydrocarbon group.
  • the nitrile solvent is an organic solvent containing a nitrile group in its structure.
  • the amide-based solvent is an organic solvent containing an amide group in its structure.
  • the ether solvent is an organic solvent containing COC in its structure.
  • the organic solvents there are also organic solvents containing a plurality of functional groups that characterize each of the above solvents in the structure, but in that case, the organic solvent corresponds to any solvent type containing the functional groups of the organic solvent. It shall be.
  • diethylene glycol monomethyl ether falls under any of the alcohol solvents and ether solvents in the above classification.
  • the hydrocarbon solvent is a hydrocarbon solvent which is composed of a hydrocarbon which may be halogenated and has no substituent other than a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • the organic solvent contained in the organic developer is preferably a polar solvent, preferably a ketone solvent, an ester solvent, a nitrile solvent and the like.
  • a known additive can be added to the organic developer, if necessary.
  • the additive include a surfactant.
  • the surfactant is not particularly limited, and for example, an ionic or nonionic fluorine-based and / or silicon-based surfactant can be used.
  • a nonionic surfactant is preferable, and a nonionic fluorine-based surfactant or a nonionic silicon-based surfactant is more preferable.
  • the blending amount is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and 0.01 to 0.% With respect to the total amount of the organic developer. 5% by mass is more preferable.
  • the developing process can be carried out by a known developing method.
  • a method of immersing the support in a developing solution for a certain period of time dip method
  • a method in which the developing solution is raised on the surface of the support by surface tension and stopped for a certain period of time spraying the developer on the surface of the support
  • spray method spraying the developer on the surface of the support
  • applying the developer on the support rotating at a constant speed while scanning the developer dispensing nozzle examples include a method of continuing (dynamic dispense method).
  • organic solvent contained in the rinse solution used for the rinse treatment after the development process in the solvent development process for example, among the organic solvents listed as the organic solvents used in the organic developer, those that do not easily dissolve the resist pattern are appropriately selected.
  • a solvent selected from a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent is used.
  • at least one selected from hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents and amide solvents is preferable, and at least one selected from alcohol solvents and ester solvents is preferable. More preferably, an alcohol solvent is particularly preferable.
  • any one of these organic solvents may be used alone, or two or more thereof may be used in combination. Further, it may be used by mixing with an organic solvent other than the above or water.
  • the blending amount of water in the rinsing solution is preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, and 3% by mass, based on the total amount of the rinsing solution. The following are particularly preferred.
  • a known additive can be added to the rinse solution, if necessary. Examples of the additive include a surfactant.
  • the surfactant examples include the same ones as described above, and a nonionic surfactant is preferable, and a nonionic fluorine-based surfactant or a nonionic silicon-based surfactant is more preferable.
  • the blending amount is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and 0.01 to 0.5% by mass with respect to the total amount of the rinse liquid. % Is more preferable.
  • the rinsing treatment (cleaning treatment) using the rinsing liquid can be carried out by a known rinsing method.
  • the rinsing treatment method include a method of continuously applying the rinsing solution onto a support rotating at a constant speed (rotary coating method), a method of immersing the support in the rinsing solution for a certain period of time (dip method), and the like.
  • Examples thereof include a method of spraying a rinse solution on the surface of the support (spray method).
  • the resist pattern forming method of the present aspect described above since the resist composition refined product obtained by the method for producing the resist composition refined product according to the first aspect is used, the occurrence of defects is further suppressed. , It is possible to form a resist pattern having a good shape with reduced defects such as scum and microbridge generation. Further, it is possible to form a resist pattern in which pattern collapse is suppressed and the difference in pattern size from that of the resist composition before filtration is small.
  • the defect count for the resist pattern is obtained by measuring the total number of defects in the support (total number of defects, unit: number) using a surface defect observation device (for example, manufactured by KLA Tencor).
  • the resist composition refined product according to the third aspect of the present invention contains a base material component (A) whose solubility in a developing solution changes by the action of an acid, an onium salt, and an organic solvent component (S). ..
  • the resist composition refined product is characterized in that the number of counted bodies having a size of 0.135 ⁇ m or more, which is counted by a light scattering type submerged particle counter, is less than 1 piece / mL.
  • the resist composition refined product according to this aspect can be obtained by the method for producing a resist composition refined product according to the first aspect described above.
  • the resist composition refined product obtained by the production method according to the first aspect is filtered through a filter provided with a polyimide-based resin porous membrane to remove foreign substances. Therefore, in the resist composition refined product according to this embodiment, the number of countable objects having a size of 0.135 ⁇ m or more, which is counted by the light scattering type submerged particle counter, is less than 1 piece / mL, and the number of foreign substances is small. It is possible to realize a resist composition composition product with very little amount.
  • the number of countable bodies having a size of 0.135 ⁇ m or more, which is counted by a light scattering type submerged particle counter is preferably 0.8 pieces / mL or less, and 0. 5 pieces / mL or less is more preferable, and 0.3 pieces / mL or less is further preferable.
  • the resist composition refined product according to this aspect can form a resist pattern with few defects because the number of foreign substances is very small as described above.
  • the light scattering type submerged particle counter for example, KS-41 manufactured by Rion Co., Ltd. can be used.
  • the resist composition refined product according to this embodiment is Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba.
  • the content of the metal component (M) selected from the group consisting of W, Au, and Pb is preferably less than 1.1 ppb, preferably 1 ppb or less, and more preferably 0.9 ppb or less. It is preferably 0.85 ppb or less, and more preferably 0.85 ppb or less.
  • the resist composition refined product according to the fourth aspect of the present invention contains a base material component (A) whose solubility in a developing solution changes by the action of an acid, an onium salt, and an organic solvent component (S). ..
  • the refined product of the resist composition is Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W,
  • the content of the metal component (M) selected from the group consisting of Au and Pb is less than 1.1 ppb.
  • the resist composition refined product according to this aspect can be obtained by the method for producing a resist composition refined product according to the first aspect described above.
  • the resist composition refined product obtained by the production method according to the first aspect is filtered by passing through a filter provided with a polyimide-based resin porous membrane to remove metal impurities. .. Therefore, in the refined resist composition according to this embodiment, Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ag, Cd, Sn
  • the content of the metal component (M) selected from the group consisting of, Ba, W, Au, and Pb is less than 1.1 ppb, and a resist composition composition product having very few metal impurities can be realized.
  • Various base material components, acid generators, acid diffusion control agents, organic solvents and the like blended in the resist composition contain metal components such as trace amounts of metal ion impurities.
  • This metal component may be originally contained in the compounding component, but it may also be mixed from a pipe such as a manufacturing apparatus or a chemical liquid transfer path such as a joint.
  • these metal components can be effectively removed.
  • the content of the metal component (M) is preferably 1 ppb or less, more preferably 0.9 ppb or less, and further preferably 0.85 ppb or less. ..
  • the resist composition refined product according to this embodiment can form a resist pattern with less defects because the content of the metal component (M) is very small as described above.
  • the content of the metal component (M) is Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba. , W, Au, and Pb total content.
  • the content of the metal component (M) in the resist composition refined product can be measured using an inductively coupled plasma mass spectrometer (ICP-MS 8900, manufactured by Agilent).
  • the resist composition refined product has less than 1 piece / mL of counted objects having a size of 0.135 ⁇ m or more and is counted by a light scattering type submerged particle counter, and Li, Na. , Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W, Au, and Pb.
  • the content of the metal component (M) is less than 1.1 ppb.
  • the resist composition refined product according to the third aspect or the fourth aspect is the resist composition used in the method for producing the resist composition refined product according to the first aspect described above, except that foreign substances and metal components are removed. And preferably have the same composition.
  • the resist composition refined product according to the third aspect or the third aspect can be produced, for example, by a production method having the following steps (a) to (c).
  • the resist pattern forming method according to the fifth aspect of the present invention includes a step of forming a resist film on a support using the resist composition composition product according to the third or fourth aspect, and the resist.
  • a resist pattern forming method comprising a step of exposing a film and a step of developing the resist film after the exposure to form a resist pattern.
  • the resist pattern forming method according to this aspect can be performed in the same manner as the resist pattern forming method according to the second aspect described above.
  • Resist compositions 1 to 13 were prepared by mixing and dissolving each component shown in Table 1.
  • each abbreviation has the following meaning.
  • the value in [] is the blending amount (mass%).
  • the mass average molecular weight (Mw) and molecular weight dispersion (Mw / Mn) of (A) -1 to (A) 5 were obtained by GPC measurement (standard polystyrene equivalent), and the copolymerization composition ratio (each in the structural formula).
  • the proportion of the structural unit (molar ratio) was determined by carbon 13 nuclear magnetic resonance spectrum (600 MHz - 13 C-NMR).
  • (A) -1 A polymer compound represented by the following chemical formula (A) -1.
  • (Mw): 5000, (Mw / Mn); 1.6, (molar ratio): l / m 50/50.
  • (A) -2 A polymer compound represented by the following chemical formula (A) -2.
  • (Mw): 5500, (Mw / Mn): 1.6, (molar ratio): l / m 50/50.
  • (A) -3 A polymer compound represented by the following chemical formula (A) -3.
  • (Mw): 7000, (Mw / Mn): 1.7, (molar ratio): l / m / n 40/50/10.
  • (A) -4 A polymer compound represented by the following chemical formula (A) -4.
  • (Mw): 6000, (Mw / Mn): 1.6, (molar ratio): l / m / n 30/55/15.
  • (A) -5 A polymer compound represented by the following chemical formula (A) -5.
  • (Mw): 6500, (Mw / Mn): 1.7, (molar ratio): l / m / n / o 35/35/20/10.
  • (B) -1 An acid generator composed of a compound represented by the following chemical formula (B) -1.
  • (B) -2 An acid generator composed of a compound represented by the following chemical formula (B) -2.
  • (D) -1 An acid diffusion inhibitor composed of a compound represented by the following chemical formula (D) -1.
  • (E) -1 Salicylic acid.
  • Examples 1 to 9, Comparative Examples 1 to 3 The resist compositions 1 to 13 were filtered under the filters and filtration conditions shown in Table 3 to produce a refined resist composition product.
  • the types of each filter (1-1), (1-2), (2) and (3) are shown in Table 2.
  • the porous membranes in the filters (1) and (1-2) can be obtained according to the production method described in JP-A-2017-68262.
  • the average pore diameters of the communicating holes by the BET method are about 8 nm (specific surface area: about 35 m 2 / g) and about 10 nm (specific surface area, respectively).
  • a resist pattern was formed using the resist composition produced by the production method of each example, and the following evaluation was performed.
  • the refined resist composition produced by the production method of each example was applied onto an 8-inch silicon substrate treated with hexamethyldisilazane (HMDS) using a spinner, and the temperature was 110 ° C. on a hot plate.
  • HMDS hexamethyldisilazane
  • a resist film having a film thickness of 50 nm was formed by prebaking (PAB) treatment for 60 seconds and drying.
  • an electron beam drawing apparatus JEOL-JBX-9300FS manufactured by JEOL Ltd.
  • the target size was set to a 1: 1 line-and-space pattern with a line width of 30 nm at an acceleration voltage of 100 kV (hereinafter, "" Drawing (exposure) was performed as the LS pattern).
  • PEB post-exposure heating
  • TMAH tetramethylammonium hydroxide
  • the LS pattern formed by using the resist composition refined product of each example is compared with the LS pattern formed by using the resist composition before the filter filtration (before purification), and the filter is compared.
  • the amount of change in pattern size due to filtration was determined.
  • the amount of change in the pattern size was evaluated based on the following evaluation criteria, and the result is shown in Table 4 as "pattern size change".
  • X The amount of change in pattern dimensions exceeds 1 nm.
  • a light scattering type submerged particle counter [manufactured by Rion Co., Ltd., model number:] based on the dynamic light scattering method for the resist composition refined product evaluated as " ⁇ " in the above [evaluation of resist pattern collapse].
  • a light source a semiconductor laser-excited solid-state laser (wavelength 830 nm, rated output 0.2 W), flow rate: 10 mL / min]
  • counting objects having a size of 0.135 ⁇ m or more were counted. The counting was performed three times, and the average value was used as the measured value.
  • the light scattering type in-liquid particle counter was used after calibration with a PSL (Polystyrene Latex) standard particle solution. The results are shown in Table 5 as "particle amount”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

レジスト組成物を、隣接した球状セル同士が連通した多孔質構造を有するフィルターで濾過する工程(i)を含む、レジスト組成物精製品の製造方法であって、前記フィルターは、ポリイミド及びポリアミドイミドからなる群より選択される少なくとも一種の樹脂を含有する多孔質膜を備え、前記レジスト組成物は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有し、前記有機溶剤成分(S)の含有量が97質量%以上である、レジスト組成物精製品の製造方法。

