WO2020235554A1 - Pulse pipe refrigerator, and cold head for pulse pipe refrigerator - Google Patents

Pulse pipe refrigerator, and cold head for pulse pipe refrigerator Download PDF

Info

Publication number
WO2020235554A1
WO2020235554A1 PCT/JP2020/019768 JP2020019768W WO2020235554A1 WO 2020235554 A1 WO2020235554 A1 WO 2020235554A1 JP 2020019768 W JP2020019768 W JP 2020019768W WO 2020235554 A1 WO2020235554 A1 WO 2020235554A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse tube
temperature end
connection port
high temperature
cold storage
Prior art date
Application number
PCT/JP2020/019768
Other languages
French (fr)
Japanese (ja)
Inventor
名堯 許
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2020235554A1 publication Critical patent/WO2020235554A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to a pulse tube refrigerator.
  • the pulse tube refrigerator is equipped with a vibration flow source, a regenerator, a pulse tube, and a phase control mechanism as its main components.
  • a vibration flow source for generating oscillating flow.
  • a regenerator for generating oscillating flow.
  • a pulse tube for generating oscillating flow.
  • GM Green-McMahon
  • phase control mechanisms such as a double inlet type, an active buffer type, and a 4-valve type.
  • a circulation path for the working gas including the cooler and the pulse tube can be formed depending on the methods of the vibration flow source and the phase control mechanism.
  • the low temperature ends of the cooler and the pulse tube communicate with each other, and the high temperature ends bypass the cooler from the vibration flow source to the pulse tube. It is connected by a connecting passage to form a circulation path for the working gas.
  • a gas flow having a DC component which is also called "DC flow”
  • the DC flow can affect the freezing performance of the pulse tube refrigerator.
  • the DC flow includes a working gas flow penetrating from the hot end of the pulse tube to the cold end of the pulse tube
  • such working gas flow provides significant heat input from the hot end of the pulse tube to the cold end of the pulse tube. Therefore, the refrigerating efficiency of the pulse tube refrigerator may decrease.
  • One of the exemplary objects of an aspect of the present invention is to improve the freezing efficiency of a pulse tube refrigerator.
  • the pulse tube refrigerator has a compressor having a compressor discharge port and a compressor suction port, and a pulse tube high temperature having a first connection port and a second connection port provided at different positions.
  • a cold storage device having a pulse tube having an end, a low temperature end of the pulse tube, a high temperature end of the cooler, and a low temperature end of the cooler communicating with the low temperature end of the pulse tube, and the high temperature end of the cooler.
  • Flow control from the branch between the main pressure switching valve and the high temperature end of the regenerator so as to bypass the regenerator and the main pressure switching valve that is alternately connected to the compressor discharge port and the compressor suction port.
  • a double inlet flow path connected to the first connection port at the high temperature end of the pulse tube and a buffer volume connected to the second connection port at the high temperature end of the pulse tube are provided.
  • the pulse tube refrigerator has a compressor having a compressor discharge port and a compressor suction port, and a pulse tube high temperature having a first connection port and a second connection port provided at different positions.
  • a cold storage device having a pulse tube having an end, a low-temperature end of the pulse tube, a high-temperature end of the regenerator, and a low-temperature end of the regenerator communicating with the low-temperature end of the pulse tube, and the high-temperature end of the regenerator
  • a main pressure switching valve that alternately connects to the compressor discharge port and the compressor suction port, and a sub that alternately connects the first connection port at the high temperature end of the pulse tube to the compressor discharge port and the compressor suction port. It includes a pressure switching valve and a buffer volume connected to the second connection port at the high temperature end of the pulse tube.
  • the cold head of the pulse tube refrigerator is a pulse tube having a first connection port and a second connection port provided at different positions, and a pulse tube high temperature end and a pulse tube low temperature end.
  • a cold storage device having a cold storage device high temperature end and a cold storage device low temperature end communicating with the pulse tube low temperature end, a cold storage device communication passage connecting the cold storage device high temperature end to a main pressure switching valve, and the above.
  • a double inlet flow path connected to the first connection port at the high temperature end of the pulse pipe from a branch on the cold storage communication passage via a flow control unit and a high temperature end of the pulse pipe so as to bypass the cold storage.
  • a buffer volume connected to the second connection port is provided.
  • the cold head of the pulse tube refrigerator is a pulse tube having a first connection port and a second connection port provided at different positions, and a pulse tube high temperature end and a pulse tube low temperature end.
  • a regenerator having a regenerator high temperature end and a regenerator low temperature end communicating with the pulse tube low temperature end, a regenerator communication passage connecting the regenerator high temperature end to a main pressure switching valve, and the above. It includes a pulse tube communication passage that connects the first connection port at the high temperature end of the pulse tube to the auxiliary pressure switching valve, and a buffer volume connected to the second connection port at the high temperature end of the pulse tube.
  • the refrigerating efficiency of the pulse tube refrigerator is improved.
  • FIG. 1 It is a figure which shows schematicly the pulse tube refrigerator which concerns on 1st Embodiment. It is a top view which shows schematic the pulse tube high temperature end of the pulse tube refrigerator shown in FIG. It is a figure which shows typically a typical double inlet type pulse tube refrigerator. It is a figure which shows typically another example of the pulse tube refrigerator which concerns on 1st Embodiment. It is a figure which shows schematicly the pulse tube refrigerator which concerns on 2nd Embodiment.
  • FIG. 1 is a diagram schematically showing the pulse tube refrigerator 10 according to the first embodiment.
  • the pulse tube refrigerator 10 is, for example, a GM (Gifford-McMahon) type double inlet type pulse tube refrigerator.
  • the pulse tube refrigerating machine 10 is a single-stage pulse tube refrigerating machine.
  • the pulse tube refrigerator 10 can also be a multi-stage (for example, two-stage) pulse tube refrigerator.
  • the pulse tube refrigerator 10 includes a compressor 12 and a cold head 14.
  • the cold head 14 includes a pulse tube 16, a regenerator 18, a cooling stage 20, a main pressure switching valve 22, and a room temperature section 24.
  • a buffer volume 26, for example, a buffer tank is connected to the room temperature portion 24 of the cold head 14. Further, the room temperature unit 24 has two flow rate control units.
  • the flow control unit includes, for example, a flow rate adjusting element such as an orifice or a throttle valve.
  • the flow path resistance of the flow control unit may be fixed or adjustable.
  • the first flow rate control unit will be referred to as a double inlet orifice 28, and the second flow rate control unit will be referred to as a buffer orifice 30. However, it is not intended to limit the flow control unit to only the orifice.
  • the compressor 12 and the main pressure switching valve 22 form a vibration flow source for the pulse tube refrigerator 10. That is, from the steady flow of the working gas generated by the compressor 12, the pressure vibration of the working gas can be generated in the pulse pipe 16 through the regenerator 18 by the switching operation of the main pressure switching valve 22.
  • the buffer volume 26, the double inlet orifice 28, and the buffer orifice 30 constitute a phase control mechanism for the pulse tube refrigerator 10.
  • the phase control mechanism can delay the phase of the displacement vibration of the gas element (also called the gas piston) in the pulse tube 16 with respect to the pressure vibration of the working gas. Appropriate phase lag can cause PV work at the cold end of the pulse tube 16 to cool the working gas.
  • the compressor 12 has a compressor discharge port 12a and a compressor suction port 12b, and is configured to compress the recovered low-pressure PL working gas to generate a high-pressure PH working gas.
  • the working gas is supplied from the compressor discharge port 12a to the pulse tube 16 through the main pressure switching valve 22 and the cold storage device 18, and the working gas is supplied from the pulse tube 16 to the compressor suction port 12b through the cold storage device 18 and the main pressure switching valve 22. Will be recovered.
  • the compressor discharge port 12a and the compressor suction port 12b function as a high-pressure source and a low-pressure source of the pulse tube refrigerator 10, respectively.
  • the working gas is also called a refrigerant gas, for example, helium gas.
  • both high-pressure PH and low-pressure PL are considerably higher than the ambient environmental pressure (for example, atmospheric pressure) of the pulse tube refrigerator 10. Therefore, the high voltage PH and the low voltage PL can also be referred to as a first high voltage and a second high voltage, respectively.
  • the high pressure pH is, for example, 2 to 3 MPa.
  • the low pressure PL is, for example, 0.5 to 1.5 MPa.
  • the pulse tube refrigerator 10 is provided with a high pressure line 13a and a low pressure line 13b.
  • the working gas of high pressure PH flows from the compressor 12 to the cold head 14 through the high pressure line 13a.
  • the working gas of the low pressure PL flows from the cold head 14 to the compressor 12 through the low pressure line 13b.
  • the high-pressure line 13a connects the compressor discharge port 12a to the main intake on-off valve V1 of the main pressure switching valve 22.
  • the low-pressure line 13b connects the compressor suction port 12b to the main exhaust on-off valve V2 of the main pressure switching valve 22.
  • the high pressure line 13a and the low pressure line 13b may be rigid or flexible pipes connecting the compressor 12 and the cold head 14, respectively.
  • the pulse tube 16 has a pulse tube high temperature end 16a and a pulse tube low temperature end 16b, and extends axially from the pulse tube high temperature end 16a to the pulse tube low temperature end 16b.
  • the high temperature end 16a of the pulse tube and the low temperature end 16b of the pulse tube can also be referred to as the first end and the second end of the pulse tube 16, respectively.
  • Rectifiers may be provided at the high temperature end 16a of the pulse tube and the low temperature end 16b of the pulse tube, respectively.
  • the cold storage device 18 has a cold storage device high temperature end 18a and a cold storage device low temperature end 18b, and extends axially from the cold storage device high temperature end 18a to the cold storage device low temperature end 18b.
  • the cold storage device high temperature end 18a and the cold storage device low temperature end 18b can also be referred to as the first end and the second end of the cold storage device 18, respectively.
  • the direction in which the pulse tube 16 and the regenerator 18 extend is represented as the axial direction A of the cold head 14.
  • the low temperature end 16b of the pulse tube and the low temperature end 18b of the cooler are structurally connected by the cooling stage 20 and thermally coupled.
  • a cooling stage flow path 21 is formed in the cooling stage 20. Through the cooling stage flow path 21, the low temperature end 16b of the pulse tube fluidly communicates with the low temperature end 18b of the cool storage device. Therefore, the working gas supplied from the compressor 12 can flow from the cold storage device low temperature end 18b to the pulse tube low temperature end 16b through the cooling stage flow path 21. The return gas from the pulse tube 16 can flow from the low temperature end 16b of the pulse tube to the low temperature end 18b of the cooler through the cooling stage flow path 21.
  • the pulse tube 16 is a cylindrical tube with a hollow inside
  • the cooler 18 is a cylindrical tube filled with a cold storage material inside, both adjacent to each other and at their centers.
  • the axes are arranged in parallel.
  • the pulse tube 16 and the regenerator 18 extend in the same direction from the cooling stage 20, and the pulse tube high temperature end 16a and the regenerator high temperature end 18a are arranged on the same side with respect to the cooling stage 20. In this way, the pulse tube 16, the regenerator 18, and the cooling stage 20 are arranged in a U shape.
  • the room temperature section 24 includes a regenerator communication passage 32 that connects the regenerator high temperature end 18a to the main pressure switching valve 22.
  • the regenerator communication passage 32 has a branch portion 32a located between the main pressure switching valve 22 and the regenerator high temperature end 18a.
  • the cold storage communication passage 32 extends from the cold storage high temperature end 18a through the branch portion 32a, further branches into two, and is connected to the main intake on-off valve V1 and the main exhaust on-off valve V2.
  • the room temperature section 24 includes a double inlet flow path 34 that connects the main pressure switching valve 22 to the pulse pipe 16 so as to bypass the cold storage device 18.
  • the double inlet flow path 34 is connected to the pulse tube high temperature end 16a from the branch portion 32a on the cooler communication passage 32 via the double inlet orifice 28.
  • the room temperature section 24 is provided with a buffer orifice 30 and a buffer line 36 for connecting the buffer volume 26 to the cold head 14.
  • the buffer line 36 connects the buffer volume 26 to the high temperature end 16a of the pulse tube via the buffer orifice 30.
  • the buffer volume 26 acts as an intermediate pressure source for the working gas having an intermediate pressure between the high pressure PH and the low pressure PL (for example, the average pressure between the high pressure PH and the low pressure PL). Therefore, the working gas flows between the pulse tube 16 and the buffer volume 26 through the buffer line 36 according to the pressure difference between the pulse tube high temperature end 16a and the buffer volume 26.
  • the buffer line 36 may include a rigid or flexible pipe, and the buffer volume 26 and the buffer orifice 30 may be connected to each other, and / or the buffer orifice 30 and the cold head 14 may be connected by such a pipe.
  • the main pressure switching valve 22 is configured to alternately connect the cold storage high temperature end 18a to the compressor discharge port 12a and the compressor suction port 12b in order to generate pressure vibration in the pulse pipe 16.
  • the main pressure switching valve 22 is configured such that when one of the main intake on-off valve V1 and the main exhaust on-off valve V2 is open, the other is closed.
  • the main intake on-off valve V1 connects the compressor discharge port 12a to the cold storage high temperature end 18a
  • the main exhaust on-off valve V2 connects the compressor suction port 12b to the cold storage high temperature end 18a.