Description

レジスト組成物精製品の製造方法、レジストパターン形成方法、及びレジスト組成物精製品
 本発明は、レジスト組成物精製品の製造方法、レジストパターン形成方法、及びレジスト組成物精製品に関する。
 本願は、2019年5月22日に、日本に出願された特願2019-096193号に基づき優先権を主張し、その内容をここに援用する。
 リソグラフィー技術においては、例えば、基板の上にレジスト材料からなるレジスト膜を形成し、該レジスト膜に対して選択的露光を行い、現像処理を施すことにより、前記レジスト膜に所定形状のレジストパターンを形成する工程が行われる。レジスト膜の露光部が現像液に溶解する特性に変化するレジスト材料をポジ型、レジスト膜の露光部が現像液に溶解しない特性に変化するレジスト材料をネガ型という。
 近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩により急速にパターンの微細化が進んでいる。パターンの微細化の手法としては、一般に、露光光源の短波長化(高エネルギー化)が行われている。具体的には、従来は、g線、i線に代表される紫外線が用いられていたが、現在では、KrFエキシマレーザーやArFエキシマレーザーを用いた半導体素子の量産が行われている。また、これらのエキシマレーザーより短波長(高エネルギー)のEUV(極紫外線)や、EB(電子線)、X線などについても検討が行われている。
 レジスト材料には、これらの露光光源に対する感度、微細な寸法のパターンを再現できる解像性等のリソグラフィー特性が求められる。
 このような要求を満たすレジスト材料として、従来、酸の作用により現像液に対する溶解性が変化する基材成分と、露光により酸を発生する酸発生剤成分と、を含有する化学増幅型レジスト組成物が用いられている。
 パターンの微細化が進むのに伴い、レジスト材料には、種々のリソグラフィー特性の向上にとともに、ディフェクト(表面欠陥)発生を抑えることも求められている。
 ここで「ディフェクト」とは、例えば、KLAテンコール社製の表面欠陥観察装置(商品名「KLA」)により、現像後のレジストパターンを真上から観察した際に検知される不具合全般のことである。この不具合とは、例えば、現像後のスカム(レジスト残渣)、泡、ゴミ等のレジストパターン表面への異物や析出物の付着による不具合や、ラインパターン間のブリッジ、コンタクトホールパターンのホールの穴埋まり等のパターン形状に関する不具合、パターンの色むら等をいう。
 加えて、レジスト材料においては、レジスト溶液(溶液状態のレジスト組成物)を保管中に微粒子状の異物が発生する、異物経時特性(保存安定性の一つ)も問題とされており、その改善が望まれている。
 従来、レジスト組成物の製造においては、異物を除去するため、一般的に、フィルターを通過させることによる精製が行われている。しかしながら、レジスト組成物を、従来用いられているメンブレンフィルターやデプスフィルターを通過させる方法では、現像後のレジストパターンのディフェクト発生を抑えるには不充分であった。
 前記のレジストパターンのディフェクト発生の抑制、及びレジスト材料の異物経時特性に対する要求に対し、ナイロン製のフィルターを通過させる工程と、ポリオレフィン樹脂製又はフッ素樹脂製のフィルターを通過させる工程と、を共に有するレジスト組成物の製造方法が提案されている(特許文献1参照)。
 また、レジストパターンの形成には、レジスト組成物以外に、樹脂を含有する樹脂溶液、現像液、レジスト用溶剤、プリウェット溶剤等の種々のリソグラフィー用薬液が用いられている。これらの薬液に混入したパーティクル等の異物(不純物)を除去する方法としても、従来から、フィルターを用いた方法が採用されている。
 パターンの微細化が進むのに伴い、パターン形成においては、これらの薬液中に存在する不純物の影響も現れてくる。
特許第4637476号公報
 リソグラフィー技術のさらなる進歩、レジストパターンの微細化がますます進むなか、数十から数百ナノメートルサイズのレジストパターンを形成する場合、現像後のスカムやマイクロブリッジ発生の不具合は顕著な問題となる。このため、これまで以上に、現像後のレジストパターンにおけるディフェクト発生を抑制し得る技術が必要である。
 一方、レジストパターンの微細化に伴い、フィルターを通過させる工程の前後で、レジスト組成物の組成に変化が生じ、パターン寸法の変化やパターン倒れといった問題が生じることがある。
 本発明は、上記事情に鑑みてなされたものであり、不純物がより低減され、且つパターン倒れなどの問題が生じにくい、レジスト組成物精製品の製造方法、及び前記製造方法により製造されたレジスト組成物精製品、並びに前記レジスト組成物精製品により形成されるレジストパターン形成方法を提供すること、を課題とする。
  上記の課題を解決するために、本発明は以下の構成を採用した。
 本発明の第1の態様は、レジスト組成物を、隣接した球状セル同士が連通した多孔質構造を有するフィルターで濾過する工程(i)を含む、レジスト組成物精製品の製造方法であって、前記フィルターは、ポリイミド及びポリアミドイミドからなる群より選択される少なくとも一種の樹脂を含有する多孔質膜を備え、前記レジスト組成物は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有し、前記有機溶剤成分(S)の含有量が97質量%以上であることを特徴とする、レジスト組成物精製品の製造方法である。
 本発明の第2の態様は、前記第1の態様にかかるレジスト組成物精製品の製造方法により、レジスト組成物精製品を得る工程と、前記レジスト組成物精製品を用いて、支持体上にレジスト膜を形成する工程と、前記レジスト膜を露光する工程と、前記露光後のレジスト膜を現像してレジストパターンを形成する工程と、を有することを特徴とする、レジストパターン形成方法である。
 本発明の第3の態様は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有するレジスト組成物精製品であって、光散乱式液中粒子計数器によって計数される、0.135μm以上のサイズの被計数体の数が、1個/mL未満であることを特徴とする、レジスト組成物精製品である。
 本発明の第4の態様は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有するレジスト組成物精製品であって、Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、及びPbからなる群より選択される金属成分(M)の含有量が1.1ppb未満であることを特徴とする、レジスト組成物精製品である。
 本発明の第5の態様は、前記第3の態様又は第4の態様にかかるレジスト組成物精製品を用いて、支持体上にレジスト膜を形成する工程と、前記レジスト膜を露光する工程と、前記露光後のレジスト膜を現像してレジストパターンを形成する工程と、を有することを特徴とする、レジストパターン形成方法である。
 本発明によれば、不純物がより低減され、且つパターン倒れなどの問題が生じにくい、レジスト組成物精製品の製造方法、及び前記製造方法により製造されたレジスト組成物精製品、並びに前記レジスト組成物精製品により形成されるレジストパターン形成方法を提供することができる。
ポリイミド系樹脂多孔質膜を構成する連通孔の一実施形態を模式的に示した図である。
 本明細書及び本特許請求の範囲において、「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。
 「アルキル基」は、特に断りがない限り、直鎖状、分岐鎖状及び環状の1価の飽和炭化水素基を包含するものとする。アルコキシ基中のアルキル基も同様である。
 「アルキレン基」は、特に断りがない限り、直鎖状、分岐鎖状及び環状の2価の飽和炭化水素基を包含するものとする。
 「ハロゲン化アルキル基」は、アルキル基の水素原子の一部又は全部がハロゲン原子で置換された基であり、該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 「フッ素化アルキル基」又は「フッ素化アルキレン基」は、アルキル基又はアルキレン基の水素原子の一部又は全部がフッ素原子で置換された基をいう。
 「構成単位」とは、高分子化合物(樹脂、重合体、共重合体)を構成するモノマー単位(単量体単位)を意味する。
 「置換基を有していてもよい」又は「置換基を有してもよい」と記載する場合、水素原子(-H)を1価の基で置換する場合と、メチレン基(-CH-)を2価の基で置換する場合との両方を含む。
 「露光」は、放射線の照射全般を含む概念とする。
 「アクリル酸エステルから誘導される構成単位」とは、アクリル酸エステルのエチレン性二重結合が開裂して構成される構成単位を意味する。
 「アクリル酸エステル」は、アクリル酸(CH=CH-COOH)のカルボキシ基末端の水素原子が有機基で置換された化合物である。
 アクリル酸エステルは、α位の炭素原子に結合した水素原子が置換基で置換されていてもよい。該α位の炭素原子に結合した水素原子を置換する置換基(Rα0)は、水素原子以外の原子又は基であり、たとえば炭素数1~5のアルキル基、炭素数1~5のハロゲン化アルキル基等が挙げられる。また、置換基(Rα0)がエステル結合を含む置換基で置換されたイタコン酸ジエステルや、置換基(Rα0)がヒドロキシアルキル基やその水酸基を修飾した基で置換されたαヒドロキシアクリルエステルも含むものとする。なお、アクリル酸エステルのα位の炭素原子とは、特に断りがない限り、アクリル酸のカルボニル基が結合している炭素原子のことである。
 以下、α位の炭素原子に結合した水素原子が置換基で置換されたアクリル酸エステルを、α置換アクリル酸エステルということがある。また、アクリル酸エステルとα置換アクリル酸エステルとを包括して「(α置換)アクリル酸エステル」ということがある。
 「アクリルアミドから誘導される構成単位」とは、アクリルアミドのエチレン性二重結合が開裂して構成される構成単位を意味する。
 アクリルアミドは、α位の炭素原子に結合した水素原子が置換基で置換されていてもよく、アクリルアミドのアミノ基の水素原子の一方または両方が置換基で置換されていてもよい。なお、アクリルアミドのα位の炭素原子とは、特に断りがない限り、アクリルアミドのカルボニル基が結合している炭素原子のことである。
 アクリルアミドのα位の炭素原子に結合した水素原子を置換する置換基としては、前記α置換アクリル酸エステルにおいて、α位の置換基として挙げたもの(置換基(Rα0))と同様のものが挙げられる。
 「ヒドロキシスチレンから誘導される構成単位」とは、ヒドロキシスチレンのエチレン性二重結合が開裂して構成される構成単位を意味する。「ヒドロキシスチレン誘導体から誘導される構成単位」とは、ヒドロキシスチレン誘導体のエチレン性二重結合が開裂して構成される構成単位を意味する。
 「ヒドロキシスチレン誘導体」とは、ヒドロキシスチレンのα位の水素原子がアルキル基、ハロゲン化アルキル基等の他の置換基に置換されたもの、並びにそれらの誘導体を含む概念とする。それらの誘導体としては、α位の水素原子が置換基に置換されていてもよいヒドロキシスチレンの水酸基の水素原子を有機基で置換したもの;α位の水素原子が置換基に置換されていてもよいヒドロキシスチレンのベンゼン環に、水酸基以外の置換基が結合したもの等が挙げられる。なお、α位(α位の炭素原子)とは、特に断りがない限り、ベンゼン環が結合している炭素原子のことをいう。
 ヒドロキシスチレンのα位の水素原子を置換する置換基としては、前記α置換アクリル酸エステルにおいて、α位の置換基として挙げたものと同様のものが挙げられる。
 「ビニル安息香酸若しくはビニル安息香酸誘導体から誘導される構成単位」とは、ビニル安息香酸若しくはビニル安息香酸誘導体のエチレン性二重結合が開裂して構成される構成単位を意味する。
 「ビニル安息香酸誘導体」とは、ビニル安息香酸のα位の水素原子がアルキル基、ハロゲン化アルキル基等の他の置換基に置換されたもの、並びにそれらの誘導体を含む概念とする。それらの誘導体としては、α位の水素原子が置換基に置換されていてもよいビニル安息香酸のカルボキシ基の水素原子を有機基で置換したもの;α位の水素原子が置換基に置換されていてもよいビニル安息香酸のベンゼン環に、水酸基およびカルボキシ基以外の置換基が結合したもの等が挙げられる。なお、α位(α位の炭素原子)とは、特に断りがない限り、ベンゼン環が結合している炭素原子のことをいう。
 「スチレン誘導体」とは、スチレンのα位の水素原子がアルキル基、ハロゲン化アルキル基等の他の置換基に置換されたもの、並びにそれらの誘導体を含む概念とする。それらの誘導体としては、α位の水素原子が置換基に置換されていてもよいヒドロキシスチレンのベンゼン環に置換基が結合したもの等が挙げられる。なお、α位(α位の炭素原子)とは、特に断りがない限り、ベンゼン環が結合している炭素原子のことをいう。
 「スチレンから誘導される構成単位」、「スチレン誘導体から誘導される構成単位」とは、スチレン又はスチレン誘導体のエチレン性二重結合が開裂して構成される構成単位を意味する。
 上記α位の置換基としてのアルキル基は、直鎖状または分岐鎖状のアルキル基が好ましく、具体的には、炭素数1~5のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基)等が挙げられる。
 また、α位の置換基としてのハロゲン化アルキル基は、具体的には、上記「α位の置換基としてのアルキル基」の水素原子の一部または全部を、ハロゲン原子で置換した基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
 また、α位の置換基としてのヒドロキシアルキル基は、具体的には、上記「α位の置換基としてのアルキル基」の水素原子の一部または全部を、水酸基で置換した基が挙げられる。該ヒドロキシアルキル基における水酸基の数は、1~5が好ましく、1が最も好ましい。
 「ポリイミド系樹脂」とは、ポリイミドもしくはポリアミドイミドの一方、又は両方を意味する。このポリイミド及びポリアミドイミドは、それぞれ、カルボキシ基、塩型カルボキシ基、及び-NH-結合からなる群より選択される少なくとも1つの官能基を有していてもよい。
 ポリイミド及びポリアミドイミドの少なくとも一方を含有する多孔質膜を「ポリイミド系樹脂多孔質膜」ということがある。ポリイミドを含有する多孔質膜を「ポリイミド多孔質膜」ということがある。ポリアミドイミドを含有する多孔質膜を「ポリアミドイミド多孔質膜」ということがある。
 本明細書及び本特許請求の範囲において、化学式で表される構造によっては、不斉炭素が存在し、エナンチオ異性体(enantiomer)やジアステレオ異性体(diastereomer)が存在し得るものがある。その場合は一つの化学式でそれら異性体を代表して表す。それらの異性体は単独で用いてもよいし、混合物として用いてもよい。
(レジスト組成物精製品の製造方法)
 本発明の第1の態様にかかるレジスト組成物精製品の製造方法は、隣接した球状セル同士が連通した多孔質構造を有するフィルターで濾過する工程(i)を含む。前記フィルターは、ポリイミド及びポリアミドイミドからなる群より選択される少なくとも一種の樹脂を含有する多孔質膜を備える。前記レジスト組成物は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有し、前記有機溶剤成分(S)の含有量が97質量%以上である。
 工程(i)により、レジスト組成物から、パーティクル等の不純物が除去され、高純度のレジスト組成物精製品が得られる。
 かかる製造方法によれば、特に、隣接した球状セル同士が連通した多孔質構造を有し、且つポリイミド及びポリアミドイミドからなる群より選択される少なくとも一種の樹脂を含有する多孔質膜を備えるフィルターが用いられていることで、レジスト組成物から、従来では取り除くことが困難であった高極性成分、高分子が充分に除去され、中でも高極性高分子が特異的に除去される。
 加えて、工程(i)では、レジスト組成物から、不純物として金属成分も充分に除去される。この金属成分は、レジスト組成物を構成する成分中に元来含まれていることもあるが、製造装置等の配管、継ぎ手などのレジスト組成物移送経路から混入することもある。工程(i)では、例えば、製造装置等から混入しやすい鉄、ニッケル、亜鉛、クロム等を効果的に除去することができる。
<工程(i)>
 工程(i)は、レジスト組成物を、隣接した球状セル同士が連通した多孔質構造を有するフィルターで濾過する工程である。
≪フィルター≫
 本工程で用いるフィルターは、隣接した球状セル同士が連通した多孔質構造を有するものである。
 例えば、かかるフィルターは、隣接した球状セル同士が連通した多孔質膜の単体からなるものでもよいし、該多孔質膜とともに他の濾材が用いられたものでもよい。
 他の濾材としては、例えば、ナイロン膜、ポリテトラフルオロエチレン膜、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)膜又はこれらを修飾した膜等が挙げられる。
 かかるフィルターでは、レジスト組成物の供給液と濾液とが混在せず分離するように、通液する前後の該多孔質膜の領域が好ましくはシーリングされる。このシーリングの方法としては、例えば、該多孔質膜を、光(UV)硬化による接着若しくは熱による接着(アンカー効果による接着(熱溶着等)を含む)若しくは接着剤を用いた接着等により加工する方法、又は、該多孔質膜と他の濾材とを組み込み法等により接着して加工する方法が挙げられる。かかるフィルターとしては、前記のような該多孔質膜を、熱可塑性樹脂(ポリエチレン、ポリプロピレン、PFA、ポリエーテルサルフォン(PES)、ポリイミド、ポリアミドイミド等)からなる外側容器に備えたものも挙げられる。
 かかるフィルターにおいて、該多孔質膜の形態としては、平面状、又は、該多孔質膜の相対する辺を合わせたパイプ状が挙げられる。パイプ状の該多孔質膜は、供給液と接触する面積が増大する点から、表面がヒダ状であることが好ましい。
・「隣接した球状セル同士が連通した多孔質膜」について
 かかるフィルターが備える、前記「隣接した球状セル同士が連通した多孔質膜」は、隣接した球状セル同士が連通した連通孔を有する。
 連通孔は、該多孔質膜に多孔質性を付与する個々の孔(セル)により形成している。かかる孔には、孔の内面のほぼ全体が曲面である孔が含まれ、これ以外の形状の孔が含まれていてもよい。
 本明細書においては、この孔の内面のほぼ全体が曲面である孔を「球状セル」又は「略球状孔」という。球状セル(略球状孔)は、孔の内面が略球状の空間を形成している。球状セルは、後述のポリイミド系樹脂多孔質膜の製造方法で用いられる微粒子が略球状である場合に容易に形成される。
 「略球状」とは、真球を含む概念であるが、必ずしも真球のみに限定されず、実質的に球状であるものを含む概念である。「実質的に球状である」とは、粒子の長径を短径で除した値で表される、長径/短径によって定義される真球度が1±0.3以内であること、を意味する。ここでの球状セルは、かかる真球度が、好ましくは1±0.1以内であり、より好ましくは1±0.05以内である。
 隣接した球状セル同士が連通した多孔質膜においては、隣接した球状セル同士で連通孔の少なくとも一部が形成される。
 図1は、多孔質膜を構成する連通孔の一実施形態を模式的に示している。
 本実施形態の多孔質膜において、球状セル1a及び球状セル1bは、それぞれの内面のほぼ全体が曲面であり、略球状の空間を形成している。
 球状セル1aと球状セル1bとは隣接し、隣り合う球状セル1aと球状セル1bとの重なり部分Qが貫通した連通孔5が形成されている。そして、濾過対象物は、例えば球状セル1aから球状セル1bの方向(矢印方向)に、連通孔5内を通流する。
 このように、隣接する球状セルが相互に連通した構造を有する多孔質膜においては、複数の孔(球状セル、連通孔)が繋がり、全体として濾過対象物の流路が形成されていることが好ましい。
 前記「流路」は、通常、個々の「孔」及び/又は「連通孔」が相互に連通することにより形成されている。個々の孔は、例えば、後述のポリイミド系樹脂多孔質膜の製造方法において、ポリイミド系樹脂-微粒子複合膜中に存在する、個々の微粒子、が後工程で除去されることによって形成される。また、連通孔は、後述のポリイミド系樹脂多孔質膜の製造方法において、ポリイミド系樹脂-微粒子複合膜中に存在する、個々の微粒子同士が接していた部分に、該微粒子が後工程で除去されることによって形成される、隣接する孔同士である。
 多孔質膜においては、球状セルと、隣接した球状セル同士が連通した連通孔と、が形成され、多孔質の程度が高くされている。また、多孔質膜においては、球状セル又は該連通孔が多孔質膜表面に開口し、一方の表面に開口する連通孔が多孔質膜内部を連通して他方(裏側)の表面に開口し、流体が多孔質膜内部を通過し得る流路が形成されている。そして、多孔質膜によれば、濾過対象物が前記流路を流れることにより、濾過対象物に含まれる異物が濾過前の濾過対象物から取り除かれる。
 多孔質膜は、内面に曲面を有する球状セルで形成される連通孔が連続してなる流路を内部に有するため、球状セル内面の表面積が大きい。これによって、濾過対象物が、多孔質膜の内部を通過できるのみならず、個々の球状セルの曲面に接触しながら通過する際、球状セル内面との接触頻度が高まるため、濾過対象物に存在する異物が球状セル内面により吸着して、濾過対象物から異物が除去されやすくなっている。
 多孔質膜は、平均球径が10~500nmである球状セルが相互に連通した構造を有するものが好ましい。球状セルの平均球径は、より好ましくは30~500nm、さらに好ましくは50~400nmである。
 球状セルの平均球径とは、2つの隣接した球状セルから形成される連通孔の直径の平均値をいう。球状セルの平均球径は、パームポロメーター(例えば、ポーラスマテリアルズ社製)を用い、バブルポイント法に基づいて孔の径を測定した値である。具体的には、後述の多孔質膜における平均孔径と同様の方法により求めることができる。
 「隣接した球状セル同士が連通した多孔質膜」が内部に有する流路は、前記の球状セル、及び前記球状セル同士の連通孔に加えて、これ以外の形状の孔又はこれを含む連通孔を有していてもよい。
 また、球状セルは、その内面に、さらに凹部を有していてもよい。該凹部には、例えば、球状セルの内面に開口する、該球状セルよりも孔径が小さい孔が形成されていてもよい。
 「隣接した球状セル同士が連通した多孔質膜」は、樹脂を含有するものが挙げられ、実質的に樹脂のみからなるものであってもよく、多孔質膜全体の、好ましくは95質量%以上、より好ましくは98質量%以上、さらに好ましくは99質量%以上が樹脂であるものが挙げられる。
 該多孔質膜は、ポリイミド系樹脂を含有するものである。ポリイミド系樹脂を含有する多孔質膜は、異物除去性と強度や、ろ過前後のリソグラフィー特性の安定性との点で優れている。
 該多孔質膜は、樹脂としてポリイミド及びポリアミドイミドの少なくとも一方を含有するものであり、好ましくはポリイミドを少なくとも含有するものである。該多孔質膜は、樹脂としてポリイミドのみを含有するものでもよく、ポリアミドイミドのみを含有するものでもよいが、ポリイミドのみを含有するものが好ましい。
 「隣接した球状セル同士が連通した多孔質膜」としては、多孔質膜全体の95質量%以上がポリイミド及びポリアミドイミドの少なくとも一方であるものが特に好ましい。
 以下、樹脂としてポリイミド系樹脂を含有する、隣接した球状セル同士が連通した多孔質膜(ポリイミド系樹脂多孔質膜)について説明する。
・・ポリイミド系樹脂多孔質膜
 ポリイミド系樹脂は、カルボキシ基、塩型カルボキシ基、及び-NH-結合からなる群より選択される少なくとも1つの官能基を有するものであってもよい。
 該ポリイミド系樹脂としては、前記官能基を主鎖末端以外に有するものが好ましい。前記官能基を主鎖末端以外に有する、好ましいものとしては、例えば、ポリアミド酸(ポリアミック酸)が挙げられる。
 本明細書において、「塩型カルボキシ基」とは、カルボキシ基における水素原子が陽イオン成分に置換した基を意味する。「陽イオン成分」とは、完全にイオン化した状態である陽イオン自体であってもよいし、-COOとイオン結合して事実上電荷のない状態である陽イオン構成要素であってもよいし、これら両者の中間的な状態である部分電荷を有する陽イオン構成要素であってもよい。
 「陽イオン成分」がn価の金属MからなるMイオン成分である場合、陽イオン自体としてはMn+と表され、陽イオン構成要素としては「-COOM1/n」における「M1/n」で表される要素である。
 「陽イオン成分」としては、後述のエッチング液に含有される化合物として挙げられる化合物がイオン解離した場合の陽イオンが挙げられる。代表的には、イオン成分又は有機アルカリイオン成分が挙げられる。例えば、アルカリ金属イオン成分がナトリウムイオン成分の場合、陽イオン自体としてはナトリウムイオン(Na)であり、陽イオン構成要素としては「-COONa」における「Na」で表される要素である。部分電荷を有する陽イオン構成要素としては、Naδ+である。
 陽イオン成分としては、特に限定されず、無機成分;NH 、N(CH 等の有機成分が挙げられる。無機成分としては、例えば、Li、Na、K等のアルカリ金属;Mg、Ca等のアルカリ土類金属等の金属元素が挙げられる。有機成分としては、例えば、有機アルカリイオン成分が挙げられる。有機アルカリイオン成分としては、NH 、例えばNR (4つのRはいずれも有機基を表し、それぞれ同一でも異なってもよい。)で表される第四級アンモニウムカチオン等が挙げられる。前記Rの有機基としては、アルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。第四級アンモニウムカチオンとしては、N(CH 等が挙げられる。
 塩型カルボキシ基における陽イオン成分の状態は、特に限定されず、通常、ポリイミド系樹脂が存在する環境、例えば水溶液中であるか、有機溶媒中であるか、乾燥しているか等の環境に依存する。陽イオン成分がナトリウムイオン成分である場合、例えば、水溶液中であれば、-COOとNaとに解離している可能性があり、有機溶媒中であるか又は乾燥していれば、-COONaは解離していない可能性が高い。
 ポリイミド系樹脂は、カルボキシ基、塩型カルボキシ基、及び-NH-結合からなる群より選択される少なくとも1つの官能基を有するものであってもよいが、これらの少なくとも1つを有する場合、通常、カルボキシ基及び/又は塩型カルボキシ基と、-NH-結合と、の両方を有する。ポリイミド系樹脂は、カルボキシ基及び/又は塩型カルボキシ基に関していえば、カルボキシ基のみを有してもよいし、塩型カルボキシ基のみを有してもよいし、カルボキシ基と塩型カルボキシ基との両方を有してもよい。ポリイミド系樹脂が有するカルボキシ基と塩型カルボキシ基との比率は、同一のポリイミド系樹脂であっても、例えば、ポリイミド系樹脂が存在する環境に応じて変動し得るし、陽イオン成分の濃度にも影響される。
 ポリイミド系樹脂が有するカルボキシ基と塩型カルボキシ基との合計モル数は、ポリイミドの場合は、通常、-NH-結合と等モルである。
 特に、後述のポリイミド多孔質膜の製造方法において、ポリイミドにおけるイミド結合の一部から、カルボキシ基及び/又は塩型カルボキシ基を形成する場合、実質的に同時に-NH-結合も形成される。形成されるカルボキシ基と塩型カルボキシ基との合計モル数は、形成される-NH-結合と等モルである。
 ポリアミドイミド多孔質膜の製造方法の場合は、ポリアミドイミドにおけるカルボキシ基と塩型カルボキシ基との合計モル数は、-NH-結合と必ずしも等モルではなく、後述のエッチング(イミド結合の開環)工程におけるケミカルエッチング等の条件次第である。
 ポリイミド系樹脂は、例えば、下記の一般式(1)~(4)でそれぞれ表される構成単位からなる群より選択される少なくとも1種の構成単位を有するものが好ましい。
 ポリイミドである場合、下記一般式(1)で表される構成単位及び下記一般式(2)で表される構成単位からなる群より選択される少なくとも1種の構成単位を有するものが好ましい。
 ポリアミドイミドである場合、下記一般式(3)で表される構成単位及び下記一般式(4)で表される構成単位からなる群より選択される少なくとも1種の構成単位を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 前記の式(1)~(3)中、X~Xは、互いに同一であってもよいし異なっていてもよく、水素原子又は陽イオン成分である。
 RArは、アリール基であり、後述のポリアミド酸(ポリアミック酸)を構成する式(5)で表される構成単位、又は芳香族ポリイミドを構成する式(6)で表される構成単位においてそれぞれカルボニル基が結合しているRArで表されるアリール基と同様のものが挙げられる。
 Y~Yは、それぞれ独立に、ジアミン化合物のアミノ基を除いた2価の残基であり、後述のポリアミド酸を構成する式(5)で表される構成単位、又は芳香族ポリイミドを構成する式(6)で表される構成単位においてそれぞれNが結合しているR’Arで表されるアリーレン基と同様のものが挙げられる。
 ポリイミド系樹脂としては、一般的なポリイミド又はポリアミドイミドが有するイミド結合(-N[-C(=O)])の一部が開環して、ポリイミドの場合は上記の一般式(1)又は一般式(2)で表される各構成単位、ポリアミドイミドの場合は上記の一般式(3)で表される構成単位をそれぞれ有することになったものであってもよい。
 ポリイミド系樹脂多孔質膜は、イミド結合の一部を開環させることで、カルボキシ基、塩型カルボキシ基、及び-NH-結合からなる群より選択される少なくとも1つの官能基を有するポリイミド系樹脂を含有するものでもよい。
 イミド結合の一部を開環させる場合の不変化率は、以下の手順(1)~(3)により求められる。
 手順(1):後述のエッチング(イミド結合の開環)工程を行わないポリイミド系樹脂多孔質膜(但し、該多孔質膜を作製するためのワニスがポリアミド酸を含む場合、未焼成複合膜を焼成する工程において、実質的にイミド化反応が完結しているものとする。)について、フーリエ変換型赤外分光(FT-IR)装置により測定したイミド結合を表すピークの面積を、同じくFT-IR装置により測定したベンゼンを表すピークの面積で除した値で表される値(X01)を求める。
 手順(2):前記の値(X01)を求めた多孔質膜と同一のポリマー(ワニス)を用いて得られたポリイミド系樹脂多孔質膜に対し、後述のエッチング(イミド結合の開環)工程を行った後のポリイミド系樹脂多孔質膜について、フーリエ変換型赤外分光(FT-IR)装置により測定したイミド結合を表すピークの面積を、同じくFT-IR装置により測定したベンゼンを表すピークの面積で除した値で表される値(X02)を求める。
 手順(3):下式より不変化率を算出する。
  不変化率(%)=(X02)÷(X01)×100
 ポリイミド系樹脂多孔質膜における不変化率は、60%以上であることが好ましく、70~99.5%であることがより好ましく、80~99%であることがさらに好ましい。ポリアミドイミドを含有する多孔質膜の場合、-NH-結合を含むため、不変化率は100%であってもよい。
 ポリイミド多孔質膜である場合、FT-IR装置により測定したイミド結合を表すピークの面積を、同じくFT-IR装置により測定したベンゼンを表すピークの面積で除した値を「イミド化率」とする。
 上記手順(2)で求められる値(X02)についてのイミド化率は、好ましくは1.2以上であり、より好ましくは1.2~2であり、さらに好ましくは1.3~1.6であり、特に好ましくは1.30~1.55であり、最も好ましくは1.35以上1.5未満である。また、上記手順(1)で求められる値(X01)についてのイミド化率は、好ましくは1.5以上である。
 かかるイミド化率は、相対的に数字が大きいほど、イミド結合の数が多い、即ち、上述の開環したイミド結合が少ないことを表す。
・・ポリイミド系樹脂多孔質膜の製造方法
 ポリイミド系樹脂多孔質膜は、ポリイミド及び/又はポリアミドイミドにおけるイミド結合の一部から、カルボキシ基及び/又は塩型カルボキシ基を形成する工程(以下「エッチング工程」という。)を含む方法により製造することができる。
 エッチング工程において、イミド結合の一部から、カルボキシ基及び/又は塩型カルボキシ基を形成する場合、実質的に同時に、理論上これらの基と等モルの-NH-結合も形成される。
 ポリイミド系樹脂多孔質膜が含有する樹脂が実質的にポリアミドイミドからなる場合、該多孔質膜は、エッチング工程を施さなくても既に-NH-結合を有しており、濾過対象物中の異物に対して良好な吸着力を示す。かかる場合、濾過対象物の流速を遅くする必要も特にない点で、エッチング工程は必ずしも必要ではないが、本発明の目的をより効果的に達成する点から、エッチング工程を設けることが好ましい。
 ポリイミド系樹脂多孔質膜の製造方法としては、ポリイミド及び/又はポリアミドイミドを主成分とする成形膜(以下「ポリイミド系樹脂成形膜」と略称することがある。)を作製した後、エッチング工程を行うことが好ましい。
 エッチング工程を施す対象である、ポリイミド系樹脂成形膜は、多孔質であってもよいし非多孔質であってもよい。
 また、ポリイミド系樹脂成形膜の形態は、特に限定されないが、得られるポリイミド系樹脂多孔質膜における多孔質の程度を高めることができる点で、膜等の薄い形状であることが好ましく、多孔質であり、かつ、膜等の薄い形状であることがより好ましい。
 ポリイミド系樹脂成形膜は、上述のように、エッチング工程を施す際に非多孔質であってもよいが、その場合、エッチング工程の後に多孔質化することが好ましい。
 ポリイミド系樹脂成形膜をエッチング工程の前又は後で多孔質化する方法としては、ポリイミド及び/又はポリアミドイミドと、微粒子と、の複合膜(以下「ポリイミド系樹脂-微粒子複合膜」という。)から該微粒子を取り除いて多孔質化する[微粒子の除去]工程を含む方法が好ましい。
 ポリイミド系樹脂多孔質膜の製造方法としては、下記の製造方法(a)又は製造方法(b)が挙げられる。
 製造方法(a):[微粒子の除去]工程の前に、ポリイミド及び/又はポリアミドイミドと微粒子との複合膜にエッチング工程を施す方法
 製造方法(b):[微粒子の除去]工程の後に、該工程により多孔質化したポリイミド系樹脂成形膜にエッチング工程を施す方法
 これらの中でも、得られるポリイミド系樹脂多孔質膜における多孔質の程度をより高めることができる点から、後者の製造方法(b)が好ましい。
 以下に、ポリイミド系樹脂多孔質膜の製造方法の一例について説明する。
[ワニスの調製]
 予め微粒子を有機溶剤に分散させた微粒子分散液と、ポリアミド酸又はポリイミド若しくはポリアミドイミドとを任意の比率で混合する、又は、前記微粒子分散液中でテトラカルボン酸二無水物及びジアミンを重合してポリアミド酸とするか、もしくは、さらに該ポリアミド酸をイミド化してポリイミドとすることで、ワニスが調製される。
 ワニスの粘度は、300~2000cP(0.3~2Pa・s)が好ましく、400~1800cP(0.4~1.8Pa・s)がより好ましい。ワニスの粘度が前記範囲内であれば、より均一に成膜をすることが可能である。
 ワニスの粘度は、温度条件25℃で、E型回転粘度計により測定できる。
 上記ワニスには、焼成(焼成が任意の場合は乾燥)してポリイミド系樹脂-微粒子複合膜とした際に、微粒子/ポリイミド系樹脂の比率が好ましくは1~4(質量比)、より好ましくは1.1~3.5(質量比)となるように、樹脂微粒子と、ポリアミド酸又はポリイミド若しくはポリアミドイミドと、が混合される。
 また、ポリイミド系樹脂-微粒子複合膜とした際に、微粒子/ポリイミド系樹脂の体積比率が好ましくは1.1~5となるように、より好ましくは1.1~4.5となるように、微粒子と、ポリアミド酸又はポリイミド若しくはポリアミドイミドと、が混合される。前記の質量比又は体積比が、前記範囲の好ましい下限値以上であれば、多孔質膜として適切な密度の孔を容易に得ることができ、前記範囲の好ましい上限値以下であれば、粘度の増加や、膜中のひび割れ等の問題を生じにくく、安定的に成膜できる。
 尚、本明細書において、体積比は、25℃における値を示す。
・・・微粒子
 微粒子の材料には、ワニスに用いられる有機溶剤に不溶で、成膜後選択的に除去可能なものであれば特に限定されることなく使用できる。
 微粒子の材料としては、例えば、無機材料としてシリカ(二酸化珪素)、酸化チタン、アルミナ(Al)、炭酸カルシウム等の金属酸化物などが挙げられる。有機材料としては、例えば、高分子量オレフィン(ポリプロピレン、ポリエチレン等)、ポリスチレン、アクリル系樹脂(メタクリル酸メチル、メタクリル酸イソブチル、ポリメチルメタクリレート(PMMA)等)、エポキシ樹脂、セルロース、ポリビニルアルコール、ポリビニルブチラール、ポリエステル、ポリエーテル、ポリエチレン等の有機高分子が挙げられる。
 これらの中でも、多孔質膜に、内面に曲面を有する微小な孔が形成されやすいことから、無機材料としては、コロイダルシリカ等のシリカが好ましい。有機材料としては、PMMA等のアクリル系樹脂が好ましい。
 樹脂微粒子としては、例えば、通常の線状ポリマーや公知の解重合性ポリマーから、目的に応じて特に限定されることなく選択できる。通常の線状ポリマーは、熱分解時にポリマーの分子鎖がランダムに切断されるポリマーである。解重合性ポリマーは、熱分解時にポリマーが単量体に分解するポリマーである。何れのポリマーも、加熱時に、単量体、低分子量体、又はCOまでに分解することで、ポリイミド系樹脂膜から除去可能である。
 解重合性ポリマーの中でも、孔形成時の取り扱い上の点から、熱分解温度の低いメタクリル酸メチル若しくはメタクリル酸イソブチルの単独(ポリメチルメタクリレート若しくはポリイソブチルメタクリレート)又はこれを主成分とする共重合ポリマーが好ましい。
 樹脂微粒子の分解温度は、200~320℃が好ましく、230~260℃がより好ましい。分解温度が200℃以上であれば、ワニスに高沸点溶剤を使用した場合も成膜を行うことができ、ポリイミド系樹脂の焼成条件の選択の幅がより広くなる。分解温度が320℃以下であれば、ポリイミド系樹脂に熱的なダメージを与えることなく、樹脂微粒子のみを容易に消失させることができる。
 微粒子は、形成される多孔質膜における孔の内面に曲面を有しやすい点で、真球率が高いものが好ましい。使用する微粒子の粒径(平均直径)は、例えば、50~2000nmが好ましく、200~1000nmがより好ましい。
 微粒子の平均直径が前記範囲内であると、微粒子を取り除いて得られるポリイミド系樹脂多孔質膜に濾過対象物を通過させる際、該多孔質膜における孔の内面に濾過対象物を万遍なく接触させることができ、濾過対象物に含まれる異物の吸着を効率良く行うことができる。
 微粒子の粒径分布指数(d25/d75)は、好ましくは1~6、より好ましくは1.6~5、さらに好ましくは2~4である。
 粒径分布指数を、前記範囲の好ましい下限値以上とすることで、多孔質膜内部に微粒子を効率的に充填させることができるため、流路を形成しやすく、流速が向上する。また、サイズの異なる孔が形成されやすくなり、異なる対流が生じて異物の吸着率がより向上する。
 尚、d25及びd75は、粒度分布の累積度数がそれぞれ25%、75%の粒子径の値であり、本明細書においてはd25が粒径の大きい方となる。
 また、後述の[未焼成複合膜の成膜]において、未焼成複合膜を2層状として形成する場合、第1のワニスに用いる微粒子(B1)と、第2のワニスに用いる微粒子(B2)とは、互いに同じものを用いてもよいし異なったものを用いてもよい。基材に接する側の孔をより稠密にするには、微粒子(B1)は、微粒子(B2)よりも粒径分布指数が小さいか、又は同じであることが好ましい。あるいは、微粒子(B1)は、微粒子(B2)よりも真球率が小さいか、又は同じであることが好ましい。また、微粒子(B1)は、微粒子(B2)よりも微粒子の粒径(平均直径)が小さいことが好ましく、特に、微粒子(B1)が100~1000nm(より好ましくは100~600nm)、微粒子(B2)が500~2000nm(より好ましくは700~2000nm)のものをそれぞれ用いることが好ましい。微粒子(B1)に微粒子(B2)より小さい粒径のものを用いることで、得られるポリイミド系樹脂多孔質膜表面の孔の開口割合を高く、その径を均一にすることができ、かつ、ポリイミド系樹脂多孔質膜全体を、微粒子(B1)単独とした場合よりも多孔質膜の強度を高めることができる。
 本実施形態では、ワニスに、微粒子を均一に分散することを目的として、上記微粒子とともにさらに分散剤を添加してもよい。分散剤をさらに添加することにより、ポリアミド酸又はポリイミド若しくはポリアミドイミドと、微粒子と、をいっそう均一に混合でき、さらには、未焼成複合膜中に微粒子を均一に分布させることができる。その結果、最終的に得られるポリイミド系樹脂多孔質膜の表面に稠密な開口を設け、かつ、ポリイミド系樹脂多孔質膜の透気度が向上するように、該多孔質膜の表裏面を連通させる連通孔を効率良く形成することが可能となる。
 前記の分散剤は、特に限定されることなく、公知のものを用いることができる。前記の分散剤としては、例えば、やし脂肪酸塩、ヒマシ硫酸化油塩、ラウリルサルフェート塩、ポリオキシアルキレンアリルフェニルエーテルサルフェート塩、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホサクシネート塩、イソプロピルホスフェート、ポリオキシエチレンアルキルエーテルホスフェート塩、ポリオキシエチレンアリルフェニルエーテルホスフェート塩等のアニオン界面活性剤;オレイルアミン酢酸塩、ラウリルピリジニウムクロライド、セチルピリジニウムクロライド、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド等のカチオン界面活性剤;ヤシアルキルジメチルアミンオキシド、脂肪酸アミドプロピルジメチルアミンオキシド、アルキルポリアミノエチルグリシン塩酸塩、アミドベタイン型活性剤、アラニン型活性剤、ラウリルイミノジプロピオン酸等の両性界面活性剤;ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンポリスチリルフェニルエーテル、ポリオキシアルキレンポリスチリルフェニルエーテルその他のポリオキシアルキレン一級アルキルエーテル又はポリオキシアルキレン二級アルキルエーテル系のノニオン界面活性剤、ポリオキシエチレンジラウレート、ポリオキシエチレンラウレート、ポリオキシエチレン化ヒマシ油、ポリオキシエチレン化硬化ヒマシ油、ソルビタンラウリン酸エステル、ポリオキシエチレンソルビタンラウリン酸エステル、脂肪酸ジエタノールアミドその他のポリオキシアルキレン系のノニオン界面活性剤;オクチルステアレート、トリメチロールプロパントリデカノエート等の脂肪酸アルキルエステル;ポリオキシアルキレンブチルエーテル、ポリオキシアルキレンオレイルエーテル、トリメチロールプロパントリス(ポリオキシアルキレン)エーテル等のポリエーテルポリオールが挙げられる。上記の分散剤は、1種を単独で、又は2種以上を混合して用いることができる。
・・・ポリアミド酸
 本実施形態に用い得るポリアミド酸としては、任意のテトラカルボン酸二無水物とジアミンとを重合して得られるものが挙げられる。
・・・・テトラカルボン酸二無水物
 テトラカルボン酸二無水物は、従来よりポリアミド酸の合成原料として用いられているテトラカルボン酸二無水物から適宜選択することができる。
 テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物であってもよいし、脂肪族テトラカルボン酸二無水物であってもよい。
 芳香族テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2,6,6-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-へキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、1,2,5,6-ナフタレンテトラカルボン二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス無水フタル酸フルオレン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。
 脂肪族テトラカルボン酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロへキサンテトラカルボン酸二無水物、1,2,4,5-シクロへキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。
 上記の中では、得られるポリイミド樹脂の耐熱性の点から、芳香族テトラカルボン酸二無水物が好ましい。その中でも、価格、入手容易性等の点から、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物が好ましい。
 テトラカルボン酸二無水物は、1種を単独で、又は2種以上を混合して用いることができる。
・・・・ジアミン
 ジアミンは、従来よりポリアミド酸の合成原料として用いられているジアミンから適宜選択することができる。このジアミンは、芳香族ジアミンであってもよいし、脂肪族ジアミンであってもよいが、得られるポリイミド樹脂の耐熱性の点から、芳香族ジアミンが好ましい。ジアミンは、1種を単独で、又は2種以上を混合して用いることができる。
 芳香族ジアミンとしては、フェニル基が1個あるいは2~10個程度が結合したジアミノ化合物が挙げられる。芳香族ジアミンとして、具体的には、フェニレンジアミン又はその誘導体、ジアミノビフェニル化合物又はその誘導体、ジアミノジフェニル化合物又はその誘導体、ジアミノトリフェニル化合物又はその誘導体、ジアミノナフタレン又はその誘導体、アミノフェニルアミノインダン又はその誘導体、ジアミノテトラフェニル化合物又はその誘導体、ジアミノヘキサフェニル化合物又はその誘導体、カルド型フルオレンジアミン誘導体が挙げられる。
 フェニレンジアミンとしては、m-フェニレンジアミン、p-フェニレンジアミンが好ましい。フェニレンジアミン誘導体としては、メチル基、エチル基等のアルキル基が結合したジアミン、例えば、2,4-ジアミノトルエン、2,4-トリフェニレンジアミン等が挙げられる。
 ジアミノビフェニル化合物は、2つのアミノフェニル基がフェニル基同士で結合したものである。ジアミノビフェニル化合物としては、例えば、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル等が挙げられる。
 ジアミノジフェニル化合物は、2つのアミノフェニル基が他の基を介してフェニル基同士で結合したものである。他の基としては、エーテル結合、スルホニル結合、チオエーテル結合、アルキレン基又はその誘導体基、イミノ結合、アゾ結合、ホスフィンオキシド結合、アミド結合、ウレイレン結合等が挙げられる。アルキレン基は、好ましくは炭素数が1~6程度であり、その誘導体基は、アルキレン基の水素原子の1つ以上がハロゲン原子等で置換されたものである。
 ジアミノジフェニル化合物としては、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2-ビス(p-アミノフェニル)プロパン、2,2’-ビス(p-アミノフェニル)へキサフルオロプロパン、4-メチル-2,4-ビス(p-アミノフェニル)-1-ペンテン、4-メチル-2,4-ビス(p-アミノフェニル)-2-ぺンテン、イミノジアニリン、4-メチル-2,4-ビス(p-アミノフェニル)ペンタン、ビス(p-アミノフェニル)ホスフィンオキシド、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノジフェニル尿素、4,4’-ジアミノジフェニルアミド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。
 ジアミノトリフェニル化合物は、2つのアミノフェニル基と1つのフェニレン基がそれぞれ他の基を介して結合したものである。他の基としては、ジアミノジフェニル化合物における他の基と同様のものが挙げられる。
 ジアミノトリフェニル化合物としては、1,3-ビス(m-アミノフェノキシ)ベンゼン、1,3-ビス(p-アミノフェノキシ)ベンゼン、1,4-ビス(p-アミノフェノキシ)ベンゼン等が挙げられる。
 ジアミノナフタレンとしては、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等が挙げられる。
 アミノフェニルアミノインダンとしては、5又は6-アミノ-1-(p-アミノフェニル)-1,3,3-トリメチルインダン等が挙げられる。
 ジアミノテトラフェニル化合物としては、4,4’-ビス(p-アミノフェノキシ)ビフェニル、2,2’-ビス[p-(p’-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[p-(p’-アミノフェノキシ)ビフェニル]プロパン、2,2’-ビス[p-(m-アミノフェノキシ)フェニル]ベンゾフェノン等が挙げられる。
 カルド型フルオレンジアミン誘導体としては、9,9-ビスアニリンフルオレン等が挙げられる。
 脂肪族ジアミンは、例えば、炭素数が2~15程度のものが好ましく、具体的には、ペンタメチレンジアミン、へキサメチレンジアミン、へプタメチレンジアミン等が挙げられる。
 尚、ジアミンにおいては、水素原子がハロゲン原子、メチル基、メトキシ基、シアノ基、フェニル基からなる群より選択される少なくとも1種の置換基で置換された化合物であってもよい。
 上記の中でも、ジアミンとしては、フェニレンジアミン、フェニレンジアミン誘導体、ジアミノジフェニル化合物が好ましい。その中でも、価格、入手容易性等の点から、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、4,4’-ジアミノジフェニルエーテルが特に好ましい。
 ポリアミド酸の製造方法には、特に制限はなく、例えば、有機溶剤中で任意のテトラカルボン酸二無水物とジアミンとを反応させる方法等の、公知の手法が用いられる。
 テトラカルボン酸二無水物とジアミンとの反応は、通常、有機溶剤中で行われる。ここで用いられる有機溶剤は、テトラカルボン酸二無水物及びジアミンをそれぞれ溶解することができ、テトラカルボン酸二無水物及びジアミンと反応しないものであれば特に限定されない。有機溶剤は、1種単独で又は2種以上を混合して用いることができる。
 テトラカルボン酸二無水物とジアミンとの反応に用いられる有機溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤;β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン等のラクトン系極性溶剤;ジメチルスルホキシド;アセトニトリル;乳酸エチル、乳酸ブチル等の脂肪酸エステル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジオキサン、テトラヒドロフラン、メチルセルソルブアセテート、エチルセルソルブアセテート等のエーテル類;クレゾール類等のフェノール系溶剤が挙げられる。
 これらの中でも、ここでの有機溶剤としては、生成するポリアミド酸の溶解性の点から、含窒素極性溶剤を用いることが好ましい。
 また、成膜性等の観点から、ラクトン系極性溶剤を含む混合溶剤を用いることが好ましい。この場合、有機溶剤全体(100質量%)に対して、ラクトン系極性溶剤の含有量は、1~20質量%が好ましく、5~15質量%がより好ましい。
 ここでの有機溶剤には、含窒素極性溶剤及びラクトン系極性溶剤からなる群より選択される1種以上を用いることが好ましく、含窒素極性溶剤とラクトン系極性溶剤との混合溶剤を用いることがより好ましい。
 有機溶剤の使用量は、特に制限はないが、反応後の反応液中の、生成するポリアミド酸の含有量が5~50質量%となる程度が好ましい。
 テトラカルボン酸二無水物及びジアミンの各使用量は、特に限定されないが、テトラカルボン酸二無水物1モルに対して、ジアミン0.50~1.50モルを用いることが好ましく、0.60~1.30モルを用いることがより好ましく、0.70~1.20モルを用いることが特に好ましい。
 反応(重合)温度は、一般的には-10~120℃、好ましくは5~30℃である。反応(重合)時間は、使用する原料組成により異なるが、通常は3~24(時間)である。
 また、このような条件下で得られるポリアミド酸溶液の固有粘度は、好ましくは1000~100000cP(センチポアズ)(1~100Pa・s)、より好ましくは5000~70000cP(5~70Pa・s)の範囲である。
 ポリアミド酸溶液の固有粘度は、温度条件25℃で、E型回転粘度計により測定できる。
・・・ポリイミド
 本実施形態に用い得るポリイミドは、ワニスに使用する有機溶剤に溶解可能であれば、その構造や分子量に限定されることなく、公知のものが使用できる。
 ポリイミドは、側鎖にカルボキシ基等の縮合可能な官能基、又は焼成時に架橋反応等を促進させる官能基を有していてもよい。
 ワニスに使用する有機溶剤に可溶なポリイミドとするため、主鎖に柔軟な屈曲構造を導入するためのモノマーの使用が有効である。
 このモノマーとしては、例えば、エチレジアミン、ヘキサメチレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン等の脂肪族ジアミン;2-メチル-1,4-フェニレンジアミン、o-トリジン、m-トリジン、3,3’-ジメトキシベンジジン、4,4’-ジアミノベンズアニリド等の芳香族ジアミン;ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシブチレンジアミン等のポリオキシアルキレンジアミン;ポリシロキサンジアミン;2,3,3’,4’-オキシジフタル酸無水物、3,4,3’,4’-オキシジフタル酸無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物等が挙げられる。
 また、かかる有機溶剤への溶解性を向上する、官能基を有するモノマーを使用することも有効である。このような官能基を有するモノマーとしては、例えば、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2-トリフルオロメチル-1,4-フェニレンジアミン等のフッ素化ジアミンが挙げられる。
 さらに、かかる官能基を有するモノマーに加えて、溶解性を阻害しない範囲で、上記ポリアミド酸の説明の中で例示したモノマーを併用することもできる。
 ポリイミドの製造方法としては、特に制限はなく、例えば、ポリアミド酸を、化学イミド化又は加熱イミド化させて有機溶剤に溶解させる方法等の、公知の手法が挙げられる。
 本実施形態に用い得るポリイミドとしては、脂肪族ポリイミド(全脂肪族ポリイミド)、芳香族ポリイミド等が挙げられ、中でも、芳香族ポリイミドが好ましい。
 芳香族ポリイミドとしては、下記一般式(5)で表される構成単位を有するポリアミド酸を、熱又は化学的に閉環反応させて得られるもの、又は、下記一般式(6)で表される構成単位を有するポリイミドを、溶媒に溶解して得られるものでよい。
 式中、RArはアリール基、R’Arはアリーレン基を示す。
Figure JPOXMLDOC01-appb-C000003
 前記の式中、RArは、4n+2個のπ電子をもつ環状共役系であれば特に限定されず、単環式でも多環式でもよい。芳香環の炭素数は、5~30であることが好ましく、5~20がより好ましく、6~15がさらに好ましく、6~12が特に好ましい。芳香環として具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された芳香族複素環等が挙げられる。芳香族複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。芳香族複素環として具体的には、ピリジン環、チオフェン環等が挙げられる。中でも、RArは、芳香族炭化水素環が好ましく、ベンゼン、ナフタレンがより好ましく、ベンゼンが特に好ましい。
 前記の式中、R’Arは、前記のRArにおける芳香環から水素原子2つを除いた基が挙げられる。中でも、R’Arは、芳香族炭化水素環から水素原子2つを除いた基が好ましく、ベンゼン又はナフタレンから水素原子2つを除いた基がより好ましく、ベンゼンから水素原子2つを除いたフェニレン基が特に好ましい。
 RArにおけるアリール基、R’Arにおけるアリーレン基は、それぞれ、置換基を有していてもよい。
・・・ポリアミドイミド
 本実施形態に用い得るポリアミドイミドは、ワニスに使用する有機溶剤に溶解可能であれば、その構造や分子量に限定されることなく、公知のものが使用できる。
 ポリアミドイミドは、側鎖にカルボキシ基等の縮合可能な官能基、又は焼成時に架橋反応等を促進させる官能基を有していてもよい。
 かかるポリアミドイミドには、任意の無水トリメリット酸とジイソシアネートとの反応により得られるものや、任意の無水トリメリット酸の反応性誘導体とジアミンとの反応により得られる前駆体ポリマーをイミド化して得られるものを、特に限定されることなく使用できる。
 上記任意の無水トリメリット酸の反応性誘導体としては、例えば、無水トリメリット酸クロライド等の無水トリメリット酸ハロゲン化物、無水トリメリット酸エステル等が挙げられる。
 上記任意のジイソシアネートとしては、例えば、メタフェニレンジイソシアネート、p-フェニレンジイソシアネート、o-トリジンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、4,4’-オキシビス(フェニルイソシアネート)、4,4’-ジイソシアネートジフェニルメタン、ビス[4-(4-イソシアネートフェノキシ)フェニル]スルホン、2,2’-ビス[4-(4-イソシアネートフェノキシ)フェニル]プロパン、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、3,3’-ジメチルジフェニル-4,4’-ジイソシアネート、3,3’-ジエチルジフェニル-4,4’-ジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、m-キシレンジイソシアネート、p-キシレンジイソシアネート、ナフタレンジイソシアネート等が挙げられる。
 上記任意のジアミンとしては、上記ポリアミド酸の説明の中で例示したジアミンと同様のものが挙げられる。
・・・有機溶剤
 ワニスの調製に用い得る有機溶剤としては、ポリアミド酸及び/又はポリイミド系樹脂を溶解することができ、微粒子を溶解しないものであれば、特に限定されず、テトラカルボン酸二無水物とジアミンとの反応に用いられる有機溶剤と同様のものが挙げられる。有機溶剤は、1種単独で又は2種以上を混合して用いることができる。
 ワニス中、有機溶剤の含有量は、好ましくは50~95質量%、より好ましくは60~85質量%とされる。ワニスにおける固形分濃度は、好ましくは5~50質量%、より好ましくは15~40質量%とされる。
 また、後述の[未焼成複合膜の成膜]において、未焼成複合膜を2層状として形成する場合、第1のワニスにおけるポリアミド酸又はポリイミド若しくはポリアミドイミド(A1)と微粒子(B1)との体積比を、19:81~45:55とすることが好ましい。微粒子(B1)が占める体積割合が全体を100とした場合に、55以上であれば、粒子が均一に分散し、また、81以下であれば、粒子同士が凝集することなく分散しやすくなる。これにより、ポリイミド系樹脂成形膜の基材側面側に孔を均一に形成できるようになる。
 また、第2のワニスにおけるポリアミド酸又はポリイミド若しくはポリアミドイミド(A2)と微粒子(B2)との体積比を、20:80~50:50とすることが好ましい。微粒子(B2)が占める体積割合が全体を100とした場合に、50以上であれば、粒子単体が均一に分散しやすく、また、80以下であれば、粒子同士が凝集することなく、また、表面にひび割れ等が生じにくくなる。これにより、応力、破断伸度等の機械的特性の良好なポリイミド系樹脂多孔質膜が形成されやすくなる。
 上記の体積比について、第2のワニスは、上記第1のワニスよりも、微粒子含有比率の低いものであることが好ましい。上記条件を満たすことにより、微粒子がポリアミド酸又はポリイミド若しくはポリアミドイミド中に高度に充填されていても、未焼成複合膜、ポリイミド系樹脂-微粒子複合膜、及びポリイミド系樹脂多孔質膜の強度や柔軟性が確保される。また、微粒子含有比率の低い層を設けることで、製造コストの低減が図れる。
 ワニスを調製する際、上記した成分のほかに、帯電防止、難燃性付与、低温焼成化、離型性、塗布性等を目的として、帯電防止剤、難燃剤、化学イミド化剤、縮合剤、離型剤、表面調整剤等の公知の成分を必要に応じて配合することができる。
[未焼成複合膜の成膜]
 ポリアミド酸又はポリイミド若しくはポリアミドイミドと、微粒子と、を含有する未焼成複合膜の成膜は、例えば、基材上に上記ワニスを塗布し、常圧又は真空下で0~120℃(好ましくは0~100℃)、より好ましくは常圧下で60~95℃(さらに好ましくは65~90℃)の条件により乾燥して行われる。塗布膜厚は、例えば、好ましくは1~500μm、より好ましくは5~50μmである。
 尚、基材上には、必要に応じて離型層を設けてもよい。また、未焼成複合膜の成膜において、後述の[未焼成複合膜の焼成]の前に、水を含む溶剤への浸漬工程、乾燥工程、プレス工程をそれぞれ任意の工程として設けてもよい。
 上記離型層は、基材上に離型剤を塗布して乾燥あるいは焼き付けを行うことによって作製できる。ここで使用される離型剤は、アルキルリン酸アンモニウム塩系離型剤、フッ素系離型剤又はシリコーン系離型剤等の、公知の離型剤が特に制限なく使用可能である。乾燥後の未焼成複合膜を基材から剥離する際、未焼成複合膜の剥離面にわずかながら離型剤が残存する。この残存した離型剤は、ポリイミド系樹脂多孔質膜表面の濡れ性や不純物混入に影響し得るため、これを取り除いておくことが好ましい。
 そこで、上記基材から剥離した未焼成複合膜を、有機溶剤等を用いて洗浄することが好ましい。洗浄の方法としては、洗浄液に未焼成複合膜を浸漬した後に取り出す方法、シャワー洗浄する方法等の、公知の方法が挙げられる。
 洗浄後の未焼成複合膜を乾燥するため、例えば、洗浄後の未焼成複合膜は、室温で風乾される、又は、恒温槽中で適切な設定温度まで加温される。その際、例えば、未焼成複合膜の端部をSUS製の型枠等に固定して、変形を防ぐ方法を採ることもできる。
 一方、未焼成複合膜の成膜において、離型層を設けず基材をそのまま使用する場合は、上記離型層形成の工程や、未焼成複合膜の洗浄工程を省くことができる。
 また、未焼成複合膜を2層状で成膜する場合、まず、ガラス基板等の基材上にそのまま、上記第1のワニスを塗布し、常圧又は真空下で0~120℃(好ましくは0~90℃)、より好ましくは常圧で10~100℃(さらに好ましくは10~90℃)の条件により乾燥して、膜厚1~5μmの第1未焼成複合膜の形成を行う。
 続いて、第1未焼成複合膜上に、上記第2のワニスを塗布し、同様にして、0~80℃(好ましくは0~50℃)、より好ましくは常圧で10~80℃(更に好ましくは10~30℃)の条件により乾燥して、膜厚5~50μmの第2未焼成複合膜の形成を行うことで、2層状の未焼成複合膜を成膜できる。
[未焼成複合膜の焼成]
 上記[未焼成複合膜の成膜]の後、未焼成複合膜に対し、加熱処理(焼成)を施すことにより、ポリイミド系樹脂と微粒子とからなる複合膜(ポリイミド系樹脂-微粒子複合膜)が形成される。
 ワニスにポリアミド酸を含む場合、本工程の[未焼成複合膜の焼成]で、イミド化を完結させることが好ましい。
 加熱処理の温度(焼成温度)は、未焼成複合膜に含有されるポリアミド酸又はポリイミド若しくはポリアミドイミドの構造や縮合剤の有無によっても異なるが、120~400℃が好ましく、より好ましくは150~375℃である。
 焼成を行うには、必ずしも前工程での乾燥と明確に操作を分ける必要はない。例えば、375℃で焼成を行う場合、室温から375℃までを3時間で昇温させた後、375℃で20分間保持させる方法や、室温から50℃刻みで段階的に375℃まで昇温(各刻みで20分間保持)し、最終的に375℃で20分間保持させる等の段階的な乾燥-熱イミド化法を用いることもできる。その際、未焼成複合膜の端部をSUS製の型枠等に固定して変形を防ぐ方法を採ってもよい。
 加熱処理(焼成)後のポリイミド系樹脂-微粒子複合膜の厚さは、例えば、1μm以上が好ましく、5~500μmがより好ましく、8~100μmであることがさらに好ましい。
 ポリイミド系樹脂-微粒子複合膜の厚さは、マイクロメーターを用い、複数の箇所の厚さを測定し、これらを平均することで求めることができる。
 尚、本工程は任意の工程である。特にワニスにポリイミド又はポリアミドイミドが用いられる場合、本工程は行われなくてもよい。
[微粒子の除去]
 上記[未焼成複合膜の焼成]の後、未ポリイミド系樹脂-微粒子複合膜から、微粒子を除去することにより、ポリイミド系樹脂多孔質膜が製造される。
 例えば、微粒子としてシリカを採用した場合、ポリイミド系樹脂-微粒子複合膜を、低濃度のフッ化水素(HF)水に接触させることによって、シリカが溶解除去され、多孔質膜が得られる。また、微粒子が樹脂微粒子の場合、樹脂微粒子の熱分解温度以上で、かつ、ポリイミド系樹脂の熱分解温度未満の温度に加熱することによって、樹脂微粒子が分解除去され、多孔質膜が得られる。
[エッチング(イミド結合の開環)]
 エッチング工程は、ケミカルエッチング法若しくは物理的除去方法、又は、これらを組み合わせた方法により行うことができる。
・ケミカルエッチング法について
 ケミカルエッチング法には、従来公知の方法を用いることができる。
 ケミカルエッチング法としては、特に限定されず、無機アルカリ溶液又は有機アルカリ溶液等のエッチング液による処理が挙げられる。中でも、無機アルカリ溶液による処理が好ましい。
 無機アルカリ溶液としては、例えば、ヒドラジンヒドラートとエチレンジアミンとを含むヒドラジン溶液;水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム等のアルカリ金属水酸化物の溶液;アンモニア溶液;水酸化アルカリとヒドラジンと1,3-ジメチル-2-イミダゾリジノンとを主成分とするエッチング液等が挙げられる。
 有機アルカリ溶液としては、エチルアミン、n-プロピルアミン等の第一級アミン類;ジエチルアミン、ジ-n-ブチルアミン等の第二級アミン類;トリエチルアミン、メチルジエチルアミン等の第三級アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩;ピロール、ピヘリジン等の環状アミン類等の、アルカリ性のエッチング液が挙げられる。エッチング液におけるアルカリ濃度は、例えば0.01~20質量%である。
 上記の各エッチング液の溶媒には、純水、アルコール類を適宜選択でき、また、界面活性剤を適量添加したものを使用することもできる。
・物理的除去方法について
 物理的除去方法には、例えば、プラズマ(酸素、アルゴン等)、コロナ放電等によるドライエッチング法を用いることができる。
 上記したケミカルエッチング法又は物理的除去方法は、上記[微粒子の除去]の前に適用することも、上記[微粒子の除去]の後に適用することもできる。
 中でも、ポリイミド系樹脂多孔質膜の内部の連通孔がより形成されやすく、異物の除去性が高められることから、上記[微粒子の除去]の後に適用することが好ましい。
 エッチング工程でケミカルエッチング法を行う場合、余剰のエッチング液を除去するため、本工程の後にポリイミド系樹脂多孔質膜の洗浄工程を設けてもよい。
 ケミカルエッチング後の洗浄は、水洗単独でもよいが、酸洗浄と水洗とを組み合わせることが好ましい。
 また、エッチング工程の後、ポリイミド系樹脂多孔質膜表面の有機溶媒への濡れ性向上、及び、残存有機物除去のため、ポリイミド系樹脂多孔質膜に対し、加熱処理(再焼成)を行ってもよい。この加熱条件は、上記[未焼成複合膜の焼成]における条件と同様である。
 例えば上述した製造方法によって製造されるポリイミド系樹脂多孔質膜は、球状セルと、隣接した球状セル同士が連通した連通孔と、が形成され、好ましくは、一方の外部表面に開口する連通孔が、多孔質膜の内部を連通し、他方(裏側)の外部表面にまで開口して、流体が多孔質膜を通過し得る流路が確保されるような連通孔を有する。
 「隣接した球状セル同士が連通した多孔質膜」のガーレー透気度は、例えば、該多孔質膜を通過する濾過対象物の流速をある程度高く維持しつつ、異物除去を効率良く行う点から、30秒以上が好ましい。該多孔質膜のガーレー透気度は、より好ましくは30~1000秒であり、さらに好ましくは30~600秒であり、特に好ましくは30~500秒であり、最も好ましくは30~300秒である。ガーレー透気度が、前記範囲の好ましい上限値以下であれば、多孔質の程度(連通孔の存在比など)が充分に高いため、異物除去の効果がより得られやすくなる。
 該多孔質膜のガーレー透気度は、JIS P 8117に準じて測定できる。
 「隣接した球状セル同士が連通した多孔質膜」は、孔径が1~200nmである連通孔を含むものが好ましく、より好ましくは3~180nm、さらに好ましくは5~150nm、特に好ましくは10~130nmである。
 かかる連通孔の孔径とは、連通孔の直径をいう。尚、1つの連通孔は、前述の製造方法によって、通常2つの隣接する粒子から形成されるため、該直径には、例えば、連通孔を構成する2つの孔が隣り合う方向を長手方向とすると、該長手方向に垂直な方向を直径としている場合が含まれる。
 前述のエッチング(イミド結合の開環)工程を設けない場合、連通孔の孔径が小さくなる傾向にある。
 また、「隣接した球状セル同士が連通した多孔質膜」の平均孔径は、100~2000nmが好ましく、より好ましくは200~1000nm、さらに好ましくは300~900nmである。
 該多孔質膜の平均孔径は、前述のケミカルエッチングを行った多孔質膜(例えば、ポリイミド多孔質膜)については、パームポロメーター(例えば、ポーラスマテリアルズ社製)を用い、バブルポイント法に基づいて連通孔の径を測定した値である。ケミカルエッチングを行わない多孔質膜(例えば、ポリアミドイミド多孔質膜)については、多孔質膜の製造に使用した微粒子の平均粒径が平均孔径とされる。
 「隣接した球状セル同士が連通した多孔質膜」は、上述のように、好ましくは数百ナノメートル単位の平均孔径を有する孔を含有する多孔質膜である。このため、例えばナノメートル単位の微小物質をも、多孔質膜における孔及び/又は連通孔に吸着もしくは捕捉することができる。
 かかる連通孔の孔径は、「隣接した球状セル同士が連通した多孔質膜」に多孔質性を付与する個々の孔の孔径の分布がブロードな方が、隣接する孔同士で形成される連通孔の孔径が小さくなる傾向にある。
 連通孔の孔径を小さくする観点では、「隣接した球状セル同士が連通した多孔質膜」の空隙率は、例えば、好ましくは50質量%以上、より好ましくは60~90質量%、さらに好ましくは60~80質量%、特に好ましくは70質量%程度である。空隙率が、前記範囲の好ましい下限値以上であれば、異物除去の効果がより得られやすくなる。前記範囲の好ましい上限値以下であれば、多孔質膜の強度がより高められる。
 該多孔質膜の空隙率は、該多孔質膜を製造する際に用いられる樹脂等と微粒子との合計質量に対する、微粒子の質量の割合を算出することにより求められる。
 また、「隣接した球状セル同士が連通した多孔膜」は、BET法により求められる平均孔径が0.01~50nmの連通孔を含むことが好ましく、0.05~10nmの連通孔を含むことがより好ましい。該連通孔の平均孔径は、0.1~40nmであることがより好ましく、1~30nmであることがさらに好ましく、1~20nmであることが特に好ましい。
 BET法による平均孔径が上記範囲である連通孔を有することにより、レジストパターンの欠陥の原因となり得る高分子量体(例えば、分子量分布における分子量3万以上の分子)を、半導体製造工程に用いられる樹脂において効果的に低減することができる。
 BET法とは、多孔質体に吸着分子(例えば、窒素)を吸脱着させることにより吸着等温線を測定し、測定したデータを式下記(Be1)で表されるBET式に基づき解析する方法である。この方法に基づき比表面積A及び全細孔容積Vを算出することができ、さらに、得られた比表面積A及び全細孔容積Vに基づき式[4V/A]から平均孔径を算出することができる。なお、BET法により求められる比表面積が15m/g以上であることが好ましく、20m/g以上200m/g以下がより好ましく、25m/g以上100m/g以下がさらに好ましい。
 具体的には、まず、多孔質体に吸着分子を吸脱着させることにより、吸着等温線を求める。そして、得られた吸着等温線から、下記式(B1)に基づき[P/{Va(P0-P)}]を算出し、平衡相対圧(P/P0)に対してプロットする。そして、このプロットを直線と見なし、最小二乗法に基づき、傾きs(=[(C-1)/(Vm・C)])及び切片i(=[1/(Vm・C)])を算出する。そして、求められた傾きs及び切片iから式(Be2-1)、式(B2-2)に基づき、Vm及びCを算出する。更には、Vmから、式(Be3)に基づき比表面積Aを算出することができる。更に、求められた吸着等温線の吸着データを直線補間し、細孔容積算出相対圧で設定した相対圧での吸着量を求める。この吸着量から全細孔容積Vを算出することができる。なお、このBET法は、JIS R1626-1996「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」に準じた測定方法である。BET法による測定装置としては特に制限はないが、マイクロメリティックス(島津社製)等が挙げられる。
 [P/{V(P-P)}]
  =[1/(V・C)]+[(C-1)/(V・C)](P/P) ・・・(1)
 V=1/(s+i)  ・・・(2-1)
 C=(s/i)+1   ・・・(2-2)
 A=(V・L・σ)/22414  ・・・(3)
 Va:吸着量
 Vm:単分子層の吸着量
 P:吸着分子の平衡時の圧力
 P0:吸着分子の飽和蒸気圧
 L:アボガドロ数
 σ:吸着分子の吸着断面積
 また、「隣接した球状セル同士が連通した多孔膜」は、ポロメータにより求められる平均孔径が100nm以下であることが好ましく、90nm以下であることがより好ましい。ポロメータにより求められる細孔径分布(%)の最大値は40%以上であることが好ましく、45%以上がより好ましく、50%以上がさらに好ましい。また、細孔径分布(%)が最大である孔径(以下孔径A)は、100nm以下であることが好ましく、90nm以下であることがより好ましい。また、ポロメータにより求められる孔径Aと孔径分布幅における最大孔径の比(最大孔径/孔径A)が、1.4以下であることが好ましく、1.3以下がより好ましく、1.2以下がさらに好ましい。
 「隣接した球状セル同士が連通した多孔質膜」は、応力、破断伸度等の機械的特性に優れる。
 フィルターが備える「隣接した球状セル同士が連通した多孔質膜」の応力は、例えば、10MPa以上が好ましく、より好ましくは15MPa以上、さらに好ましくは15~50MPaである。
 該多孔質膜の応力は、サイズ4mm×30mmの試料を作製し、試験機を用いて5mm/minの測定条件で測定した値とされる。
 また、「隣接した球状セル同士が連通した多孔質膜」の破断伸度は、例えば、10%GL以上が好ましく、より好ましくは15%GL以上である。かかる破断伸度の上限は、例えば、50%GL以下が好ましく、より好ましくは45%GL以下、さらに好ましくは40%GL以下である。ポリイミド系樹脂多孔質膜の空隙率を下げると、破断伸度が高くなる傾向がある。
 該多孔質膜の破断伸度は、サイズ4mm×30mmの試料を作製し、試験機を用いて5mm/minの測定条件で測定した値とされる。
 「隣接した球状セル同士が連通した多孔質膜」の熱分解温度は、200℃以上が好ましく、320℃以上がより好ましく、350℃以上がさらに好ましい。
 該多孔質膜の熱分解温度は、空気雰囲気下、10℃/minの昇温速度で1000℃まで昇温することで測定できる。
 本実施形態におけるフィルターは、図1に示すような隣り合う球状セル1aと球状セル1bとが連通した連通孔5が形成された多孔質膜を備えたものに限定されず、連通孔5に加えてこれ以外の形態のセル又は連通孔が形成された多孔質膜を備えるものでもよい。これ以外の形態のセル(以下これを「他のセル」という。)としては、形状もしくは孔径が異なるセルが挙げられ、例えば楕円状セル、多面体状セル、孔径の異なる球状セル等が挙げられる。前記の「これ以外の形態の連通孔」としては、例えば、球状セルと他のセルとが連通した連通孔が挙げられる。
 他のセルの形状又は孔径は、除去対象とされる不純物の種類に応じて適宜決定すればよい。球状セルと他のセルとが連通した連通孔は、上述の微粒子の材料選択、微粒子の形状制御などによって形成できる。
 隣接した球状セル同士が連通した連通孔に加えてこれ以外の形態のセル又は連通孔が形成された多孔質膜を備えたフィルターによれば、濾過対象物から、種々の異物をより効率的に除去できる。
 また、本実施形態におけるフィルターは、半導体製造プロセスにおける各種薬液の供給ライン又はPOU(point of use)で、これまで設置されていた微粒子状不純物除去のためのフィルターカートリッジ等に置き換えて、又はこれと組み合わせて用いることができる。このため、従来と全く同一の装置及び操作で、濾過対象物(リソグラフィー用薬液)から、種々の異物を効率良く除去でき、高純度のレジスト組成物精製品を調製できる。
≪レジスト組成物の濾過≫
 隣接した球状セル同士が連通した多孔質構造を有するフィルターによるレジスト組成物の濾過は、差圧なしの状態で行ってもよいし(即ち、レジスト組成物をフィルターに重力のみで通過させてもよいし)、差圧を設けた状態で行ってもよい。中でも、後者が好ましく、レジスト組成物をフィルターに差圧によって通過させる操作を行うことが好ましい。
 「差圧を設けた状態」とは、フィルターが備えるポリイミド系樹脂多孔質膜の一方の側と他方の側との間に圧力差があること、をいう。
 例えば、ポリイミド系樹脂多孔質膜の片方の側(レジスト組成物供給側)に圧力を加える加圧(陽圧)、ポリイミド系樹脂多孔質膜の片方の側(濾液側)を負圧にする減圧(陰圧)等が挙げられる。本実施形態における濾過工程では、前者の加圧が好ましい。
 加圧は、ポリイミド系樹脂多孔質膜を通過させる前のレジスト組成物(以下「供給液」ということがある。)が存在する、ポリイミド系樹脂多孔質膜の供給液側に圧力を加えるものである。
 例えば、供給液の循環若しくは送流で生じる流液圧を利用すること、又はガスの陽圧を利用することにより、供給液側に圧力を加えることが好ましい。
 流液圧は、例えばポンプ(送液ポンプ、循環ポンプ等)の積極的な流液圧付加方法により発生させることができる。ポンプとしては、ロータリーポンプ、ダイヤフラムポンプ、定量ポンプ、ケミカルポンプ、プランジャーポンプ、ベローズポンプ、ギアポンプ、真空ポンプ、エアーポンプ、液体ポンプ等が挙げられる。
 ポンプによる供給液の循環若しくは送液を行う場合、通常、ポンプは、供給液槽(又は循環槽)とポリイミド系樹脂多孔質膜との間に配置される。
 流液圧としては、例えば、供給液をポリイミド系樹脂多孔質膜に重力のみで通過させる際に、該供給液によりポリイミド系樹脂多孔質膜に加えられる圧力であってもよいが、上記の積極的な流液圧付加方法により加えられる圧力であることが好ましい。
 加圧に用いられるガスとしては、供給液に対して不活性又は非反応性のガスが好ましく、具体的には、窒素、又はヘリウム、アルゴン等の希ガス等が挙げられる。
 供給液側に圧力を加える方法としては、ガスの陽圧を利用することが好ましい。その際、ポリイミド系樹脂多孔質膜を通過した濾液側は、減圧せず大気圧でよい。
 また、加圧は、流液圧とガスの陽圧との両方を利用するものであってもよい。また、差圧は、加圧と減圧とを組み合わせてもよく、例えば、流液圧と減圧との両方を利用するもの、ガスの陽圧と減圧との両方を利用するもの、又は、流液圧及びガスの陽圧と減圧とを利用するものであってもよい。差圧を設ける方法を組み合せる場合、製造の簡便化等の点で、流液圧とガスの陽圧との組合せ、流液圧と減圧との組合せが好ましい。
 本実施形態においては、ポリイミド系樹脂多孔質膜を用いることから、差圧を設ける方法として、例えば、ガスによる陽圧等の1つの方法であっても、異物除去性能に優れる。
 減圧は、ポリイミド系樹脂多孔質膜を通過した濾液側を減圧するものであり、例えば、ポンプによる減圧であってもよいが、真空にまで減圧することが好ましい。
 レジスト組成物をフィルターに通過させる操作を、差圧を設けた状態で行う場合、その圧力差は、使用するポリイミド系樹脂多孔質膜の膜厚、空隙率若しくは平均孔径、又は所望の精製度、流量、流速、又は供給液の濃度若しくは粘度等を勘案して適宜設定される。例えば、いわゆるクロスフロー方式(ポリイミド系樹脂多孔質膜に対して平行に供給液を流す)の場合の圧力差は、例えば0.3MPa以下が好ましい。
 いわゆるデッドエンド方式(ポリイミド系樹脂多孔質膜に対して交差するように供給液を流す)の場合の圧力差は、例えば1MPa以下が好ましく、0.3MPa以下がより好ましい。それぞれの圧力差の下限値は、0.01MPa以上が好ましく、0.05MPa以上がより好ましい。
 工程(i)において、レジスト組成物を、上述したポリイミド系樹脂多孔質膜を備えるフィルターに通過させる操作は、レジスト組成物(供給液)の流速を高く維持した状態で行うことができる。
 この場合の流速としては、特に限定されないが、例えば、室温(20℃)において0.08MPaで加圧した場合の純水の流速が、好ましくは1mL/分以上、より好ましくは3mL/分以上、さらに好ましくは5mL/分以上、特に好ましくは10mL/分以上である。流速の上限値は、特に限定されず、例えば、50mL/分以下とされる。
 本実施形態においては、上述したポリイミド系樹脂多孔質膜を備えるフィルターが用いられるため、このように流速を高く維持しながら濾過を行うことができ、レジスト組成物に含まれる異物の除去率を高められる。
 また、工程(i)において、レジスト組成物をフィルターに通過させる操作は、レジスト組成物の温度を、0~30℃に設定して行うことが好ましく、5~25℃に設定して行うことがより好ましい。
 また、工程(i)では、レジスト組成物を、ポリイミド系樹脂多孔質膜を備えるフィルターに複数回通過させても(複数回循環ろ過を行っても)よいし、ポリイミド系樹脂多孔質膜を備えるフィルターを少なくとも含む、複数のフィルターに通過させてもよい。
 また、供給液をポリイミド系樹脂多孔質膜に通過させる前に、ポリイミド系樹脂多孔質膜の洗浄、供給液に対する濡れ性向上、又は、ポリイミド系樹脂多孔質膜と供給液との表面エネルギー調整のために、メタノール、エタノール、イソプロピルアルコール等のアルコールもしくはアセトン、メチルエチルケトン等のケトン、水、供給液に含まれる溶媒又はそれらの混合物等の溶液を、ポリイミド系樹脂多孔質膜に接触させて通液してもよい。上記溶液とポリイミド系樹脂多孔質膜とを接触させるには、上記溶液にポリイミド系樹脂多孔質膜を含浸させてもよいし浸漬させてもよい。上記溶液をポリイミド系樹脂多孔質膜と接触させることによって、例えば、ポリイミド系樹脂多孔質膜の内部の孔に溶液を浸透させることができる。上記溶液とポリイミド系樹脂多孔質膜との接触は、上述した差圧を設けた状態で行ってもよく、特に、ポリイミド系樹脂多孔質膜の内部の孔にも溶液を浸透させる場合は加圧下で行うことが好ましい。
<他の工程>
 本実施形態にかかる製造方法は、前記工程(i)に加えて、他の工程を含んでいてもよい。他の工程としては、例えば、ポリイミド系樹脂多孔質膜を備えるフィルター以外の他のフィルターで濾過する工程が挙げられる。前記ポリイミド系樹脂多孔質膜を備えるフィルター以外のフィルターは、特に限定されないが、例えば、ナイロン膜、ポリエチレン膜、ポリプロピレン膜、ポリテトラフルオロエチレン(PTFE)膜、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)膜、及びこれらを修飾した膜等の熱可塑性樹脂の多孔質膜を備えるフィルター等が挙げられる。中でも、異物の除去性能に優れることから、他のフィルターとしては、ポリエチレン樹脂を含有する多孔質膜を備えるフィルターを用いることが好ましい。
≪工程(ii)≫
 本実施形態にかかる製造方法は、前記工程(i)に加えて、ポリエチレン樹脂を含有する多孔質膜を備えるフィルターで濾過する工程(ii)を、さらに含むことが好ましい。ポリエチレン樹脂を含有する多孔質膜(以下「ポリエチレン樹脂多孔質膜」ともいう)は、ポリエチレン樹脂のみからなるものであってもよく、ポリエチレン樹脂と他の樹脂とを含むものであってもよいが、ポリエチレン樹脂のみからなるものが好ましい。
 ポリエチレン樹脂多孔質膜は、特に限定されず、公知のものを用いることができる。ポリエチレン樹脂多孔質膜は、耐衝撃性、耐摩耗性、及び耐薬品に優れることから、超高分子量ポリエチレン(UPE)の多孔質膜を用いることが好ましい。
 かかるポリエチレン樹脂多孔質膜の平均孔径は、特に限定されないが、微細な異物を除去する観点から、0.1~100nmが好ましく、0.3~50nmがより好ましく、0.5~10nmがさらに好ましい。
 かかるポリエチレン樹脂多孔質膜を備えるフィルターとしては、ポリエチレン樹脂多孔質膜を、熱可塑性樹脂(ポリエチレン、ポリプロピレン、PFA、ポリエーテルサルフォン(PES)、ポリイミド、ポリアミドイミド等)からなる外側容器に備えたものも挙げられる。
 工程(ii)は、前記工程(i)の後に行うことが好ましく、この場合、ポリエチレン樹脂多孔質膜の平均孔径は、前記ポリイミド系多孔質膜の連通孔の平均孔径よりも小さいことが好ましい。
 本実施形態の製造方法においては、前記工程(i)の後に工程(ii)を行うことを繰り返し行ってもよい。この場合、レジスト組成物(供給液)を常時循環しながら、ポリイミド系樹脂多孔質膜を備えるフィルターと、ポリエチレン樹脂多孔質膜を備えるフィルターと、に通過させる。前記のような循環型の濾過を行う場合、該循環経路において、両フィルターは、レジスト組成物がポリイミド系樹脂多孔質膜を備えるフィルターを通過した後にポリエチレン樹脂多孔質膜を備えるフィルターを通過するように配置されることが好ましい。
 工程(ii)を行う場合、前記工程(i)において記載したのと同様に、供給液をポリエチレン樹脂多孔質膜に通過させる前に、ポリエチレン樹脂多孔質膜の洗浄、供給液に対する濡れ性向上、又は、ポリエチレン樹脂多孔質膜と供給液との表面エネルギー調整のために、メタノール、エタノール、イソプロピルアルコール等のアルコールもしくはアセトン、メチルエチルケトン等のケトン、水、供給液に含まれる溶媒又はそれらの混合物等の溶液を、ポリエチレン樹脂多孔質膜に接触させて通液してもよい。
<レジスト組成物>
 濾過対象物であるレジスト組成物は、酸の作用により現像液に対する溶解性が変化する基材成分(A)(以下「(A)成分」ともいう)と、オニウム塩と、有機溶剤成分(S)とを含有する。前記レジスト組成物における有機溶剤成分(S)の含有量は、97質量%以上である。
 前記レジスト組成物を用いてレジスト膜を形成し、該レジスト膜に対して選択的露光を行うと、該レジスト膜の露光部では酸が発生し、該酸の作用により(A)成分の現像液に対する溶解性が変化する一方で、該レジスト膜の未露光部では(A)成分の現像液に対する溶解性が変化しないため、該レジスト膜の露光部と未露光部との間で現像液に対する溶解性の差が生じる。そのため、該レジスト膜を現像すると、該レジスト組成物がポジ型の場合はレジスト膜露光部が溶解除去されてポジ型のレジストパターンが形成され、該レジスト組成物がネガ型の場合はレジスト膜未露光部が溶解除去されてネガ型のレジストパターンが形成される。
 本明細書においては、レジスト膜露光部が溶解除去されてポジ型レジストパターンを形成するレジスト組成物を、ポジ型レジスト組成物といい、レジスト膜未露光部が溶解除去されてネガ型レジストパターンを形成するレジスト組成物を、ネガ型レジスト組成物という。
 レジスト組成物は、ポジ型レジスト組成物であってもよく、ネガ型レジスト組成物であってもよい。
 また、レジスト組成物は、レジストパターン形成時の現像処理にアルカリ現像液を用いるアルカリ現像プロセス用であってもよく、該現像処理に有機溶剤を含む現像液(有機系現像液)を用いる溶剤現像プロセス用であってもよい。
 つまり、レジスト組成物は、アルカリ現像プロセスにおいてポジ型レジストパターンを形成する「アルカリ現像プロセス用ポジ型レジスト組成物」であり、溶剤現像プロセスにおいてネガ型レジストパターンを形成する「溶剤現像プロセス用ネガ型レジスト組成物」である。
 レジスト組成物は、露光により酸を発生する酸発生能を有するものであり、(A)成分が露光により酸を発生してもよく、(A)成分とは別に配合された添加剤成分が露光により酸を発生してもよい。
 具体的には、レジスト組成物は、(1)露光により酸を発生する酸発生剤成分(B)(以下「(B)成分」という。)を含有するものであってもよく;(2)(A)成分が露光により酸を発生する成分であってもよく;(3)(A)成分が露光により酸を発生する成分であり、かつ、さらに(B)成分を含有するものであってもよい。
 すなわち、上記(2)又は(3)の場合、(A)成分は、「露光により酸を発生し、かつ、酸の作用により現像液に対する溶解性が変化する基材成分」となる。(A)成分が露光により酸を発生し、かつ、酸の作用により現像液に対する溶解性が変化する基材成分である場合、後述する(A1)成分が、露光により酸を発生し、かつ、酸の作用により現像液に対する溶解性が変化する高分子化合物であることが好ましい。このような高分子化合物としては、露光により酸を発生する構成単位を有する共重合体を用いることができる。露光により酸を発生する構成単位としては、例えば公知のものが挙げられる。
 レジスト組成は、上記(1)の場合であることが特に好ましい。
 また、レジスト組成物は、露光により発生する酸をトラップ(すなわち、酸の拡散を制御)する塩基成分(以下「(D)成分」ともいう)を含有するものであってもよい。
 濾過対象物であるレジスト組成物が含有するオニウム塩は、(B)成分に含まれていてもよく、(D)成分に含まれていてもよく、(A)成分に含まれていてもよい。オニウム塩が(A)成分に含まれる場合、該(A)成分は露光により酸を発生する成分である。
≪(A)成分について≫
 レジスト組成物において、(A)成分は、酸の作用により現像液に対する溶解性が変化する基材成分である。
 本発明において「基材成分」とは、膜形成能を有する有機化合物であり、好ましくは分子量が500以上の有機化合物が用いられる。該有機化合物の分子量が500以上であることにより、膜形成能が向上し、加えて、ナノレベルのレジストパターンを形成しやすくなる。
 基材成分として用いられる有機化合物は、非重合体と重合体とに大別される。
 非重合体としては、通常、分子量が500以上4000未満のものが用いられる。以下「低分子化合物」という場合は、分子量が500以上4000未満の非重合体を示す。重合体としては、通常、分子量が1000以上のものが用いられる。以下「樹脂」、「高分子化合物」又は「ポリマー」という場合は、分子量が1000以上の重合体を示す。重合体の分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算の質量平均分子量を用いるものとする。
 レジスト組成物が、アルカリ現像プロセスにおいてネガ型レジストパターンを形成する「アルカリ現像プロセス用ネガ型レジスト組成物」である場合、または、溶剤現像プロセスにおいてポジ型レジストパターンを形成する「溶剤現像プロセス用ポジ型レジスト組成物」である場合、(A)成分としては、好ましくは、アルカリ現像液に可溶性の基材成分(A-2)(以下「(A-2)成分」という)が用いられ、さらに、架橋剤成分が配合される。かかるレジスト組成物は、例えば、露光により(B)成分から酸が発生すると、該酸が作用して該(A-2)成分と架橋剤成分との間で架橋が起こり、この結果、アルカリ現像液に対する溶解性が減少(有機系現像液に対する溶解性が増大)する。そのため、レジストパターンの形成において、該レジスト組成物を支持体上に塗布して得られるレジスト膜を選択的に露光すると、レジスト膜露光部はアルカリ現像液に対して難溶性(有機系現像液に対して可溶性)へ転じる一方で、レジスト膜未露光部はアルカリ現像液に対して可溶性(有機系現像液に対して難溶性)のまま変化しないため、アルカリ現像液で現像することによりネガ型レジストパターンが形成される。また、このとき有機系現像液で現像することによりポジ型のレジストパターンが形成される。
 (A-2)成分の好ましいものとしては、アルカリ現像液に対して可溶性の樹脂(以下「アルカリ可溶性樹脂」という。)が用いられる。
 アルカリ可溶性樹脂としては、例えば特開2000-206694号公報に開示されている、α-(ヒドロキシアルキル)アクリル酸、またはα-(ヒドロキシアルキル)アクリル酸のアルキルエステル(好ましくは炭素数1~5のアルキルエステル)から選ばれる少なくとも一つから誘導される構成単位を有する樹脂;米国特許6949325号公報に開示されている、スルホンアミド基を有するα位の炭素原子に結合した水素原子が置換基で置換されていてもよいアクリル樹脂またはポリシクロオレフィン樹脂;米国特許6949325号公報、特開2005-336452号公報、特開2006-317803号公報に開示されている、フッ素化アルコールを含有し、α位の炭素原子に結合した水素原子が置換基で置換されていてもよいアクリル樹脂;特開2006-259582号公報に開示されている、フッ素化アルコールを有するポリシクロオレフィン樹脂等が、膨潤の少ない良好なレジストパターンを形成できることから好ましい。
 なお、前記α-(ヒドロキシアルキル)アクリル酸は、α位の炭素原子に結合した水素原子が置換基で置換されていてもよいアクリル酸のうち、カルボキシ基が結合するα位の炭素原子に水素原子が結合しているアクリル酸と、このα位の炭素原子にヒドロキシアルキル基(好ましくは炭素数1~5のヒドロキシアルキル基)が結合しているα-ヒドロキシアルキルアクリル酸の一方または両方を示す。
 架橋剤成分としては、例えば、膨潤の少ない良好なレジストパターンが形成されやすいことから、メチロール基もしくはアルコキシメチル基を有するグリコールウリルなどのアミノ系架橋剤、又はメラミン系架橋剤などを用いることが好ましい。架橋剤成分の配合量は、アルカリ可溶性樹脂100質量部に対して1~50質量部であることが好ましい。
 レジスト組成物が、アルカリ現像プロセスにおいてポジ型レジストパターンを形成する「アルカリ現像プロセス用ポジ型レジスト組成物」である場合、または、溶剤現像プロセスにおいてネガ型レジストパターンを形成する「溶剤現像プロセス用ネガ型レジスト組成物」である場合、(A)成分としては、好ましくは、酸の作用により極性が増大する基材成分(A-1)(以下「(A-1)成分」という)が用いられる。(A-1)成分を用いることにより、露光前後で基材成分の極性が変化するため、アルカリ現像プロセスだけでなく、溶剤現像プロセスにおいても、良好な現像コントラストを得ることができる。
 アルカリ現像プロセスを適用する場合、該(A-1)成分は、露光前はアルカリ現像液に対して難溶性であり、例えば、露光により(B)成分から酸が発生すると、該酸の作用により極性が増大してアルカリ現像液に対する溶解性が増大する。そのため、レジストパターンの形成において、該レジスト組成物を支持体上に塗布して得られるレジスト膜に対して選択的に露光すると、レジスト膜露光部はアルカリ現像液に対して難溶性から可溶性に変化する一方で、レジスト膜未露光部はアルカリ難溶性のまま変化しないため、アルカリ現像することによりポジ型レジストパターンが形成される。
 一方、溶剤現像プロセスを適用する場合、該(A-1)成分は、露光前は有機系現像液に対して溶解性が高く、露光により(B)成分から酸が発生すると、該酸の作用により極性が高くなり、有機系現像液に対する溶解性が減少する。そのため、レジストパターンの形成において、当該レジスト組成物を支持体上に塗布して得られるレジスト膜に対して選択的に露光すると、レジスト膜露光部は有機系現像液に対して可溶性から難溶性に変化する一方で、レジスト膜未露光部は可溶性のまま変化しないため、有機系現像液で現像することにより、露光部と未露光部との間でコントラストをつけることができ、ネガ型レジストパターンが形成される。
 レジスト組成物において、(A)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 レジスト組成物において、(A)成分は、前記(A-1)成分であることが好ましい。すなわち、レジスト組成物は、アルカリ現像プロセスにおいてポジ型レジストパターンを形成する「アルカリ現像プロセス用ポジ型レジスト組成物」、又は、溶剤現像プロセスにおいてネガ型レジストパターンを形成する「溶剤現像プロセス用ネガ型レジスト組成物」であることが好ましい。(A)成分には、高分子化合物及び低分子化合物の少なとも一方を用いることができる。
 (A)成分が(A-1)成分である場合、(A-1)成分としては、樹脂成分(A1)(以下「(A1)成分」ともいう)を含むものが好ましい。
・(A1)成分について
 (A1)成分は、樹脂成分であり、酸の作用により極性が増大する酸分解性基を含む構成単位(a1)を有する高分子化合物を含むものが好ましい。
 (A1)成分としては、構成単位(a1)に加えて、さらに、ヒドロキシスチレン骨格を含む構成単位(a10)を有するものが好ましい。
 また、(A1)成分としては、構成単位(a1)に加えて、さらに、ラクトン含有環式基、-SO-含有環式基又はカーボネート含有環式基を含む構成単位(a2)、極性基含有脂肪族炭化水素基を含む構成単位(a3)(但し、構成単位(a1)もしくは構成単位(a2)に該当するものを除く)、又は露光により酸を発生する構成単位(a6)を有していてもよい。
 また、(A1)成分は、構成単位(a1)、構成単位(a2)、構成単位(a3)、構成単位(a10)、構成単位(a6)以外の構成単位を有してもよい。
〔構成単位(a1)〕
 構成単位(a1)は、酸の作用により極性が増大する酸分解性基を含む構成単位である。
 「酸分解性基」は、酸の作用により、当該酸分解性基の構造中の少なくとも一部の結合が開裂し得る酸分解性を有する基である。
 酸の作用により極性が増大する酸分解性基としては、たとえば、酸の作用により分解して極性基を生じる基が挙げられる。
 極性基としては、たとえばカルボキシ基、水酸基、アミノ基、スルホ基(-SOH)等が挙げられる。これらのなかでも、構造中に-OHを含有する極性基(以下「OH含有極性基」ということがある。)が好ましく、カルボキシ基または水酸基がより好ましく、カルボキシ基が特に好ましい。
 酸分解性基としてより具体的には、前記極性基が酸解離性基で保護された基(たとえばOH含有極性基の水素原子を、酸解離性基で保護した基)が挙げられる。
 ここで「酸解離性基」とは、(i)酸の作用により、当該酸解離性基と該酸解離性基に隣接する原子との間の結合が開裂し得る酸解離性を有する基、又は、(ii)酸の作用により一部の結合が開裂した後、さらに脱炭酸反応が生じることにより、当該酸解離性基と該酸解離性基に隣接する原子との間の結合が開裂し得る基、の双方をいう。
 酸分解性基を構成する酸解離性基は、当該酸解離性基の解離により生成する極性基よりも極性の低い基であることが必要で、これにより、酸の作用により該酸解離性基が解離した際に、該酸解離性基よりも極性の高い極性基が生じて極性が増大する。その結果、(A1)成分全体の極性が増大する。極性が増大することにより、相対的に、現像液に対する溶解性が変化し、現像液がアルカリ現像液の場合には溶解性が増大し、現像液が有機系現像液の場合には溶解性が減少する。
 酸解離性基としては、これまで、化学増幅型レジスト組成物用のベース樹脂の酸解離性基として提案されているものが挙げられる。
 化学増幅型レジスト組成物用のベース樹脂の酸解離性基として提案されているものとして具体的には、以下に説明する「アセタール型酸解離性基」、「第3級アルキルエステル型酸解離性基」、「第3級アルキルオキシカルボニル酸解離性基」が挙げられる。
 アセタール型酸解離性基:
 前記極性基のうちカルボキシ基または水酸基を保護する酸解離性基としては、たとえば、下記一般式(a1-r-1)で表される酸解離性基(以下「アセタール型酸解離性基」ということがある。)が挙げられる。
Figure JPOXMLDOC01-appb-C000004
[式中、Ra’、Ra’は水素原子またはアルキル基である。Ra’は炭化水素基であって、Ra’は、Ra’、Ra’のいずれかと結合して環を形成してもよい。]
 式(a1-r-1)中、Ra’及びRa’のうち、少なくとも一方が水素原子であることが好ましく、両方が水素原子であることがより好ましい。
 Ra’又はRa’がアルキル基である場合、該アルキル基としては、上記α置換アクリル酸エステルについての説明で、α位の炭素原子に結合してもよい置換基として挙げたアルキル基と同様のものが挙げられ、炭素数1~5のアルキル基が好ましい。具体的には、直鎖状または分岐鎖状のアルキル基が好ましく挙げられる。より具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などが挙げられ、メチル基またはエチル基がより好ましく、メチル基が特に好ましい。
 式(a1-r-1)中、Ra’の炭化水素基としては、直鎖状もしくは分岐鎖状のアルキル基、又は環状の炭化水素基が挙げられる。
 該直鎖状のアルキル基は、炭素数が1~5であることが好ましく、炭素数が1~4がより好ましく、炭素数1または2がさらに好ましい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等が挙げられる。これらの中でも、メチル基、エチル基またはn-ブチル基が好ましく、メチル基またはエチル基がより好ましい。
 該分岐鎖状のアルキル基は、炭素数が3~10であることが好ましく、炭素数3~5がより好ましい。具体的には、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1,1-ジエチルプロピル基、2,2-ジメチルブチル基等が挙げられ、イソプロピル基であることが好ましい。
 Ra’が環状の炭化水素基となる場合、該炭化水素基は、脂肪族炭化水素基でも芳香族炭化水素基でもよく、また、多環式基でも単環式基でもよい。
 単環式基である脂肪族炭化水素基としては、モノシクロアルカンから1個の水素原子を除いた基が好ましい。該モノシクロアルカンとしては、炭素数3~6のものが好ましく、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。
 多環式基である脂肪族炭化水素基としては、ポリシクロアルカンから1個の水素原子を除いた基が好ましく、該ポリシクロアルカンとしては、炭素数7~12のものが好ましく、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
 Ra’の環状の炭化水素基が芳香族炭化水素基となる場合、該芳香族炭化水素基は、芳香環を少なくとも1つ有する炭化水素基である。
 この芳香環は、4n+2個のπ電子をもつ環状共役系であれば特に限定されず、単環式でも多環式でもよい。芳香環の炭素数は5~30であることが好ましく、炭素数5~20がより好ましく、炭素数6~15がさらに好ましく、炭素数6~12が特に好ましい。芳香環として具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された芳香族複素環等が挙げられる。芳香族複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。芳香族複素環として具体的には、ピリジン環、チオフェン環等が挙げられる。
 Ra’における芳香族炭化水素基として具体的には、前記芳香族炭化水素環または芳香族複素環から水素原子を1つ除いた基(アリール基またはヘテロアリール基);2以上の芳香環を含む芳香族化合物(たとえばビフェニル、フルオレン等)から水素原子を1つ除いた基;前記芳香族炭化水素環または芳香族複素環の水素原子の1つがアルキレン基で置換された基(たとえば、ベンジル基、フェネチル基、1-ナフチルメチル基、2-ナフチルメチル基、1-ナフチルエチル基、2-ナフチルエチル基等のアリールアルキル基など)等が挙げられる。前記芳香族炭化水素環または芳香族複素環に結合するアルキレン基の炭素数は、1~4であることが好ましく、炭素数1~2であることがより好ましく、炭素数1であることが特に好ましい。
 Ra’における環状の炭化水素基は、置換基を有していてもよい。この置換基としては、例えば、-RP1、-RP2-O-RP1、-RP2-CO-RP1、-RP2-CO-ORP1、-RP2-O-CO-RP1、-RP2-OH、-RP2-CN又は-RP2-COOH(以下これらの置換基をまとめて「Ra05」ともいう。)等が挙げられる。
 ここで、RP1は、炭素数1~10の1価の鎖状飽和炭化水素基、炭素数3~20の1価の脂肪族環状飽和炭化水素基又は炭素数6~30の1価の芳香族炭化水素基である。また、RP2は、単結合、炭素数1~10の2価の鎖状飽和炭化水素基、炭素数3~20の2価の脂肪族環状飽和炭化水素基又は炭素数6~30の2価の芳香族炭化水素基である。但し、RP1及びRP2の鎖状飽和炭化水素基、脂肪族環状飽和炭化水素基及び芳香族炭化水素基の有する水素原子の一部又は全部はフッ素原子で置換されていてもよい。上記脂肪族環状炭化水素基は、上記置換基を1種単独で1つ以上有していてもよいし、上記置換基のうち複数種を各1つ以上有していてもよい。
 炭素数1~10の1価の鎖状飽和炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基等が挙げられる。
 炭素数3~20の1価の脂肪族環状飽和炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基等の単環式脂肪族飽和炭化水素基;ビシクロ[2.2.2]オクタニル基、トリシクロ[5.2.1.02,6]デカニル基、トリシクロ[3.3.1.13,7]デカニル基、テトラシクロ[6.2.1.13,6.02,7]ドデカニル基、アダマンチル基等の多環式脂肪族飽和炭化水素基が挙げられる。
 炭素数6~30の1価の芳香族炭化水素基としては、例えば、ベンゼン、ビフェニル、フルオレン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環から水素原子1個を除いた基が挙げられる。
 Ra’が、Ra’、Ra’のいずれかと結合して環を形成する場合、該環式基としては、4~7員環が好ましく、4~6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
 第3級アルキルエステル型酸解離性基:
 上記極性基のうち、カルボキシ基を保護する酸解離性基としては、たとえば、下記一般式(a1-r-2)で表される酸解離性基が挙げられる。
 尚、下記式(a1-r-2)で表される酸解離性基のうち、アルキル基により構成されるものを、以下、便宜上「第3級アルキルエステル型酸解離性基」ということがある。
Figure JPOXMLDOC01-appb-C000005
[式中、Ra’~Ra’はそれぞれ炭化水素基であって、Ra’、Ra’は互いに結合して環を形成してもよい。]
 Ra’の炭化水素基としては、直鎖状もしくは分岐鎖状のアルキル基、鎖状もしくは環状のアルケニル基、又は、環状の炭化水素基が挙げられる。
 Ra’における直鎖状もしくは分岐鎖状のアルキル基、環状の炭化水素基(単環式基である脂肪族炭化水素基、多環式基である脂肪族炭化水素基、芳香族炭化水素基)は、前記Ra’と同様のものが挙げられる。
 Ra’における鎖状もしくは環状のアルケニル基は、炭素数2~10のアルケニル基が好ましい。
 Ra’、Ra’の炭化水素基としては、前記Ra’と同様のものが挙げられる。
 Ra’とRa’とが互いに結合して環を形成する場合、下記一般式(a1-r2-1)で表される基、下記一般式(a1-r2-2)で表される基、下記一般式(a1-r2-3)で表される基が好適に挙げられる。
 一方、Ra’~Ra’が互いに結合せず、独立した炭化水素基である場合、下記一般式(a1-r2-4)で表される基が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000006
[式(a1-r2-1)中、Ra’10は、炭素数1~10のアルキル基、又は下記一般式(a1-r2-r1)で表される基を示す。Ra’11はRa’10が結合した炭素原子と共に脂肪族環式基を形成する基を示す。式(a1-r2-2)中、Yaは炭素原子である。Xaは、Yaと共に環状の炭化水素基を形成する基である。この環状の炭化水素基が有する水素原子の一部又は全部は置換されていてもよい。Ra01~Ra03は、それぞれ独立して、水素原子、炭素数1~10の1価の鎖状飽和炭化水素基又は炭素数3~20の1価の脂肪族環状飽和炭化水素基である。この鎖状飽和炭化水素基及び脂肪族環状飽和炭化水素基が有する水素原子の一部又は全部は置換されていてもよい。Ra01~Ra03の2つ以上が互いに結合して環状構造を形成していてもよい。式(a1-r2-3)中、Yaaは炭素原子である。Xaaは、Yaaと共に脂肪族環式基を形成する基である。Ra04は、置換基を有していてもよい芳香族炭化水素基である。式(a1-r2-4)中、Ra’12及びRa’13は、それぞれ独立に、炭素数1~10の1価の鎖状飽和炭化水素基又は水素原子である。この鎖状飽和炭化水素基が有する水素原子の一部又は全部は置換されていてもよい。Ra’14は、置換基を有していてもよい炭化水素基である。*は結合手を示す(以下同じ)。]
Figure JPOXMLDOC01-appb-C000007
[式中、Yaは、第4級炭素原子である。Ra031、Ra032及びRa033は、それぞれ独立に、置換基を有していてもよい炭化水素基である。但し、Ra031、Ra032及びRa033のうちの1つ以上は、少なくとも一つの極性基を有する炭化水素基である。]
 上記の式(a1-r2-1)中、Ra’10の炭素数1~10のアルキル基は、式(a1-r-1)におけるRa’の直鎖状又は分岐鎖状のアルキル基として挙げた基が好ましい。Ra’10は、炭素数1~5のアルキル基であることが好ましい。
 前記式(a1-r2-r1)中、Yaは、第4級炭素原子である。すなわち、Ya(炭素原子)に結合する隣の炭素原子が4つである。
 前記式(a1-r2-r1)中、Ra031、Ra032及びRa033は、それぞれ独立に、置換基を有していてもよい炭化水素基である。Ra031、Ra032及びRa033における炭化水素基としては、それぞれ独立に、直鎖状もしくは分岐鎖状のアルキル基、鎖状もしくは環状のアルケニル基、又は、環状の炭化水素基が挙げられる。
 Ra031、Ra032及びRa033における、直鎖状のアルキル基は、炭素数が1~5であることが好ましく、1~4がより好ましく、1または2がさらに好ましい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等が挙げられる。これらの中でも、メチル基、エチル基またはn-ブチル基が好ましく、メチル基またはエチル基がより好ましい。
 Ra031、Ra032及びRa033における、分岐鎖状のアルキル基は、炭素数が3~10であることが好ましく、3~5がより好ましい。具体的には、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1,1-ジエチルプロピル基、2,2-ジメチルブチル基等が挙げられ、イソプロピル基であることが好ましい。
 Ra031、Ra032及びRa033における、鎖状もしくは環状のアルケニル基は、炭素数2~10のアルケニル基が好ましい。
 Ra031、Ra032及びRa033における、環状の炭化水素基は、脂肪族炭化水素基でも芳香族炭化水素基でもよく、また、多環式基でも単環式基でもよい。
 単環式基である脂肪族炭化水素基としては、モノシクロアルカンから1個の水素原子を除いた基が好ましい。該モノシクロアルカンとしては、炭素数3~6のものが好ましく、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。
 多環式基である脂肪族炭化水素基としては、ポリシクロアルカンから1個の水素原子を除いた基が好ましく、該ポリシクロアルカンとしては、炭素数7~12のものが好ましく、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