  • the compressor 12 and the room temperature section 24 are arranged in an ambient environment (for example, a room temperature atmospheric pressure environment).
  • the buffer volume 26 is also arranged in the surrounding environment.
  • the regenerator 18, the pulse tube 16, and the cooling stage 20 are arranged in an environment isolated from the surrounding environment (for example, a cryogenic vacuum environment).
  • the pulse tube high temperature end 16a and the cooler high temperature end 18a are fixed to each other by a mounting structure such as a flange portion, and the support portion such as a support base or a support wall on which the pulse tube refrigerator 10 is installed ( For example, it is mounted on the wall of the vacuum container that houses the refrigerator 18, the pulse tube 16, and the cooling stage 20).
  • a part of the room temperature portion 24 (for example, the main pressure switching valve 22) is arranged separately from the cold head 14 of the pulse tube refrigerator 10 and connected to the cold head 14 by a rigid or flexible pipe. May be good.
  • the pulse tube refrigerator 10 With such a configuration, the pulse tube refrigerator 10 generates working gas pressure vibrations of high pressure PH and low pressure PL in the pulse tube 16. Displacement vibration of the working gas, that is, reciprocating movement of the gas piston occurs in the pulse tube 16 with an appropriate phase delay in synchronization with the pressure vibration.
  • the movement of the working gas that periodically reciprocates up and down in the pulse tube 16 while holding a certain pressure is often referred to as a "gas piston" and is often used to describe the operation of the pulse tube refrigerator 10.
  • the gas piston When the gas piston is at or near the high temperature end 16a of the pulse tube, the working gas expands at the low temperature end 16b of the pulse tube, and cold is generated.
  • the pulse tube refrigerator 10 can cool the cooling stage 20. Therefore, the pulse tube refrigerator 10 can cool the object to be cooled.
  • the object to be cooled by the pulse tube refrigerator 10 is installed directly on the cooling stage 20 or is thermally coupled to the cooling stage 20 via a rigid or flexible heat transfer member.
  • the pulse tube refrigerator 10 can cool the object to be cooled by conduction cooling from the cooling stage 20.
  • the object to be cooled is, for example, a superconducting electromagnet or other superconducting device, or a solid object such as an infrared image sensor or another sensor, but is not limited thereto.
  • the pulse tube refrigerator 10 can also cool the gas or liquid in contact with the cooling stage 20.
  • the pulse tube refrigerator 10 can be used for recondensing helium gas.
  • FIG. 2 is a top view schematically showing the pulse tube high temperature end 16a of the pulse tube refrigerator 10 shown in FIG.
  • the pulse tube high temperature end 16a is provided with a first connection port 38 and a second connection port 40.
  • the first connection port 38 and the second connection port 40 are located at different positions from each other.
  • a double inlet flow path 34 is connected to the first connection port 38, and a buffer volume 26 is connected to the second connection port 40 by a buffer line 36. In this way, the double inlet flow path 34 and the buffer volume 26 are separately connected to the high temperature end 16a of the pulse tube.
  • the first connection port 38 and the second connection port 40 are located at different positions in the radial direction on the high temperature end 16a of the pulse tube.
  • the second connection port 40 is provided at a position at a second distance t2 radially outward from the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 is radially outward from the center 42 of the pulse tube high temperature end 16a. It is provided at the position of the first distance t1.
  • the first distance t1 and the second distance t2 indicate the length from the center 42 of the high temperature end 16a of the pulse tube to the center of the first connection port 38 and the second connection port 40.
  • the pulse tube 16 (specifically, the pulse tube high temperature end) is arranged so that the first connection port 38 and the second connection port 40 are arranged on the upper surface of the pulse tube high temperature end 16a. It is shorter than the radius of 16a).
  • the second distance t2 is shorter than the first distance t1. Therefore, the second connection port 40 is located near the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 is located closer to the outer circumference of the pulse tube high temperature end 16a than the second connection port 40. ..
  • the first distance t1 may be longer than half the radius of the pulse tube 16.
  • the second distance t2 may be shorter than half the radius of the pulse tube 16.
  • the second connection port 40 may be provided at the center 42 of the high temperature end 16a of the pulse tube. In that case, the second distance t2 becomes zero.
  • both the first connection port 38 and the second connection port 40 are on a line passing through the center 42 of the pulse tube high temperature end 16a (that is, the diameter of the pulse tube high temperature end 16a), and the first The connection port 38 is located on one side of the center 42, and the second connection port 40 is located on the opposite side of the center 42.
  • the diameter of the pulse tube 16 is relatively small, if the two connection ports are arranged on both sides of the center 42 of the pulse tube 16 in this way, it is easy to secure the arrangement space of each connection port.
  • both the first connection port 38 and the second connection port 40 are provided on one side with respect to the center 42.
  • the first connection port 38 and the second connection port 40 may be provided at positions different from those shown in the illustrated example with respect to the circumferential direction around the center 42.
  • Both the first connection port 38 and the second connection port 40 are provided at the high temperature end 16a of the pulse tube so that the working gas flows in the axial direction A of the pulse tube 16 through each of the first connection port 38 and the second connection port 40. There is.
  • the hole diameters of the first connection port 38 and the second connection port 40 are the same. However, the hole diameters of the first connection port 38 and the second connection port 40 may be different.
  • the pulse tube high temperature end 16a is provided with one first connection port 38 and one second connection port 40.
  • a plurality of first connection ports 38 and / or a plurality of second connection ports 40 may be provided at the high temperature end 16a of the pulse tube.
  • the double inlet flow path 34 branches between the double inlet orifice 28 and the high temperature end 16a of the pulse tube and is connected to the plurality of first connection ports 38.
  • the buffer line 36 branches between the buffer orifice 30 and the high temperature end 16a of the pulse tube and is connected to a plurality of second connection ports 40.
  • Such a configuration can help to make the gas flow velocity distribution in the pulse tube 16 in the plane perpendicular to the axial direction A a desired distribution (for example, to make it uniform).
  • FIG. 3 is a diagram schematically showing a typical double inlet type pulse tube refrigerator 310.
  • the pulse tube refrigerator 310 includes a compressor 312, a pulse tube 316, a refrigerator 318, a cooling stage 320, a main pressure switching valve 322, a buffer volume 326, a double inlet flow path 334, and a buffer line 336.
  • the main pressure switching valve 322 is connected to the regenerator 318 by the regenerator communication passage 332.
  • the double inlet flow path 334 is provided with a double inlet orifice 328, and the buffer line 336 is provided with a buffer orifice 330.
  • the double inlet flow path 334 branches from the branch portion 332a of the cooler communication passage 332, joins the buffer line 336 at the merging portion 332b, and is connected to the pulse tube high temperature end 316a.
  • the merging portion 332b is located between the buffer orifice 330 and the high temperature end of the pulse tube 316a at the buffer line 336.
  • the flow rate of the working gas flowing from the buffer volume 326 to the pulse tube high temperature end 316a through the buffer line 336 is considerably larger than the gas flow rate flowing through the double inlet flow path 334.
  • the gas flow When a large flow rate of working gas flow from the buffer volume 326 passes through the confluence portion 332b, the gas flow also has the effect of drawing gas from the double inlet flow path 334 through the confluence portion 332b into the buffer line 336.
  • the gas flow drawn from the double inlet flow path 334 into the buffer line 336 is indicated by an arrow 352.
  • Such a gas drawing effect is also referred to as a jet effect below. Due to the jet effect, a large amount of gas can be drawn into the pulse tube 316 from the double inlet flow path 334.
  • the double inlet type pulse tube refrigerator 310 the low temperature ends of the cold storage 318 and the pulse tube 316 are communicated with each other, and the high temperature ends are connected to each other by the double inlet flow path 334.
  • a circulation path for the working gas including the 318 and the pulse tube 316 is formed.
  • the jet effect can generate a DC flow through the circulation path, as shown by arrow 354 in FIG.
  • This DC flow includes a working gas flow that flows through the pulse tube 316 from the pulse tube high temperature end 316a to the pulse tube low temperature end 316b. Heat is transferred from the high temperature end 316a of the pulse tube to the low temperature end 316b of the pulse tube by the DC flow, and the cooling stage 320 can be heated.
  • the double inlet flow path 334 and the buffer line 336 merge and are connected to the pulse tube high temperature end 316a. Therefore, the working gas flow flowing between the buffer volume 326 and the pulse tube 316 brings about a jet effect, which creates a DC flow, which can reduce the refrigerating efficiency of the pulse tube refrigerator 310.
  • the pulse tube high temperature end 16a has a first connection port 38 and a second connection port 40 provided at different positions.
  • the double inlet flow path 34 is connected to the first connection port 38, and the buffer volume 26 is connected to the second connection port 40 by the buffer line 36, that is, the double inlet flow path 34 and the buffer line 36 are separately connected to the high temperature end of the pulse tube. It is connected to 16a.
  • the double inlet flow path 34 and the buffer line 36 are not connected to the high temperature end 16a of the pulse tube after merging.
  • the jet effect due to the working gas flow from the buffer volume 26 is prevented or mitigated. That is, the gas flowing into the pulse tube 16 from the buffer volume 26 through the buffer line 36 does not cause any gas drawing from the double inlet flow path 34 into the pulse tube 16, or at least the drawing of such gas is significantly reduced. Will be done. Therefore, in the pulse tube refrigerator 10 according to the embodiment, the DC flow is reduced and the refrigerating efficiency of the pulse tube refrigerator 10 is improved.
  • the second connection port 40 is provided at a position of a second distance t2 from the center 42 or the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 is a first distance t1 from the center 42 of the pulse tube high temperature end 16a. It is provided at the position.
  • the second distance t2 is shorter than the first distance t1.
  • the pulse tube 16 can receive a large flow rate of working gas flow from the buffer volume 26 into the tube from the center 42 of the high temperature end 16a of the pulse tube or its vicinity. This is useful for making the gas flow velocity distribution in the pulse tube 16 a desired distribution as compared with the case where a large flow rate of working gas flow is received from the outer peripheral portion of the high temperature end 16a of the pulse tube. For example, it becomes easy to make the flow velocity distribution of the axial flow symmetrical around the central axis of the pulse tube 16.
  • both the first connection port 38 and the second connection port 40 are provided at the high temperature end 16a of the pulse tube so that the working gas flows in the axial direction A of the pulse tube 16 through each of the first connection port 38 and the second connection port 40. Has been done. In this way, it becomes easy to match the flow direction of the working gas flowing into the pulse tube 16 from the high temperature end 16a of the pulse tube with the axial direction A. The radial and / or circumferential components of the working gas flow in the pulse tube 16 are reduced.
  • the first connection port 38 and the second connection port 40 may be arranged in reverse depending on the magnitude relationship between the flow rates of the double inlet flow path 34 and the buffer line 36 or other conditions. That is, the first connection port 38 is provided at a position at a second distance t2 radially outward from the center 42 or the center 42 of the pulse tube high temperature end 16a, and the second connection port 40 is the center 42 of the pulse tube high temperature end 16a. It may be provided at a position of a first distance t1 on the outer side in the radial direction from the above.
  • one of the first connection port 38 and the second connection port 40 is provided at a position at a first distance t1 radially outward from the center 42 or the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 and The other of the second connection ports 40 may be provided at a position at a second distance t2 radially outward from the center 42 of the high temperature end 16a of the pulse tube.
  • the second distance t2 is shorter than the first distance t1.
  • the first connection port 38 and the second connection port 40 may be provided equidistant from the center 42 of the high temperature end 16a of the pulse tube. Also in this case, since the double inlet flow path 34 and the buffer volume 26 are separately connected to the pulse tube high temperature end 16a, the DC flow is reduced and the refrigerating efficiency of the pulse tube refrigerator 10 is improved. ..
  • the flow path connection configuration at the pulse tube high temperature end 16a has been described by taking a single-stage double inlet type pulse tube refrigerator 10 as an example, but the embodiment is a multi-stage type ( For example, it can be similarly applied to a double inlet type pulse tube refrigerator (two-stage type). Such embodiments will be described below.
  • FIG. 4 is a diagram schematically showing another example of the pulse tube refrigerator according to the first embodiment.
  • the pulse tube refrigerator 110 is a GM type double inlet type pulse tube refrigerator, and is configured in a two-stage system.
  • the pulse tube refrigerator 110 includes a compressor 12 and a cold head 14.
  • the cold head 14 includes a main pressure switching valve 22, a first-stage pulse tube 116, a first-stage regenerator 118, a first-stage cooling stage 120, a first-stage buffer volume 126, a first-stage double inlet flow path 134, and a first stage. It includes a stage buffer line 136.
  • the main pressure switching valve 22 is connected to the first stage regenerator 118 by the regenerator communication passage 32.
  • the first-stage double inlet flow path 134 is provided with the first-stage double inlet orifice 128, and the first-stage buffer line 136 is provided with the first-stage buffer orifice 130.
  • the first stage pulse tube high temperature end 116a is provided with the first stage first connection port 138 and the second connection port 140.
  • the first connection port 138 and the second connection port 140 are located at different positions from each other.
  • the first-stage double inlet flow path 134 is connected to the first connection port 138, and the first-stage buffer volume 126 is connected to the second connection port 140 by the first-stage buffer line 136.
  • the first-stage double inlet flow path 134 and the first-stage buffer volume 126 are separately connected to the first-stage pulse tube high-temperature end 116a.