 Ra031、Ra032及びRa033における、該芳香族炭化水素基は、芳香環を少なくとも1つ有する炭化水素基である。この芳香環は、4n+2個のπ電子をもつ環状共役系であれば特に限定されず、単環式でも多環式でもよい。芳香環の炭素数は5~30であることが好ましく、5~20がより好ましく、6~15がさらに好ましく、6~12が特に好ましい。芳香環として具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された芳香族複素環等が挙げられる。芳香族複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。芳香族複素環として具体的には、ピリジン環、チオフェン環等が挙げられる。該芳香族炭化水素基として具体的には、前記芳香族炭化水素環または芳香族複素環から水素原子を1つ除いた基(アリール基またはヘテロアリール基);2以上の芳香環を含む芳香族化合物(たとえばビフェニル、フルオレン等)から水素原子を1つ除いた基;前記芳香族炭化水素環または芳香族複素環の水素原子の1つがアルキレン基で置換された基(たとえば、ベンジル基、フェネチル基、1-ナフチルメチル基、2-ナフチルメチル基、1-ナフチルエチル基、2-ナフチルエチル基等のアリールアルキル基など)等が挙げられる。前記芳香族炭化水素環または芳香族複素環に結合するアルキレン基の炭素数は、1~4であることが好ましく、1~2であることがより好ましく、1であることが特に好ましい。
 上記のRa031、Ra032及びRa033で表される炭化水素基が置換されている場合、その置換基としては、例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等)、アルキルオキシカルボニル基等が挙げられる。
 上記の中でも、Ra031、Ra032及びRa033における、置換基を有していてもよい炭化水素基は、置換基を有していてもよい直鎖状もしくは分岐鎖状のアルキル基が好ましく、直鎖状のアルキル基がより好ましい。
 但し、Ra031、Ra032及びRa033のうちの1つ以上は、少なくとも極性基を有する炭化水素基である。
 「極性基を有する炭化水素基」とは、炭化水素基を構成するメチレン基(-CH-)を極性基で置換しているもの、又は、炭化水素基を構成する少なくとも1つの水素原子が極性基に置換しているものをいずれも包含する。
 かかる「極性基を有する炭化水素基」としては、下記一般式(a1-p1)で表される官能基が好ましい。
Figure JPOXMLDOC01-appb-C000008
[式中、Ra07は、炭素数2~12の2価の炭化水素基を表す。Ra08は、ヘテロ原子を含む2価の連結基を表す。Ra06は、炭素数1~12の1価の炭化水素基を表す。np0は、1~6の整数である。]
 前記式(a1-p1)中、Ra07は、炭素数2~12の2価の炭化水素基を表す。Ra07の炭素数は、2~12であり、炭素数2~8が好ましく、炭素数2~6がより好ましく、炭素数2~4がさらに好ましく、炭素数2が特に好ましい。
 Ra07における炭化水素基は、鎖状又は環状の脂肪族炭化水素基が好ましく、鎖状の炭化水素基がより好ましい。
 Ra07としては、例えば、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基等の直鎖状アルカンジイル基;プロパン-1,2-ジイル基、1-メチルブタン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、ペンタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐鎖状アルカンジイル基;シクロブタン-1,3-ジイル基、シクロペンタン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等のシクロアルカンジイル基;ノルボルナン-1,4-ジイル基、ノルボルナン-2,5-ジイル基、アダマンタン-1,5-ジイル基、アダマンタン-2,6-ジイル基等の多環式の2価の脂環式炭化水素基等挙げられる。
 上記の中でも、アルカンジイル基が好ましく、直鎖状アルカンジイル基がより好ましい。
 前記式(a1-p1)中、Ra08は、ヘテロ原子を含む2価の連結基を表す。
 Ra08としては、例えば、-O-、-C(=O)-O-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-、-NH-C(=NH)-(Hはアルキル基、アシル基等の置換基で置換されていてもよい。)、-S-、-S(=O)-、-S(=O)-O-等が挙げられる。
 これらの中でも、現像液に対する溶解性の点から、-O-、-C(=O)-O-、-C(=O)-、-O-C(=O)-O-が好ましく、-O-、-C(=O)-が特に好ましい。
 前記式(a1-p1)中、Ra06は、炭素数1~12の1価の炭化水素基を表す。Ra06の炭素数は、1~12であり、現像液に対する溶解性の点から、炭素数1~8が好ましく、炭素数1~5がより好ましく、炭素数1~3がさらに好ましく、炭素数1又は2が特に好ましく、1が最も好ましい。
 Ra06における炭化水素基は、鎖状炭化水素基もしくは環状炭化水素基、又は、鎖状と環状とを組み合わせた炭化水素基が挙げられる。
 鎖状炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、2-エチルヘキシル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等が挙げられる。
 環状炭化水素基は、脂環式炭化水素基でもよいし、芳香族炭化水素基でもよい。
 脂環式炭化水素基としては、単環式又は多環式のいずれでもよく、単環式の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、ジメチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロヘプチル基、シクロデシル基等のシクロアルキル基が挙げられる。多環式の脂環式炭化水素基としては、例えば、デカヒドロナフチル基、アダマンチル基、2-アルキルアダマンタン-2-イル基、1-(アダマンタン-1-イル)アルカン-1-イル基、ノルボルニル基、メチルノルボルニル基、イソボルニル基等が挙げられる。
 芳香族炭化水素基としては、例えば、フェニル基、ナフチル基、アントリル基、p-メチルフェニル基、p-tert-ブチルフェニル基、p-アダマンチルフェニル基、トリル基、キシリル基、クメニル基、メシチル基、ビフェニル基、フェナントリル基、2,6-ジエチルフェニル基、2-メチル-6-エチルフェニル基等が挙げられる。
 Ra06としては、現像液に対する溶解性の点から、鎖状炭化水素基が好ましく、アルキル基がより好ましく、直鎖状アルキル基がさらに好ましい。
 前記式(a1-p1)中、np0は、1~6の整数であり、1~3の整数が好ましく、1又は2がより好ましく、1がさらに好ましい。
 以下に、少なくとも極性基を有する炭化水素基、の具体例を示す。
 以下の式中、*は、第4級炭素原子(Ya)に結合する結合手である。
Figure JPOXMLDOC01-appb-C000009
 前記式(a1-r2-r1)中、Ra031、Ra032及びRa033のうち、少なくとも極性基を有する炭化水素基の個数は、1つ以上であるが、レジストパターン形成の際における現像液への溶解性を考慮して適宜決定すればよく、例えば、Ra031、Ra032及びRa033のうちの1つ又は2つであることが好ましく、特に好ましくは1つである。
 前記の少なくとも極性基を有する炭化水素基は、極性基以外の置換基を有してもよい。この置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、炭素数1~5のハロゲン化アルキル基が挙げられる。
 式(a1-r2-1)中、Ra’11(Ra’10が結合した炭素原子と共に形成する脂肪族環式基)は、式(a1-r-1)におけるRa’の単環式基又は多環式基である脂肪族炭化水素基として挙げた基が好ましい。
 式(a1-r2-2)中、XaがYaと共に形成する環状の炭化水素基としては、前記式(a1-r-1)中のRa’における環状の1価の炭化水素基(脂肪族炭化水素基)から水素原子1個以上をさらに除いた基が挙げられる。
 XaがYaと共に形成する環状の炭化水素基は、置換基を有していてもよい。この置換基としては、上記Ra’における環状の炭化水素基が有していてもよい置換基と同様のものが挙げられる。
 式(a1-r2-2)中、Ra01~Ra03における、炭素数1~10の1価の鎖状飽和炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基等が挙げられる。
 Ra01~Ra03における、炭素数3~20の1価の脂肪族環状飽和炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、シクロドデシル基等の単環式脂肪族飽和炭化水素基;ビシクロ[2.2.2]オクタニル基、トリシクロ[5.2.1.02,6]デカニル基、トリシクロ[3.3.1.13,7]デカニル基、テトラシクロ[6.2.1.13,6.02,7]ドデカニル基、アダマンチル基等の多環式脂肪族飽和炭化水素基等が挙げられる。
 Ra01~Ra03は、中でも、構成単位(a1)を誘導する単量体化合物の合成容易性の観点から、水素原子、炭素数1~10の1価の鎖状飽和炭化水素基が好ましく、その中でも、水素原子、メチル基、エチル基がより好ましく、水素原子が特に好ましい。
 上記Ra01~Ra03で表される鎖状飽和炭化水素基、又は脂肪族環状飽和炭化水素基が有する置換基としては、例えば、上述のRa05と同様の基が挙げられる。
 Ra01~Ra03の2つ以上が互いに結合して環状構造を形成することにより生じる炭素-炭素二重結合を含む基としては、例えば、シクロペンテニル基、シクロヘキセニル基、メチルシクロペンテニル基、メチルシクロヘキセニル基、シクロペンチリデンエテニル基、シクロへキシリデンエテニル基等が挙げられる。これらの中でも、構成単位(a1)を誘導する単量体化合物の合成容易性の観点から、シクロペンテニル基、シクロヘキセニル基、シクロペンチリデンエテニル基が好ましい。
 式(a1-r2-3)中、XaaがYaaと共に形成する脂肪族環式基は、式(a1-r-1)におけるRa’の単環式基又は多環式基である脂肪族炭化水素基として挙げた基が好ましい。
 式(a1-r2-3)中、Ra04における芳香族炭化水素基としては、炭素数5~30の芳香族炭化水素環から水素原子1個以上を除いた基が挙げられる。中でも、Ra04は、炭素数6~15の芳香族炭化水素環から水素原子1個以上を除いた基が好ましく、ベンゼン、ナフタレン、アントラセン又はフェナントレンから水素原子1個以上を除いた基がより好ましく、ベンゼン、ナフタレン又はアントラセンから水素原子1個以上を除いた基がさらに好ましく、ベンゼン又はナフタレンから水素原子1個以上を除いた基が特に好ましく、ベンゼンから水素原子1個以上を除いた基が最も好ましい。
 式(a1-r2-3)中のRa04が有していてもよい置換基としては、例えば、メチル基、エチル基、プロピル基、ヒドロキシル基、カルボキシル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、アルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等)、アルキルオキシカルボニル基等が挙げられる。
 式(a1-r2-4)中、Ra’12及びRa’13は、それぞれ独立に、炭素数1~10の1価の鎖状飽和炭化水素基又は水素原子である。Ra’12及びRa’13における、炭素数1~10の1価の鎖状飽和炭化水素基としては、上記のRa01~Ra03における、炭素数1~10の1価の鎖状飽和炭化水素基と同様のものが挙げられる。この鎖状飽和炭化水素基が有する水素原子の一部又は全部は置換されていてもよい。
 Ra’12及びRa’13は、中でも、水素原子、炭素数1~5のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、メチル基、エチル基がさらに好ましく、メチル基が特に好ましい。
 上記Ra’12及びRa’13で表される鎖状飽和炭化水素基が置換されている場合、その置換基としては、例えば、上述のRa05と同様の基が挙げられる。
 式(a1-r2-4)中、Ra’14は、置換基を有していてもよい炭化水素基である。Ra’14における炭化水素基としては、直鎖状もしくは分岐鎖状のアルキル基、又は環状の炭化水素基が挙げられる。
 Ra’14における直鎖状のアルキル基は、炭素数が1~5であることが好ましく、1~4がより好ましく、1又は2がさらに好ましい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等が挙げられる。これらの中でも、メチル基、エチル基又はn-ブチル基が好ましく、メチル基又はエチル基がより好ましい。
 Ra’14における分岐鎖状のアルキル基は、炭素数が3~10であることが好ましく、3~5がより好ましい。具体的には、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1,1-ジエチルプロピル基、2,2-ジメチルブチル基等が挙げられ、イソプロピル基であることが好ましい。
 Ra’14が環状の炭化水素基となる場合、該炭化水素基は、脂肪族炭化水素基でも芳香族炭化水素基でもよく、また、多環式基でも単環式基でもよい。
 単環式基である脂肪族炭化水素基としては、モノシクロアルカンから1個の水素原子を除いた基が好ましい。該モノシクロアルカンとしては、炭素数3~6のものが好ましく、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。
 多環式基である脂肪族炭化水素基としては、ポリシクロアルカンから1個の水素原子を除いた基が好ましく、該ポリシクロアルカンとしては、炭素数7~12のものが好ましく、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
 Ra’14における芳香族炭化水素基としては、Ra04における芳香族炭化水素基と同様のものが挙げられる。中でも、Ra’14は、炭素数6~15の芳香族炭化水素環から水素原子1個以上を除いた基が好ましく、ベンゼン、ナフタレン、アントラセン又はフェナントレンから水素原子1個以上を除いた基がより好ましく、ベンゼン、ナフタレン又はアントラセンから水素原子1個以上を除いた基がさらに好ましく、ナフタレン又はアントラセンから水素原子1個以上を除いた基が特に好ましく、ナフタレンから水素原子1個以上を除いた基が最も好ましい。
 Ra’14が有していてもよい置換基としては、Ra04が有していてもよい置換基と同様のものが挙げられる。
 式(a1-r2-4)中のRa’14がナフチル基である場合、前記式(a1-r2-4)における第3級炭素原子と結合する位置は、ナフチル基の1位又は2位のいずれであってもよい。
 式(a1-r2-4)中のRa’14がアントリル基である場合、前記式(a1-r2-4)における第3級炭素原子と結合する位置は、アントリル基の1位、2位又は9位のいずれであってもよい。
 前記式(a1-r2-1)で表される基の具体例を以下に挙げる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 前記式(a1-r2-2)で表される基の具体例を以下に挙げる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 前記式(a1-r2-3)で表される基の具体例を以下に挙げる。
Figure JPOXMLDOC01-appb-C000016
 前記式(a1-r2-4)で表される基の具体例を以下に挙げる。
Figure JPOXMLDOC01-appb-C000017
 第3級アルキルオキシカルボニル酸解離性基:
 前記極性基のうち水酸基を保護する酸解離性基としては、たとえば、下記一般式(a1-r-3)で表される酸解離性基(以下便宜上「第3級アルキルオキシカルボニル酸解離性基」ということがある)が挙げられる。
Figure JPOXMLDOC01-appb-C000018
[式中、Ra’~Ra’はそれぞれアルキル基である。]
 式(a1-r-3)中、Ra’~Ra’は、それぞれ炭素数1~5のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。
 また、各アルキル基の合計の炭素数は、3~7であることが好ましく、炭素数3~5であることがより好ましく、炭素数3~4であることが最も好ましい。
 構成単位(a1)としては、α位の炭素原子に結合した水素原子が置換基で置換されていてもよいアクリル酸エステルから誘導される構成単位、アクリルアミドから誘導される構成単位、ヒドロキシスチレン若しくはヒドロキシスチレン誘導体から誘導される構成単位の水酸基における水素原子の少なくとも一部が前記酸分解性基を含む置換基により保護された構成単位、ビニル安息香酸若しくはビニル安息香酸誘導体から誘導される構成単位の-C(=O)-OHにおける水素原子の少なくとも一部が前記酸分解性基を含む置換基により保護された構成単位等が挙げられる。
 構成単位(a1)としては、上記のなかでも、α位の炭素原子に結合した水素原子が置換基で置換されていてもよいアクリル酸エステルから誘導される構成単位が好ましい。かかる構成単位(a1)の好ましい具体例としては、下記一般式(a1-1)又は(a1-2)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000019
[式中、Rは、水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基である。Vaは、エーテル結合を有していてもよい2価の炭化水素基である。na1は、0~2の整数である。Raは、上記の一般式(a1-r-1)又は(a1-r-2)で表される酸解離性基である。Waはna2+1価の炭化水素基であり、na2は1~3の整数であり、Raは上記の一般式(a1-r-1)又は(a1-r-3)で表される酸解離性基である。]
 前記式(a1-1)中、Rの炭素数1~5のアルキル基は、炭素数1~5の直鎖状または分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。炭素数1~5のハロゲン化アルキル基は、前記炭素数1~5のアルキル基の水素原子の一部または全部がハロゲン原子で置換された基である。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
 Rとしては、水素原子、炭素数1~5のアルキル基又は炭素数1~5のフッ素化アルキル基が好ましく、工業上の入手の容易さから、水素原子又はメチル基が最も好ましい。
 前記式(a1-1)中、Vaにおける2価の炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。
 Vaにおける2価の炭化水素基としての脂肪族炭化水素基は、飽和であってもよく、不飽和であってもよく、通常は飽和であることが好ましい。
 該脂肪族炭化水素基として、より具体的には、直鎖状もしくは分岐鎖状の脂肪族炭化水素基、又は、構造中に環を含む脂肪族炭化水素基等が挙げられる。
 前記直鎖状の脂肪族炭化水素基は、炭素数が1~10であることが好ましく、炭素数1~6がより好ましく、炭素数1~4がさらに好ましく、炭素数1~3が最も好ましい。直鎖状の脂肪族炭化水素基としては、直鎖状のアルキレン基が好ましく、具体的には、メチレン基[-CH-]、エチレン基[-(CH-]、トリメチレン基[-(CH-]、テトラメチレン基[-(CH-]、ペンタメチレン基[-(CH-]等が挙げられる。
 前記分岐鎖状の脂肪族炭化水素基は、炭素数が2~10であることが好ましく、炭素数3~6がより好ましく、炭素数3又は4がさらに好ましく、炭素数3が最も好ましい。分岐鎖状の脂肪族炭化水素基としては、分岐鎖状のアルキレン基が好ましく、具体的には、-CH(CH)-、-CH(CHCH)-、-C(CH-、-C(CH)(CHCH)-、-C(CH)(CHCHCH)-、-C(CHCH-等のアルキルメチレン基;-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-CH(CHCH)CH-、-C(CHCH-CH-等のアルキルエチレン基;-CH(CH)CHCH-、-CHCH(CH)CH-等のアルキルトリメチレン基;-CH(CH)CHCHCH-、-CHCH(CH)CHCH-等のアルキルテトラメチレン基などのアルキルアルキレン基等が挙げられる。アルキルアルキレン基におけるアルキル基としては、炭素数1~5の直鎖状のアルキル基が好ましい。
 前記構造中に環を含む脂肪族炭化水素基としては、脂環式炭化水素基(脂肪族炭化水素環から水素原子を2個除いた基)、脂環式炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の末端に結合した基、脂環式炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の途中に介在する基などが挙げられる。前記直鎖状または分岐鎖状の脂肪族炭化水素基としては、前記直鎖状の脂肪族炭化水素基または前記分岐鎖状の脂肪族炭化水素基と同様のものが挙げられる。
 前記脂環式炭化水素基は、炭素数が3~20であることが好ましく、炭素数3~12であることがより好ましい。
 前記脂環式炭化水素基は、多環式であってもよく、単環式であってもよい。単環式の脂環式炭化水素基としては、モノシクロアルカンから2個の水素原子を除いた基が好ましい。該モノシクロアルカンとしては炭素数3~6のものが好ましく、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。多環式の脂環式炭化水素基としては、ポリシクロアルカンから2個の水素原子を除いた基が好ましく、該ポリシクロアルカンとしては炭素数7~12のものが好ましく、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
 Vaにおける2価の炭化水素基としての芳香族炭化水素基は、芳香環を有する炭化水素基である。
 かかる芳香族炭化水素基は、炭素数が3~30であることが好ましく、5~30であることがより好ましく、5~20がさらに好ましく、6~15が特に好ましく、6~12が最も好ましい。ただし、該炭素数には、置換基における炭素数を含まないものとする。芳香族炭化水素基が有する芳香環として具体的には、ベンゼン、ビフェニル、フルオレン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された芳香族複素環等が挙げられる。芳香族複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 該芳香族炭化水素基として具体的には、前記芳香族炭化水素環から水素原子を2つ除いた基(アリーレン基);前記芳香族炭化水素環から水素原子を1つ除いた基(アリール基)の水素原子の1つがアルキレン基で置換された基(たとえば、ベンジル基、フェネチル基、1-ナフチルメチル基、2-ナフチルメチル基、1-ナフチルエチル基、2-ナフチルエチル基等のアリールアルキル基におけるアリール基から水素原子をさらに1つ除いた基)等が挙げられる。前記アルキレン基(アリールアルキル基中のアルキル鎖)の炭素数は、1~4であることが好ましく、1~2であることがより好ましく、1であることが特に好ましい。
 前記式(a1-1)中、Raは、上記式(a1-r-1)又は(a1-r-2)で表される酸解離性基である。
 前記式(a1-2)中、Waにおけるna2+1価の炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。該脂肪族炭化水素基は、芳香族性を持たない炭化水素基を意味し、飽和であってもよく、不飽和であってもよく、通常は飽和であることが好ましい。前記脂肪族炭化水素基としては、直鎖状または分岐鎖状の脂肪族炭化水素基、構造中に環を含む脂肪族炭化水素基、或いは直鎖状または分岐鎖状の脂肪族炭化水素基と構造中に環を含む脂肪族炭化水素基とを組み合わせた基が挙げられる。前記na2+1価は、2~4価が好ましく、2又は3価がより好ましい。
 前記式(a1-2)中、Raは、上記の一般式(a1-r-1)又は(a1-r-3)で表される酸解離性基である。
 以下に前記式(a1-1)で表される構成単位の具体例を示す。以下の各式中、Rαは、水素原子、メチル基またはトリフルオロメチル基を示す。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 以下に前記式(a1-2)で表される構成単位の具体例を示す。
Figure JPOXMLDOC01-appb-C000031
 (A1)成分が有する構成単位(a1)は、1種でもよく2種以上でもよい。
 構成単位(a1)としては、電子線やEUVによるリソグラフィーでの特性(感度、形状等)をより高められやすいことから、前記式(a1-1)で表される構成単位がより好ましい。
 この中でも、構成単位(a1)としては、下記一般式(a1-1-1)で表される構成単位を含むものが特に好ましい。
Figure JPOXMLDOC01-appb-C000032
[式中、Ra”は、一般式(a1-r2-1)、(a1-r2-3)又は(a1-r2-4)で表される酸解離性基である。]
 前記式(a1-1-1)中、R、Va及びna1は、前記式(a1-1)中のR、Va及びna1と同様である。
 一般式(a1-r2-1)、(a1-r2-3)又は(a1-r2-4)で表される酸解離性基についての説明は、上述の通りである。
 (A1)成分中の構成単位(a1)の割合は、本発明の効果が向上する点で、(A1)成分を構成する全構成単位の合計(100モル%)に対して、5~80モル%が好ましく、10~75モル%がより好ましく、30~70モル%がさらに好ましい。
〔ヒドロキシスチレン骨格を含む構成単位(a10)〕
 (A1)成分は、構成単位(a1)に加えて、さらに、ヒドロキシスチレン骨格を含む構成単位(a10)を有するものが好ましい。
 かかる構成単位(a10)としては、例えば、下記一般式(a10-1)で表される構成単位が好適に挙げられる。
Figure JPOXMLDOC01-appb-C000033
[式中、Rは、水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基である。Yax1は、単結合又は2価の連結基である。Wax1は、(nax1+1)価の芳香族炭化水素基である。nax1は、1~3の整数である。]
 前記式(a10-1)中、Rは、水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基である。
 Rの炭素数1~5のアルキル基は、炭素数1~5の直鎖状又は分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。Rの炭素数1~5のハロゲン化アルキル基は、前記炭素数1~5のアルキル基の水素原子の一部又は全部がハロゲン原子で置換された基である。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
 Rとしては、水素原子、炭素数1~5のアルキル基又は炭素数1~5のフッ素化アルキル基が好ましく、工業上の入手の容易さから、水素原子又はメチル基が最も好ましい。
 前記式(a10-1)中、Yax1は、単結合又は2価の連結基である。
 Yax1における2価の連結基としては、例えば、置換基を有していてもよい2価の炭化水素基、ヘテロ原子を含む2価の連結基が好適なものとして挙げられる。
・置換基を有していてもよい2価の炭化水素基:
 Yax1が置換基を有していてもよい2価の炭化水素基である場合、該炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。
・・Yax1における脂肪族炭化水素基
 該脂肪族炭化水素基は、芳香族性を持たない炭化水素基を意味する。該脂肪族炭化水素基は、飽和であってもよく不飽和であってもよく、通常は飽和であることが好ましい。前記脂肪族炭化水素基としては、直鎖状若しくは分岐鎖状の脂肪族炭化水素基、又は構造中に環を含む脂肪族炭化水素基等が挙げられる。
・・・直鎖状若しくは分岐鎖状の脂肪族炭化水素基
 該直鎖状の脂肪族炭化水素基は、炭素数が1~10であることが好ましく、炭素数1~6がより好ましく、炭素数1~4がさらに好ましく、炭素数1~3が最も好ましい。
 直鎖状の脂肪族炭化水素基としては、直鎖状のアルキレン基が好ましく、具体的には、メチレン基[-CH-]、エチレン基[-(CH-]、トリメチレン基[-(CH-]、テトラメチレン基[-(CH-]、ペンタメチレン基[-(CH-]等が挙げられる。
 該分岐鎖状の脂肪族炭化水素基は、炭素数が2~10であることが好ましく、炭素数3~6がより好ましく、炭素数3又は4がさらに好ましく、炭素数3が最も好ましい。
 分岐鎖状の脂肪族炭化水素基としては、分岐鎖状のアルキレン基が好ましく、具体的には、-CH(CH)-、-CH(CHCH)-、-C(CH-、-C(CH)(CHCH)-、-C(CH)(CHCHCH)-、-C(CHCH-等のアルキルメチレン基;-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-CH(CHCH)CH-、-C(CHCH-CH-等のアルキルエチレン基;-CH(CH)CHCH-、-CHCH(CH)CH-等のアルキルトリメチレン基;-CH(CH)CHCHCH-、-CHCH(CH)CHCH-等のアルキルテトラメチレン基などのアルキルアルキレン基等が挙げられる。アルキルアルキレン基におけるアルキル基としては、炭素数1~5の直鎖状のアルキル基が好ましい。
 前記の直鎖状又は分岐鎖状の脂肪族炭化水素基は、置換基を有していてもよく、有していなくてもよい。該置換基としては、フッ素原子、フッ素原子で置換された炭素数1~5のフッ素化アルキル基、カルボニル基等が挙げられる。
・・・構造中に環を含む脂肪族炭化水素基
 該構造中に環を含む脂肪族炭化水素基としては、環構造中にヘテロ原子を含む置換基を含んでもよい環状の脂肪族炭化水素基(脂肪族炭化水素環から水素原子2個を除いた基)、前記環状の脂肪族炭化水素基が直鎖状又は分岐鎖状の脂肪族炭化水素基の末端に結合した基、前記環状の脂肪族炭化水素基が直鎖状又は分岐鎖状の脂肪族炭化水素基の途中に介在する基などが挙げられる。前記の直鎖状又は分岐鎖状の脂肪族炭化水素基としては前記と同様のものが挙げられる。
 環状の脂肪族炭化水素基は、炭素数が3~20であることが好ましく、炭素数3~12であることがより好ましい。
 環状の脂肪族炭化水素基は、多環式基であってもよく、単環式基であってもよい。単環式の脂環式炭化水素基としては、モノシクロアルカンから2個の水素原子を除いた基が好ましい。該モノシクロアルカンとしては、炭素数3~6のものが好ましく、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。多環式の脂環式炭化水素基としては、ポリシクロアルカンから2個の水素原子を除いた基が好ましく、該ポリシクロアルカンとしては、炭素数7~12のものが好ましく、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
 環状の脂肪族炭化水素基は、置換基を有していてもよいし、有していなくてもよい。該置換基としては、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、カルボニル基等が挙げられる。
 前記置換基としてのアルキル基としては、炭素数1~5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基であることが最も好ましい。
 前記置換基としてのアルコキシ基としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基がより好ましく、メトキシ基、エトキシ基が最も好ましい。
 前記置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 前記置換基としてのハロゲン化アルキル基としては、前記アルキル基の水素原子の一部又は全部が前記ハロゲン原子で置換された基が挙げられる。
 環状の脂肪族炭化水素基は、その環構造を構成する炭素原子の一部がヘテロ原子を含む置換基で置換されてもよい。該ヘテロ原子を含む置換基としては、-O-、-C(=O)-O-、-S-、-S(=O)-、-S(=O)-O-が好ましい。
・・Yax1における芳香族炭化水素基
 該芳香族炭化水素基は、芳香環を少なくとも1つ有する炭化水素基である。
 この芳香環は、4n+2個のπ電子をもつ環状共役系であれば特に限定されず、単環式でも多環式でもよい。芳香環の炭素数は5~30であることが好ましく、炭素数5~20がより好ましく、炭素数6~15がさらに好ましく、炭素数6~12が特に好ましい。ただし、該炭素数には、置換基における炭素数を含まないものとする。芳香環として具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された芳香族複素環等が挙げられる。芳香族複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。芳香族複素環として具体的には、ピリジン環、チオフェン環等が挙げられる。
 芳香族炭化水素基として具体的には、前記芳香族炭化水素環又は芳香族複素環から水素原子2つを除いた基(アリーレン基又はヘテロアリーレン基);2以上の芳香環を含む芳香族化合物(例えばビフェニル、フルオレン等)から水素原子2つを除いた基;前記芳香族炭化水素環又は芳香族複素環から水素原子1つを除いた基(アリール基又はヘテロアリール基)の水素原子の1つがアルキレン基で置換された基(例えば、ベンジル基、フェネチル基、1-ナフチルメチル基、2-ナフチルメチル基、1-ナフチルエチル基、2-ナフチルエチル基等のアリールアルキル基におけるアリール基から水素原子をさらに1つ除いた基)等が挙げられる。前記のアリール基又はヘテロアリール基に結合するアルキレン基の炭素数は、1~4であることが好ましく、炭素数1~2であることがより好ましく、炭素数1であることが特に好ましい。
 前記芳香族炭化水素基は、当該芳香族炭化水素基が有する水素原子が置換基で置換されていてもよい。例えば、当該芳香族炭化水素基中の芳香環に結合した水素原子が置換基で置換されていてもよい。該置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基等が挙げられる。
 前記置換基としてのアルキル基としては、炭素数1~5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基であることが最も好ましい。
 前記置換基としてのアルコキシ基、ハロゲン原子及びハロゲン化アルキル基としては、前記環状の脂肪族炭化水素基が有する水素原子を置換する置換基として例示したものが挙げられる。
・ヘテロ原子を含む2価の連結基:
 Yax1がヘテロ原子を含む2価の連結基である場合、該連結基として好ましいものとして、-O-、-C(=O)-O-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-、-NH-C(=NH)-(Hはアルキル基、アシル基等の置換基で置換されていてもよい。)、-S-、-S(=O)-、-S(=O)-O-、一般式-Y21-O-Y22-、-Y21-O-、-Y21-C(=O)-O-、-C(=O)-O-Y21-、-[Y21-C(=O)-O]m”-Y22-、-Y21-O-C(=O)-Y22-または-Y21-S(=O)-O-Y22-で表される基[式中、Y21およびY22はそれぞれ独立して置換基を有していてもよい2価の炭化水素基であり、Oは酸素原子であり、m”は0~3の整数である。]等が挙げられる。
 前記のへテロ原子を含む2価の連結基が-C(=O)-NH-、-C(=O)-NH-C(=O)-、-NH-、-NH-C(=NH)-の場合、そのHはアルキル基、アシル等の置換基で置換されていてもよい。該置換基(アルキル基、アシル基等)は、炭素数が1~10であることが好ましく、1~8であることがさらに好ましく、1~5であることが特に好ましい。
 一般式-Y21-O-Y22-、-Y21-O-、-Y21-C(=O)-O-、-C(=O)-O-Y21-、-[Y21-C(=O)-O]m”-Y22-、-Y21-O-C(=O)-Y22-または-Y21-S(=O)-O-Y22-中、Y21およびY22は、それぞれ独立して、置換基を有していてもよい2価の炭化水素基である。該2価の炭化水素基としては、前記2価の連結基としての説明で挙げた(置換基を有していてもよい2価の炭化水素基)と同様のものが挙げられる。
 Y21としては、直鎖状の脂肪族炭化水素基が好ましく、直鎖状のアルキレン基がより好ましく、炭素数1~5の直鎖状のアルキレン基がさらに好ましく、メチレン基又はエチレン基が特に好ましい。
 Y22としては、直鎖状又は分岐鎖状の脂肪族炭化水素基が好ましく、メチレン基、エチレン基又はアルキルメチレン基がより好ましい。該アルキルメチレン基におけるアルキル基は、炭素数1~5の直鎖状のアルキル基が好ましく、炭素数1~3の直鎖状のアルキル基がより好ましく、メチル基が最も好ましい。
 式-[Y21-C(=O)-O]m”-Y22-で表される基において、m”は0~3の整数であり、0~2の整数であることが好ましく、0又は1がより好ましく、1が特に好ましい。つまり、式-[Y21-C(=O)-O]m”-Y22-で表される基としては、式-Y21-C(=O)-O-Y22-で表される基が特に好ましい。中でも、式-(CHa’-C(=O)-O-(CHb’-で表される基が好ましい。該式中、a’は、1~10の整数であり、1~8の整数が好ましく、1~5の整数がより好ましく、1又は2がさらに好ましく、1が最も好ましい。b’は、1~10の整数であり、1~8の整数が好ましく、1~5の整数がより好ましく、1又は2がさらに好ましく、1が最も好ましい。
 Yax1としては、単結合、エステル結合[-C(=O)-O-]、エーテル結合(-O-)、-C(=O)-NH-、直鎖状若しくは分岐鎖状のアルキレン基、又はこれらの組合せであることが好ましく、中でも単結合が特により好ましい。
 前記式(a10-1)中、Wax1は、(nax1+1)価の芳香族炭化水素基である。
 Wax1における芳香族炭化水素基としては、芳香環から(nax1+1)個の水素原子を除いた基が挙げられる。ここでの芳香環は、4n+2個のπ電子をもつ環状共役系であれば特に限定されず、単環式でも多環式でもよい。芳香環の炭素数は5~30であることが好ましく、炭素数5~20がより好ましく、炭素数6~15がさらに好ましく、炭素数6~12が特に好ましい。芳香環として具体的には、ベンゼン、ナフタレン、アントラセン、フェナントレン等の芳香族炭化水素環;前記芳香族炭化水素環を構成する炭素原子の一部がヘテロ原子で置換された芳香族複素環等が挙げられる。芳香族複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。芳香族複素環として具体的には、ピリジン環、チオフェン環等が挙げられる。
 前記式(a10-1)中、nax1は、1~3の整数であり、1又は2が好ましく、1がより好ましい。
 以下に、前記一般式(a10-1)で表される構成単位の具体例を示す。
 下記の式中、Rαは、水素原子、メチル基又はトリフルオロメチル基を示す。
Figure JPOXMLDOC01-appb-C000034
 (A1)成分が有する構成単位(a10)は、1種であってもよく2種以上であってもよい。
 (A1)成分中、構成単位(a10)の割合は、本発明の効果が向上する点で、該(A1)成分を構成する全構成単位の合計(100モル%)に対して、例えば、0~80モル%であり、10~80モル%が好ましく、20~70モル%がより好ましく、30~60モル%が特に好ましい。
〔構成単位(a2)〕
 (A1)成分は、構成単位(a1)に加えて、さらに、ラクトン含有環式基、-SO-含有環式基又はカーボネート含有環式基を含む構成単位(a2)(但し、構成単位(a1)に該当するものを除く)を有していてもよい。
 構成単位(a2)のラクトン含有環式基、-SO-含有環式基またはカーボネート含有環式基は、(A1)成分をレジスト膜の形成に用いた場合に、レジスト膜の基板への密着性を高める上で有効なものである。また、構成単位(a2)を有することで、例えば酸拡散長を適切に調整する、レジスト膜の基板への密着性を高める、現像時の溶解性を適切に調整する、エッチング耐性を向上させる等の効果により、リソグラフィー特性等が良好となる。
 「ラクトン含有環式基」とは、その環骨格中に-O-C(=O)-を含む環(ラクトン環)を含有する環式基を示す。ラクトン環をひとつ目の環として数え、ラクトン環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。ラクトン含有環式基は、単環式基であってもよく、多環式基であってもよい。
 構成単位(a2)におけるラクトン含有環式基としては、特に限定されることなく任意のものが使用可能である。具体的には、下記一般式(a2-r-1)~(a2-r-7)でそれぞれ表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000035
[式中、Ra’21はそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、-COOR”、-OC(=O)R”、ヒドロキシアルキル基またはシアノ基であり;R”は水素原子、アルキル基、ラクトン含有環式基、カーボネート含有環式基、又は-SO-含有環式基であり;A”は酸素原子(-O-)もしくは硫黄原子(-S-)を含んでいてもよい炭素数1~5のアルキレン基、酸素原子または硫黄原子であり、n’は0~2の整数であり、m’は0または1である。]
 前記一般式(a2-r-1)~(a2-r-7)中、Ra’21におけるアルキル基としては、炭素数1~6のアルキル基が好ましい。該アルキル基は、直鎖状または分岐鎖状であることが好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基等が挙げられる。これらの中でも、メチル基またはエチル基が好ましく、メチル基が特に好ましい。
 Ra’21におけるアルコキシ基としては、炭素数1~6のアルコキシ基が好ましい。該アルコキシ基は、直鎖状または分岐鎖状であることが好ましい。具体的には、前記Ra’21におけるアルキル基として挙げたアルキル基と酸素原子(-O-)とが連結した基が挙げられる。
 Ra’21におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 Ra’21におけるハロゲン化アルキル基としては、前記Ra’21におけるアルキル基の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。該ハロゲン化アルキル基としては、フッ素化アルキル基が好ましく、特にパーフルオロアルキル基が好ましい。
 Ra’21における-COOR”、-OC(=O)R”において、R”はいずれも水素原子、アルキル基、ラクトン含有環式基、カーボネート含有環式基、又は-SO-含有環式基である。
 R”におけるアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、炭素数は1~15が好ましい。
 R”が直鎖状もしくは分岐鎖状のアルキル基の場合は、炭素数1~10であることが好ましく、炭素数1~5であることがさらに好ましく、メチル基またはエチル基であることが特に好ましい。
 R”が環状のアルキル基の場合は、炭素数3~15であることが好ましく、炭素数4~12であることがさらに好ましく、炭素数5~10が最も好ましい。具体的には、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカンから1個以上の水素原子を除いた基;ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。より具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンから1個以上の水素原子を除いた基;アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
 R”におけるラクトン含有環式基としては、前記一般式(a2-r-1)~(a2-r-7)でそれぞれ表される基と同様のものが挙げられる。
 R”におけるカーボネート含有環式基としては、後述のカーボネート含有環式基と同様であり、具体的には一般式(ax3-r-1)~(ax3-r-3)でそれぞれ表される基が挙げられる。
 R”における-SO-含有環式基としては、後述の-SO-含有環式基と同様であり、具体的には一般式(a5-r-1)~(a5-r-4)でそれぞれ表される基が挙げられる。
 Ra’21におけるヒドロキシアルキル基としては、炭素数が1~6であるものが好ましく、具体的には、前記Ra’21におけるアルキル基の水素原子の少なくとも1つが水酸基で置換された基が挙げられる。
 前記一般式(a2-r-2)、(a2-r-3)、(a2-r-5)中、A” における炭素数1~5のアルキレン基としては、直鎖状または分岐鎖状のアルキレン基が好ましく、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基等が挙げられる。該アルキレン基が酸素原子または硫黄原子を含む場合、その具体例としては、前記アルキレン基の末端または炭素原子間に-O-または-S-が介在する基が挙げられ、たとえば-O-CH-、-CH-O-CH-、-S-CH-、-CH-S-CH-等が挙げられる。A”としては、炭素数1~5のアルキレン基または-O-が好ましく、炭素数1~5のアルキレン基がより好ましく、メチレン基が最も好ましい。
 下記に一般式(a2-r-1)~(a2-r-7)でそれぞれ表される基の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 「-SO-含有環式基」とは、その環骨格中に-SO-を含む環を含有する環式基を示し、具体的には、-SO-における硫黄原子(S)が環式基の環骨格の一部を形成する環式基である。その環骨格中に-SO-を含む環をひとつ目の環として数え、該環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。-SO-含有環式基は、単環式基であってもよく多環式基であってもよい。-SO-含有環式基は、特に、その環骨格中に-O-SO-を含む環式基、すなわち-O-SO-中の-O-S-が環骨格の一部を形成するスルトン(sultone)環を含有する環式基であることが好ましい。
 -SO-含有環式基として、より具体的には、下記一般式(a5-r-1)~(a5-r-4)でそれぞれ表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000038
[式中、Ra’51はそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、-COOR”、-OC(=O)R”、ヒドロキシアルキル基またはシアノ基であり;R”は水素原子、アルキル基、ラクトン含有環式基、カーボネート含有環式基、又は-SO-含有環式基であり;A”は酸素原子もしくは硫黄原子を含んでいてもよい炭素数1~5のアルキレン基、酸素原子または硫黄原子であり、n’は0~2の整数である。]
 前記一般式(a5-r-1)~(a5-r-2)中、A”は、前記一般式(a2-r-2)、(a2-r-3)、(a2-r-5)中のA”と同様である。
 Ra’51におけるアルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、-COOR”、-OC(=O)R”、ヒドロキシアルキル基としては、それぞれ前記一般式(a2-r-1)~(a2-r-7)中のRa’21についての説明で挙げたものと同様のものが挙げられる。
 下記に一般式(a5-r-1)~(a5-r-4)でそれぞれ表される基の具体例を挙げる。式中の「Ac」は、アセチル基を示す。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 「カーボネート含有環式基」とは、その環骨格中に-O-C(=O)-O-を含む環(カーボネート環)を含有する環式基を示す。カーボネート環をひとつ目の環として数え、カーボネート環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。カーボネート含有環式基は、単環式基であってもよく、多環式基であってもよい。
 カーボネート環含有環式基としては、特に限定されることなく任意のものが使用可能である。具体的には、下記一般式(ax3-r-1)~(ax3-r-3)でそれぞれ表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000042
[式中、Ra’x31はそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、水酸基、-COOR”、-OC(=O)R”、ヒドロキシアルキル基またはシアノ基であり;R”は水素原子、アルキル基、ラクトン含有環式基、カーボネート含有環式基、又は-SO-含有環式基であり;A”は酸素原子もしくは硫黄原子を含んでいてもよい炭素数1~5のアルキレン基、酸素原子または硫黄原子であり、p’は0~3の整数であり、q’は0または1である。]
 前記一般式(ax3-r-2)~(ax3-r-3)中、A”は、前記一般式(a2-r-2)、(a2-r-3)、(a2-r-5)中のA”と同様である。
 Ra’ 31におけるアルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、-COOR”、-OC(=O)R”、ヒドロキシアルキル基としては、それぞれ前記一般式(a2-r-1)~(a2-r-7)中のRa’21についての説明で挙げたものと同様のものが挙げられる。
 下記に一般式(ax3-r-1)~(ax3-r-3)でそれぞれ表される基の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000043
 構成単位(a2)としては、なかでも、α位の炭素原子に結合した水素原子が置換基で置換されていてもよいアクリル酸エステルから誘導される構成単位が好ましい。
 かかる構成単位(a2)は、下記一般式(a2-1)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000044
[式中、Rは水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基である。Ya21は単結合または2価の連結基である。La21は-O-、-COO-、-CON(R’)-、-OCO-、-CONHCO-又は-CONHCS-であり、R’は水素原子またはメチル基を示す。ただしLa21が-O-の場合、Ya21は-CO-にはならない。Ra21はラクトン含有環式基、カーボネート含有環式基、又は-SO-含有環式基である。]
 前記式(a2-1)中、Rは前記と同じである。Rとしては、水素原子、炭素数1~5のアルキル基又は炭素数1~5のフッ素化アルキル基が好ましく、工業上の入手の容易さから、水素原子又はメチル基が特に好ましい。
 前記式(a2-1)中、Ya21の2価の連結基としては、特に限定されないが、置換基を有していてもよい2価の炭化水素基、ヘテロ原子を含む2価の連結基等が好適に挙げられる。Ya21における、置換基を有していてもよい2価の炭化水素基、ヘテロ原子を含む2価の連結基についての説明は、上述の一般式(a10-1)中のYax1における、置換基を有していてもよい2価の炭化水素基、ヘテロ原子を含む2価の連結基についての説明とそれぞれ同様である。
 Ya21としては、単結合、エステル結合[-C(=O)-O-]、エーテル結合(-O-)、直鎖状若しくは分岐鎖状のアルキレン基、又はこれらの組合せであることが好ましい。
 前記式(a2-1)中、Ra21はラクトン含有環式基、-SO-含有環式基またはカーボネート含有環式基である。
 Ra21におけるラクトン含有環式基、-SO-含有環式基、カーボネート含有環式基としてはそれぞれ、前述した一般式(a2-r-1)~(a2-r-7)でそれぞれ表される基、一般式(a5-r-1)~(a5-r-4)でそれぞれ表される基、一般式(ax3-r-1)~(ax3-r-3)でそれぞれ表される基が好適に挙げられる。
 中でも、ラクトン含有環式基または-SO-含有環式基が好ましく、前記一般式(a2-r-1)、(a2-r-2)、(a2-r-6)または(a5-r-1)でそれぞれ表される基がより好ましい。具体的には、前記化学式(r-lc-1-1)~(r-lc-1-7)、(r-lc-2-1)~(r-lc-2-18)、(r-lc-6-1)、(r-sl-1-1)、(r-sl-1-18)でそれぞれ表される、いずれかの基がより好ましい。
 (A1)成分が有する構成単位(a2)は、1種でもよく2種以上でもよい。
 (A1)成分が構成単位(a2)を有する場合、構成単位(a2)の割合は、当該(A1)成分を構成する全構成単位の合計(100モル%)に対して、0~50モル%であることが好ましく、5~45モル%であることがより好ましく、10~40モル%であることがさらに好ましく、10~30モル%が特に好ましい。
 構成単位(a2)の割合を好ましい下限値以上とすることにより、構成単位(a2)を含有させることによる効果が充分に得られ、上限値以下であると、他の構成単位とのバランスを取ることができ、種々のリソグラフィー特性が良好となる。
〔構成単位(a3)〕
 (A1)成分は、構成単位(a1)に加えて、さらに、極性基含有脂肪族炭化水素基を含む構成単位(a3)(但し、構成単位(a1)、構成単位(a2)に該当するものを除く)を有していてもよい。(A1)成分が構成単位(a3)を有することで、例えば酸拡散長を適切に調整する、レジスト膜の基板への密着性を高める、現像時の溶解性を適切に調整する、エッチング耐性を向上させる等の効果により、リソグラフィー特性等が良好となる。
 極性基としては、水酸基、シアノ基、カルボキシ基、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基等が挙げられ、特に水酸基が好ましい。
 脂肪族炭化水素基としては、炭素数1~10の直鎖状または分岐鎖状の炭化水素基(好ましくはアルキレン基)や、環状の脂肪族炭化水素基(環式基)が挙げられる。該環式基としては、単環式基でも多環式基でもよく、例えばArFエキシマレーザー用レジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができる。該環式基としては多環式基であることが好ましく、炭素数は7~30であることがより好ましい。
 その中でも、水酸基、シアノ基、カルボキシ基、またはアルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基を含有する脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位がより好ましい。該多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどから2個以上の水素原子を除いた基などを例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから2個以上の水素原子を除いた基などが挙げられる。これらの多環式基の中でも、アダマンタンから2個以上の水素原子を除いた基、ノルボルナンから2個以上の水素原子を除いた基、テトラシクロドデカンから2個以上の水素原子を除いた基が工業上好ましい。
 構成単位(a3)としては、極性基含有脂肪族炭化水素基を含むものであれば特に限定されることなく任意のものが使用可能である。
 構成単位(a3)としては、α位の炭素原子に結合した水素原子が置換基で置換されていてもよいアクリル酸エステルから誘導される構成単位であって極性基含有脂肪族炭化水素基を含む構成単位が好ましい。
 構成単位(a3)としては、極性基含有脂肪族炭化水素基における炭化水素基が炭素数1~10の直鎖状または分岐鎖状の炭化水素基のときは、アクリル酸のヒドロキシエチルエステルから誘導される構成単位が好ましい。
 また、構成単位(a3)としては、極性基含有脂肪族炭化水素基における該炭化水素基が多環式基のときは、下記の式(a3-1)で表される構成単位、式(a3-2)で表される構成単位、式(a3-3)で表される構成単位が好ましいものとして挙げられる。
Figure JPOXMLDOC01-appb-C000045
[式中、Rは前記と同じであり、jは1~3の整数であり、kは1~3の整数であり、t’は1~3の整数であり、lは1~5の整数であり、sは1~3の整数である。]
 式(a3-1)中、jは、1又は2であることが好ましく、1であることがさらに好ましい。jが2の場合、水酸基が、アダマンチル基の3位と5位に結合しているものが好ましい。jが1の場合、水酸基が、アダマンチル基の3位に結合しているものが好ましい。jは1であることが好ましく、水酸基が、アダマンチル基の3位に結合しているものが特に好ましい。