  • the second connection port 140 is provided at a position at a second distance t2 radially outward from the center 142 of the first stage pulse tube high temperature end 116a, and the first connection port 138 is the first stage pulse tube high temperature end 116a. It is provided at a position of a first distance t1 radially outward from the center 142 of the above.
  • the pulse tube refrigerator 110 includes a second stage pulse tube 216, a second stage refrigerator 218, a second stage cooling stage 220, a second stage buffer volume 226, and a second stage double inlet flow.
  • a road 234 and a second stage buffer line 236 are provided.
  • the second-stage regenerator 218 is connected in series with the first-stage regenerator 118, and the low-temperature end of the second-stage regenerator 218 communicates with the low-temperature end of the second-stage pulse tube 216.
  • the second-stage double inlet flow path 234 connects the main pressure switching valve 22 to the second-stage pulse pipe 216 so as to bypass the regenerator (118, 218).
  • the second-stage double inlet orifice 228 is provided in the second-stage double inlet flow path 234, and the second-stage double inlet orifice 234 is from the branch portion 32a on the cooler communication passage 32 to the second-stage double inlet orifice 228. It is connected to the high temperature end 216a of the second stage pulse tube via.
  • the second-stage buffer line 236 is provided with a second-stage buffer orifice 230, and the second-stage buffer line 236 has a second-stage buffer volume 226 and a second-stage pulse tube high-temperature end via the second-stage buffer orifice 230. Connect to 216a.
  • the second stage pulse tube high temperature end 216a is also provided with the second stage first connection port 238 and the second connection port 240. ..
  • the first connection port 238 and the second connection port 240 are located at different positions from each other.
  • a second-stage double inlet flow path 234 is connected to the first connection port 238, and a second-stage buffer volume 226 is connected to the second connection port 240 by a second-stage buffer line 236. In this way, the second-stage double inlet flow path 234 and the second-stage buffer volume 226 are separately connected to the second-stage pulse tube high-temperature end 216a.
  • the arrangement of the first connection port 238 and the second connection port 240 at the high temperature end 216a of the second stage pulse tube may be various as in the first stage.
  • the second connection port 240 is provided at a position at a second distance t22 radially outward from the center 242 of the second stage pulse tube high temperature end 216a
  • the first connection port 238 is the second stage pulse tube high temperature end 216a. It may be provided at a position of a first distance t21 radially outward from the center 242 of the above.
  • the second distance t22 may be shorter than the first distance t21.
  • FIG. 5 is a diagram schematically showing the pulse tube refrigerator 210 according to the second embodiment.
  • the pulse tube refrigerator 210 is a GM type 4-valve pulse tube refrigerator. Therefore, the pulse tube refrigerator 210 and the pulse tube refrigerator 10 described with reference to FIGS. 1 and 2 are provided with an auxiliary pressure switching valve 44 and a pulse tube connecting passage 46 instead of the double inlet flow path. It has a generally common structure. In the following, the different configurations of the two will be mainly described, and the common configurations will be briefly described or omitted.
  • the pulse tube refrigerator 210 includes a compressor 12 and a cold head 14.
  • the cold head 14 includes a pulse tube 16, a regenerator 18, a cooling stage 20, a main pressure switching valve 22, a buffer volume 26, and a buffer line 36.
  • the main pressure switching valve 22 is connected to the regenerator 18 by the regenerator communication passage 32.
  • a buffer orifice 30 is provided in the buffer line 36, and the buffer line 36 connects the buffer volume 26 to the high temperature end 16a of the pulse tube via the buffer orifice 30.
  • the pulse tube refrigerator 210 further includes an auxiliary pressure switching valve 44 and a pulse tube communication passage 46.
  • the auxiliary pressure switching valve 44 is configured to alternately connect the high temperature end 16a of the pulse tube to the compressor discharge port 12a and the compressor suction port 12b.
  • the auxiliary pressure switching valve 44 has an auxiliary intake on-off valve V3 and an auxiliary exhaust on-off valve V4.
  • the high-pressure line 13a connects the compressor discharge port 12a to the intake opening / closing valves (V1, V3), and the low-pressure line 13b connects the compressor suction port 12b to the exhaust opening / closing valves (V2, V4).
  • the sub-intake on-off valve V3 connects the compressor discharge port 12a to the high-temperature end 16a of the pulse pipe
  • the sub-exhaust on-off valve V4 connects the compressor suction port 12b to the high-temperature end 16a of the pulse pipe.
  • the sub-pressure switching valve 44 is configured so that when one of the sub-intake on-off valve V3 and the sub-exhaust on-off valve V4 is open, the other is closed.
  • the sub intake on-off valve V3 When the sub intake on-off valve V3 is open, working gas is supplied from the compressor discharge port 12a to the pulse pipe 16 through the high-pressure line 13a and the sub-intake on-off valve V3.
  • the sub-exhaust on-off valve V4 is open, the working gas is recovered from the pulse pipe 16 to the compressor suction port 12b through the sub-exhaust on-off valve V4 and the low-pressure line 13b.
  • the group of valves (V1 to V4) may take the form of a plurality of individually controllable valves, such as electromagnetic on-off valves.
  • the valves (V1 to V4) may be configured as rotary valves.
  • As the valve timing of these valves (V1 to V4) various valve timings applicable to the existing 4-valve type pulse tube refrigerator can be adopted.
  • the pulse pipe connecting passage 46 connects the compressor discharge port 12a and the compressor suction port 12b to the pulse pipe 16 so as to bypass the cooler 18.
  • the pulse pipe connecting passage 46 is provided with a flow rate adjusting element 48 as an example of the flow rate control unit.
  • the pulse pipe connecting passage 46 extends from the pulse pipe high temperature end 16a to the flow rate adjusting element 48, branches into two, and is connected to the sub intake on-off valve V3 and the sub-exhaust on-off valve V4.
  • a circulation path for working gas is formed including a compressor 12, a pulse tube 16, and a regenerator 18.
  • a first connection port 38 and a second connection port 40 are provided at the high temperature end 16a of the pulse tube.
  • the first connection port 38 and the second connection port 40 are located at different positions from each other.
  • a sub-pressure switching valve 44 is connected to the first connection port 38 by a pulse pipe connecting passage 46, and a buffer volume 26 is connected to the second connection port 40 by a buffer line 36. In this way, the auxiliary pressure switching valve 44 and the buffer volume 26 are separately connected to the high temperature end 16a of the pulse tube.
  • the arrangement of the first connection port 38 and the second connection port 40 at the high temperature end 16a of the pulse tube may be various as described in relation to the first embodiment.
  • the second connection port 40 is provided at a position at a second distance t2 radially outward from the center 42 of the pulse tube high temperature end 16a
  • the first connection port 38 is radially outward from the center 42 of the pulse tube high temperature end 16a. It may be provided on the outside at a position of a first distance t1.
  • the second distance t2 may be shorter than the first distance t1.
  • the working gas flowing through the buffer line 36 is similar to the comparative example shown in FIG.
  • the flow provides a jet effect, which allows a large amount of gas to be drawn into the pulse tube 16 from the pulse tube communication passage 46.
  • a DC flow can be generated in the circulation path. The DC flow transfers heat from the high temperature end 16a of the pulse tube to the low temperature end 16b of the pulse tube, which can reduce the refrigerating efficiency of the pulse tube refrigerator.
  • the pulse tube high temperature end 16a has a first connection port 38 and a second connection port 40 provided at different positions.
  • the auxiliary pressure switching valve 44 and the pulse pipe connecting passage 46 are connected to the first connection port 38, and the buffer volume 26 is connected to the second connection port 40 by the buffer line 36, that is, the pulse pipe connecting passage 46 and the buffer line 36 are connected. It is separately connected to the high temperature end 16a of the pulse tube. Therefore, the DC flow that can occur due to the jet effect in the circulation path is reduced, and the refrigerating efficiency of the pulse tube refrigerator 210 is improved.
  • the flow path connection configuration at the pulse tube high temperature end 16a according to the second embodiment has been described by taking a single-stage 4-valve pulse tube refrigerator 210 as an example, but the embodiment is a multi-stage type. It can also be applied to a 4-valve type pulse tube refrigerator. Therefore, the pulse tube refrigerator 210 may be, for example, a two-stage four-valve pulse tube refrigerator.
  • the various features mentioned in the first embodiment are the pulse tube refrigerator according to the second embodiment. It is equally applicable to 210.
  • the present invention can be used in the field of pulse tube refrigerators.
  • pulse tube refrigerator 12 compressor, 12a compressor discharge port, 12b compressor suction port, 14 cold head, 16 pulse tube, 16a pulse tube high temperature end, 16b pulse tube low temperature end, 18 cold storage, 18a cold storage high temperature End, 18b cold storage cold end, 22 main pressure switching valve, 26 buffer volume, 32 cold storage communication passage, 32a branch, 34 double inlet flow path, 38 1st connection port, 40 2nd connection port, 42 center, 44 Sub-pressure switching valve, 46 pulse tube communication passage, A axial direction, t1 first distance, t2 second distance.

Abstract

This pulse pipe refrigerator (10) is provided with: a compression machine (12) having a compression machine outlet (12a) and a compression machine inlet (12b); a pulse pipe (16) that has a pulse pipe low-temperature end (16b) and a pulse pipe high-temperature end (16a) having a first connection opening (38) and a second connection opening (40) provided at different positions; a cold storage device (18) having a cold storage device high-temperature end (18a) and a cold storage device low-temperature end (18b) connected to the pulse pipe low-temperature end (16b); a main pressure switch valve (22) that alternately connects the cold storage device high-temperature end (18a) to the compression machine outlet (12a) and the compression machine inlet (12b); a double inlet flow path (34) connected from a branching portion (32a) between the main pressure switch valve (22) and the cold storage device high-temperature end (18a), to the first connection opening (38) of the pulse pipe high-temperature end (16a), through a flow rate control unit so that the cold storage device (18) is bypassed; and a buffer volume (26) connected to the second connection opening (40) of the pulse pipe high-temperature end (16a).

Description

パルス管冷凍機、パルス管冷凍機のコールドヘッドCold head of pulse tube refrigerator, pulse tube refrigerator
 本発明は、パルス管冷凍機に関する。 The present invention relates to a pulse tube refrigerator.
 パルス管冷凍機は、主たる構成要素として、振動流発生源、蓄冷器、パルス管、および位相制御機構を備える。振動流の発生にはいくつかの方式がある。例えば、圧縮機と周期的な流路切替弁の組み合わせを用いるいわゆるGM(ギフォード・マクマホン;Gifford-McMahon)方式と、調和振動するピストンによって振動流を発生するスターリング方式が知られている。また、位相制御機構についても、ダブルインレット型、アクティブバッファ型、4バルブ型など様々な方式がある。 The pulse tube refrigerator is equipped with a vibration flow source, a regenerator, a pulse tube, and a phase control mechanism as its main components. There are several methods for generating oscillating flow. For example, a so-called GM (Gifford-McMahon) method using a combination of a compressor and a periodic flow path switching valve and a sterling method in which a vibration flow is generated by a harmonically oscillating piston are known. Further, there are various types of phase control mechanisms such as a double inlet type, an active buffer type, and a 4-valve type.
特開2001-324232号公報Japanese Unexamined Patent Publication No. 2001-324232
 パルス管冷凍機においては、振動流発生源と位相制御機構それぞれの方式に依存して、蓄冷器およびパルス管を含む作動ガスの循環経路が形成されうる。例えば、ダブルインレット型のパルス管冷凍機では、蓄冷器とパルス管それぞれの低温端が互いに連通されるとともに、それぞれの高温端どうしも、振動流発生源からパルス管へと蓄冷器をバイパスして接続する連通路で接続され、作動ガスの循環経路が形成される。こうした循環経路には、「DCフロー」とも称される、直流成分をもつガス流れが生成されうる。DCフローは、パルス管冷凍機の冷凍性能に影響しうる。とりわけ、DCフローが、パルス管高温端からパルス管低温端へと貫通する作動ガス流れを含む場合には、そうした作動ガス流れによりパルス管高温端からパルス管低温端へと顕著な入熱が与えられ、パルス管冷凍機の冷凍効率は低下しうる。 In the pulse tube refrigerator, a circulation path for the working gas including the cooler and the pulse tube can be formed depending on the methods of the vibration flow source and the phase control mechanism. For example, in a double inlet type pulse tube refrigerator, the low temperature ends of the cooler and the pulse tube communicate with each other, and the high temperature ends bypass the cooler from the vibration flow source to the pulse tube. It is connected by a connecting passage to form a circulation path for the working gas. In such a circulation path, a gas flow having a DC component, which is also called "DC flow", can be generated. The DC flow can affect the freezing performance of the pulse tube refrigerator. In particular, when the DC flow includes a working gas flow penetrating from the hot end of the pulse tube to the cold end of the pulse tube, such working gas flow provides significant heat input from the hot end of the pulse tube to the cold end of the pulse tube. Therefore, the refrigerating efficiency of the pulse tube refrigerator may decrease.
 本発明のある態様の例示的な目的のひとつは、パルス管冷凍機の冷凍効率を向上することにある。 One of the exemplary objects of an aspect of the present invention is to improve the freezing efficiency of a pulse tube refrigerator.
 本発明のある態様によると、パルス管冷凍機は、圧縮機吐出口と圧縮機吸入口とを有する圧縮機と、異なる位置に設けられた第1接続口および第2接続口を有するパルス管高温端と、パルス管低温端と、を有するパルス管と、蓄冷器高温端と、前記パルス管低温端と連通している蓄冷器低温端と、を有する蓄冷器と、前記蓄冷器高温端を前記圧縮機吐出口および前記圧縮機吸入口に交互に接続する主圧力切換弁と、前記蓄冷器をバイパスするように、前記主圧力切換弁と前記蓄冷器高温端との間の分岐部から流量制御部を介して前記パルス管高温端の前記第1接続口に接続されたダブルインレット流路と、前記パルス管高温端の前記第2接続口に接続されたバッファ容積と、を備える。 According to an aspect of the present invention, the pulse tube refrigerator has a compressor having a compressor discharge port and a compressor suction port, and a pulse tube high temperature having a first connection port and a second connection port provided at different positions. A cold storage device having a pulse tube having an end, a low temperature end of the pulse tube, a high temperature end of the cooler, and a low temperature end of the cooler communicating with the low temperature end of the pulse tube, and the high temperature end of the cooler. Flow control from the branch between the main pressure switching valve and the high temperature end of the regenerator so as to bypass the regenerator and the main pressure switching valve that is alternately connected to the compressor discharge port and the compressor suction port. A double inlet flow path connected to the first connection port at the high temperature end of the pulse tube and a buffer volume connected to the second connection port at the high temperature end of the pulse tube are provided.
 本発明のある態様によると、パルス管冷凍機は、圧縮機吐出口と圧縮機吸入口とを有する圧縮機と、異なる位置に設けられた第1接続口および第2接続口を有するパルス管高温端と、パルス管低温端と、を有するパルス管と、蓄冷器高温端と、前記パルス管低温端と連通している蓄冷器低温端と、を有する蓄冷器と、前記蓄冷器高温端を前記圧縮機吐出口および前記圧縮機吸入口に交互に接続する主圧力切換弁と、前記パルス管高温端の前記第1接続口を前記圧縮機吐出口および前記圧縮機吸入口に交互に接続する副圧力切換弁と、前記パルス管高温端の前記第2接続口に接続されたバッファ容積と、を備える。 According to an aspect of the present invention, the pulse tube refrigerator has a compressor having a compressor discharge port and a compressor suction port, and a pulse tube high temperature having a first connection port and a second connection port provided at different positions. A cold storage device having a pulse tube having an end, a low-temperature end of the pulse tube, a high-temperature end of the regenerator, and a low-temperature end of the regenerator communicating with the low-temperature end of the pulse tube, and the high-temperature end of the regenerator A main pressure switching valve that alternately connects to the compressor discharge port and the compressor suction port, and a sub that alternately connects the first connection port at the high temperature end of the pulse tube to the compressor discharge port and the compressor suction port. It includes a pressure switching valve and a buffer volume connected to the second connection port at the high temperature end of the pulse tube.
 本発明のある態様によると、パルス管冷凍機のコールドヘッドは、異なる位置に設けられた第1接続口および第2接続口を有するパルス管高温端と、パルス管低温端と、を有するパルス管と、蓄冷器高温端と、前記パルス管低温端と連通している蓄冷器低温端と、を有する蓄冷器と、前記蓄冷器高温端を主圧力切換弁に接続する蓄冷器連通路と、前記蓄冷器をバイパスするように、前記蓄冷器連通路上の分岐部から流量制御部を介して前記パルス管高温端の前記第1接続口に接続されたダブルインレット流路と、前記パルス管高温端の前記第2接続口に接続されたバッファ容積と、を備える。 According to an aspect of the present invention, the cold head of the pulse tube refrigerator is a pulse tube having a first connection port and a second connection port provided at different positions, and a pulse tube high temperature end and a pulse tube low temperature end. A cold storage device having a cold storage device high temperature end and a cold storage device low temperature end communicating with the pulse tube low temperature end, a cold storage device communication passage connecting the cold storage device high temperature end to a main pressure switching valve, and the above. A double inlet flow path connected to the first connection port at the high temperature end of the pulse pipe from a branch on the cold storage communication passage via a flow control unit and a high temperature end of the pulse pipe so as to bypass the cold storage. A buffer volume connected to the second connection port is provided.
 本発明のある態様によると、パルス管冷凍機のコールドヘッドは、異なる位置に設けられた第1接続口および第2接続口を有するパルス管高温端と、パルス管低温端と、を有するパルス管と、蓄冷器高温端と、前記パルス管低温端と連通している蓄冷器低温端と、を有する蓄冷器と、前記蓄冷器高温端を主圧力切換弁に接続する蓄冷器連通路と、前記パルス管高温端の前記第1接続口を副圧力切換弁に接続するパルス管連通路と、前記パルス管高温端の前記第2接続口に接続されたバッファ容積と、を備える。 According to an aspect of the present invention, the cold head of the pulse tube refrigerator is a pulse tube having a first connection port and a second connection port provided at different positions, and a pulse tube high temperature end and a pulse tube low temperature end. A regenerator having a regenerator high temperature end and a regenerator low temperature end communicating with the pulse tube low temperature end, a regenerator communication passage connecting the regenerator high temperature end to a main pressure switching valve, and the above. It includes a pulse tube communication passage that connects the first connection port at the high temperature end of the pulse tube to the auxiliary pressure switching valve, and a buffer volume connected to the second connection port at the high temperature end of the pulse tube.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components or the components and expressions of the present invention that are mutually replaced between methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、パルス管冷凍機の冷凍効率が向上される。 According to the present invention, the refrigerating efficiency of the pulse tube refrigerator is improved.
第1の実施の形態に係るパルス管冷凍機を概略的に示す図である。It is a figure which shows schematicly the pulse tube refrigerator which concerns on 1st Embodiment. 図1に示されるパルス管冷凍機のパルス管高温端を概略的に示す上面図である。It is a top view which shows schematic the pulse tube high temperature end of the pulse tube refrigerator shown in FIG. ある典型的なダブルインレット型のパルス管冷凍機を概略的に示す図である。It is a figure which shows typically a typical double inlet type pulse tube refrigerator. 第1の実施の形態に係るパルス管冷凍機の他の例を概略的に示す図である。It is a figure which shows typically another example of the pulse tube refrigerator which concerns on 1st Embodiment. 第2の実施の形態に係るパルス管冷凍機を概略的に示す図である。It is a figure which shows schematicly the pulse tube refrigerator which concerns on 2nd Embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。また、以下の説明において参照する図面において、各構成部材の大きさや厚みは説明の便宜上のものであり、必ずしも実際の寸法や比率を示すものではない。 Hereinafter, a mode for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are designated by the same reference numerals, and duplicate description will be omitted as appropriate. Further, the configuration described below is an example, and does not limit the scope of the present invention at all. Further, in the drawings referred to in the following description, the sizes and thicknesses of the respective constituent members are for convenience of explanation and do not necessarily indicate the actual dimensions and ratios.
 図1は、第1の実施の形態に係るパルス管冷凍機10を概略的に示す図である。パルス管冷凍機10は、一例として、GM(Gifford-McMahon)方式のダブルインレット型パルス管冷凍機である。また、パルス管冷凍機10は、単段式のパルス管冷凍機である。ただし、後述するように、パルス管冷凍機10は、多段式(例えば二段式)のパルス管冷凍機とすることも可能である。 FIG. 1 is a diagram schematically showing the pulse tube refrigerator 10 according to the first embodiment. The pulse tube refrigerator 10 is, for example, a GM (Gifford-McMahon) type double inlet type pulse tube refrigerator. Further, the pulse tube refrigerating machine 10 is a single-stage pulse tube refrigerating machine. However, as will be described later, the pulse tube refrigerator 10 can also be a multi-stage (for example, two-stage) pulse tube refrigerator.
 パルス管冷凍機10は、圧縮機12と、コールドヘッド14とを備える。コールドヘッド14は、パルス管16、蓄冷器18、冷却ステージ20、主圧力切換弁22、および室温部24を備える。 The pulse tube refrigerator 10 includes a compressor 12 and a cold head 14. The cold head 14 includes a pulse tube 16, a regenerator 18, a cooling stage 20, a main pressure switching valve 22, and a room temperature section 24.
 コールドヘッド14の室温部24には、バッファ容積26、例えばバッファタンクが接続されている。また、室温部24は、2つの流量制御部を有する。流量制御部は、例えば、オリフィス、または絞り弁などの流量調整要素を含む。流量制御部の流路抵抗は、固定されていてもよいし、調整可能であってもよい。以下では説明の便宜上、第1流量制御部をダブルインレットオリフィス28と称し、第2流量制御部をバッファオリフィス30と称する。ただし、流量制御部をオリフィスのみに限定することを意図するものではない。 A buffer volume 26, for example, a buffer tank is connected to the room temperature portion 24 of the cold head 14. Further, the room temperature unit 24 has two flow rate control units. The flow control unit includes, for example, a flow rate adjusting element such as an orifice or a throttle valve. The flow path resistance of the flow control unit may be fixed or adjustable. Hereinafter, for convenience of explanation, the first flow rate control unit will be referred to as a double inlet orifice 28, and the second flow rate control unit will be referred to as a buffer orifice 30. However, it is not intended to limit the flow control unit to only the orifice.
 圧縮機12および主圧力切換弁22によって、パルス管冷凍機10の振動流発生源が構成される。すなわち、圧縮機12が生み出す作動ガスの定常流から、主圧力切換弁22の切替動作によって蓄冷器18を通じてパルス管16内に作動ガスの圧力振動を生成することができる。また、バッファ容積26、ダブルインレットオリフィス28、およびバッファオリフィス30によって、パルス管冷凍機10の位相制御機構が構成される。位相制御機構によって作動ガスの圧力振動に対しパルス管16内のガス要素(ガスピストンとも呼ばれる)の変位振動の位相を遅らせることができる。適切な位相遅れは、パルス管16の低温端でのPV仕事を生じさせ、作動ガスを冷却することができる。 The compressor 12 and the main pressure switching valve 22 form a vibration flow source for the pulse tube refrigerator 10. That is, from the steady flow of the working gas generated by the compressor 12, the pressure vibration of the working gas can be generated in the pulse pipe 16 through the regenerator 18 by the switching operation of the main pressure switching valve 22. Further, the buffer volume 26, the double inlet orifice 28, and the buffer orifice 30 constitute a phase control mechanism for the pulse tube refrigerator 10. The phase control mechanism can delay the phase of the displacement vibration of the gas element (also called the gas piston) in the pulse tube 16 with respect to the pressure vibration of the working gas. Appropriate phase lag can cause PV work at the cold end of the pulse tube 16 to cool the working gas.
 圧縮機12は、圧縮機吐出口12aと圧縮機吸入口12bとを有し、回収した低圧PLの作動ガスを圧縮して高圧PHの作動ガスを生成するよう構成されている。圧縮機吐出口12aから主圧力切換弁22および蓄冷器18を通じてパルス管16に作動ガスが供給され、パルス管16から蓄冷器18および主圧力切換弁22を通じて圧縮機吸入口12bへと作動ガスが回収される。圧縮機吐出口12aおよび圧縮機吸入口12bはそれぞれ、パルス管冷凍機10の高圧源および低圧源として機能する。作動ガスは、冷媒ガスとも称され、例えばヘリウムガスである。 The compressor 12 has a compressor discharge port 12a and a compressor suction port 12b, and is configured to compress the recovered low-pressure PL working gas to generate a high-pressure PH working gas. The working gas is supplied from the compressor discharge port 12a to the pulse tube 16 through the main pressure switching valve 22 and the cold storage device 18, and the working gas is supplied from the pulse tube 16 to the compressor suction port 12b through the cold storage device 18 and the main pressure switching valve 22. Will be recovered. The compressor discharge port 12a and the compressor suction port 12b function as a high-pressure source and a low-pressure source of the pulse tube refrigerator 10, respectively. The working gas is also called a refrigerant gas, for example, helium gas.
 一般に高圧PH及び低圧PLはともに、パルス管冷凍機10の周囲環境圧力(例えば大気圧)よりかなり高い。よって、高圧PH及び低圧PLはそれぞれ、第1高圧及び第2高圧と呼ぶこともできる。通例、高圧PHは例えば2~3MPaである。低圧PLは例えば0.5~1.5MPaである。 Generally, both high-pressure PH and low-pressure PL are considerably higher than the ambient environmental pressure (for example, atmospheric pressure) of the pulse tube refrigerator 10. Therefore, the high voltage PH and the low voltage PL can also be referred to as a first high voltage and a second high voltage, respectively. Usually, the high pressure pH is, for example, 2 to 3 MPa. The low pressure PL is, for example, 0.5 to 1.5 MPa.
 パルス管冷凍機10には、高圧ライン13aおよび低圧ライン13bが設けられている。高圧ライン13aを通じて、高圧PHの作動ガスが圧縮機12からコールドヘッド14に流れる。低圧ライン13bを通じて、低圧PLの作動ガスがコールドヘッド14から圧縮機12に流れる。高圧ライン13aは、圧縮機吐出口12aを主圧力切換弁22の主吸気開閉弁V1に接続する。低圧ライン13bは、圧縮機吸入口12bを主圧力切換弁22の主排気開閉弁V2に接続する。高圧ライン13aおよび低圧ライン13bはそれぞれ、圧縮機12とコールドヘッド14とを接続する剛性または可撓性の配管であってもよい。 The pulse tube refrigerator 10 is provided with a high pressure line 13a and a low pressure line 13b. The working gas of high pressure PH flows from the compressor 12 to the cold head 14 through the high pressure line 13a. The working gas of the low pressure PL flows from the cold head 14 to the compressor 12 through the low pressure line 13b. The high-pressure line 13a connects the compressor discharge port 12a to the main intake on-off valve V1 of the main pressure switching valve 22. The low-pressure line 13b connects the compressor suction port 12b to the main exhaust on-off valve V2 of the main pressure switching valve 22. The high pressure line 13a and the low pressure line 13b may be rigid or flexible pipes connecting the compressor 12 and the cold head 14, respectively.