 式(a3-2)中、kは1であることが好ましい。シアノ基は、ノルボルニル基の5位または6位に結合していることが好ましい。
 式(a3-3)中、t’は1であることが好ましい。lは1であることが好ましい。sは1であることが好ましい。これらは、アクリル酸のカルボキシ基の末端に、2-ノルボルニル基または3-ノルボルニル基が結合していることが好ましい。フッ素化アルキルアルコールは、ノルボルニル基の5位又は6位に結合していることが好ましい。
 (A1)成分が有する構成単位(a3)は、1種でも2種以上でもよい。
 (A1)成分が構成単位(a3)を有する場合、当該(A1)成分を構成する全構成単位の合計に対して0~40モル%であることが好ましく、2~30モル%がより好ましく、5~25モル%がさらに好ましく、5~20モル%が特に好ましい。
 構成単位(a3)の割合を好ましい下限値以上とすることにより、構成単位(a3)を含有させることによる効果が充分に得られ、上限値以下であると、他の構成単位とのバランスを取ることができ、種々のリソグラフィー特性が良好となる。
〔構成単位(6)〕
 (A1)成分は、構成単位(a1)に加えて、さらに、露光により酸を発生する構成単位(a6)を有していてもよい。
 構成単位(a6)としては、露光により酸を発生するものであれば特に限定されず、例えば、前記構成単位(a1)等と共重合可能であって、従来化学増幅型レジスト用の酸発生剤として提案されている構造を導入した構成単位を用いることができる。
 構成単位(a1)等と共重合可能な構成単位としては、(メタ)アクリル酸エステルから誘導される構成単位、ヒドロキシスチレンから誘導される構成単位等が好適なものとして挙げられる。
 従来化学増幅型レジスト用の酸発生剤として提案されている構造を導入した構成単位としては、後述する(B)成分の構造を導入した構成単位が好適なものとして挙げられる。
 構成単位(a6)としては、たとえば、露光により酸を発生するアニオン基を側鎖に有する構成単位(a6a)、又は、露光により分解するカチオン基を側鎖に有する構成単位(a6c)が挙げられる。
・構成単位(a6a)について
 構成単位(a6a)は、露光により酸を発生するアニオン基を側鎖に有する構成単位である。
 露光により酸を発生するアニオン基としては、特に限定されないが、スルホン酸アニオン、アミドアニオン、メチドアニオンが好ましい。なかでも、構成単位(a6a)は、下記一般式(a6a-r-11)で表されるアニオン基を有する構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000046
[式中、Rf1及びRf2は、それぞれ独立に、水素原子、アルキル基、フッ素原子又はフッ素化アルキル基であり、Rf1及びRf2のうち少なくとも1つはフッ素原子又はフッ素化アルキル基であり、p0は1~8の整数である。]
 前記式(a6a-r-11)中、Rf1及びRf2は、それぞれ独立に、水素原子、アルキル基、フッ素原子又はフッ素化アルキル基であり、Rf1及びRf2のうち少なくとも1つはフッ素原子又はフッ素化アルキル基である。
 Rf1及びRf2におけるアルキル基としては、炭素数1~5のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。
 Rf1及びRf2におけるフッ素化アルキル基としては、上記Rf1、Rf2のアルキル基の水素原子の一部又は全部がフッ素原子で置換された基が好ましい。
 Rf1及びRf2としては、それぞれ独立に、フッ素原子又はフッ素化アルキル基であることが好ましい。
 前記式(a6a-r-11)中、p0は1~8の整数であり、1~4の整数であることが好ましく、1又は2であることがさらに好ましい。
 構成単位(a6a)のアニオン基と塩を形成していてもよいカチオンとしては、有機カチオンが挙げられる。有機カチオンとしては、特に限定されず、なかでもオニウムカチオンが好ましく、そのなかでもスルホニウムカチオン、ヨードニウムカチオンであることがより好ましく、後述の一般式(ca-1)~(ca-4)でそれぞれ表される有機カチオンが特に好ましい。
 以下に、前記式(a6a-r-11)で表されるアニオン基を有する構成単位の具体例を示す。下記式中、Rαは、水素原子、メチル基またはトリフルオロメチル基を示す。下記式中、(Mm+1/mは、アニオン基と塩を形成するm価の有機カチオンを表す。
Figure JPOXMLDOC01-appb-C000047
・構成単位(a6c)について
 構成単位(a6c)は、露光により分解するカチオン基を側鎖に有する構成単位である。
 露光により分解するカチオン基としては、特に限定されないが、下記の一般式(a6c-r-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000048
[式中、Ra’61c及びRa’62cは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいアルキル基、または置換基を有していてもよいアルケニル基を表す。Va’61cはアリーレン基、アルキレン基またはアルケニレン基を表す。ただし、Ra’61cとRa’62cとVa’61cとは相互に結合して式中のイオウ原子と共に環を形成してもよい。]
 前記式(a6c-r-1)中、Ra’61c及びRa’62cは、それぞれ独立に、置換基を有していてもよいアリール基、置換基を有していてもよいアルキル基、または置換基を有していてもよいアルケニル基を表す。Ra’61c及びRa’62cは、後述の式(ca-1)中のR201~R203における、置換基を有していてもよいアリール基、置換基を有していてもよいアルキル基、または置換基を有していてもよいアルケニル基と同様のものが挙げられる。
 Va’61cは、アリーレン基、アルキレン基またはアルケニレン基を表し、前記のRa’61c及びRa’62cにおけるアリール基、アルキル基またはアルケニル基から水素原子1個を除いた基が挙げられる。
 ただし、Ra’61cとRa’62cとVa’61cとは、相互に結合して式中のイオウ原子と共に環を形成してもよい。ここで形成される環構造は、後述の式(ca-1)中のR201~R203が相互に結合して式中のイオウ原子と共に形成する環から水素原子1個を除いた基が挙げられる。
 構成単位(a6c)のカチオン部と塩を形成していてもよいアニオンとしては、特に限定されず、後述の(B)成分についての説明の中で例示される、一般式(b-1)、(b-2)または(b-3)で表されるオニウム塩系酸発生剤のアニオン部等が挙げられ、一般式(b-1)で表されるオニウム塩系酸発生剤のアニオン部が特に好ましく、そのなかでも炭素数1~8のフッ素化アルキルスルホン酸イオン(好ましくは炭素数1~4)または後述の一般式(an-1)~(an-3)でそれぞれ表されるアニオンから選択される少なくとも1種であることが好ましい。
 以下に、前記式(a6c-r-1)で表されるカチオン基を有する構成単位の具体例を示す。下記式中、Rαは、水素原子、メチル基またはトリフルオロメチル基を示す。下記式中、Aは、カチオン基と塩を形成する対アニオンを表す。
Figure JPOXMLDOC01-appb-C000049
 (A1)成分が有する構成単位(a6)は、1種でも2種以上でもよい。
 (A1)成分中、構成単位(a6)の割合は、当該(A1)成分を構成する全構成単位の合計に対し、0~30モル%であることが好ましく、1~20モル%であることがより好ましく、1.5~15モル%が特に好ましい。
 構成単位(a6)の割合を下限値以上とすることにより、ラフネスが低減され、良好なレジストパターン形状が得られやすい。上限値以下とすることにより、他の構成単位とのバランスをとることができ、リソグラフィー特性がより向上する。
〔その他構成単位〕
 (A1)成分は、上述した構成単位(a1)、構成単位(a10)、構成単位(a2)、構成単位(a3)、構成単位(a6)以外のその他構成単位を有してもよい。
 その他構成単位としては、例えば、後述の一般式(a9-1)で表される構成単位(a9)、スチレンから誘導される構成単位、スチレン誘導体から誘導される構成単位(但し、構成単位(a10)に該当するものを除く)、酸非解離性の脂肪族環式基を含む構成単位などが挙げられる。
 構成単位(a9):
 構成単位(a9)は、下記の一般式(a9-1)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000050
[式中、Rは、水素原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基である。Ya91は、単結合又は2価の連結基である。Ya92は、2価の連結基である。R91は、置換基を有していてもよい炭化水素基である。]
 前記式(a9-1)中、Rは前記と同じである。
 Rとしては、水素原子、炭素数1~5のアルキル基又は炭素数1~5のフッ素化アルキル基が好ましく、工業上の入手の容易さから、水素原子又はメチル基が特に好ましい。
 前記式(a9-1)中、Ya91における2価の連結基は、上述した一般式(a10-1)中のYax1における2価の連結基と同様のものが挙げられる。中でも、Ya91としては、単結合であることが好ましい。
 前記式(a9-1)中、Ya92における2価の連結基は、上述した一般式(a10-1)中のYax1の2価の連結基と同様のものが挙げられる。
 Ya92における2価の連結基において、置換基を有していてもよい2価の炭化水素基としては、直鎖状又は分岐鎖状の脂肪族炭化水素基が好ましい。
 また、Ya92における2価の連結基において、ヘテロ原子を含む2価の連結基としては、-O-、-C(=O)-O-、-C(=O)-、-O-C(=O)-O-、-C(=O)-NH-、-NH-、-NH-C(=NH)-(Hはアルキル基、アシル基等の置換基で置換されていてもよい。)、-S-、-S(=O)-、-S(=O)-O-、-C(=S)-、一般式-Y21-O-Y22-、-Y21-O-、-Y21-C(=O)-O-、-C(=O)-O--Y21、[Y21-C(=O)-O]m’-Y22-または-Y21-O-C(=O)-Y22-で表される基[式中、Y21およびY22はそれぞれ独立して置換基を有していてもよい2価の炭化水素基であり、Oは酸素原子であり、m’は0~3の整数である。]等が挙げられる。なかでも、-C(=O)-、-C(=S)-が好ましい。
 前記式(a9-1)中、R91における炭化水素基としては、アルキル基、1価の脂環式炭化水素基、アリール基、アラルキル基などが挙げられる。
 R91におけるアルキル基は、炭素数1~8が好ましく、炭素数1~6がより好ましく、炭素数1~4がさらに好ましく、直鎖状であっても分岐鎖状であってもよい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等が好ましいものとして挙げられる。
 R91における1価の脂環式炭化水素基は、炭素数3~20が好ましく、炭素数3~12がより好ましく、多環式でもよく、単環式でもよい。単環式の脂環式炭化水素基としては、モノシクロアルカンから1個以上の水素原子を除いた基が好ましい。該モノシクロアルカンとしては炭素数3~6のものが好ましく、具体的にはシクロブタン、シクロペンタン、シクロヘキサン等が挙げられる。多環式の脂環式炭化水素基としては、ポリシクロアルカンから1個以上の水素原子を除いた基が好ましく、該ポリシクロアルカンとしては炭素数7~12のものが好ましく、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
 R91におけるアリール基は、炭素数6~18であるものが好ましく、炭素数6~10であるものがより好ましく、具体的にはフェニル基が特に好ましい。
 R91におけるアラルキル基としては、炭素数1~8のアルキレン基と上記「R91におけるアリール基」とが結合したアラルキル基が好ましく、炭素数1~6のアルキレン基と上記「R91におけるアリール基」とが結合したアラルキル基がより好ましく、炭素数1~4のアルキレン基と上記「R91におけるアリール基」とが結合したアラルキル基が特に好ましい。
 R91における炭化水素基は、当該炭化水素基の水素原子の一部又は全部がフッ素原子で置換されていることが好ましく、当該炭化水素基の水素原子の30~100%がフッ素原子で置換されていることがより好ましい。なかでも、上述したアルキル基の水素原子の全部がフッ素原子で置換されたパーフルオロアルキル基であることが特に好ましい。
 R91における炭化水素基は、置換基を有していてもよい。該置換基としては、ハロゲン原子、オキソ基(=O)、水酸基(-OH)、アミノ基(-NH)、-SO-NH等が挙げられる。また、その炭化水素基を構成する炭素原子の一部がヘテロ原子を含む置換基で置換されてもよい。該ヘテロ原子を含む置換基としては、-O-、-NH-、-N=、-C(=O)-O-、-S-、-S(=O)-、-S(=O)-O-が挙げられる。
 R91において、置換基を有する炭化水素基としては、前記の一般式(a2-r-1)~(a2-r-7)でそれぞれ表されるラクトン含有環式基が挙げられる。
 また、R91において、置換基を有する炭化水素基としては、前記の一般式(a5-r-1)~(a5-r-4)でそれぞれ表される-SO-含有環式基;下記化学式で表される置換アリール基、1価の複素環式基なども挙げられる。
Figure JPOXMLDOC01-appb-C000051
 構成単位(a9)の中でも、下記一般式(a9-1-1)で表される構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000052
[式中、Rは前記と同様であり、Ya91は単結合または2価の連結基であり、R91は置換基を有していてもよい炭化水素基であり、R92は酸素原子又は硫黄原子である。]
 一般式(a9-1-1)中、Ya91、R91、Rについての説明は前記同様である。また、R92は酸素原子又は硫黄原子である。
 以下に、前記式(a9-1)又は一般式(a9-1-1)で表される構成単位の具体例を示す。下記式中、Rαは、水素原子、メチル基またはトリフルオロメチル基を示す。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
 (A1)成分が含有する構成単位(a9)は1種であってもよく2種以上であってもよい。
 (A1)成分が構成単位(a9)を有する場合、構成単位(a9)の割合は、該(A1)成分を構成する全構成単位の合計(100モル%)に対して、0~40モル%であることが好ましく、3~30モル%がより好ましく、5~25モル%がさらに好ましく、10~20モル%が特に好ましい。
 構成単位(a9)の割合を下限値以上とすることにより、例えば酸拡散長を適切に調整する、レジスト膜の基板への密着性を高める、現像時の溶解性を適切に調整する、エッチング耐性を向上させる等の効果が得られ、上限値以下であると、他の構成単位とのバランスを取ることができ、種々のリソグラフィー特性が良好となる。
 構成単位(a4):構成単位(a4)は、酸非解離性の脂肪族環式基を含む構成単位である。
 構成単位(a4)における「酸非解離性環式基」は、露光により当該レジスト組成物中に酸が発生した際(例えば、後述する(B)成分から酸が発生した際)に、該酸が作用しても解離することなくそのまま当該構成単位中に残る環式基である。
 構成単位(a4)としては、例えば酸非解離性の脂肪族環式基を含むアクリル酸エステルから誘導される構成単位等が好ましい。該環式基は、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト組成物の樹脂成分に用いられるものとして従来から知られている多数のものが使用可能である。
 特にトリシクロデシル基、アダマンチル基、テトラシクロドデシル基、イソボルニル基、ノルボルニル基から選ばれる少なくとも1種であると、工業上入手し易いなどの点で好ましい。これらの多環式基は、炭素数1~5の直鎖状又は分岐鎖状のアルキル基を置換基として有していてもよい。
 構成単位(a4)として、具体的には、下記一般式(a4-1)~(a4-7)でそれぞれ表される構成単位を例示することができる。
Figure JPOXMLDOC01-appb-C000056
[式中、Rαは前記と同じである。]
 レジスト組成物が含有する(A1)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 (A1)成分は、構成単位(a1)を有する高分子化合物(A1-1)(以下「(A1-1)成分」ともいう)を含むものが好ましい。
 好ましい(A1-1)成分としては、例えば、構成単位(a1)と構成単位(a10)との繰り返し構造を有する高分子化合物、構成単位(a1)と構成単位(a3)との繰り返し構造を有する高分子化合物、構成単位(a1)と構成単位(a2)との繰り返し構造を有する高分子化合物、構成単位(a1)と構成単位(a6)との繰り返し構造を有する高分子化合物等が挙げられる。
 上記2つの各構成単位の組み合わせに加えて、さらに3つ目又は3つ以上の構成単位として、上記で説明した構成単位を適宜所望の効果に合わせて組み合わせてもよい。3つ以上の構成単位の組み合せとしては、例えば、構成単位(a1)と構成単位(a10)と構成単位(a3)との組合せ、構成単位(a1)と構成単位(a10)と構成単位(a2)との組合せ、構成単位(a1)と構成単位(a10)と構成単位(a2)と構成単位(a3)の組合せ、構成単位(a1)と構成単位(a2)と構成単位(a3)と構成単位(a6)との組合せ等が挙げられる。
 前記構成単位(a6)は、構成単位(a6a)又は構成単位(a6c)であることが好ましい。(A1)成分が、構成単位(a6a)及び構成単位(a6c)の少なくとも1種を含む場合、(A1)成分は、基材成分(A)であると同時にオニウム塩でもある。
 かかる(A1)成分は、各構成単位を誘導するモノマーを重合溶媒に溶解し、ここに、例えばアゾビスイソブチロニトリル(AIBN)、アゾビスイソ酪酸ジメチル(たとえばV-601など)等のラジカル重合開始剤を加えて重合することにより製造することができる。あるいは、かかる(A1)成分は、構成単位(a1)を誘導するモノマーと、必要に応じて構成単位(a1)以外の構成単位を誘導するモノマーの前駆体(該モノマーの官能基が保護されたモノマー)と、を重合溶媒に溶解し、ここに、上記のようなラジカル重合開始剤を加えて重合し、その後、脱保護反応を行うことにより製造することができる。尚、重合の際に、例えば、HS-CH-CH-CH-C(CF-OHのような連鎖移動剤を併用して用いることにより、末端に-C(CF-OH基を導入してもよい。このように、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基が導入された共重合体は、現像欠陥の低減やLER(ラインエッジラフネス:ライン側壁の不均一な凹凸)の低減に有効である。
 (A1)成分の質量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算基準)は、特に限定されるものではなく、1000~50000が好ましく、2000~30000がより好ましく、3000~20000がさらに好ましい。
 (A1)成分のMwがこの範囲の好ましい上限値以下であると、レジストとして用いるのに充分なレジスト溶剤への溶解性があり、この範囲の好ましい下限値以上であると、耐ドライエッチング性やレジストパターン断面形状が良好である。
 (A1)成分の分散度(Mw/Mn)は、特に限定されず、1.0~4.0が好ましく、1.0~3.0がより好ましく、1.1~2.0が特に好ましい。なお、Mnは数平均分子量を示す。
・(A2)成分について
 レジスト組成物は、(A)成分として、前記(A1)成分に該当しない、酸の作用により現像液に対する溶解性が変化する基材成分(以下「(A2)成分」という。)を併用してもよい。
 (A2)成分としては、特に限定されず、化学増幅型レジスト組成物用の基材成分として従来から知られている多数のものから任意に選択して用いればよい。
 (A2)成分は、高分子化合物又は低分子化合物の1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 (A)成分中の(A1)成分の割合は、(A)成分の総質量に対し、25質量%以上が好ましく、50質量%以上がより好ましく、75質量%以上がさらに好ましく、100質量%であってもよい。該割合が25質量%以上であると、高感度化や解像性、ラフネス改善などの種々のリソグラフィー特性に優れたレジストパターンが形成されやすくなる。このような効果は、特に電子線やEUVによるリソグラフィーにおいて顕著である。
 レジスト組成物中、(A)成分の含有量は、形成しようとするレジスト膜厚等に応じて調整すればよい。
≪(B)成分≫
 (B)成分は、露光により酸を発生する酸発生剤成分である。
 (B)成分としては、特に限定されず、これまで化学増幅型レジスト組成物用の酸発生剤として提案されているものを用いることができる。
 このような酸発生剤としては、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤;ビスアルキル又はビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤;ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが挙げられる。
 オニウム塩系酸発生剤としては、例えば、下記の一般式(b-1)で表される化合物(以下「(b-1)成分」ともいう)、一般式(b-2)で表される化合物(以下「(b-2)成分」ともいう)又は一般式(b-3)で表される化合物(以下「(b-3)成分」ともいう)が挙げられる。
Figure JPOXMLDOC01-appb-C000057
[式中、R101、R104~R108はそれぞれ独立に、置換基を有してもよい環式基、置換基を有してもよい鎖状のアルキル基、又は置換基を有してもよい鎖状のアルケニル基である。R104、R105は、相互に結合して環を形成していてもよい。R102はフッ素原子又は炭素数1~5のフッ素化アルキル基である。Y101は単結合、又は酸素原子を含む2価の連結基である。V101~V103はそれぞれ独立に単結合、アルキレン基又はフッ素化アルキレン基である。L101~L102はそれぞれ独立に単結合又は酸素原子である。L103~L105はそれぞれ独立に単結合、-CO-又は-SO-である。mは1以上の整数であって、M’m+はm価のオニウムカチオンである。]
 {アニオン部}
 ・(b-1)成分のアニオン部
 式(b-1)中、R101は、置換基を有してもよい環式基、置換基を有してもよい鎖状のアルキル基、又は置換基を有してもよい鎖状のアルケニル基である。
 置換基を有していてもよい環式基:
 該環式基は、環状の炭化水素基であることが好ましく、該環状の炭化水素基は、芳香族炭化水素基であってもよく、脂肪族炭化水素基であってもよい。脂肪族炭化水素基は、芳香族性を持たない炭化水素基を意味する。また、脂肪族炭化水素基は、飽和であってもよく、不飽和であってもよく、通常は飽和であることが好ましい。
 R101における芳香族炭化水素基は、芳香環を有する炭化水素基である。該芳香族炭化水素基の炭素数は3~30であることが好ましく、5~30であることがより好ましく、5~20がさらに好ましく、6~15が特に好ましく、6~10が最も好ましい。但し、該炭素数には、置換基における炭素数を含まないものとする。
 R101における芳香族炭化水素基が有する芳香環として具体的には、ベンゼン、フルオレン、ナフタレン、アントラセン、フェナントレン、ビフェニル、又はこれらの芳香環を構成する炭素原子の一部がヘテロ原子で置換された芳香族複素環などが挙げられる。芳香族複素環におけるヘテロ原子としては、酸素原子、硫黄原子、窒素原子等が挙げられる。
 R101における芳香族炭化水素基として具体的には、前記芳香環から水素原子を1つ除いた基(アリール基:たとえば、フェニル基、ナフチル基など)、前記芳香環の水素原子の1つがアルキレン基で置換された基(たとえば、ベンジル基、フェネチル基、1-ナフチルメチル基、2-ナフチルメチル基、1-ナフチルエチル基、2-ナフチルエチル基等のアリールアルキル基など)等が挙げられる。前記アルキレン基(アリールアルキル基中のアルキル鎖)の炭素数は、1~4であることが好ましく、1~2であることがより好ましく、1であることが特に好ましい。
 R101における環状の脂肪族炭化水素基は、構造中に環を含む脂肪族炭化水素基が挙げられる。
 この構造中に環を含む脂肪族炭化水素基としては、脂環式炭化水素基(脂肪族炭化水素環から水素原子を1個除いた基)、脂環式炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の末端に結合した基、脂環式炭化水素基が直鎖状または分岐鎖状の脂肪族炭化水素基の途中に介在する基などが挙げられる。
 前記脂環式炭化水素基は、炭素数が3~20であることが好ましく、3~12であることがより好ましい。
 前記脂環式炭化水素基は、多環式基であってもよく、単環式基であってもよい。単環式の脂環式炭化水素基としては、モノシクロアルカンから1個以上の水素原子を除いた基が好ましい。該モノシクロアルカンとしては、炭素数3~6のものが好ましく、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。多環式の脂環式炭化水素基としては、ポリシクロアルカンから1個以上の水素原子を除いた基が好ましく、該ポリシクロアルカンとしては、炭素数7~30のものが好ましい。中でも、該ポリシクロアルカンとしては、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等の架橋環系の多環式骨格を有するポリシクロアルカン;ステロイド骨格を有する環式基等の縮合環系の多環式骨格を有するポリシクロアルカンがより好ましい。
 なかでも、R101における環状の脂肪族炭化水素基としては、モノシクロアルカンまたはポリシクロアルカンから水素原子を1つ以上除いた基が好ましく、ポリシクロアルカンから水素原子を1つ除いた基がより好ましく、アダマンチル基、ノルボルニル基が特に好ましく、アダマンチル基が最も好ましい。
 脂環式炭化水素基に結合してもよい、直鎖状または分岐鎖状の脂肪族炭化水素基は、炭素数が1~10であることが好ましく、1~6がより好ましく、1~4がさらに好ましく、1~3が最も好ましい。
 直鎖状の脂肪族炭化水素基としては、直鎖状のアルキレン基が好ましく、具体的には、メチレン基[-CH-]、エチレン基[-(CH-]、トリメチレン基[-(CH-]、テトラメチレン基[-(CH-]、ペンタメチレン基[-(CH-]等が挙げられる。
 分岐鎖状の脂肪族炭化水素基としては、分岐鎖状のアルキレン基が好ましく、具体的には、-CH(CH)-、-CH(CHCH)-、-C(CH-、-C(CH)(CHCH)-、-C(CH)(CHCHCH)-、-C(CHCH-等のアルキルメチレン基;-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-CH(CHCH)CH-、-C(CHCH-CH-等のアルキルエチレン基;-CH(CH)CHCH-、-CHCH(CH)CH-等のアルキルトリメチレン基;-CH(CH)CHCHCH-、-CHCH(CH)CHCH-等のアルキルテトラメチレン基などのアルキルアルキレン基等が挙げられる。アルキルアルキレン基におけるアルキル基としては、炭素数1~5の直鎖状のアルキル基が好ましい。
 また、R101における環状の炭化水素基は、複素環等のようにヘテロ原子を含んでもよい。具体的には、前述の一般式(a02-r1-1)、(a02-r1-2)、(a2-r-2)~(a2-r-7)でそれぞれ表されるラクトン含有環式基、前記一般式(a5-r-1)~(a5-r-4)でそれぞれ表される-SO-含有環式基、その他上記の化学式(r-hr-1)~(r-hr-16)でそれぞれ表される複素環式基が挙げられる。
 R101の環式基における置換基としては、たとえば、アルキル基、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、ヒドロキシ基、カルボニル基、ニトロ基等が挙げられる。
 置換基としてのアルキル基としては、炭素数1~12のアルキル基が好ましく、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基が最も好ましい。
 置換基としてのアルコキシ基としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基がより好ましく、メトキシ基、エトキシ基が最も好ましい。
 置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 置換基としてのハロゲン化アルキル基としては、炭素数1~5のアルキル基、たとえばメチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基等の水素原子の一部または全部が前記ハロゲン原子で置換された基が挙げられる。
 置換基としてのカルボニル基は、環状の炭化水素基を構成するメチレン基(-CH-)を置換する基である。
 置換基を有していてもよい鎖状のアルキル基:
 R101の鎖状のアルキル基としては、直鎖状又は分岐鎖状のいずれでもよい。
 直鎖状のアルキル基としては、炭素数が1~20であることが好ましく、1~15であることがより好ましく、1~10が最も好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デカニル基、ウンデシル基、ドデシル基、トリデシル基、イソトリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、イソヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基等が挙げられる。
 分岐鎖状のアルキル基としては、炭素数が3~20であることが好ましく、3~15であることがより好ましく、3~10が最も好ましい。具体的には、例えば、1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルブチル基、2-エチルブチル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基などが挙げられる。
 置換基を有していてもよい鎖状のアルケニル基:
 R101の鎖状のアルケニル基としては、直鎖状又は分岐鎖状のいずれでもよく、炭素数が2~10であることが好ましく、2~5がより好ましく、2~4がさらに好ましく、3が特に好ましい。直鎖状のアルケニル基としては、例えば、ビニル基、プロペニル基(アリル基)、ブチニル基などが挙げられる。分岐鎖状のアルケニル基としては、例えば、1-メチルビニル基、2-メチルビニル基、1-メチルプロペニル基、2-メチルプロペニル基などが挙げられる。
 鎖状のアルケニル基としては、上記の中でも、直鎖状のアルケニル基が好ましく、ビニル基、プロペニル基がより好ましく、ビニル基が特に好ましい。
 R101の鎖状のアルキル基またはアルケニル基における置換基としては、たとえば、アルコキシ基、ハロゲン原子、ハロゲン化アルキル基、ヒドロキシ基、カルボニル基、ニトロ基、アミノ基、上記R101における環式基等が挙げられる。
 上記の中でも、R101は、置換基を有していてもよい環式基が好ましく、置換基を有していてもよい環状の炭化水素基であることがより好ましい。該置換基としては、ヒドロキシ基、カルボニル基、ニトロ基、アミノ基が好ましく、これらの中でもレジスト膜内において基板側に分布しやすいことから、ヒドロキシ基がより好ましい。
 環状の炭化水素基として、具体的には、フェニル基、ナフチル基、ポリシクロアルカンから1個以上の水素原子を除いた基;前述の一般式(a02-r1-1)、(a02-r1-2)、(a2-r-2)~(a2-r-7)でそれぞれ表されるラクトン含有環式基;前記一般式(a5-r-1)~(a5-r-4)でそれぞれ表される-SO-含有環式基などが好ましい。
 式(b-1)中、Y101は、単結合または酸素原子を含む2価の連結基である。
 Y101が酸素原子を含む2価の連結基である場合、該Y101は、酸素原子以外の原子を含有してもよい。酸素原子以外の原子としては、たとえば炭素原子、水素原子、硫黄原子、窒素原子等が挙げられる。
 酸素原子を含む2価の連結基としては、たとえば、酸素原子(エーテル結合:-O-)、エステル結合(-C(=O)-O-)、オキシカルボニル基(-O-C(=O)-)、アミド結合(-C(=O)-NH-)、カルボニル基(-C(=O)-)、カーボネート結合(-O-C(=O)-O-)等の非炭化水素系の酸素原子含有連結基;該非炭化水素系の酸素原子含有連結基とアルキレン基との組み合わせ等が挙げられる。この組み合わせに、さらにスルホニル基(-SO-)が連結されていてもよい。かかる酸素原子を含む2価の連結基としては、たとえば下記一般式(y-al-1)~(y-al-7)でそれぞれ表される連結基が挙げられる。
Figure JPOXMLDOC01-appb-C000058
[式中、V’101は単結合または炭素数1~5のアルキレン基であり、V’102は炭素数1~30の2価の飽和炭化水素基である。]
 V’102における2価の飽和炭化水素基は、炭素数1~30のアルキレン基であることが好ましく、炭素数1~10のアルキレン基であることがより好ましく、炭素数1~5のアルキレン基であることがさらに好ましい。
 V’101およびV’102におけるアルキレン基としては、直鎖状のアルキレン基でもよく分岐鎖状のアルキレン基でもよく、直鎖状のアルキレン基が好ましい。
 V’101およびV’102におけるアルキレン基として、具体的には、メチレン基[-CH-];-CH(CH)-、-CH(CHCH)-、-C(CH-、-C(CH)(CHCH)-、-C(CH)(CHCHCH)-、-C(CHCH-等のアルキルメチレン基;エチレン基[-CHCH-];-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-CH(CHCH)CH-等のアルキルエチレン基;トリメチレン基(n-プロピレン基)[-CHCHCH-];-CH(CH)CHCH-、-CHCH(CH)CH-等のアルキルトリメチレン基;テトラメチレン基[-CHCHCHCH-];-CH(CH)CHCHCH-、-CHCH(CH)CHCH-等のアルキルテトラメチレン基;ペンタメチレン基[-CHCHCHCHCH-]等が挙げられる。
 また、V’101又はV’102における前記アルキレン基における一部のメチレン基が、炭素数5~10の2価の脂肪族環式基で置換されていてもよい。当該脂肪族環式基は、前記式(a1-r-1)中のRa’の環状の脂肪族炭化水素基(単環式の脂肪族炭化水素基、多環式の脂肪族炭化水素基)から水素原子をさらに1つ除いた2価の基が好ましく、シクロへキシレン基、1,5-アダマンチレン基または2,6-アダマンチレン基がより好ましい。
 Y101としては、エステル結合を含む2価の連結基、またはエーテル結合を含む2価の連結基が好ましく、上記式(y-al-1)~(y-al-5)でそれぞれ表される連結基がより好ましい。
 式(b-1)中、V101は、単結合、アルキレン基又はフッ素化アルキレン基である。V101におけるアルキレン基、フッ素化アルキレン基は、炭素数1~4であることが好ましい。V101におけるフッ素化アルキレン基としては、V101におけるアルキレン基の水素原子の一部又は全部がフッ素原子で置換された基が挙げられる。なかでも、V101は、単結合、又は炭素数1~4のフッ素化アルキレン基であることが好ましい。
 式(b-1)中、R102は、フッ素原子又は炭素数1~5のフッ素化アルキル基である。R102は、フッ素原子または炭素数1~5のパーフルオロアルキル基であることが好ましく、フッ素原子であることがより好ましい。
 (b-1)成分のアニオン部の具体例としては、たとえば、Y101が単結合となる場合、トリフルオロメタンスルホネートアニオンやパーフルオロブタンスルホネートアニオン等のフッ素化アルキルスルホネートアニオンが挙げられ;Y101が酸素原子を含む2価の連結基である場合、下記式(an-1)~(an-3)のいずれかで表されるアニオンが挙げられる。
Figure JPOXMLDOC01-appb-C000059
[式中、R”101は、置換基を有していてもよい脂肪族環式基、前記式(r-hr-1)~(r-hr-6)でそれぞれ表される基、又は置換基を有していてもよい鎖状のアルキル基である。R”102は、置換基を有していてもよい脂肪族環式基、前述の一般式(a02-r1-1)、(a02-r1-2)、(a2-r-2)~(a2-r-7)でそれぞれ表されるラクトン含有環式基、又は前記一般式(a5-r-1)~(a5-r-4)でそれぞれ表される-SO-含有環式基である。R”103は、置換基を有していてもよい芳香族環式基、置換基を有していてもよい脂肪族環式基、又は置換基を有していてもよい鎖状のアルケニル基である。V”101は、単結合、炭素数1~4のアルキレン基、又は炭素数1~4のフッ素化アルキレン基である。R102は、フッ素原子又は炭素数1~5のフッ素化アルキル基である。v”はそれぞれ独立に0~3の整数であり、q”はそれぞれ独立に1~20の整数であり、n”は0又は1である。]
 R”101、R”102及びR”103の置換基を有していてもよい脂肪族環式基は、前記R101における環状の脂肪族炭化水素基として例示した基であることが好ましい。前記置換基としては、R101における環状の脂肪族炭化水素基を置換してもよい置換基と同様のものが挙げられる。この中でも、ヒドロキシ基、カルボニル基、ニトロ基、アミノ基が好ましく、これらの中でもレジスト膜内において基板側に分布しやすいことから、ヒドロキシ基がより好ましい。
 R”103における置換基を有していてもよい芳香族環式基は、前記R101における環状の炭化水素基における芳香族炭化水素基として例示した基であることが好ましい。前記置換基としては、R101における該芳香族炭化水素基を置換してもよい置換基と同様のものが挙げられる。
 R”101における置換基を有していてもよい鎖状のアルキル基は、前記R101における鎖状のアルキル基として例示した基であることが好ましい。R”103における置換基を有していてもよい鎖状のアルケニル基は、前記R101における鎖状のアルケニル基として例示した基であることが好ましい。
 前記式(an-1)~(an-3)中、V”101は、単結合、炭素数1~4のアルキレン基、又は炭素数1~4のフッ素化アルキレン基である。V”101は、単結合、炭素数1のアルキレン基(メチレン基)、又は炭素数1~3のフッ素化アルキレン基が好ましい。
 前記式(an-1)~(an-3)中、R102は、フッ素原子又は炭素数1~5のフッ素化アルキル基である。R102は、炭素数1~5のパーフルオロアルキル基はフッ素原子であることが好ましく、フッ素原子であることがより好ましい。
 前記式(an-1)~(an-3)中、v”は、0~3の整数であり、好ましくは0又は1である。q”は、1~20の整数であり、好ましくは1~10の整数であり、より好ましくは1~5の整数であり、さらに好ましくは1、2又は3であり、特に好ましくは1又は2である。n”は、0または1である。
 ・(b-2)成分のアニオン部
 式(b-2)中、R104、R105は、それぞれ独立に、置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、または置換基を有していてもよい鎖状のアルケニル基であり、それぞれ、式(b-1)中のR101と同様のものが挙げられる。ただし、R104、R105は、相互に結合して環を形成していてもよい。
 R104、R105は、置換基を有していてもよい鎖状のアルキル基が好ましく、直鎖状若しくは分岐鎖状のアルキル基、又は直鎖状若しくは分岐鎖状のフッ素化アルキル基であることがより好ましい。
 該鎖状のアルキル基の炭素数は、1~10であることが好ましく、より好ましくは炭素数1~7、さらに好ましくは炭素数1~3である。R104、R105の鎖状のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト用溶剤への溶解性も良好である等の理由により、小さいほど好ましい。また、R104、R105の鎖状のアルキル基においては、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また、200nm以下の高エネルギー光や電子線に対する透明性が向上するため好ましい。前記鎖状のアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70~100%、さらに好ましくは90~100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキル基である。
 式(b-2)中、V102、V103は、それぞれ独立に、単結合、アルキレン基、またはフッ素化アルキレン基であり、それぞれ、式(b-1)中のV101と同様のものが挙げられる。
 式(b-2)中、L101、L102は、それぞれ独立に単結合又は酸素原子である。
 ・(b-3)成分のアニオン部
 式(b-3)中、R106~R108は、それぞれ独立に、置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基であり、それぞれ、式(b-1)中のR101と同様のものが挙げられる。
 L103~L105は、それぞれ独立に、単結合、-CO-又は-SO-である。
 {カチオン部}
 式(b-1)、(b-2)及び(b-3)中、mは1以上の整数であって、M’m+はm価のオニウムカチオンであり、スルホニウムカチオン、ヨードニウムカチオンが好適に挙げられ、例えば上記の一般式(ca-1)~(ca-4)でそれぞれ表される有機カチオンが挙げられる。
Figure JPOXMLDOC01-appb-C000060
[式中、R201~R207及びR211~R212はそれぞれ独立に、置換基を有してもよいアリール基、置換基を有してもよいアルキル基、又は置換基を有してもよいアルケニル基を表す。R201~R203、R206~R207、R211~R212はそれぞれ、相互に結合して式中のイオウ原子と共に環を形成していてもよい。R208~R209は、それぞれ独立に、水素原子もしくは炭素数1~5のアルキル基を表すか、又は相互に結合して式中のイオウ原子と共に環を形成していてもよい。R210は、置換基を有してもよいアリール基、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、又は置換基を有してもよい-SO-含有環式基である。L201は、-C(=O)-又は-C(=O)-O-を表す。複数のY201はそれぞれ独立に、アリーレン基、アルキレン基又はアルケニレン基を表す。xは、1又は2である。W201は、(x+1)価の連結基を表す。]
 R201~R207およびR211~R212におけるアリール基としては、炭素数6~20のアリール基が挙げられ、フェニル基、ナフチル基が好ましい。
 R201~R207およびR211~R212におけるアルキル基としては、鎖状又は環状のアルキル基であって、炭素数1~30のものが好ましい。
 R201~R207およびR211~R212におけるアルケニル基としては、炭素数が2~10であることが好ましい。
 R201~R207およびR211~R212が有してもよい置換基としては、例えば、アルキル基、ハロゲン原子、ハロゲン化アルキル基、カルボニル基、シアノ基、アミノ基、アリール基、下記の一般式(ca-r-1)~(ca-r-7)でそれぞれ表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000061
[式中、R’201は、それぞれ独立に、水素原子、置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基である。]
 R’201の置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基は、後述の式(b-1)中のR101と同様のものが挙げられる他、置換基を有していてもよい環式基又は置換基を有していてもよい鎖状のアルキル基として、上述の式(a1-r-2)で表される酸解離性基と同様のものも挙げられる。
 R201~R203、R206~R207、R211~R212は、相互に結合して式中のイオウ原子と共に環を形成する場合、硫黄原子、酸素原子、窒素原子等のヘテロ原子や、カルボニル基、-SO-、-SO-、-SO-、-COO-、-CONH-または-N(R)-(該Rは炭素数1~5のアルキル基である。)等の官能基を介して結合してもよい。形成される環としては、式中のイオウ原子をその環骨格に含む1つの環が、イオウ原子を含めて、3~10員環であることが好ましく、5~7員環であることが特に好ましい。形成される環の具体例としては、たとえばチオフェン環、チアゾール環、ベンゾチオフェン環、チアントレン環、ベンゾチオフェン環、ジベンゾチオフェン環、9H-チオキサンテン環、チオキサントン環、チアントレン環、フェノキサチイン環、テトラヒドロチオフェニウム環、テトラヒドロチオピラニウム環等が挙げられる。
 R208~R209は、それぞれ独立に、水素原子または炭素数1~5のアルキル基を表し、水素原子又は炭素数1~3のアルキル基が好ましく、アルキル基となる場合、相互に結合して環を形成してもよい。
 R210は、置換基を有していてもよいアリール基、置換基を有していてもよいアルキル基、置換基を有していてもよいアルケニル基、又は置換基を有していてもよい-SO-含有環式基である。
 R210におけるアリール基としては、炭素数6~20の無置換のアリール基が挙げられ、フェニル基、ナフチル基が好ましい。
 R210におけるアルキル基としては、鎖状又は環状のアルキル基であって、炭素数1~30のものが好ましい。
 R210におけるアルケニル基としては、炭素数が2~10であることが好ましい。R210における、置換基を有していてもよい-SO-含有環式基としては、「-SO-含有多環式基」が好ましく、上記一般式(a5-r-1)で表される基がより好ましい。
 Y201は、それぞれ独立に、アリーレン基、アルキレン基又はアルケニレン基を表す。
 Y201におけるアリーレン基は、後述の式(b-1)中のR101における芳香族炭化水素基として例示したアリール基から水素原子を1つ除いた基が挙げられる。
 Y201におけるアルキレン基、アルケニレン基は、後述の式(b-1)中のR101における鎖状のアルキル基、鎖状のアルケニル基として例示した基から水素原子を1つ除いた基が挙げられる。
 前記式(ca-4)中、xは、1または2である。
 W201は、(x+1)価、すなわち2価または3価の連結基である。
 W201における2価の連結基としては、置換基を有していてもよい2価の炭化水素基が好ましく、上述の一般式(a2-1)中のYa21と同様の、置換基を有していてもよい2価の炭化水素基、が例示できる。W201における2価の連結基は、直鎖状、分岐鎖状、環状のいずれであってもよく、環状であることが好ましい。なかでも、アリーレン基の両端に2個のカルボニル基が組み合わされた基が好ましい。アリーレン基としては、フェニレン基、ナフチレン基等が挙げられ、フェニレン基が特に好ましい。
 W201における3価の連結基としては、前記W201における2価の連結基から水素原子を1個除いた基、前記2価の連結基にさらに前記2価の連結基が結合した基などが挙げられる。W201における3価の連結基としては、アリーレン基に2個のカルボニル基が結合した基が好ましい。
 前記式(ca-1)で表される好適なカチオンとして具体的には、下記の化学式(ca-1-1)~(ca-1-78)、(ca-1-101)~(ca-1-149)でそれぞれ表されるカチオンが挙げられる。
 下記の化学式中、g1は繰返し数を示し、g1は1~5の整数である。g2は繰返し数を示し、g2は0~20の整数である。g3は繰返し数を示し、g3は0~20の整数である。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
[式中、R”201は水素原子又は置換基である。該置換基としては、上記R201~R207およびR211~R212が有してもよい置換基として挙げた、アルキル基、ハロゲン原子、ハロゲン化アルキル基、カルボニル基、シアノ基、アミノ基、アリール基、一般式(ca-r-1)~(ca-r-7)でそれぞれ表される基が挙げられる。]
 前記式(ca-2)で表される好適なカチオンとして具体的には、下記式(ca-2-1)~(ca-2-2)でそれぞれ表されるカチオン、ジフェニルヨードニウムカチオン、ビス(4-tert-ブチルフェニル)ヨードニウムカチオンが挙げられる。
Figure JPOXMLDOC01-appb-C000072
 前記式(ca-3)で表される好適なカチオンとして具体的には、下記式(ca-3-1)~(ca-3-7)でそれぞれ表されるカチオンが挙げられる。
Figure JPOXMLDOC01-appb-C000073
 前記式(ca-4)で表される好適なカチオンとして具体的には、下記式(ca-4-1)~(ca-4-2)でそれぞれ表されるカチオンが挙げられる。
Figure JPOXMLDOC01-appb-C000074
 上記の中でも、カチオン部((Mm+1/m)は、一般式(ca-1)で表されるカチオンが好ましく、化学式(ca-1-1)~(ca-1-78)、(ca-1-101)~(ca-1-149)でそれぞれ表されるカチオンがより好ましい。
 本発明におけるオニウム塩系酸発生剤としては、上記(b-1)、(b-2)及び(b-3)成分の中でも特に(b-1)成分が好ましい。
 レジスト組成物において、(B)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 レジスト組成物が(B)成分を含有する場合、レジスト組成物中、(B)成分の含有量は、(A)成分100質量部に対して、0質量部以上が好ましく、20~80質量部がより好ましく、30~70質量部がさらに好ましい。
 (B)成分の含有量を上記範囲とすることで、パターン形成が充分に行われる。
≪(D)成分≫
 本実施形態におけるレジスト組成物は、(A)成分に加えて、又は、(A)成分及び(B)成分に加えて、さらに、塩基成分(以下「(D)成分」という。)を含有してもよい。(D)成分は、レジスト組成物において露光により発生する酸をトラップするクエンチャー(酸拡散制御剤)として作用するものである。
 (D)成分は、露光により分解して酸拡散制御性を失う光崩壊性塩基(D1)(以下「(D1)成分」という。)であってもよく、該(D1)成分に該当しない含窒素有機化合物(D2)(以下「(D2)成分」という。)であってもよい。
 (D)成分を含有するレジスト組成物とすることで、レジストパターンを形成する際に、レジスト膜の露光部と未露光部とのコントラストをより向上させることができる。
 ・(D1)成分について
 (D1)成分を含有するレジスト組成物とすることで、レジストパターンを形成する際に、レジスト膜の露光部と未露光部とのコントラストをより向上させることができる。(D1)成分としては、露光により分解して酸拡散制御性を失うものであれば特に限定されず、下記一般式(d1-1)で表される化合物(以下「(d1-1)成分」という。)、下記一般式(d1-2)で表される化合物(以下「(d1-2)成分」という。)及び下記一般式(d1-3)で表される化合物(以下「(d1-3)成分」という。)からなる群より選ばれる1種以上の化合物が好ましい。
 (d1-1)~(d1-3)成分は、レジスト膜の露光部においては分解して酸拡散制御性(塩基性)を失うためクエンチャーとして作用せず、レジスト膜の未露光部においてクエンチャーとして作用する。
Figure JPOXMLDOC01-appb-C000075
[式中、Rd~Rdは置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基である。但し、式(d1-2)中のRdにおける、S原子に隣接する炭素原子にはフッ素原子は結合していないものとする。Ydは単結合又は2価の連結基である。mは1以上の整数であって、Mm+はそれぞれ独立にm価の有機カチオンである。]
 {(d1-1)成分}
 ・アニオン部
 式(d1-1)中、Rdは、置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基であり、それぞれ前記R’201と同様のものが挙げられる。
 これらのなかでも、Rdとしては、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族環式基、又は置換基を有していてもよい鎖状のアルキル基が好ましい。これらの基が有していてもよい置換基としては、水酸基、オキソ基、アルキル基、アリール基、フッ素原子、フッ素化アルキル基、上記一般式(a2-r-1)~(a2-r-7)でそれぞれ表されるラクトン含有環式基、エーテル結合、エステル結合、またはこれらの組み合わせが挙げられる。エーテル結合やエステル結合を置換基として含む場合、アルキレン基を介していてもよく、この場合の置換基としては、上記式(y-al-1)~(y-al-5)でそれぞれ表される連結基が好ましい。
 前記芳香族炭化水素基としては、フェニル基、ナフチル基、ビシクロオクタン骨格を含む多環構造(ビシクロオクタン骨格とこれ以外の環構造とからなる多環構造)が好適に挙げられる。
 前記脂肪族環式基としては、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等のポリシクロアルカンから1個以上の水素原子を除いた基であることがより好ましい。
 前記鎖状のアルキル基としては、炭素数が1~10であることが好ましく、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の直鎖状のアルキル基;1-メチルエチル基、1-メチルプロピル基、2-メチルプロピル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルブチル基、2-エチルブチル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基等の分岐鎖状のアルキル基が挙げられる。
 前記鎖状のアルキル基が置換基としてフッ素原子又はフッ素化アルキル基を有するフッ素化アルキル基である場合、フッ素化アルキル基の炭素数は、1~11が好ましく、1~8がより好ましく、1~4がさらに好ましい。該フッ素化アルキル基は、フッ素原子以外の原子を含有してもよい。フッ素原子以外の原子としては、たとえば酸素原子、硫黄原子、窒素原子等が挙げられる。
 Rdとしては、直鎖状のアルキル基を構成する一部又は全部の水素原子がフッ素原子により置換されたフッ素化アルキル基であることが好ましく、直鎖状のアルキル基を構成する水素原子の全てがフッ素原子で置換されたフッ素化アルキル基(直鎖状のパーフルオロアルキル基)であることが特に好ましい。
 以下に(d1-1)成分のアニオン部の好ましい具体例を示す。
Figure JPOXMLDOC01-appb-C000076
 ・カチオン部
 式(d1-1)中、Mm+は、m価の有機カチオンである。
 Mm+の有機カチオンとしては、前記一般式(ca-1)~(ca-4)でそれぞれ表されるカチオンと同様のものが好適に挙げられ、前記一般式(ca-1)で表されるカチオンがより好ましく、前記式(ca-1-1)~(ca-1-78)、(ca-1-101)~(ca-1-149)でそれぞれ表されるカチオンがさらに好ましい。
 (d1-1)成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 {(d1-2)成分}
 ・アニオン部
 式(d1-2)中、Rdは、置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基であり、前記R’201と同様のものが挙げられる。
 但し、Rdにおける、S原子に隣接する炭素原子にはフッ素原子は結合していない(フッ素置換されていない)ものとする。これにより、(d1-2)成分のアニオンが適度な弱酸アニオンとなり、(D)成分としてのクエンチング能が向上する。
 Rdとしては、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい脂肪族環式基であることが好ましい。鎖状のアルキル基としては、炭素数1~10であることが好ましく、3~10であることがより好ましい。脂肪族環式基としては、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等から1個以上の水素原子を除いた基(置換基を有していてもよい);カンファー等から1個以上の水素原子を除いた基であることがより好ましい。