 パルス管16は、パルス管高温端16aと、パルス管低温端16bとを有し、パルス管高温端16aからパルス管低温端16bへと軸方向に延在する。パルス管高温端16aおよびパルス管低温端16bはそれぞれ、パルス管16の第1端および第2端とも称しうる。パルス管高温端16aおよびパルス管低温端16bにはそれぞれ整流器が設けられていてもよい。同様に、蓄冷器18は、蓄冷器高温端18aと、蓄冷器低温端18bとを有し、蓄冷器高温端18aから蓄冷器低温端18bへと軸方向に延在する。蓄冷器高温端18aおよび蓄冷器低温端18bはそれぞれ、蓄冷器18の第1端および第2端とも称しうる。パルス管16および蓄冷器18が延びる方向をコールドヘッド14の軸方向Aと表す。 The pulse tube 16 has a pulse tube high temperature end 16a and a pulse tube low temperature end 16b, and extends axially from the pulse tube high temperature end 16a to the pulse tube low temperature end 16b. The high temperature end 16a of the pulse tube and the low temperature end 16b of the pulse tube can also be referred to as the first end and the second end of the pulse tube 16, respectively. Rectifiers may be provided at the high temperature end 16a of the pulse tube and the low temperature end 16b of the pulse tube, respectively. Similarly, the cold storage device 18 has a cold storage device high temperature end 18a and a cold storage device low temperature end 18b, and extends axially from the cold storage device high temperature end 18a to the cold storage device low temperature end 18b. The cold storage device high temperature end 18a and the cold storage device low temperature end 18b can also be referred to as the first end and the second end of the cold storage device 18, respectively. The direction in which the pulse tube 16 and the regenerator 18 extend is represented as the axial direction A of the cold head 14.
 パルス管低温端16bと蓄冷器低温端18bは冷却ステージ20によって構造的に接続され熱的に結合されている。冷却ステージ20には冷却ステージ流路21が形成されている。冷却ステージ流路21を通じて、パルス管低温端16bは、蓄冷器低温端18bと流体的に連通している。したがって、圧縮機12から供給される作動ガスは、蓄冷器低温端18bから冷却ステージ流路21を通じてパルス管低温端16bへと流れることができる。パルス管16からの戻りガスは、パルス管低温端16bから冷却ステージ流路21を通じて蓄冷器低温端18bへと流れることができる。 The low temperature end 16b of the pulse tube and the low temperature end 18b of the cooler are structurally connected by the cooling stage 20 and thermally coupled. A cooling stage flow path 21 is formed in the cooling stage 20. Through the cooling stage flow path 21, the low temperature end 16b of the pulse tube fluidly communicates with the low temperature end 18b of the cool storage device. Therefore, the working gas supplied from the compressor 12 can flow from the cold storage device low temperature end 18b to the pulse tube low temperature end 16b through the cooling stage flow path 21. The return gas from the pulse tube 16 can flow from the low temperature end 16b of the pulse tube to the low temperature end 18b of the cooler through the cooling stage flow path 21.
 例示的な構成においては、パルス管16は内部を空洞とする円筒状の管であり、蓄冷器18は内部に蓄冷材を充填した円筒状の管であり、両者は互いに隣り合って各々の中心軸を平行として配置されている。パルス管16および蓄冷器18は、冷却ステージ20から同方向に延びており、パルス管高温端16aおよび蓄冷器高温端18aは、冷却ステージ20に対して同じ側に配置されている。このようにして、パルス管16、蓄冷器18、および冷却ステージ20は、U字状に配置されている。 In the exemplary configuration, the pulse tube 16 is a cylindrical tube with a hollow inside, and the cooler 18 is a cylindrical tube filled with a cold storage material inside, both adjacent to each other and at their centers. The axes are arranged in parallel. The pulse tube 16 and the regenerator 18 extend in the same direction from the cooling stage 20, and the pulse tube high temperature end 16a and the regenerator high temperature end 18a are arranged on the same side with respect to the cooling stage 20. In this way, the pulse tube 16, the regenerator 18, and the cooling stage 20 are arranged in a U shape.
 室温部24は、蓄冷器高温端18aを主圧力切換弁22に接続する蓄冷器連通路32を備える。蓄冷器連通路32は、主圧力切換弁22と蓄冷器高温端18aとの間に位置する分岐部32aを有する。蓄冷器連通路32は、蓄冷器高温端18aから分岐部32aを通って延び、さらに二分岐して、主吸気開閉弁V1および主排気開閉弁V2に接続されている。 The room temperature section 24 includes a regenerator communication passage 32 that connects the regenerator high temperature end 18a to the main pressure switching valve 22. The regenerator communication passage 32 has a branch portion 32a located between the main pressure switching valve 22 and the regenerator high temperature end 18a. The cold storage communication passage 32 extends from the cold storage high temperature end 18a through the branch portion 32a, further branches into two, and is connected to the main intake on-off valve V1 and the main exhaust on-off valve V2.
 室温部24は、蓄冷器18をバイパスするように主圧力切換弁22をパルス管16に接続するダブルインレット流路34を備える。ダブルインレット流路34は、蓄冷器連通路32上の分岐部32aからダブルインレットオリフィス28を介してパルス管高温端16aに接続されている。 The room temperature section 24 includes a double inlet flow path 34 that connects the main pressure switching valve 22 to the pulse pipe 16 so as to bypass the cold storage device 18. The double inlet flow path 34 is connected to the pulse tube high temperature end 16a from the branch portion 32a on the cooler communication passage 32 via the double inlet orifice 28.
 また、室温部24には、バッファオリフィス30を有し、バッファ容積26をコールドヘッド14に接続するバッファライン36が設けられている。バッファライン36は、バッファオリフィス30を介してバッファ容積26をパルス管高温端16aに接続する。バッファ容積26は、高圧PHと低圧PLとの中間圧(例えば高圧PHと低圧PLの平均圧)を有する作動ガスの中間圧源として働く。よって、パルス管高温端16aとバッファ容積26との圧力差に応じて、パルス管16とバッファ容積26との間でバッファライン36を通じて作動ガスが流れる。 Further, the room temperature section 24 is provided with a buffer orifice 30 and a buffer line 36 for connecting the buffer volume 26 to the cold head 14. The buffer line 36 connects the buffer volume 26 to the high temperature end 16a of the pulse tube via the buffer orifice 30. The buffer volume 26 acts as an intermediate pressure source for the working gas having an intermediate pressure between the high pressure PH and the low pressure PL (for example, the average pressure between the high pressure PH and the low pressure PL). Therefore, the working gas flows between the pulse tube 16 and the buffer volume 26 through the buffer line 36 according to the pressure difference between the pulse tube high temperature end 16a and the buffer volume 26.
 なお、バッファライン36は、剛性または可撓性の配管を含んでもよく、バッファ容積26とバッファオリフィス30とが、及び/またはバッファオリフィス30とコールドヘッド14とがそうした配管で接続されてもよい。 The buffer line 36 may include a rigid or flexible pipe, and the buffer volume 26 and the buffer orifice 30 may be connected to each other, and / or the buffer orifice 30 and the cold head 14 may be connected by such a pipe.
 主圧力切換弁22は、パルス管16内に圧力振動を生成すべく蓄冷器高温端18aを圧縮機吐出口12aおよび圧縮機吸入口12bに交互に接続するように構成されている。主圧力切換弁22は、主吸気開閉弁V1と主排気開閉弁V2のうち一方が開いているとき他方は閉じているように構成されている。主吸気開閉弁V1が圧縮機吐出口12aを蓄冷器高温端18aに接続し、主排気開閉弁V2が圧縮機吸入口12bを蓄冷器高温端18aに接続する。 The main pressure switching valve 22 is configured to alternately connect the cold storage high temperature end 18a to the compressor discharge port 12a and the compressor suction port 12b in order to generate pressure vibration in the pulse pipe 16. The main pressure switching valve 22 is configured such that when one of the main intake on-off valve V1 and the main exhaust on-off valve V2 is open, the other is closed. The main intake on-off valve V1 connects the compressor discharge port 12a to the cold storage high temperature end 18a, and the main exhaust on-off valve V2 connects the compressor suction port 12b to the cold storage high temperature end 18a.
 主吸気開閉弁V1が開いているとき、圧縮機吐出口12aから高圧ライン13aおよび主吸気開閉弁V1を通じて蓄冷器18に作動ガスが供給される。作動ガスはさらに、蓄冷器18から冷却ステージ流路21を通じてパルス管16に供給される。作動ガスの一部は、ダブルインレット流路34を通じてパルス管16に供給される。一方、主排気開閉弁V2が開いているとき、パルス管16から、冷却ステージ流路21、蓄冷器18、主排気開閉弁V2、および低圧ライン13bを通じて圧縮機吸入口12bに作動ガスが回収される。作動ガスの一部は、パルス管16から、ダブルインレット流路34、主排気開閉弁V2、および低圧ライン13bを通じて圧縮機吸入口12bに回収される。 When the main intake on-off valve V1 is open, working gas is supplied from the compressor discharge port 12a to the cold storage 18 through the high-pressure line 13a and the main intake on-off valve V1. The working gas is further supplied from the regenerator 18 to the pulse tube 16 through the cooling stage flow path 21. A part of the working gas is supplied to the pulse tube 16 through the double inlet flow path 34. On the other hand, when the main exhaust on-off valve V2 is open, the working gas is recovered from the pulse pipe 16 to the compressor suction port 12b through the cooling stage flow path 21, the regenerator 18, the main exhaust on-off valve V2, and the low pressure line 13b. To. A part of the working gas is collected from the pulse pipe 16 to the compressor suction port 12b through the double inlet flow path 34, the main exhaust on-off valve V2, and the low pressure line 13b.
 一般に、圧縮機12および室温部24は周囲環境(例えば、室温大気圧環境)に配置される。バッファ容積26も周囲環境に配置される。蓄冷器18、パルス管16、および冷却ステージ20は周囲環境から隔離された環境(例えば、極低温真空環境)に配置される。パルス管高温端16aと蓄冷器高温端18aは、例えばフランジ部などの装着構造によって互いに固定され、装着構造を介して、パルス管冷凍機10が設置される支持台または支持壁などの支持部(例えば、蓄冷器18、パルス管16、および冷却ステージ20を収容する真空容器の壁部)に装着される。 Generally, the compressor 12 and the room temperature section 24 are arranged in an ambient environment (for example, a room temperature atmospheric pressure environment). The buffer volume 26 is also arranged in the surrounding environment. The regenerator 18, the pulse tube 16, and the cooling stage 20 are arranged in an environment isolated from the surrounding environment (for example, a cryogenic vacuum environment). The pulse tube high temperature end 16a and the cooler high temperature end 18a are fixed to each other by a mounting structure such as a flange portion, and the support portion such as a support base or a support wall on which the pulse tube refrigerator 10 is installed ( For example, it is mounted on the wall of the vacuum container that houses the refrigerator 18, the pulse tube 16, and the cooling stage 20).
 なお、室温部24の一部(例えば、主圧力切換弁22)は、パルス管冷凍機10のコールドヘッド14から分離して配置され、剛性または可撓性の配管によりコールドヘッド14に接続されてもよい。 A part of the room temperature portion 24 (for example, the main pressure switching valve 22) is arranged separately from the cold head 14 of the pulse tube refrigerator 10 and connected to the cold head 14 by a rigid or flexible pipe. May be good.
 このような構成により、パルス管冷凍機10は、パルス管16内に高圧PHと低圧PLの作動ガス圧力振動を生成する。圧力振動と同期して適切な位相遅れをもって、パルス管16内で作動ガスの変位振動すなわちガスピストンの往復動が生じる。ある圧力を保持しながらパルス管16内を上下に周期的に往復する作動ガスの動きは、しばしば「ガスピストン」と称され、パルス管冷凍機10の動作を説明するためによく用いられる。ガスピストンがパルス管高温端16aまたはその近傍にあるときパルス管低温端16bで作動ガスが膨張し、寒冷が発生する。このような冷凍サイクルを繰り返すことにより、パルス管冷凍機10は、冷却ステージ20を冷却することができる。したがって、パルス管冷凍機10は、被冷却物を冷却することができる。 With such a configuration, the pulse tube refrigerator 10 generates working gas pressure vibrations of high pressure PH and low pressure PL in the pulse tube 16. Displacement vibration of the working gas, that is, reciprocating movement of the gas piston occurs in the pulse tube 16 with an appropriate phase delay in synchronization with the pressure vibration. The movement of the working gas that periodically reciprocates up and down in the pulse tube 16 while holding a certain pressure is often referred to as a "gas piston" and is often used to describe the operation of the pulse tube refrigerator 10. When the gas piston is at or near the high temperature end 16a of the pulse tube, the working gas expands at the low temperature end 16b of the pulse tube, and cold is generated. By repeating such a refrigerating cycle, the pulse tube refrigerator 10 can cool the cooling stage 20. Therefore, the pulse tube refrigerator 10 can cool the object to be cooled.