 Rdの炭化水素基は、置換基を有していてもよく、該置換基としては、前記式(d1-1)のRdにおける炭化水素基(芳香族炭化水素基、脂肪族環式基、鎖状のアルキル基)が有していてもよい置換基と同様のものが挙げられる。
 以下に(d1-2)成分のアニオン部の好ましい具体例を示す。
Figure JPOXMLDOC01-appb-C000077
 ・カチオン部
 式(d1-2)中、Mm+は、m価の有機カチオンであり、前記式(d1-1)中のMm+と同様である。
 (d1-2)成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 {(d1-3)成分}
 ・アニオン部
 式(d1-3)中、Rdは置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基であり、前記R’201と同様のものが挙げられ、フッ素原子を含む環式基、鎖状のアルキル基、又は鎖状のアルケニル基であることが好ましい。中でも、フッ素化アルキル基が好ましく、前記Rdのフッ素化アルキル基と同様のものがより好ましい。
 式(d1-3)中、Rdは、置換基を有していてもよい環式基、置換基を有していてもよい鎖状のアルキル基、又は置換基を有していてもよい鎖状のアルケニル基であり、前記R’201と同様のものが挙げられる。
 なかでも、置換基を有していてもよいアルキル基、アルコキシ基、アルケニル基、環式基であることが好ましい。
 Rdにおけるアルキル基は、炭素数1~5の直鎖状又は分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。Rdのアルキル基の水素原子の一部が水酸基、シアノ基等で置換されていてもよい。
 Rdにおけるアルコキシ基は、炭素数1~5のアルコキシ基が好ましく、炭素数1~5のアルコキシ基として具体的には、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基が挙げられる。なかでも、メトキシ基、エトキシ基が好ましい。
 Rdにおけるアルケニル基は、前記R’201におけるアルケニル基と同様のものが挙げられ、ビニル基、プロペニル基(アリル基)、1-メチルプロペニル基、2-メチルプロペニル基が好ましい。これらの基はさらに置換基として、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基を有していてもよい。
 Rdにおける環式基は、前記R’201における環式基と同様のものが挙げられ、シクロペンタン、シクロヘキサン、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等のシクロアルカンから1個以上の水素原子を除いた脂環式基、又は、フェニル基、ナフチル基等の芳香族基が好ましい。Rdが脂環式基である場合、レジスト組成物が有機溶剤に良好に溶解することにより、リソグラフィー特性が良好となる。また、Rdが芳香族基である場合、EUV等を露光光源とするリソグラフィーにおいて、該レジスト組成物が光吸収効率に優れ、感度やリソグラフィー特性が良好となる。
 式(d1-3)中、Ydは、単結合または2価の連結基である。
 Ydにおける2価の連結基としては、特に限定されないが、置換基を有していてもよい2価の炭化水素基(脂肪族炭化水素基、芳香族炭化水素基)、ヘテロ原子を含む2価の連結基等が挙げられる。これらはそれぞれ、上記式(a2-1)中のYa21における2価の連結基についての説明のなかで挙げた、置換基を有していてもよい2価の炭化水素基、ヘテロ原子を含む2価の連結基と同様のものが挙げられる。
 Ydとしては、カルボニル基、エステル結合、アミド結合、アルキレン基又はこれらの組み合わせであることが好ましい。アルキレン基としては、直鎖状又は分岐鎖状のアルキレン基であることがより好ましく、メチレン基又はエチレン基であることがさらに好ましい。
 以下に(d1-3)成分のアニオン部の好ましい具体例を示す。
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
 ・カチオン部
 式(d1-3)中、Mm+は、m価の有機カチオンであり、前記式(d1-1)中のMm+と同様である。
 (d1-3)成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (D1)成分は、上記(d1-1)~(d1-3)成分のいずれか1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 レジスト組成物が(D1)成分を含有する場合、レジスト組成物中、(D1)成分の含有量は、(A)成分100質量部に対して、0~40質量部が好ましく、1~30質量部がより好ましく、5~25質量部がさらに好ましい。
 (D1)成分の含有量が好ましい下限値以上であると、特に良好なリソグラフィー特性及びレジストパターン形状が得られやすい。一方、上限値以下であると、感度を良好に維持でき、スループットにも優れる。
 (D1)成分の製造方法:
 前記の(d1-1)成分、(d1-2)成分の製造方法は、特に限定されず、公知の方法により製造することができる。
 また、(d1-3)成分の製造方法は、特に限定されず、例えば、US2012-0149916号公報に記載の方法と同様にして製造される。
 ・(D2)成分について
 酸拡散制御剤成分としては、上記の(D1)成分に該当しない含窒素有機化合物成分(以下「(D2)成分」という。)を含有してもよい。
 (D2)成分としては、酸拡散制御剤として作用するもので、かつ、(D1)成分に該当しないものであれば特に限定されず、公知のものから任意に用いればよい。なかでも、脂肪族アミンが好ましく、この中でも特に第2級脂肪族アミンや第3級脂肪族アミンがより好ましい。
 脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、該脂肪族基は炭素数が1~12であることが好ましい。
 脂肪族アミンとしては、アンモニアNHの水素原子の少なくとも1つを、炭素数12以下のアルキル基もしくはヒドロキシアルキル基で置換したアミン(アルキルアミンもしくはアルキルアルコールアミン)又は環式アミンが挙げられる。
 アルキルアミンおよびアルキルアルコールアミンの具体例としては、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ-n-プロピルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、トリ-n-ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ-n-オクタノールアミン、トリ-n-オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、炭素数5~10のトリアルキルアミンがさらに好ましく、トリ-n-ペンチルアミン又はトリ-n-オクチルアミンが特に好ましい。
 環式アミンとしては、たとえば、ヘテロ原子として窒素原子を含む複素環化合物が挙げられる。該複素環化合物としては、単環式のもの(脂肪族単環式アミン)であっても多環式のもの(脂肪族多環式アミン)であってもよい。
 脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。脂肪族多環式アミンとしては、炭素数が6~10のものが好ましく、具体的には、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ヘキサメチレンテトラミン、1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
 その他の脂肪族アミンとしては、トリス(2-メトキシメトキシエチル)アミン、トリス{2-(2-メトキシエトキシ)エチル}アミン、トリス{2-(2-メトキシエトキシメトキシ)エチル}アミン、トリス{2-(1-メトキシエトキシ)エチル}アミン、トリス{2-(1-エトキシエトキシ)エチル}アミン、トリス{2-(1-エトキシプロポキシ)エチル}アミン、トリス[2-{2-(2-ヒドロキシエトキシ)エトキシ}エチル]アミン、トリエタノールアミントリアセテート等が挙げられ、トリエタノールアミントリアセテートが好ましい。
 また、(D2)成分としては、芳香族アミンを用いてもよい。
 芳香族アミンとしては、4-ジメチルアミノピリジン、ピロール、インドール、ピラゾール、イミダゾールまたはこれらの誘導体、トリベンジルアミン、2,6-ジイソプロピルアニリン、N-tert-ブトキシカルボニルピロリジン等が挙げられる。
 (D2)成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。レジスト組成物が(D2)成分を含有する場合、レジスト組成物中、(D2)成分の含有量は、(A)成分100質量部に対して、通常、0~5質量部の範囲で用いられる。上記範囲とすることにより、レジストパターン形状、引き置き経時安定性等が向上する。
≪(E)成分:有機カルボン酸並びにリンのオキソ酸及びその誘導体からなる群より選択される少なくとも1種の化合物≫
 レジスト組成物には、感度劣化の防止や、レジストパターン形状、引き置き経時安定性等の向上の目的で、任意の成分として、有機カルボン酸並びにリンのオキソ酸及びその誘導体からなる群より選択される少なくとも1種の化合物(E)(以下「(E)成分」という)を含有させることができる。
 有機カルボン酸としては、例えば、酢酸、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、ヒドロキシ安息香酸、サリチル酸、フタル酸、テレフタル酸、イソフタル酸などが好適である。
 リンのオキソ酸としては、リン酸、ホスホン酸、ホスフィン酸等が挙げられ、これらの中でも特にホスホン酸が好ましい。
 リンのオキソ酸の誘導体としては、例えば、上記オキソ酸の水素原子を炭化水素基で置換したエステル等が挙げられ、前記炭化水素基としては、炭素数1~5のアルキル基、炭素数6~15のアリール基等が挙げられる。
 リン酸の誘導体としては、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステル等のリン酸エステルなどが挙げられる。
 ホスホン酸の誘導体としては、ホスホン酸ジメチルエステル、ホスホン酸-ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸エステルなどが挙げられる。
 ホスフィン酸の誘導体としては、ホスフィン酸エステルやフェニルホスフィン酸などが挙げられる。
 (E)成分は、上記の中でも、有機カルボン酸が好ましく、芳香族カルボン酸がより好ましい。具体的には、安息香酸、ヒドロキシ安息香酸、サリチル酸、フタル酸、テレフタル酸、イソフタル酸が好ましく、サリチル酸がより好ましい。
 レジスト組成物において、(E)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 レジスト組成物が(E)成分を含有する場合、(E)成分の含有量は、(A)成分100質量部に対して、0~5質量部が好ましく、0.1~5質量部がより好ましく、0.1~4質量部がさらに好ましい。
≪(F)成分:フッ素添加剤成分≫
 本実施形態におけるレジスト組成物は、レジスト膜に撥水性を付与するため又はリソグラフィー特性を向上させるために、フッ素添加剤成分(以下「(F)成分」という)を含有してもよい。
 (F)成分としては、例えば、特開2010-002870号公報、特開2010-032994号公報、特開2010-277043号公報、特開2011-13569号公報、特開2011-128226号公報に記載の含フッ素高分子化合物を用いることができる。
 (F)成分としてより具体的には、下記一般式(f1-1)で表される構成単位(f11)又は下記一般式(f1-2)で表される構成単位(f12)を有する重合体が挙げられる。
 下記一般式(f1-1)で表される構成単位(f11)を有する重合体としては、下記式(f1-1)で表される構成単位(f11)のみからなる重合体(ホモポリマー);該構成単位(f11)と前記構成単位(a1)との共重合体;該構成単位(f11)とアクリル酸又はメタクリル酸から誘導される構成単位と前記構成単位(a1)との共重合体、であることが好ましい。ここで、該構成単位(f11)と共重合される前記構成単位(a1)としては、1-メチル-1-アダマンチル(メタ)アクリレートから誘導される構成単位が好ましく、1-メチル-1-アダマンチル(メタ)アクリレートから誘導される構成単位がより好ましい。
 下記一般式(f1-2)で表される構成単位(f12)を有する重合体としては、下記式(f1-2)で表される構成単位(f12)のみからなる重合体(ホモポリマー);該構成単位(f12)と前記構成単位(a01)との共重合体;該構成単位(f12)と前記構成単位(a1)との共重合体等が挙げられる。その中でも該構成単位(f12)と前記構成単位(a01)との共重合体との共重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000080
[式中、Rは前記と同様である。Rf102およびRf103はそれぞれ独立して水素原子、ハロゲン原子、炭素数1~5のアルキル基又は炭素数1~5のハロゲン化アルキル基を表し、Rf102およびRf103は同じであっても異なっていてもよい。nfは0~5の整数であり、Rf101はフッ素原子を含む有機基である。Rf11~Rf12は、それぞれ独立して、水素原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。Rf13は、フッ素原子又は炭素数1~4のフッ素化アルキル基である。Rf14は、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~4の直鎖状のフッ素化アルキル基である。]
 式(f1-1)中、α位の炭素原子に結合したRは、前記と同様である。Rとしては、水素原子またはメチル基が好ましい。
 式(f1-1)中、Rf102およびRf103のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。Rf102およびRf103の炭素数1~5のアルキル基としては、上記Rの炭素数1~5のアルキル基と同様のものが挙げられ、メチル基またはエチル基が好ましい。Rf102およびRf103の炭素数1~5のハロゲン化アルキル基として、具体的には、炭素数1~5のアルキル基の水素原子の一部または全部が、ハロゲン原子で置換された基が挙げられる。該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。なかでもRf102およびRf103としては、水素原子、フッ素原子、又は炭素数1~5のアルキル基が好ましく、水素原子、フッ素原子、メチル基、またはエチル基が好ましい。
 式(f1-1)中、nfは1~5の整数であり、1~3の整数が好ましく、1又は2であることがより好ましい。
 式(f1-1)中、Rf101は、フッ素原子を含む有機基であり、フッ素原子を含む炭化水素基であることが好ましい。
 フッ素原子を含む炭化水素基としては、直鎖状、分岐鎖状または環状のいずれであってもよく、炭素数は1~20であることが好ましく、炭素数1~15であることがより好ましく、炭素数1~10が特に好ましい。
 また、フッ素原子を含む炭化水素基は、当該炭化水素基における水素原子の25%以上がフッ素化されていることが好ましく、50%以上がフッ素化されていることがより好ましく、60%以上がフッ素化されていることが、浸漬露光時のレジスト膜の疎水性が高まることから特に好ましい。
 なかでも、Rf101としては、炭素数1~6のフッ素化炭化水素基がより好ましく、トリフルオロメチル基、-CH-CF、-CH-CF-CF、-CH(CF、-CH-CH-CF、-CH-CH-CF-CF-CF-CFがさらに好ましく、-CH-CFが特に好ましい。
 式(f1-2)中、α位の炭素原子に結合したRは、前記と同様である。Rとしては、水素原子またはメチル基が好ましい。
 前記式(f1-2)中、Rf11~Rf12は、それぞれ独立して、水素原子、炭素数1~4のアルキル基又は炭素数1~4のフッ素化アルキル基である。
 Rf11~Rf12における炭素数1~4のアルキル基は、直鎖状、分岐鎖状又は環状のいずれでもよく、直鎖状又は分岐鎖状のアルキル基であることが好ましく、具体的には、メチル基、エチル基が好適なものとして挙げられ、エチル基が特に好ましい。
 Rf11~Rf12における炭素数1~4のフッ素化アルキル基は、炭素数1~4のアルキル基中の水素原子の一部又は全部がフッ素原子で置換されている基である。当該フッ素化アルキル基において、フッ素原子で置換されていない状態のアルキル基は、直鎖状、分岐鎖状又は環状のいずれでもよく、上記「Rf11~Rf12における炭素数1~4のアルキル基」と同様のものが挙げられる。
 上記のなかでも、Rf11~Rf12は、水素原子又は炭素数1~4のアルキル基であることが好ましく、Rf11~Rf12の一方が水素原子でかつ他方が炭素数1~4のアルキル基であることが特に好ましい。
 前記式(f1-2)中、Rf13は、フッ素原子又は炭素数1~4のフッ素化アルキル基である。
 Rf13における炭素数1~4のフッ素化アルキル基は、上記「Rf11~Rf12における炭素数1~4のフッ素化アルキル基」と同様のものが挙げられ、炭素数1~3であることが好ましく、炭素数が1~2であることがより好ましい。
 Rf13のフッ素化アルキル基においては、当該フッ素化アルキル基に含まれるフッ素原子と水素原子との合計数に対するフッ素原子の数の割合(フッ素化率(%))が、30~100%であることが好ましく、50~100%であることがより好ましい。該フッ素化率が高いほど、レジスト膜の疎水性が高まる。
 上記のなかでも、Rf13は、フッ素原子であることが好ましい。
 前記式(f1-2)中、Rf14は、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数1~4の直鎖状のフッ素化アルキル基であり、炭素数1~4の直鎖状のアルキル基、炭素数1~4の直鎖状のフッ素化アルキル基であることが好ましい。
 Rf14におけるアルキル基として具体的には、たとえば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基が挙げられ、なかでもメチル基、エチル基が好ましく、メチル基が最も好ましい。
 Rf14におけるフッ素化アルキル基として具体的には、たとえば、-CH-CF、-CH-CH-CF、-CH-CF-CF、-CH-CF-CF-CFが好適なものとして挙げられ、その中でも-CH-CH-CFが特に好ましい。
 (F)成分の重量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算基準)は、1000~50000が好ましく、5000~40000がより好ましく、10000~30000が最も好ましい。この範囲の上限値以下であると、レジストとして用いるのにレジスト用溶剤への充分な溶解性があり、この範囲の下限値以上であると、耐ドライエッチング性やレジストパターン断面形状が良好である。
 (F)成分の分散度(Mw/Mn)は、1.0~5.0が好ましく、1.0~3.0がより好ましく、1.0~2.5が最も好ましい。
 本実施形態におけるレジスト組成物において、(F)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
 レジスト組成物が(F)成分を含有する場合、(F)成分の含有量は、(A)成分100質量部に対して、通常、0~10質量部の割合で用いられる。
≪(S)成分:有機溶剤成分≫
 本実施形態におけるレジスト組成物は、レジスト材料を有機溶剤成分(以下「(S)成分」という)に溶解させて製造することができる。
 (S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジスト組成物の溶剤として公知のものの中から任意のものを適宜選択して用いることができる。
 (S)成分としては、例えば、γ-ブチロラクトン等のラクトン類;アセトン、メチルエチルケトン、シクロヘキサノン、メチル-n-ペンチルケトン、メチルイソペンチルケトン、2-ヘプタノン、エチレンカーボネート、プロピレンカーボネートなどのケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類;エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体[これらの中では、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)が好ましい];ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、ペンチルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤、ジメチルスルホキシド(DMSO)等が挙げられる。
 本実施形態におけるレジスト組成物において、(S)成分は、1種単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
 上記の中でも、PGMEA、PGME、γ-ブチロラクトン、プロピレンカーボネート、EL、シクロヘキサノンが好ましく、PGMEA、PGME、γ-ブチロラクトンがより好ましい。
 また、PGMEAと極性溶剤とを混合した混合溶剤も好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1:9~9:1、より好ましくは2:8~8:2の範囲内とすることが好ましい。
 より具体的には、極性溶剤としてEL又はシクロヘキサノンを配合する場合は、PGMEA:EL又はシクロヘキサノンの質量比は、好ましくは1:9~9:1、より好ましくは2:8~8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9~9:1、より好ましくは2:8~8:2、さらに好ましくは3:7~7:3である。さらに、PGMEAとPGMEとシクロヘキサノンとの混合溶剤も好ましい。
 また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種と、γ-ブチロラクトン及びプロピレンカーボネートの中から選ばれる少なくとも一種との混合溶剤も好ましい。この場合、混合割合としては、前者と後者との質量比が、好ましくは60:40~99:1、より好ましくは70:30~95:5とされる。
 レジスト組成物において、(S)成分の含有量は、レジスト組成物の全質量(100質量%)に対して、97質量%以上である。(S)成分の含有量を97質量%以上とすることにより、パターン倒れを抑制することができ、前記工程(i)の前後におけるパターン寸法の変化を抑制することができる。(S)成分の含有量は、97~99.95質量%であることが好ましく、97~99.9質量%であることがより好ましく、97~98.5質量%であることがさらに好ましい。
 レジスト組成物には、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料などを適宜、添加含有させることができる。
 レジスト組成物は、上述した(A)成分と、オニウム塩と、有機溶剤成分(S)と、を含有するものである。前記オニウム塩は、(A)成分であってもよく、(B)成分であってもよく、(D)成分であってもよい。
 レジスト組成物としては、例えば、オニウム塩を含む(A)成分と、有機溶剤成分(S)とを含むもの;オニウム塩を含む(A)成分と、オニウム塩を含む(D)成分と、有機溶剤成分(S)とを含むもの;オニウム塩を含む(A)成分と、オニウム塩を含む(B)成分と、オニウム塩を含む(D)成分と、有機溶剤成分(S)とを含むもの;(A)成分と、オニウム塩を含む(B)成分と、有機溶剤成分(S)とを含むもの;(A)成分と、オニウム塩を含む(B)成分と、オニウム塩を含む(D)成分と、有機溶剤成分(S)とを含むもの;等が挙げられる。レジスト組成物は、これらの成分に加えて、さらに(E)成分を含むものが好ましい。
 レジスト組成物は、パターン倒れ抑制等の観点から、2種以上のオニウム塩を含むことが好ましい。好ましい例としては、例えば、(A)成分と(D)成分とがオニウム塩を含むもの;(B)成分と(D)成分とがオニウム塩を含むもの;等が挙げられる。
 レジスト組成物において、オニウム塩の含有量は、レジスト組成物の全質量(100質量%)に対して、0.05~2.9質量%であることが好ましい。オニウム塩の含有量は、0.1~2質量%がより好ましく、0.5~1.5質量%がさらに好ましい。オニウム塩の含有量が前記範囲であると、パターン倒れを抑制することができ、前記工程(i)の前後におけるパターン寸法の変化を抑制することができる。
 なお、レジスト組成物が2種以上のオニウム塩を含む場合、前記オニウム塩の含有量は、レジスト組成物に含有される全オニウム塩の含有量の合計値である。
 例えば、レジスト組成物が、オニウム塩として、(A)成分のみを含む場合、前記(A)成分の含有量としては、レジスト組成物の全質量(100質量%)に対して、0.05~2.9質量%が好ましく、0.1~2.8質量%がより好ましい。また、例えば、レジスト組成物が、オニウム塩として(B)成分のみを含む場合、前記(B)成分の含有量は、レジスト組成物の全質量(100質量%)に対して、0.05~1.6質量%が好ましく、0.5~1.4質量%がより好ましい。また、例えば、レジスト組成物が、オニウム塩として(D)成分のみを含む場合、前記(D)成分の含有量は、レジスト組成物の全質量(100質量%)に対して、0.05~1.6質量%が好ましく、0.5~1.0質量%質量%がより好ましい。
 また、例えば、レジスト組成物が、オニウム塩として(A)成分と(D)成分とを含む場合、前記(A)成分及び前記(D)成分の含有量の合計は、レジスト組成物の全質量(100質量%)に対して、0.05~2.9質量%であることが好ましい。そのうち、前記(A)成分の含有量としては、0.04~2.8質量%が好ましく、0.5~2.8質量%がより好ましい。また、前記(D)成分の含有量としては、0.01~0.2質量%が好ましく、0.03~0.18質量%がより好ましい。
 また、例えば、レジスト組成物が、オニウム塩として(A)成分と(B)成分とを含む場合、前記(A)成分及び前記(B)成分の含有量の合計は、レジスト組成物の全質量(100質量%)に対して、0.05~2.9質量%であることが好ましい。そのうち、前記(A)成分の含有量としては、0.04~2.8質量%が好ましく、0.5~2.8質量%がより好ましい。また、前記(B)成分の含有量としては、0.01~1.6質量%が好ましく、0.05~1.1質量%がより好ましい。
 また、例えば、レジスト組成物が、オニウム塩として(B)成分と(D)成分とを含む場合、前記(B)成分及び前記(D)成分の含有量の合計は、レジスト組成物の全質量(100質量%)に対して、0.05~1.8質量%であることが好ましい。そのうち、前記(B)成分の含有量としては、0.04~1.6質量%が好ましく、0.08~1.4がより好ましい。また、前記(D)成分の含有量としては、0.01~0.5質量%質量%が好ましく、0.01~0.3質量%がより好ましい。
 また、例えば、レジスト組成物が、オニウム塩として(A)成分と(B)成分と(D)成分とを含む場合、前記(A)成分、前記(B)成分及び前記(D)成分の含有量の合計は、レジスト組成物の全質量(100質量%)に対して、0.05~2.9質量%であることが好ましい。そのうち、前記(A)成分の含有量としては、0.04~2.8質量%が好ましく、0.5~2.8質量%がより好ましい。また、前記(B)成分の含有量としては、0.01~1.6質量%が好ましく、0.01~1.4質量%質量%がより好ましい。また、前記(D)成分の含有量としては、0.01~0.5質量%質量%が好ましく、0.01~0.2質量%がより好ましい。
 以上説明した、本態様のレジスト組成物精製品の製造方法によれば、工程(i)で、濾過対象物(レジスト組成物)が、隣接した球状セル同士が連通した多孔質構造を有し、且つポリイミド及びポリアミドイミドからなる群より選択される少なくとも一種の樹脂骨格を含有する多孔質膜を備えるフィルターにより濾過される。これによって、濾過対象物から、有機物、金属不純物などの異物がこれまで以上に除去される。特に、ポリイミド系樹脂多孔質膜が用いられていることで、濾過対象物から、従来では取り除くことが困難であった高極性成分、高分子が充分に除去され、中でも高極性高分子が特異的に除去される。加えて、工程(i)では、濾過対象物から、不純物として金属成分も充分に除去される。このように、かかる製造方法により、種々の異物が効率良く除去され、高純度のレジスト組成物精製品が得られる。
 さらに、本態様のレジスト組成物精製品の製造方法によれば、工程(i)で、(A)成分と、オニウム塩と、(S)成分とを含有し、且つ(S)成分の含有量が97質量%以上であるレジスト組成物が濾過される。このようなレジスト組成物を用いることにより、工程(i)(又は工程(i)及び工程(ii))後のレジスト組成物精製品を用いてレジストパターンを形成した場合に、レジストパターンのパターン倒れが抑制される。さらに、工程(i)(又は工程(i)及び工程(ii)))の前後で、不純物のみが除去され、レジスト組成物の成分変動は小さいため、工程(i)(又は工程(i)及び工程(ii)))の前後でパターン寸法の変動を抑制することができる。
 本態様におけるフィルターは、図1に示すような隣り合う球状セル1aと球状セル1bとが連通した連通孔5が形成された多孔質膜を備えたものに限定されず、球状セル1a、1bが連通した連通孔5に加えてこれ以外の形態のセル又は連通孔が形成された多孔質膜を備えるものでもよい。
 これ以外の形態のセル(以下これを「他のセル」という。)としては、形状もしくは孔径が異なるセルが挙げられ、例えば楕円状セル、多面体状セル、孔径の異なる球状セル等が挙げられる。前記の「これ以外の形態の連通孔」としては、例えば、球状セルと他のセルとが連通した連通孔が挙げられる。
 他のセルの形状又は孔径は、除去対象とされる不純物の種類に応じて適宜決定すればよい。球状セルと他のセルとが連通した連通孔は、上述の微粒子の材料を選択したり、微粒子の形状を制御したりすることによって形成できる。
 隣接した球状セル同士が連通した連通孔に加えてこれ以外の形態のセル又は連通孔が形成された多孔質膜を備えたフィルターによれば、濾過対象物から、種々の異物をより効率的に除去できる。
 また、濾過工程で用いられる、ポリイミド系樹脂多孔質膜を備えるフィルターは、半導体製造プロセスにおけるレジスト組成物の供給ライン又はPOU(point of use)で、これまで設置されていた微粒子状不純物除去のためのフィルターカートリッジ等に置き換えて、又はこれと組み合わせて用いることができる。このため、従来と全く同一の装置及び操作で、濾過対象物から、種々の異物を効率良く除去でき、高純度のレジスト組成物精製品を製造できる。
(レジストパターンの形成方法)
 本発明の第2の態様にかかるレジストパターン形成方法は、前記第1の態様にかかるレジスト組成物精製品の製造方法により、レジスト組成物精製品を得る工程と、前記レジスト組成物精製品を用いて、支持体上にレジスト膜を形成する工程と、前記レジスト膜を露光する工程と、前記露光後のレジスト膜を現像してレジストパターンを形成する工程と、を有する。
 本態様のレジストパターン形成方法は、例えば以下のようにして行うことができる。まず、前記第1の態様にかかるレジスト組成物精製品の製造方法により、レジスト組成物精製品を得る。
 次に、支持体上に、前記レジスト組成物精製品を、スピンナーなどで塗布し、ベーク(ポストアプライベーク(PAB))処理を、たとえば80~150℃の温度条件にて40~120秒間、好ましくは60~90秒間施してレジスト膜を形成する。
 次に、該レジスト膜に対し、例えばArF露光装置、電子線描画装置、EUV露光装置等の露光装置を用いて、所定のパターンが形成されたマスク(マスクパターン)を介した露光またはマスクパターンを介さない電子線の直接照射による描画等による選択的露光を行った後、ベーク(ポストエクスポージャーベーク(PEB))処理を、たとえば80~150℃の温度条件にて40~120秒間、好ましくは60~90秒間施す。
 次に、前記レジスト膜を現像処理する。現像処理は、アルカリ現像プロセスの場合は、アルカリ現像液を用い、溶剤現像プロセスの場合は、有機溶剤を含有する現像液(有機系現像液)を用いて行う。
 現像処理後、好ましくはリンス処理を行う。リンス処理は、アルカリ現像プロセスの場合は、純水を用いた水リンスが好ましく、溶剤現像プロセスの場合は、有機溶剤を含有するリンス液を用いることが好ましい。
 溶剤現像プロセスの場合、前記現像処理またはリンス処理の後に、パターン上に付着している現像液又はリンス液を、超臨界流体により除去する処理を行ってもよい。
 現像処理後又はリンス処理後、乾燥を行う。また、場合によっては、上記現像処理後にベーク処理(ポストベーク)を行ってもよい。
 このようにして、レジストパターンを形成することができる。
 支持体としては、特に限定されず、従来公知のものを用いることができ、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等が挙げられる。より具体的には、シリコンウェーハ、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば銅、アルミニウム、ニッケル、金等が使用可能である。
 また、支持体としては、上述のような基板上に、無機系および/または有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)や、多層レジスト法における下層有機膜等の有機膜が挙げられる。
 露光に用いる波長は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、Fエキシマレーザー、EUV(極紫外線)、VUV(真空紫外線)、EB(電子線)、X線、軟X線等の放射線を用いて行うことができる。前記レジスト組成物精製品は、KrFエキシマレーザー、ArFエキシマレーザー、EB又はEUV用としての有用性が高く、EB又はEUV用として特に有用である。
 レジスト膜の露光方法は、空気や窒素等の不活性ガス中で行う通常の露光(ドライ露光)であってもよく、液浸露光(Liquid Immersion Lithography)であってもよい。
 液浸露光は、予めレジスト膜と露光装置の最下位置のレンズ間を、空気の屈折率よりも大きい屈折率を有する溶媒(液浸媒体)で満たし、その状態で露光(浸漬露光)を行う露光方法である。
 液浸媒体としては、空気の屈折率よりも大きく、かつ、露光されるレジスト膜の屈折率よりも小さい屈折率を有する溶媒が好ましい。かかる溶媒の屈折率としては、前記範囲内であれば特に制限されない。
 空気の屈折率よりも大きく、かつ、前記レジスト膜の屈折率よりも小さい屈折率を有する溶媒としては、例えば、水、フッ素系不活性液体、シリコン系溶剤、炭化水素系溶剤等が挙げられる。
 フッ素系不活性液体の具体例としては、CHCl、COCH、COC、C等のフッ素系化合物を主成分とする液体等が挙げられ、沸点が70~180℃のものが好ましく、80~160℃のものがより好ましい。フッ素系不活性液体が上記範囲の沸点を有するものであると、露光終了後に、液浸に用いた媒体の除去を、簡便な方法で行えることから好ましい。
 フッ素系不活性液体としては、特に、アルキル基の水素原子が全てフッ素原子で置換されたパーフロオロアルキル化合物が好ましい。パーフロオロアルキル化合物としては、具体的には、パーフルオロアルキルエーテル化合物、パーフルオロアルキルアミン化合物を挙げることができる。
 さらに、具体的には、前記パーフルオロアルキルエーテル化合物としては、パーフルオロ(2-ブチル-テトラヒドロフラン)(沸点102℃)を挙げることができ、前記パーフルオロアルキルアミン化合物としては、パーフルオロトリブチルアミン(沸点174℃)を挙げることができる。
 液浸媒体としては、コスト、安全性、環境問題、汎用性等の観点から、水が好ましく用いられる。
 アルカリ現像プロセスで現像処理に用いるアルカリ現像液としては、例えば0.1~10質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液が挙げられる。
 溶剤現像プロセスで現像処理に用いる有機系現像液が含有する有機溶剤としては、(A)成分(露光前の(A)成分)を溶解し得るものであればよく、公知の有機溶剤の中から適宜選択できる。具体的には、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、ニトリル系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤等が挙げられる。
 ケトン系溶剤は、構造中にC-C(=O)-Cを含む有機溶剤である。エステル系溶剤は、構造中にC-C(=O)-O-Cを含む有機溶剤である。アルコール系溶剤は、構造中にアルコール性水酸基を含む有機溶剤である。「アルコール性水酸基」は、脂肪族炭化水素基の炭素原子に結合した水酸基を意味する。ニトリル系溶剤は、構造中にニトリル基を含む有機溶剤である。アミド系溶剤は、構造中にアミド基を含む有機溶剤である。エーテル系溶剤は、構造中にC-O-Cを含む有機溶剤である。
 有機溶剤の中には、構造中に上記各溶剤を特徴づける官能基を複数種含む有機溶剤も存在するが、その場合は、当該有機溶剤が有する官能基を含むいずれの溶剤種にも該当するものとする。たとえば、ジエチレングリコールモノメチルエーテルは、上記分類中のアルコール系溶剤、エーテル系溶剤のいずれにも該当するものとする。
 炭化水素系溶剤は、ハロゲン化されていてもよい炭化水素からなり、ハロゲン原子以外の置換基を有さない炭化水素溶剤である。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 有機系現像液が含有する有機溶剤としては、上記の中でも、極性溶剤が好ましく、ケトン系溶剤、エステル系溶剤、ニトリル系溶剤等が好ましい。
 有機系現像液には、必要に応じて公知の添加剤を配合できる。該添加剤としては、たとえば界面活性剤が挙げられる。界面活性剤としては、特に限定されないが、たとえばイオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。界面活性剤としては、非イオン性の界面活性剤が好ましく、非イオン性のフッ素系界面活性剤、又は非イオン性のシリコン系界面活性剤がより好ましい。
 界面活性剤を配合する場合、その配合量は、有機系現像液の全量に対して、通常0.001~5質量%であり、0.005~2質量%が好ましく、0.01~0.5質量%がより好ましい。
 現像処理は、公知の現像方法により実施することが可能であり、たとえば現像液中に支持体を一定時間浸漬する方法(ディップ法)、支持体表面に現像液を表面張力によって盛り上げて一定時間静止する方法(パドル法)、支持体表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している支持体上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出し続ける方法(ダイナミックディスペンス法)等が挙げられる。
 溶剤現像プロセスで現像処理後のリンス処理に用いるリンス液が含有する有機溶剤としては、たとえば前記有機系現像液に用いる有機溶剤として挙げた有機溶剤のうち、レジストパターンを溶解しにくいものを適宜選択して使用できる。通常、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤およびエーテル系溶剤から選択される少なくとも1種類の溶剤を使用する。これらのなかでも、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤及びアミド系溶剤から選択される少なくとも1種類が好ましく、アルコール系溶剤およびエステル系溶剤から選択される少なくとも1種類がより好ましく、アルコール系溶剤が特に好ましい。
 これらの有機溶剤は、いずれか1種を単独で用いてもよく、2種以上を併用してもよい。また、上記以外の有機溶剤や水と混合して用いてもよい。ただし、現像特性を考慮すると、リンス液中の水の配合量は、リンス液の全量に対し、30質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下さらに好ましく、3質量%以下が特に好ましい。
 リンス液には、必要に応じて公知の添加剤を配合できる。該添加剤としては、例えば界面活性剤が挙げられる。界面活性剤は、前記と同様のものが挙げられ、非イオン性の界面活性剤が好ましく、非イオン性のフッ素系界面活性剤、又は非イオン性のシリコン系界面活性剤がより好ましい。
 界面活性剤を配合する場合、その配合量は、リンス液の全量に対して、通常0.001~5質量%であり、0.005~2質量%が好ましく、0.01~0.5質量%がより好ましい。
 リンス液を用いたリンス処理(洗浄処理)は、公知のリンス方法により実施できる。該リンス処理の方法としては、たとえば一定速度で回転している支持体上にリンス液を塗出し続ける方法(回転塗布法)、リンス液中に支持体を一定時間浸漬する方法(ディップ法)、支持体表面にリンス液を噴霧する方法(スプレー法)等が挙げられる。
 上述した本態様のレジストパターン形成方法によれば、前記第1の態様にかかるレジスト組成物精製品の製造方法により得たレジスト組成物精製品が用いられているため、ディフェクト発生がより抑制されて、スカムやマイクロブリッジ発生等の不具合が低減された、良好な形状のレジストパターンを形成できる。さらに、パターン倒れが抑制され、濾過前のレジスト組成物によるものとのパターン寸法の差が小さい、レジストパターンを形成できる。
 尚、レジストパターンについてのディフェクトカウントは、表面欠陥観察装置(例えばKLAテンコール社製など)を用い、支持体内トータルの欠陥数(全欠陥数、単位:個)を測定することにより求められる。
(レジスト組成物精製品)
 本発明の第3の態様にかかるレジスト組成物精製品は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有する。該レジスト組成物精製品は、光散乱式液中粒子計数器によって計数される、0.135μm以上のサイズの被計数体の数が、1個/mL未満であることを特徴とする。
 本態様にかかるレジスト組成物精製品は、上述した第1の態様にかかるレジスト組成物精製品の製造方法により得ることができる。前記第1の態様にかかる製造方法により得たレジスト組成物精製品は、ポリイミド系樹脂多孔質膜を備えるフィルターを通過して濾過が施されていることで、異物が除去されたものである。したがって、本態様にかかるレジスト組成物精製品では、光散乱式液中粒子計数器によって計数される、0.135μm以上のサイズの被計数体の数が、1個/mL未満となり、異物の数が非常に少ないレジスト組成物組成製品を実現できる。
 本態様にかかるレジスト組成物精製品において、光散乱式液中粒子計数器によって計数される、0.135μm以上のサイズの被計数体の数は、0.8個/mL以下が好ましく、0.5個/mL以下がより好ましく、0.3個/mL以下がさらに好ましい。
 本態様にかかるレジスト組成物精製品は、このように異物の数が非常に少ないことにより、ディフェクトの少ないレジストパターンを形成することができる。
 光散乱式液中粒子計数器としては、例えば、リオン株式会社製のKS-41等を用いることができる。
 本態様にかかるレジスト組成物精製品は、Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、及びPbからなる群より選択される金属成分(M)の含有量が1.1ppb未満であることが好ましく、1ppb以下であることが好ましく、0・9ppb以下であることがより好ましく、0.85ppb以下であることがさらに好ましい。
 本発明の第4の態様にかかるレジスト組成物精製品は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有する。該レジスト組成物精製品は、Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、及びPbからなる群より選択される金属成分(M)の含有量が1.1ppb未満であることを特徴とする。
 本態様にかかるレジスト組成物精製品は、上述した第1の態様にかかるレジスト組成物精製品の製造方法により得ることができる。前記第1の態様にかかる製造方法により得たレジスト組成物精製品は、ポリイミド系樹脂多孔質膜を備えるフィルターを通過して濾過が施されていることで、金属不純物が除去されたものである。したがって、本態様にかかるレジスト組成物精製品では、Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、及びPbからなる群より選択される金属成分(M)の含有量が1.1ppb未満となり、金属不純物が非常に少ないレジスト組成物組成製品を実現できる。
 レジスト組成物に配合される種々の基材成分、酸発生剤、酸拡散制御剤、有機溶剤等には、微量の金属イオン不純物等の金属成分が含まれる。この金属成分は、配合成分中に元来含まれていることもあるが、製造装置等の配管、継ぎ手などの薬液移送経路から混入することもある。上記第1の態様にかかるレジスト組成物精製品の製造方法では、これらの金属成分を効果的に除去することができる。
 本態様にかかるレジスト組成物精製品において、金属成分(M)の含有量は、1ppb以下であることが好ましく、0・9ppb以下であることがより好ましく、0.85ppb以下であることがさらに好ましい。
 本態様にかかるレジスト組成物精製品は、このように金属成分(M)の含有量が非常に少ないことにより、ディフェクトの少ないレジストパターンを形成することができる。
 前記金属成分(M)の含有量は、Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、及びPbの合計の含有量である。レジスト組成物精製品における金属成分(M)の含有量は、誘導結合プラズマ質量分析計(ICP-MS 8900、アジレント社製)を用いて測定することができる。
 好ましい態様において、レジスト組成物精製品は、光散乱式液中粒子計数器によって計数される、0.135μm以上のサイズ の被計数体の数が、1個/mL未満であり、且つLi、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、及びPbからなる群より選択される金属成分 (M)の含有量が1.1ppb未満である。
 第3の態様又は第4の態様にかかるレジスト組成物精製品は、異物や金属成分が除去された以外は、上述の第1の態様にかかるレジスト組成物精製品の製造方法で用いるレジスト組成物と、同様の組成を有することが好ましい。
 第3の態様又は第3の態様にかかるレジスト組成物精製品は、一例として、以下の工程(a)~(c)を有する製造方法によって製造できる。
 工程(a):レジスト用樹脂成分((A)成分)が有機溶剤成分(S)に溶解した樹脂溶液を、ポリイミド系樹脂多孔質膜を備えるフィルターにより濾過して、樹脂溶液精製品を得る工程
 工程(b):該樹脂溶液精製品と他の成分(上述の(B)成分、(D)成分、(E)成分、又は(F)成分等)とを混合してレジスト組成物を得る工程
 工程(c):該レジスト組成物を、ポリイミド系樹脂多孔質膜を備えるフィルターにより濾過する工程
≪レジストパターン形成方法≫
 本発明の第5の態様にかかるレジストパターン形成方法は、前記第3の態様又は第4の態様にかかるレジスト組成物組成製品を用いて、支持体上にレジスト膜を形成する工程と、前記レジスト膜を露光する工程と、前記露光後のレジスト膜を現像してレジストパターンを形成する工程と、を有する、レジストパターン形成方法である。
 本態様にかかるレジストパターン形成方法は、上述の第2の態様にかかるレジストパターン形成方法と同様に行うことができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
<レジスト組成物の調製>
(レジスト組成物1~13)
 表1に示す各成分を混合して溶解することによりレジスト組成物1~13を調製した。
Figure JPOXMLDOC01-appb-T000081
 表1中、各略号はそれぞれ以下の意味を有する。[ ]内の数値は配合量(質量%)である。なお、(A)-1~(A)5の質量平均分子量(Mw)と分子量分散度(Mw/Mn)は、GPC測定により求め(標準ポリスチレン換算)、共重合組成比(構造式中の各構成単位の割合(モル比)は、カーボン13核磁気共鳴スペクトル(600MHz_13C-NMR)により求めた。
 (A)-1:下記化学式(A)-1で表される高分子化合物。(Mw):5000、(Mw/Mn);1.6、(モル比):l/m=50/50。
Figure JPOXMLDOC01-appb-C000082
 (A)-2:下記化学式(A)-2で表される高分子化合物。
(Mw):5500、(Mw/Mn):1.6、(モル比):l/m=50/50。
Figure JPOXMLDOC01-appb-C000083
 (A)-3:下記化学式(A)-3で表される高分子化合物。
(Mw):7000、(Mw/Mn):1.7、(モル比):l/m/n=40/50/10。
Figure JPOXMLDOC01-appb-C000084
 (A)-4:下記化学式(A)-4で表される高分子化合物。
(Mw):6000、(Mw/Mn):1.6、(モル比):l/m/n=30/55/15。
Figure JPOXMLDOC01-appb-C000085
 (A)-5:下記化学式(A)-5で表される高分子化合物。
(Mw):6500、(Mw/Mn):1.7、(モル比):l/m/n/o=35/35/20/10。
Figure JPOXMLDOC01-appb-C000086
 (B)-1:下記化学式(B)-1で表される化合物からなる酸発生剤。
 (B)-2:下記化学式(B)-2で表される化合物からなる酸発生剤。
Figure JPOXMLDOC01-appb-C000087
 (D)-1:下記化学式(D)-1で表される化合物からなる酸拡散抑制剤。
Figure JPOXMLDOC01-appb-C000088
 (E)-1:サリチル酸。
 (S)-1:プロピレングリコールモノメチルエーテルアセテート/プロピレングリコールモノメチルエーテル=20/80(質量比)の混合溶剤。
<レジスト組成物精製品の製造(1)>
(実施例1~9、比較例1~3)
 前記レジスト組成物1~13を、表3に示す各フィルター及びろ過条件で濾過することによって、レジスト組成物精製品をそれぞれ製造した。各フィルター(1-1)、(1-2)、(2)及び(3)の種類は表2に示す。フィルター(1)及び(1-2)における多孔質膜は、特開2017-68262号公報に記載の製法に準じて得られる。なお、(1-1)、(1-2)及び(2)のフィルターについて、BET法による連通孔の平均孔径は、それぞれ約8nm(比表面積:約35m/g)、約10nm(比表面積:約96m/g)、及び約18nm(比表面積:約14m/g)であった。ポロメータによる細孔径分布(%)は、(1-1)及び(1-2)が45%以上であり、(2)のフィルターは40%以下であった。それぞれ約8nm、約10nm、及び約18nm及びであった。細孔径分布(%)が最大である孔径(孔径A)はいずれも90nm以下であった。(1-1)、(1-2)及び(2)のフィルターについて、孔径Aと孔径分布幅における最大孔径の比(最大孔径/孔径A)は、それぞれ、約1.23、約1.16、及び約1.60であった。
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
≪レジスト組成物精製品についての評価≫
 各例の製造方法により製造されたレジスト組成物を用いて、レジストパターンを形成し、以下の評価を行った。
[レジストパターンの倒れの評価]
 ヘキサメチルジシラザン(HMDS)処理を施した8インチシリコン基板上に、各例の製造方法により製造されたレジスト組成物精製品をそれぞれ、スピンナーを用いて塗布し、ホットプレート上で、温度110℃で60秒間のプレベーク(PAB)処理を行い、乾燥することにより、膜厚50nmのレジスト膜を形成した。
 次いで、該レジスト膜に対し、電子線描画装置JEOL-JBX-9300FS(日本電子株式会社製)を用い、加速電圧100kVにて、ターゲットサイズをライン幅30nmの1:1ラインアンドスペースパターン(以下「LSパターン」)とする描画(露光)を行った。
 次いで、110℃、60秒間の露光後加熱(PEB)処理を行い、さらに23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間アルカリ現像し、純水を用いて15秒間水リンスした。
 得られたLSパターンについて、日立ハイテクノロジーズ社製の走査型電子顕微鏡(商品名:S-9380)を用いて観察し、下記評価基準に基づきパターン倒れの有無を評価した。その結果を「パターン倒れ」として表4に示した。
 評価基準
  ○:パターン倒れ無し
  ×:パターン倒れ有り
[レジストパターンの寸法変化率の評価]
 膜厚60nmのレジスト膜に対して、ライン幅65nm、ピッチ225nmのLSパターンを形成した以外は上記と同様の方法で、各例のレジスト組成物精製品及び各例の精製前のレジスト組成物(レジスト組成物1~13)を用いて、LSパターンを形成した。得られたLSパターンについて、日立ハイテクノロジーズ社製の走査型電子顕微鏡(商品名:S-9380)により、LSパターン上空から観察し、ライン幅(nm)を測定した。
 上記の測定結果から、各例のレジスト組成物精製品を用いて形成されたLSパターンと、そのフィルター濾過前(精製前)のレジスト組成物を用いて形成されたLSパターンとを比較し、フィルター濾過によるパターン寸法の変化量を求めた。パターン寸法の変化量を下記評価基準に基づいて評価し、その結果を「パターン寸法変化」として表4に示した。
 評価基準
  ○:パターン寸法の変化量が1nm以下。
  ×:パターン寸法の変化量が1nm超。
[ディフェクト(欠陥数)の評価]
 上記[レジストパターンの倒れの評価]において、「○」と評価されたレジスト組成物精製品を用いて、[レジストパターンの倒れの評価]と同様にLSパターンを形成した。得られたLSパターンについて、表面欠陥観察装置(KLAテンコール社製、製品名:KLA2371)を用い、ウェーハ内トータルの欠陥数(全欠陥数)を測定した。その結果を「欠陥数」として表4に示した。かかる測定に供したウェーハは、各例につきそれぞれ2枚とし、その平均値を採用した。
Figure JPOXMLDOC01-appb-T000091
 表4に示す結果から、本発明を適用することにより、パターン倒れ、濾過によるパターン寸法の変化、及びディフェクト発生がより抑制されていること、が確認できる。
[パーティクル量の評価]
 上記[レジストパターンの倒れの評価]において、「○」と評価されたレジスト組成物精製品について、動的光散乱法に基づいて、光散乱式液中粒子計数器[リオン株式会社製、型番:KS-41、光源:半導体レーザ励起固体レーザ(波長830nm、定格出力0.2W)、流量:10mL/分]を用いて、0.135μm以上のサイズの被計数体の計数を行った。計数は3回行い、その平均値を計測値とした。なお、上記光散乱式液中粒子計数器は、PSL(Polystyrene Latex)標準粒子液で校正を行った後に用いた。結果を「パーティクル量」として表5に示す。
[金属成分含有量の評価]
 上記[レジストパターンの倒れの評価]において、「○」と評価されたレジスト組成物精製品について、誘導結合プラズマ質量分析計(ICP-MS 8900、アジレント社製)を用いて、金属イオン量(質量ppb)を測定した。金属イオン量は、Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Ba、W、Au、及びPbの金属イオンの合計イオン量として求めた。結果を「金属成分含有量」として表5に示す。
Figure JPOXMLDOC01-appb-T000092
 表5に示す結果から、本発明を適用することにより、パーティクル量および金属成分含有量がより低減されていること、が確認できる。
 1a  球状セル
 1b  球状セル
 5  連通孔