 パルス管冷凍機10によって冷却される被冷却物は、冷却ステージ20上に直接設置され、または冷却ステージ20に剛性または可撓性の伝熱部材を介して熱的に結合されている。パルス管冷凍機10は、冷却ステージ20からの伝導冷却によって被冷却物を冷却することができる。なお被冷却物は、一例として、超伝導電磁石またはその他の超伝導装置、あるいは赤外線撮像素子またはその他のセンサなど固形物であるが、これに限られない。言うまでもなく、パルス管冷凍機10は冷却ステージ20に接触する気体または液体を冷却することもできる。例えば、パルス管冷凍機10は、ヘリウムガスの再凝縮に利用することができる。 The object to be cooled by the pulse tube refrigerator 10 is installed directly on the cooling stage 20 or is thermally coupled to the cooling stage 20 via a rigid or flexible heat transfer member. The pulse tube refrigerator 10 can cool the object to be cooled by conduction cooling from the cooling stage 20. The object to be cooled is, for example, a superconducting electromagnet or other superconducting device, or a solid object such as an infrared image sensor or another sensor, but is not limited thereto. Needless to say, the pulse tube refrigerator 10 can also cool the gas or liquid in contact with the cooling stage 20. For example, the pulse tube refrigerator 10 can be used for recondensing helium gas.
 図2は、図1に示されるパルス管冷凍機10のパルス管高温端16aを概略的に示す上面図である。 FIG. 2 is a top view schematically showing the pulse tube high temperature end 16a of the pulse tube refrigerator 10 shown in FIG.
 図1および図2に示されるように、パルス管高温端16aには、第1接続口38および第2接続口40が設けられている。第1接続口38と第2接続口40は、互いに異なる位置にある。第1接続口38には、ダブルインレット流路34が接続され、第2接続口40には、バッファライン36によりバッファ容積26が接続されている。このように、ダブルインレット流路34とバッファ容積26は別々にパルス管高温端16aに接続されている。 As shown in FIGS. 1 and 2, the pulse tube high temperature end 16a is provided with a first connection port 38 and a second connection port 40. The first connection port 38 and the second connection port 40 are located at different positions from each other. A double inlet flow path 34 is connected to the first connection port 38, and a buffer volume 26 is connected to the second connection port 40 by a buffer line 36. In this way, the double inlet flow path 34 and the buffer volume 26 are separately connected to the high temperature end 16a of the pulse tube.
 第1接続口38と第2接続口40は、パルス管高温端16a上で径方向に互いに異なる位置にある。第2接続口40が、パルス管高温端16aの中心42から径方向外側に第2距離t2の位置に設けられ、第1接続口38が、パルス管高温端16aの中心42から径方向外側に第1距離t1の位置に設けられている。ここで、第1距離t1および第2距離t2は、パルス管高温端16aの中心42から第1接続口38および第2接続口40の中心までの長さを示す。第1距離t1および第2距離t2はともに、第1接続口38と第2接続口40がパルス管高温端16aの上面に配置されるべく、パルス管16(具体的には、パルス管高温端16a)の半径より短い。 The first connection port 38 and the second connection port 40 are located at different positions in the radial direction on the high temperature end 16a of the pulse tube. The second connection port 40 is provided at a position at a second distance t2 radially outward from the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 is radially outward from the center 42 of the pulse tube high temperature end 16a. It is provided at the position of the first distance t1. Here, the first distance t1 and the second distance t2 indicate the length from the center 42 of the high temperature end 16a of the pulse tube to the center of the first connection port 38 and the second connection port 40. In both the first distance t1 and the second distance t2, the pulse tube 16 (specifically, the pulse tube high temperature end) is arranged so that the first connection port 38 and the second connection port 40 are arranged on the upper surface of the pulse tube high temperature end 16a. It is shorter than the radius of 16a).
 第2距離t2は第1距離t1より短い。よって、第2接続口40は、パルス管高温端16aの中心42の近くに位置し、第1接続口38は、第2接続口40に比べてパルス管高温端16aの外周の近くに位置する。例えば、第1距離t1は、パルス管16の半径の半分より長くてもよい。第2距離t2は、パルス管16の半径の半分より短くてもよい。 The second distance t2 is shorter than the first distance t1. Therefore, the second connection port 40 is located near the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 is located closer to the outer circumference of the pulse tube high temperature end 16a than the second connection port 40. .. For example, the first distance t1 may be longer than half the radius of the pulse tube 16. The second distance t2 may be shorter than half the radius of the pulse tube 16.
 第2接続口40は、パルス管高温端16aの中心42に設けられてもよい。その場合、第2距離t2はゼロとなる。 The second connection port 40 may be provided at the center 42 of the high temperature end 16a of the pulse tube. In that case, the second distance t2 becomes zero.
 図2に示されるように、第1接続口38と第2接続口40はともに、パルス管高温端16aの中心42を通る線(すなわち、パルス管高温端16aの直径)上にあり、第1接続口38が中心42に対し片側に位置し、第2接続口40が中心42に対し反対側に位置する。パルス管16の直径が比較的小さい場合には、このように2つの接続口をパルス管16の中心42の両側に配置すれば、各接続口の配置スペースを確保しやすい。ただし、第1接続口38と第2接続口40がともに中心42に対し片側に設けられることも可能である。あるいは、中心42まわりの周方向に関して、第1接続口38と第2接続口40は、図示の例とは異なる位置に設けられてもよい。 As shown in FIG. 2, both the first connection port 38 and the second connection port 40 are on a line passing through the center 42 of the pulse tube high temperature end 16a (that is, the diameter of the pulse tube high temperature end 16a), and the first The connection port 38 is located on one side of the center 42, and the second connection port 40 is located on the opposite side of the center 42. When the diameter of the pulse tube 16 is relatively small, if the two connection ports are arranged on both sides of the center 42 of the pulse tube 16 in this way, it is easy to secure the arrangement space of each connection port. However, it is also possible that both the first connection port 38 and the second connection port 40 are provided on one side with respect to the center 42. Alternatively, the first connection port 38 and the second connection port 40 may be provided at positions different from those shown in the illustrated example with respect to the circumferential direction around the center 42.
 第1接続口38および第2接続口40はともに、第1接続口38および第2接続口40それぞれを通じてパルス管16の軸方向Aに作動ガスが流れるようにパルス管高温端16aに設けられている。 Both the first connection port 38 and the second connection port 40 are provided at the high temperature end 16a of the pulse tube so that the working gas flows in the axial direction A of the pulse tube 16 through each of the first connection port 38 and the second connection port 40. There is.
 図示される例においては、第1接続口38と第2接続口40の穴径は等しい。しかし、第1接続口38と第2接続口40の穴径は異なってもよい。 In the illustrated example, the hole diameters of the first connection port 38 and the second connection port 40 are the same. However, the hole diameters of the first connection port 38 and the second connection port 40 may be different.
 パルス管高温端16aには第1接続口38と第2接続口40が1つずつ設けられている。しかし、必要とされる場合には、複数の第1接続口38、及び/または複数の第2接続口40が、パルス管高温端16aに設けられてもよい。この場合、ダブルインレット流路34は、ダブルインレットオリフィス28とパルス管高温端16aとの間で分岐して複数の第1接続口38に接続される。バッファライン36は、バッファオリフィス30とパルス管高温端16aとの間で分岐して複数の第2接続口40に接続される。こうした構成は、軸方向Aに垂直な平面におけるパルス管16内のガス流速分布を所望の分布とする(例えば、均一化する)のに役立ちうる。 The pulse tube high temperature end 16a is provided with one first connection port 38 and one second connection port 40. However, if required, a plurality of first connection ports 38 and / or a plurality of second connection ports 40 may be provided at the high temperature end 16a of the pulse tube. In this case, the double inlet flow path 34 branches between the double inlet orifice 28 and the high temperature end 16a of the pulse tube and is connected to the plurality of first connection ports 38. The buffer line 36 branches between the buffer orifice 30 and the high temperature end 16a of the pulse tube and is connected to a plurality of second connection ports 40. Such a configuration can help to make the gas flow velocity distribution in the pulse tube 16 in the plane perpendicular to the axial direction A a desired distribution (for example, to make it uniform).
 図3は、ある典型的なダブルインレット型のパルス管冷凍機310を概略的に示す図である。パルス管冷凍機310は、圧縮機312、パルス管316、蓄冷器318、冷却ステージ320、主圧力切換弁322、バッファ容積326、ダブルインレット流路334、バッファライン336を備える。主圧力切換弁322は、蓄冷器連通路332により蓄冷器318に接続されている。ダブルインレット流路334にはダブルインレットオリフィス328が設けられ、バッファライン336にはバッファオリフィス330が設けられている。 FIG. 3 is a diagram schematically showing a typical double inlet type pulse tube refrigerator 310. The pulse tube refrigerator 310 includes a compressor 312, a pulse tube 316, a refrigerator 318, a cooling stage 320, a main pressure switching valve 322, a buffer volume 326, a double inlet flow path 334, and a buffer line 336. The main pressure switching valve 322 is connected to the regenerator 318 by the regenerator communication passage 332. The double inlet flow path 334 is provided with a double inlet orifice 328, and the buffer line 336 is provided with a buffer orifice 330.
 ダブルインレット流路334は、蓄冷器連通路332の分岐部332aから分岐し、合流部332bでバッファライン336に合流し、パルス管高温端316aに接続されている。合流部332bは、バッファライン336においてバッファオリフィス330とパルス管高温端316aの間に位置する。 The double inlet flow path 334 branches from the branch portion 332a of the cooler communication passage 332, joins the buffer line 336 at the merging portion 332b, and is connected to the pulse tube high temperature end 316a. The merging portion 332b is located between the buffer orifice 330 and the high temperature end of the pulse tube 316a at the buffer line 336.
 通例、バッファ容積326からバッファライン336を通じてパルス管高温端316aに流れる作動ガス流れ(図3において矢印350で示す)の流量は、ダブルインレット流路334を流れるガス流量よりもかなり大きい。 Normally, the flow rate of the working gas flowing from the buffer volume 326 to the pulse tube high temperature end 316a through the buffer line 336 (indicated by the arrow 350 in FIG. 3) is considerably larger than the gas flow rate flowing through the double inlet flow path 334.
 バッファ容積326からの大流量の作動ガス流れが合流部332bを通過するとき、当該ガス流れは、合流部332bを通じてダブルインレット流路334からもガスをバッファライン336に引き込む効果を有する。図3において、ダブルインレット流路334からバッファライン336に引き込まれるガス流れを矢印352で示す。このようなガスの引き込み効果を以下では噴流効果とも称する。噴流効果により、ダブルインレット流路334から多量のガスがパルス管316へと引き込まれうる。 When a large flow rate of working gas flow from the buffer volume 326 passes through the confluence portion 332b, the gas flow also has the effect of drawing gas from the double inlet flow path 334 through the confluence portion 332b into the buffer line 336. In FIG. 3, the gas flow drawn from the double inlet flow path 334 into the buffer line 336 is indicated by an arrow 352. Such a gas drawing effect is also referred to as a jet effect below. Due to the jet effect, a large amount of gas can be drawn into the pulse tube 316 from the double inlet flow path 334.
 ダブルインレット型のパルス管冷凍機310においては、蓄冷器318とパルス管316それぞれの低温端が互いに連通されるとともに、それぞれの高温端どうしもダブルインレット流路334で接続されているので、蓄冷器318とパルス管316を含む作動ガスの循環経路が形成されている。 In the double inlet type pulse tube refrigerator 310, the low temperature ends of the cold storage 318 and the pulse tube 316 are communicated with each other, and the high temperature ends are connected to each other by the double inlet flow path 334. A circulation path for the working gas including the 318 and the pulse tube 316 is formed.
 噴流効果によって、図3において矢印354で示すように、循環経路を流れるDCフローが生成されうる。このDCフローは、パルス管高温端316aからパルス管低温端316bへとパルス管316を貫通して流れる作動ガス流れを含む。DCフローによって、パルス管高温端316aからパルス管低温端316bへと熱が伝達され、冷却ステージ320は加熱されうる。 The jet effect can generate a DC flow through the circulation path, as shown by arrow 354 in FIG. This DC flow includes a working gas flow that flows through the pulse tube 316 from the pulse tube high temperature end 316a to the pulse tube low temperature end 316b. Heat is transferred from the high temperature end 316a of the pulse tube to the low temperature end 316b of the pulse tube by the DC flow, and the cooling stage 320 can be heated.
 このようにして、パルス管冷凍機310においては、ダブルインレット流路334とバッファライン336が合流してパルス管高温端316aに接続されている。そのため、バッファ容積326とパルス管316との間で流れる作動ガス流れが噴流効果をもたらし、DCフローが生成され、それにより、パルス管冷凍機310の冷凍効率が低下されうる。 In this way, in the pulse tube refrigerator 310, the double inlet flow path 334 and the buffer line 336 merge and are connected to the pulse tube high temperature end 316a. Therefore, the working gas flow flowing between the buffer volume 326 and the pulse tube 316 brings about a jet effect, which creates a DC flow, which can reduce the refrigerating efficiency of the pulse tube refrigerator 310.
 これに対して、実施の形態によれば、パルス管高温端16aが異なる位置に設けられた第1接続口38および第2接続口40を有する。第1接続口38にダブルインレット流路34が接続され、第2接続口40にバッファライン36によりバッファ容積26が接続され、すなわち、ダブルインレット流路34とバッファライン36が別々にパルス管高温端16aに接続されている。ダブルインレット流路34とバッファライン36は合流してからパルス管高温端16aに接続されるのではない。 On the other hand, according to the embodiment, the pulse tube high temperature end 16a has a first connection port 38 and a second connection port 40 provided at different positions. The double inlet flow path 34 is connected to the first connection port 38, and the buffer volume 26 is connected to the second connection port 40 by the buffer line 36, that is, the double inlet flow path 34 and the buffer line 36 are separately connected to the high temperature end of the pulse tube. It is connected to 16a. The double inlet flow path 34 and the buffer line 36 are not connected to the high temperature end 16a of the pulse tube after merging.
 したがって、バッファ容積26からの作動ガス流れによる噴流効果は防止または緩和される。すなわち、バッファ容積26からバッファライン36を通じてパルス管16に流入するガスは、ダブルインレット流路34からパルス管16へのガスの引き込みをまったく生じさせないか、または少なくとも、そうしたガスの引き込みは顕著に低減される。よって、実施の形態に係るパルス管冷凍機10においてはDCフローが低減され、パルス管冷凍機10の冷凍効率が向上される。 Therefore, the jet effect due to the working gas flow from the buffer volume 26 is prevented or mitigated. That is, the gas flowing into the pulse tube 16 from the buffer volume 26 through the buffer line 36 does not cause any gas drawing from the double inlet flow path 34 into the pulse tube 16, or at least the drawing of such gas is significantly reduced. Will be done. Therefore, in the pulse tube refrigerator 10 according to the embodiment, the DC flow is reduced and the refrigerating efficiency of the pulse tube refrigerator 10 is improved.
 第2接続口40が、パルス管高温端16aの中心42または中心42から第2距離t2の位置に設けられ、第1接続口38が、パルス管高温端16aの中心42から第1距離t1の位置に設けられている。第2距離t2は第1距離t1より短い。 The second connection port 40 is provided at a position of a second distance t2 from the center 42 or the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 is a first distance t1 from the center 42 of the pulse tube high temperature end 16a. It is provided at the position. The second distance t2 is shorter than the first distance t1.
 このようにすれば、パルス管16は、バッファ容積26からの大流量の作動ガス流れをパルス管高温端16aの中心42またはその近傍から管内に受け入れることができる。これは、大流量の作動ガス流れをパルス管高温端16aの外周部から受け入れる場合に比べて、パルス管16内のガス流速分布を所望の分布とするのに役立つ。例えば、軸方向流れの流速分布をパルス管16の中心軸まわりに対称な分布とすることが容易になる。 In this way, the pulse tube 16 can receive a large flow rate of working gas flow from the buffer volume 26 into the tube from the center 42 of the high temperature end 16a of the pulse tube or its vicinity. This is useful for making the gas flow velocity distribution in the pulse tube 16 a desired distribution as compared with the case where a large flow rate of working gas flow is received from the outer peripheral portion of the high temperature end 16a of the pulse tube. For example, it becomes easy to make the flow velocity distribution of the axial flow symmetrical around the central axis of the pulse tube 16.
 また、第1接続口38および第2接続口40はともに、第1接続口38および第2接続口40それぞれを通じてパルス管16の軸方向Aに作動ガスが流れるようにパルス管高温端16aに設けられている。このようにすれば、パルス管高温端16aからパルス管16に流入する作動ガスの流れ方向を軸方向Aに一致させることが容易になる。パルス管16内における作動ガス流れの径方向及び/または周方向の成分が低減される。 Further, both the first connection port 38 and the second connection port 40 are provided at the high temperature end 16a of the pulse tube so that the working gas flows in the axial direction A of the pulse tube 16 through each of the first connection port 38 and the second connection port 40. Has been done. In this way, it becomes easy to match the flow direction of the working gas flowing into the pulse tube 16 from the high temperature end 16a of the pulse tube with the axial direction A. The radial and / or circumferential components of the working gas flow in the pulse tube 16 are reduced.
 ダブルインレット流路34とバッファライン36の流量の大小関係またはその他の条件によっては、第1接続口38と第2接続口40は逆の配置でもよい。すなわち、第1接続口38が、パルス管高温端16aの中心42または中心42から径方向外側に第2距離t2の位置に設けられ、第2接続口40が、パルス管高温端16aの中心42から径方向外側に第1距離t1の位置に設けられてもよい。 The first connection port 38 and the second connection port 40 may be arranged in reverse depending on the magnitude relationship between the flow rates of the double inlet flow path 34 and the buffer line 36 or other conditions. That is, the first connection port 38 is provided at a position at a second distance t2 radially outward from the center 42 or the center 42 of the pulse tube high temperature end 16a, and the second connection port 40 is the center 42 of the pulse tube high temperature end 16a. It may be provided at a position of a first distance t1 on the outer side in the radial direction from the above.
 したがって、第1接続口38および第2接続口40のうち一方が、パルス管高温端16aの中心42または中心42から径方向外側に第1距離t1の位置に設けられ、第1接続口38および第2接続口40のうち他方が、パルス管高温端16aの中心42から径方向外側に第2距離t2の位置に設けられてもよい。第2距離t2は第1距離t1より短い。 Therefore, one of the first connection port 38 and the second connection port 40 is provided at a position at a first distance t1 radially outward from the center 42 or the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 and The other of the second connection ports 40 may be provided at a position at a second distance t2 radially outward from the center 42 of the high temperature end 16a of the pulse tube. The second distance t2 is shorter than the first distance t1.
 第1接続口38および第2接続口40は、パルス管高温端16aの中心42から等距離に設けられてもよい。この場合においても、ダブルインレット流路34とバッファ容積26は、パルス管高温端16aに別々に接続されることになるから、DCフローが低減され、パルス管冷凍機10の冷凍効率が向上される。 The first connection port 38 and the second connection port 40 may be provided equidistant from the center 42 of the high temperature end 16a of the pulse tube. Also in this case, since the double inlet flow path 34 and the buffer volume 26 are separately connected to the pulse tube high temperature end 16a, the DC flow is reduced and the refrigerating efficiency of the pulse tube refrigerator 10 is improved. ..
 ここまでは、実施の形態に係るパルス管高温端16aでの流路接続構成を、単段式のダブルインレット型のパルス管冷凍機10を例として説明したが、実施の形態は、多段式(例えば二段式)のダブルインレット型のパルス管冷凍機にも同様に適用可能である。そのような実施の形態を次に述べる。 Up to this point, the flow path connection configuration at the pulse tube high temperature end 16a according to the embodiment has been described by taking a single-stage double inlet type pulse tube refrigerator 10 as an example, but the embodiment is a multi-stage type ( For example, it can be similarly applied to a double inlet type pulse tube refrigerator (two-stage type). Such embodiments will be described below.
 図4は、第1の実施の形態に係るパルス管冷凍機の他の例を概略的に示す図である。パルス管冷凍機110は、GM方式のダブルインレット型パルス管冷凍機であり、二段式に構成されている。 FIG. 4 is a diagram schematically showing another example of the pulse tube refrigerator according to the first embodiment. The pulse tube refrigerator 110 is a GM type double inlet type pulse tube refrigerator, and is configured in a two-stage system.
 パルス管冷凍機110は、圧縮機12と、コールドヘッド14とを備える。コールドヘッド14は、主圧力切換弁22、第1段パルス管116、第1段蓄冷器118、第1段冷却ステージ120、第1段バッファ容積126、第1段ダブルインレット流路134、第1段バッファライン136を備える。主圧力切換弁22は、蓄冷器連通路32により第1段蓄冷器118に接続されている。第1段ダブルインレット流路134には第1段ダブルインレットオリフィス128が設けられ、第1段バッファライン136には第1段バッファオリフィス130が設けられている。 The pulse tube refrigerator 110 includes a compressor 12 and a cold head 14. The cold head 14 includes a main pressure switching valve 22, a first-stage pulse tube 116, a first-stage regenerator 118, a first-stage cooling stage 120, a first-stage buffer volume 126, a first-stage double inlet flow path 134, and a first stage. It includes a stage buffer line 136. The main pressure switching valve 22 is connected to the first stage regenerator 118 by the regenerator communication passage 32. The first-stage double inlet flow path 134 is provided with the first-stage double inlet orifice 128, and the first-stage buffer line 136 is provided with the first-stage buffer orifice 130.
 第1段パルス管高温端116aには、第1段の第1接続口138および第2接続口140が設けられている。第1接続口138と第2接続口140は、互いに異なる位置にある。第1接続口138には、第1段ダブルインレット流路134が接続され、第2接続口140には、第1段バッファライン136により第1段バッファ容積126が接続されている。第1段ダブルインレット流路134と第1段バッファ容積126は別々に第1段パルス管高温端116aに接続されている。 The first stage pulse tube high temperature end 116a is provided with the first stage first connection port 138 and the second connection port 140. The first connection port 138 and the second connection port 140 are located at different positions from each other. The first-stage double inlet flow path 134 is connected to the first connection port 138, and the first-stage buffer volume 126 is connected to the second connection port 140 by the first-stage buffer line 136. The first-stage double inlet flow path 134 and the first-stage buffer volume 126 are separately connected to the first-stage pulse tube high-temperature end 116a.
 例えば、第2接続口140が、第1段パルス管高温端116aの中心142から径方向外側に第2距離t2の位置に設けられ、第1接続口138が、第1段パルス管高温端116aの中心142から径方向外側に第1距離t1の位置に設けられている。 For example, the second connection port 140 is provided at a position at a second distance t2 radially outward from the center 142 of the first stage pulse tube high temperature end 116a, and the first connection port 138 is the first stage pulse tube high temperature end 116a. It is provided at a position of a first distance t1 radially outward from the center 142 of the above.
 パルス管冷凍機110の第1段の構成は、図1および図2を参照して説明したパルス管冷凍機10と共通するから、各構成要素の詳細な説明は省略する。 Since the configuration of the first stage of the pulse tube refrigerator 110 is the same as that of the pulse tube refrigerator 10 described with reference to FIGS. 1 and 2, detailed description of each component will be omitted.
 上述した各構成要素に加えて、パルス管冷凍機110は、第2段パルス管216、第2段蓄冷器218、第2段冷却ステージ220、第2段バッファ容積226、第2段ダブルインレット流路234、第2段バッファライン236を備える。第2段蓄冷器218は、第1段蓄冷器118に直列に接続され、第2段蓄冷器218の低温端は、第2段パルス管216の低温端と連通している。 In addition to the components described above, the pulse tube refrigerator 110 includes a second stage pulse tube 216, a second stage refrigerator 218, a second stage cooling stage 220, a second stage buffer volume 226, and a second stage double inlet flow. A road 234 and a second stage buffer line 236 are provided. The second-stage regenerator 218 is connected in series with the first-stage regenerator 118, and the low-temperature end of the second-stage regenerator 218 communicates with the low-temperature end of the second-stage pulse tube 216.
 第2段ダブルインレット流路234は、蓄冷器(118、218)をバイパスするように主圧力切換弁22を第2段パルス管216に接続する。第2段ダブルインレット流路234には、第2段ダブルインレットオリフィス228が設けられ、第2段ダブルインレット流路234は、蓄冷器連通路32上の分岐部32aから第2段ダブルインレットオリフィス228を介して第2段パルス管高温端216aに接続されている。 The second-stage double inlet flow path 234 connects the main pressure switching valve 22 to the second-stage pulse pipe 216 so as to bypass the regenerator (118, 218). The second-stage double inlet orifice 228 is provided in the second-stage double inlet flow path 234, and the second-stage double inlet orifice 234 is from the branch portion 32a on the cooler communication passage 32 to the second-stage double inlet orifice 228. It is connected to the high temperature end 216a of the second stage pulse tube via.
 第2段バッファライン236には、第2段バッファオリフィス230が設けられ、第2段バッファライン236は、第2段バッファオリフィス230を介して第2段バッファ容積226を第2段パルス管高温端216aに接続する。 The second-stage buffer line 236 is provided with a second-stage buffer orifice 230, and the second-stage buffer line 236 has a second-stage buffer volume 226 and a second-stage pulse tube high-temperature end via the second-stage buffer orifice 230. Connect to 216a.
 第1段の第1接続口138および第2接続口140と同様に、第2段パルス管高温端216aにも、第2段の第1接続口238および第2接続口240が設けられている。第1接続口238と第2接続口240は、互いに異なる位置にある。第1接続口238には、第2段ダブルインレット流路234が接続され、第2接続口240には、第2段バッファライン236により第2段バッファ容積226が接続されている。このように、第2段ダブルインレット流路234と第2段バッファ容積226は別々に第2段パルス管高温端216aに接続されている。 Similar to the first stage first connection port 138 and the second connection port 140, the second stage pulse tube high temperature end 216a is also provided with the second stage first connection port 238 and the second connection port 240. .. The first connection port 238 and the second connection port 240 are located at different positions from each other. A second-stage double inlet flow path 234 is connected to the first connection port 238, and a second-stage buffer volume 226 is connected to the second connection port 240 by a second-stage buffer line 236. In this way, the second-stage double inlet flow path 234 and the second-stage buffer volume 226 are separately connected to the second-stage pulse tube high-temperature end 216a.