Claims (12)

  1.  レジスト組成物を、隣接した球状セル同士が連通した多孔質構造を有するフィルターで濾過する工程(i)を含む、
     レジスト組成物精製品の製造方法であって、
     前記フィルターは、ポリイミド及びポリアミドイミドからなる群より選択される少なくとも一種の樹脂を含有する多孔質膜を備え、
     前記レジスト組成物は、酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有し、前記有機溶剤成分(S)の含有量が97質量%以上である、
     レジスト組成物精製品の製造方法。
  2.  前記レジスト組成物における前記オニウム塩の含有量が0.05~2.9質量%である、請求項1に記載のレジスト組成物精製品の製造方法。
  3.  前記レジスト組成物は、2種以上のオニウム塩を含有する、請求項1又は2に記載のレジスト組成物精製品の製造方法。
  4.  前記基材成分(A)は、ヒドロキシスチレン骨格を含む構成単位を有する高分子化合物を含む、
     請求項1~3のいずれか一項に記載のレジスト組成物精製品の製造方法。
  5.  前記球状セルの平均球径が、10~500nmである、請求項1~4のいずれか一項に記載のレジスト組成物精製品の製造方法。
  6.  前記多孔質構造は、BET法による平均孔径が1~50nmである連通孔を含む、請求項1~5のいずれか一項に記載のレジスト組成物精製品の製造方法。
  7.  前記フィルターが、ポリイミド多孔質膜を備える、請求項1~6のいずれか一項に記載のレジスト組成物精製品の製造方法。
  8.  前記工程(i)後のレジスト組成物を、ポリエチレン樹脂を含有する多孔質膜を備えるフィルターで濾過する工程(ii)を、さらに含む、請求項1~7のいずれか一項に記載のレジスト組成物精製品の製造方法。
  9.  前記請求項1~8のいずれか一項に記載のレジスト組成物精製品の製造方法により、レジスト組成物精製品を得る工程と、
     前記レジスト組成物精製品を用いて、支持体上にレジスト膜を形成する工程と、
     前記レジスト膜を露光する工程と、
     前記露光後のレジスト膜を現像してレジストパターンを形成する工程と、
     を有する、レジストパターン形成方法。
  10.  酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有するレジスト組成物精製品であって、
     光散乱式液中粒子計数器によって計数される、0.135μm以上のサイズの被計数体の数が、1個/mL未満である、
     レジスト組成物精製品。
  11.  酸の作用により現像液に対する溶解性が変化する基材成分(A)と、オニウム塩と、有機溶剤成分(S)とを含有するレジスト組成物精製品であって、
     Li、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、CuZn、As、Ag、Cd、Sn、Ba、W、Au、及びPbからなる群より選択される金属成分(M)の含有量が1.1ppb未満である、
     レジスト組成物精製品。
  12.  請求項10又は11に記載のレジスト組成物精製品を用いて、支持体上にレジスト膜を形成する工程と、
     前記レジスト膜を露光する工程と、
     前記露光後のレジスト膜を現像してレジストパターンを形成する工程と、
     を有する、レジストパターン形成方法。
PCT/JP2020/019998 2019-05-22 2020-05-20 レジスト組成物精製品の製造方法、レジストパターン形成方法、及びレジスト組成物精製品 WO2020235608A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021520826A JP7195418B2 (ja) 2019-05-22 2020-05-20 レジスト組成物精製品の製造方法、及びレジストパターン形成方法
EP20810745.8A EP3974047A4 (en) 2019-05-22 2020-05-20 METHOD FOR PRODUCING PURIFIED RESIST PRODUCT, METHOD FOR FORMING RESIST PATTERN, AND PURIFIED RESIST PRODUCT
CN202080044627.0A CN114008525A (zh) 2019-05-22 2020-05-20 抗蚀剂组合物纯化品的制造方法、抗蚀剂图案形成方法、及抗蚀剂组合物纯化品
KR1020217037898A KR20210154231A (ko) 2019-05-22 2020-05-20 레지스트 조성물 정제품의 제조 방법, 레지스트 패턴 형성 방법, 및 레지스트 조성물 정제품
US17/611,412 US20220242821A1 (en) 2019-05-22 2020-05-20 Production method for resist composition purified product, resist pattern forming method, and resist composition purified product
JP2022170596A JP2023010711A (ja) 2019-05-22 2022-10-25 レジスト組成物精製品、及びレジストパターン形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019096193 2019-05-22
JP2019-096193 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235608A1 true WO2020235608A1 (ja) 2020-11-26

Family

ID=73458513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019998 WO2020235608A1 (ja) 2019-05-22 2020-05-20 レジスト組成物精製品の製造方法、レジストパターン形成方法、及びレジスト組成物精製品

Country Status (7)

Country Link
US (1) US20220242821A1 (ja)
EP (1) EP3974047A4 (ja)
JP (2) JP7195418B2 (ja)
KR (1) KR20210154231A (ja)
CN (1) CN114008525A (ja)
TW (1) TW202106373A (ja)
WO (1) WO2020235608A1 (ja)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206694A (ja) 1998-11-10 2000-07-28 Tokyo Ohka Kogyo Co Ltd ネガ型レジスト組成物
JP2002099076A (ja) * 2000-09-22 2002-04-05 Sumitomo Chem Co Ltd 微細粒子量の低減されたフォトレジスト組成物の製造法
US6949325B2 (en) 2003-09-16 2005-09-27 International Business Machines Corporation Negative resist composition with fluorosulfonamide-containing polymer
JP2005336452A (ja) 2004-04-27 2005-12-08 Tokyo Ohka Kogyo Co Ltd レジスト組成物用樹脂、ネガ型レジスト組成物及びレジストパターン形成方法
JP2006259582A (ja) 2005-03-18 2006-09-28 Tokyo Ohka Kogyo Co Ltd ネガ型レジスト組成物およびレジストパターン形成方法
JP2006317803A (ja) 2005-05-13 2006-11-24 Tokyo Ohka Kogyo Co Ltd ネガ型レジスト組成物およびレジストパターン形成方法
JP2010002870A (ja) 2008-06-23 2010-01-07 Tokyo Ohka Kogyo Co Ltd 液浸露光用レジスト組成物、レジストパターン形成方法、含フッ素高分子化合物
JP2010032994A (ja) 2008-02-06 2010-02-12 Tokyo Ohka Kogyo Co Ltd 液浸露光用レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素化合物
JP2010277043A (ja) 2009-06-01 2010-12-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
JP2011013569A (ja) 2009-07-03 2011-01-20 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素高分子化合物
JP4637476B2 (ja) 2002-12-19 2011-02-23 東京応化工業株式会社 ホトレジスト組成物の製造方法
JP2011128226A (ja) 2009-12-15 2011-06-30 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
US20120149916A1 (en) 2010-12-08 2012-06-14 Central Glass Co., Ltd. Novel compound
JP2013092643A (ja) * 2011-10-26 2013-05-16 Shin Etsu Chem Co Ltd リソグラフィー用レジスト組成物の製造方法
JP2014118466A (ja) * 2012-12-14 2014-06-30 Tokyo Ohka Kogyo Co Ltd 粗樹脂の精製方法、レジスト用樹脂、レジスト組成物の製造方法、レジスト組成物及びレジストパターン形成方法
JP2017068262A (ja) 2015-09-30 2017-04-06 東京応化工業株式会社 リソグラフィー用薬液精製品の製造方法、及びレジストパターン形成方法
JP2017068261A (ja) * 2015-09-30 2017-04-06 東京応化工業株式会社 リソグラフィー用薬液精製品の製造方法、及びレジストパターン形成方法
WO2017163922A1 (ja) * 2016-03-24 2017-09-28 富士フイルム株式会社 感活性光線性又は感放射線性組成物、感活性光線性又は感放射線性組成物の精製方法、パターン形成方法、及び電子デバイスの製造方法
WO2017170428A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 電子材料製造用薬液の製造方法、パターン形成方法、半導体デバイスの製造方法、電子材料製造用薬液、容器、及び、品質検査方法
JP2018128477A (ja) * 2015-06-19 2018-08-16 富士フイルム株式会社 パターン形成方法、及び、電子デバイスの製造方法
JP2019096193A (ja) 2017-11-27 2019-06-20 京セラドキュメントソリューションズ株式会社 画像形成システム、画像形成装置およびサーバー装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070423A (ja) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd レジスト組成物及びそれを用いたパターン形成方法
US10429738B2 (en) * 2015-09-30 2019-10-01 Tokyo Ohka Kogyo Co., Ltd. Filtration filter, filtration method, production method of purified liquid chemical product for lithography, and method of forming resist pattern
JP6413153B2 (ja) * 2016-03-31 2018-10-31 パウダーテック株式会社 フェライト粉、樹脂組成物および成形体
KR102395705B1 (ko) * 2017-04-21 2022-05-09 후지필름 가부시키가이샤 Euv광용 감광성 조성물, 패턴 형성 방법, 전자 디바이스의 제조 방법

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206694A (ja) 1998-11-10 2000-07-28 Tokyo Ohka Kogyo Co Ltd ネガ型レジスト組成物
JP2002099076A (ja) * 2000-09-22 2002-04-05 Sumitomo Chem Co Ltd 微細粒子量の低減されたフォトレジスト組成物の製造法
JP4637476B2 (ja) 2002-12-19 2011-02-23 東京応化工業株式会社 ホトレジスト組成物の製造方法
US6949325B2 (en) 2003-09-16 2005-09-27 International Business Machines Corporation Negative resist composition with fluorosulfonamide-containing polymer
JP2005336452A (ja) 2004-04-27 2005-12-08 Tokyo Ohka Kogyo Co Ltd レジスト組成物用樹脂、ネガ型レジスト組成物及びレジストパターン形成方法
JP2006259582A (ja) 2005-03-18 2006-09-28 Tokyo Ohka Kogyo Co Ltd ネガ型レジスト組成物およびレジストパターン形成方法
JP2006317803A (ja) 2005-05-13 2006-11-24 Tokyo Ohka Kogyo Co Ltd ネガ型レジスト組成物およびレジストパターン形成方法
JP2010032994A (ja) 2008-02-06 2010-02-12 Tokyo Ohka Kogyo Co Ltd 液浸露光用レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素化合物
JP2010002870A (ja) 2008-06-23 2010-01-07 Tokyo Ohka Kogyo Co Ltd 液浸露光用レジスト組成物、レジストパターン形成方法、含フッ素高分子化合物
JP2010277043A (ja) 2009-06-01 2010-12-09 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
JP2011013569A (ja) 2009-07-03 2011-01-20 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物およびそれを用いたレジストパターン形成方法、並びに含フッ素高分子化合物
JP2011128226A (ja) 2009-12-15 2011-06-30 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物及びレジストパターン形成方法
US20120149916A1 (en) 2010-12-08 2012-06-14 Central Glass Co., Ltd. Novel compound
JP2013092643A (ja) * 2011-10-26 2013-05-16 Shin Etsu Chem Co Ltd リソグラフィー用レジスト組成物の製造方法
JP2014118466A (ja) * 2012-12-14 2014-06-30 Tokyo Ohka Kogyo Co Ltd 粗樹脂の精製方法、レジスト用樹脂、レジスト組成物の製造方法、レジスト組成物及びレジストパターン形成方法
JP2018128477A (ja) * 2015-06-19 2018-08-16 富士フイルム株式会社 パターン形成方法、及び、電子デバイスの製造方法
JP2017068262A (ja) 2015-09-30 2017-04-06 東京応化工業株式会社 リソグラフィー用薬液精製品の製造方法、及びレジストパターン形成方法
JP2017068261A (ja) * 2015-09-30 2017-04-06 東京応化工業株式会社 リソグラフィー用薬液精製品の製造方法、及びレジストパターン形成方法
WO2017163922A1 (ja) * 2016-03-24 2017-09-28 富士フイルム株式会社 感活性光線性又は感放射線性組成物、感活性光線性又は感放射線性組成物の精製方法、パターン形成方法、及び電子デバイスの製造方法
WO2017170428A1 (ja) * 2016-03-31 2017-10-05 富士フイルム株式会社 電子材料製造用薬液の製造方法、パターン形成方法、半導体デバイスの製造方法、電子材料製造用薬液、容器、及び、品質検査方法
JP2019096193A (ja) 2017-11-27 2019-06-20 京セラドキュメントソリューションズ株式会社 画像形成システム、画像形成装置およびサーバー装置

Also Published As

Publication number Publication date
JP2023010711A (ja) 2023-01-20
JP7195418B2 (ja) 2022-12-23
US20220242821A1 (en) 2022-08-04
JPWO2020235608A1 (ja) 2020-11-26
CN114008525A (zh) 2022-02-01
KR20210154231A (ko) 2021-12-20
EP3974047A4 (en) 2023-06-07
TW202106373A (zh) 2021-02-16
EP3974047A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
TWI765865B (zh) 過濾器及過濾方法、微影用藥液純化品之製造方法以及光阻圖型形成方法
TWI708120B (zh) 阻劑組成物及阻劑圖型形成方法
JP6863682B2 (ja) 送液性が改善されたフォトリソグラフィー用薬液及びこれを含むレジスト組成物{chemical for photolithography with improved liquid transfer property and resist composition comprising the same}
TW202138920A (zh) 電子材料製造用藥液的製造方法、圖案形成方法、半導體裝置的製造方法、電子材料製造用藥液、容器及品質檢查方法
KR102142546B1 (ko) 레지스트 조성물, 레지스트 패턴 형성 방법, 고분자 화합물
JP6749195B2 (ja) リソグラフィー用薬液精製品の製造方法、及びレジストパターン形成方法
WO2017065207A1 (ja) レジスト組成物およびレジストパターン形成方法
TW201732430A (zh) 阻劑組成物、阻劑圖型形成方法、酸產生劑成分及化合物
JP2017068262A (ja) リソグラフィー用薬液精製品の製造方法、及びレジストパターン形成方法
WO2020235608A1 (ja) レジスト組成物精製品の製造方法、レジストパターン形成方法、及びレジスト組成物精製品
US11635687B2 (en) Resist composition and method of forming resist pattern
WO2021111996A1 (ja) レジスト組成物及びレジストパターン形成方法
WO2024034422A1 (ja) レジスト組成物及びレジストパターン形成方法
KR20200031258A (ko) 레지스트 조성물 및 레지스트 패턴 형성 방법
WO2023112746A1 (ja) レジスト組成物及びレジストパターン形成方法
TW201837608A (zh) 光阻組成物及光阻圖型形成方法
JP7458777B2 (ja) レジスト組成物及びレジストパターン形成方法
JP2023171305A (ja) レジスト組成物及びレジストパターン形成方法
JP6757626B2 (ja) レジストパターン形成方法、及びパターン厚肉化用ポリマー組成物
WO2023058365A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2023080138A1 (ja) レジスト組成物及びレジストパターン形成方法
TW202413327A (zh) 阻劑組成物及阻劑圖型形成方法
WO2024053689A1 (ja) レジスト組成物、およびレジストパターン形成方法
WO2023140386A1 (ja) レジスト組成物及びレジストパターン形成方法
US20210191262A1 (en) Resist composition and method of forming resist pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520826

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217037898

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020810745

Country of ref document: EP

Effective date: 20211222