 第2段パルス管高温端216aにおける第1接続口238および第2接続口240の配置は、第1段と同様に種々ありうる。例えば、第2接続口240が、第2段パルス管高温端216aの中心242から径方向外側に第2距離t22の位置に設けられ、第1接続口238が、第2段パルス管高温端216aの中心242から径方向外側に第1距離t21の位置に設けられていてもよい。第2距離t22は第1距離t21より短くてもよい。 The arrangement of the first connection port 238 and the second connection port 240 at the high temperature end 216a of the second stage pulse tube may be various as in the first stage. For example, the second connection port 240 is provided at a position at a second distance t22 radially outward from the center 242 of the second stage pulse tube high temperature end 216a, and the first connection port 238 is the second stage pulse tube high temperature end 216a. It may be provided at a position of a first distance t21 radially outward from the center 242 of the above. The second distance t22 may be shorter than the first distance t21.
 このようにして、第2段ダブルインレット流路234と第2段バッファ容積226が第2段パルス管高温端216aに別々に接続されているので、第2段の循環経路において生じうるDCフローが低減され、パルス管冷凍機110の冷凍効率が向上される。 In this way, since the second stage double inlet flow path 234 and the second stage buffer volume 226 are separately connected to the second stage pulse tube high temperature end 216a, the DC flow that can occur in the second stage circulation path is generated. It is reduced and the refrigerating efficiency of the pulse tube refrigerator 110 is improved.
 図5は、第2の実施の形態に係るパルス管冷凍機210を概略的に示す図である。パルス管冷凍機210は、GM方式の4バルブ型パルス管冷凍機である。よって、パルス管冷凍機210は、ダブルインレット流路に代えて、副圧力切換弁44およびパルス管連通路46を備える点で、図1および図2を参照して説明したパルス管冷凍機10と概ね共通の構成をもつ。以下では、両者の異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。 FIG. 5 is a diagram schematically showing the pulse tube refrigerator 210 according to the second embodiment. The pulse tube refrigerator 210 is a GM type 4-valve pulse tube refrigerator. Therefore, the pulse tube refrigerator 210 and the pulse tube refrigerator 10 described with reference to FIGS. 1 and 2 are provided with an auxiliary pressure switching valve 44 and a pulse tube connecting passage 46 instead of the double inlet flow path. It has a generally common structure. In the following, the different configurations of the two will be mainly described, and the common configurations will be briefly described or omitted.
 パルス管冷凍機210は、圧縮機12と、コールドヘッド14とを備える。コールドヘッド14は、パルス管16、蓄冷器18、冷却ステージ20、主圧力切換弁22、バッファ容積26、バッファライン36を備える。主圧力切換弁22は、蓄冷器連通路32により蓄冷器18に接続されている。バッファライン36にはバッファオリフィス30が設けられ、バッファライン36は、バッファオリフィス30を介してバッファ容積26をパルス管高温端16aに接続する。 The pulse tube refrigerator 210 includes a compressor 12 and a cold head 14. The cold head 14 includes a pulse tube 16, a regenerator 18, a cooling stage 20, a main pressure switching valve 22, a buffer volume 26, and a buffer line 36. The main pressure switching valve 22 is connected to the regenerator 18 by the regenerator communication passage 32. A buffer orifice 30 is provided in the buffer line 36, and the buffer line 36 connects the buffer volume 26 to the high temperature end 16a of the pulse tube via the buffer orifice 30.
 パルス管冷凍機210は、副圧力切換弁44およびパルス管連通路46をさらに備える。 The pulse tube refrigerator 210 further includes an auxiliary pressure switching valve 44 and a pulse tube communication passage 46.
 副圧力切換弁44は、パルス管高温端16aを圧縮機吐出口12aおよび圧縮機吸入口12bに交互に接続するように構成されている。副圧力切換弁44は、副吸気開閉弁V3と副排気開閉弁V4とを有する。高圧ライン13aは、圧縮機吐出口12aを吸気開閉バルブ(V1、V3)に接続し、低圧ライン13bは、圧縮機吸入口12bを排気開閉バルブ(V2、V4)に接続する。副吸気開閉弁V3が圧縮機吐出口12aをパルス管高温端16aに接続し、副排気開閉弁V4が圧縮機吸入口12bをパルス管高温端16aに接続する。 The auxiliary pressure switching valve 44 is configured to alternately connect the high temperature end 16a of the pulse tube to the compressor discharge port 12a and the compressor suction port 12b. The auxiliary pressure switching valve 44 has an auxiliary intake on-off valve V3 and an auxiliary exhaust on-off valve V4. The high-pressure line 13a connects the compressor discharge port 12a to the intake opening / closing valves (V1, V3), and the low-pressure line 13b connects the compressor suction port 12b to the exhaust opening / closing valves (V2, V4). The sub-intake on-off valve V3 connects the compressor discharge port 12a to the high-temperature end 16a of the pulse pipe, and the sub-exhaust on-off valve V4 connects the compressor suction port 12b to the high-temperature end 16a of the pulse pipe.
 副圧力切換弁44は、副吸気開閉弁V3と副排気開閉弁V4のうち一方が開いているとき他方は閉じているように構成されている。副吸気開閉弁V3が開いているとき、圧縮機吐出口12aから高圧ライン13aおよび副吸気開閉弁V3を通じてパルス管16に作動ガスが供給される。一方、副排気開閉弁V4が開いているとき、パルス管16から副排気開閉弁V4および低圧ライン13bを通じて圧縮機吸入口12bに作動ガスが回収される。 The sub-pressure switching valve 44 is configured so that when one of the sub-intake on-off valve V3 and the sub-exhaust on-off valve V4 is open, the other is closed. When the sub intake on-off valve V3 is open, working gas is supplied from the compressor discharge port 12a to the pulse pipe 16 through the high-pressure line 13a and the sub-intake on-off valve V3. On the other hand, when the sub-exhaust on-off valve V4 is open, the working gas is recovered from the pulse pipe 16 to the compressor suction port 12b through the sub-exhaust on-off valve V4 and the low-pressure line 13b.
 主圧力切換弁22および副圧力切換弁44の具体的構成は種々ありうる。例えば、一群のバルブ(V1~V4)は、例えば電磁開閉弁などの複数の個別に制御可能なバルブの形式をとってもよい。バルブ(V1~V4)は、ロータリーバルブとして構成されてもよい。これらのバルブ(V1~V4)のバルブタイミングとしては、既存の4バルブ型パルス管冷凍機に適用しうる種々のバルブタイミングを採用することができる。 There may be various specific configurations of the main pressure switching valve 22 and the sub pressure switching valve 44. For example, the group of valves (V1 to V4) may take the form of a plurality of individually controllable valves, such as electromagnetic on-off valves. The valves (V1 to V4) may be configured as rotary valves. As the valve timing of these valves (V1 to V4), various valve timings applicable to the existing 4-valve type pulse tube refrigerator can be adopted.
 パルス管連通路46は、蓄冷器18をバイパスするように、圧縮機吐出口12aおよび圧縮機吸入口12bをパルス管16に接続する。パルス管連通路46には、流量制御部の一例として流量調整要素48が設けられている。パルス管連通路46は、パルス管高温端16aから流量調整要素48へと延び、二分岐して、副吸気開閉弁V3および副排気開閉弁V4に接続されている。 The pulse pipe connecting passage 46 connects the compressor discharge port 12a and the compressor suction port 12b to the pulse pipe 16 so as to bypass the cooler 18. The pulse pipe connecting passage 46 is provided with a flow rate adjusting element 48 as an example of the flow rate control unit. The pulse pipe connecting passage 46 extends from the pulse pipe high temperature end 16a to the flow rate adjusting element 48, branches into two, and is connected to the sub intake on-off valve V3 and the sub-exhaust on-off valve V4.
 4バルブ型パルス管冷凍機では、圧縮機12、パルス管16、および蓄冷器18を含む形で作動ガスの循環経路が形成される。 In the 4-valve type pulse tube refrigerator, a circulation path for working gas is formed including a compressor 12, a pulse tube 16, and a regenerator 18.
 パルス管高温端16aには、第1接続口38および第2接続口40が設けられている。第1接続口38と第2接続口40は、互いに異なる位置にある。第1接続口38には、パルス管連通路46により副圧力切換弁44が接続され、第2接続口40には、バッファライン36によりバッファ容積26が接続されている。このように、副圧力切換弁44とバッファ容積26は別々にパルス管高温端16aに接続されている。 A first connection port 38 and a second connection port 40 are provided at the high temperature end 16a of the pulse tube. The first connection port 38 and the second connection port 40 are located at different positions from each other. A sub-pressure switching valve 44 is connected to the first connection port 38 by a pulse pipe connecting passage 46, and a buffer volume 26 is connected to the second connection port 40 by a buffer line 36. In this way, the auxiliary pressure switching valve 44 and the buffer volume 26 are separately connected to the high temperature end 16a of the pulse tube.
 パルス管高温端16aにおける第1接続口38および第2接続口40の配置は、第1の実施の形態に関連して述べたものと同様に、種々ありうる。例えば、第2接続口40が、パルス管高温端16aの中心42から径方向外側に第2距離t2の位置に設けられ、第1接続口38が、パルス管高温端16aの中心42から径方向外側に第1距離t1の位置に設けられていてもよい。第2距離t2は第1距離t1より短くてもよい。 The arrangement of the first connection port 38 and the second connection port 40 at the high temperature end 16a of the pulse tube may be various as described in relation to the first embodiment. For example, the second connection port 40 is provided at a position at a second distance t2 radially outward from the center 42 of the pulse tube high temperature end 16a, and the first connection port 38 is radially outward from the center 42 of the pulse tube high temperature end 16a. It may be provided on the outside at a position of a first distance t1. The second distance t2 may be shorter than the first distance t1.
 仮に、パルス管連通路46とバッファライン36が合流して1つの接続口でパルス管高温端16aに接続されていたとすると、図3に示される比較例と同様に、バッファライン36を流れる作動ガス流れが噴流効果をもたらし、それにより、パルス管連通路46から多量のガスがパルス管16へと引き込まれうる。循環経路にDCフローが生成されうる。
DCフローによって、パルス管高温端16aからパルス管低温端16bへと熱が伝達され、パルス管冷凍機の冷凍効率が低下されうる。
Assuming that the pulse pipe connecting passage 46 and the buffer line 36 are merged and connected to the pulse pipe high temperature end 16a at one connection port, the working gas flowing through the buffer line 36 is similar to the comparative example shown in FIG. The flow provides a jet effect, which allows a large amount of gas to be drawn into the pulse tube 16 from the pulse tube communication passage 46. A DC flow can be generated in the circulation path.
The DC flow transfers heat from the high temperature end 16a of the pulse tube to the low temperature end 16b of the pulse tube, which can reduce the refrigerating efficiency of the pulse tube refrigerator.
 しかしながら、実施の形態によれば、パルス管高温端16aが異なる位置に設けられた第1接続口38および第2接続口40を有する。第1接続口38に副圧力切換弁44およびパルス管連通路46が接続され、第2接続口40にバッファライン36によりバッファ容積26が接続され、すなわち、パルス管連通路46とバッファライン36が別々にパルス管高温端16aに接続されている。したがって、循環経路において噴流効果により生じうるDCフローが低減され、パルス管冷凍機210の冷凍効率が向上される。 However, according to the embodiment, the pulse tube high temperature end 16a has a first connection port 38 and a second connection port 40 provided at different positions. The auxiliary pressure switching valve 44 and the pulse pipe connecting passage 46 are connected to the first connection port 38, and the buffer volume 26 is connected to the second connection port 40 by the buffer line 36, that is, the pulse pipe connecting passage 46 and the buffer line 36 are connected. It is separately connected to the high temperature end 16a of the pulse tube. Therefore, the DC flow that can occur due to the jet effect in the circulation path is reduced, and the refrigerating efficiency of the pulse tube refrigerator 210 is improved.
 第2の実施の形態に係るパルス管高温端16aでの流路接続構成は、単段式の4バルブ型のパルス管冷凍機210を例として説明されたが、実施の形態は、多段式の4バルブ型のパルス管冷凍機にも同様に適用可能である。よって、パルス管冷凍機210は、例えば二段式の4バルブ型パルス管冷凍機であってもよい。 The flow path connection configuration at the pulse tube high temperature end 16a according to the second embodiment has been described by taking a single-stage 4-valve pulse tube refrigerator 210 as an example, but the embodiment is a multi-stage type. It can also be applied to a 4-valve type pulse tube refrigerator. Therefore, the pulse tube refrigerator 210 may be, for example, a two-stage four-valve pulse tube refrigerator.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。 The present invention has been described above based on examples. It will be understood by those skilled in the art that the present invention is not limited to the above-described embodiment, various design changes are possible, various modifications are possible, and such modifications are also within the scope of the present invention. By the way. The various features described in relation to one embodiment are also applicable to other embodiments. The new embodiments resulting from the combination have the effects of each of the combined embodiments.
 例えば、パルス管高温端16aにおける第1接続口38および第2接続口40の位置関係に関して、第1の実施の形態において言及した様々な特徴は、第2の実施の形態に係るパルス管冷凍機210にも等しく適用可能である。 For example, regarding the positional relationship between the first connection port 38 and the second connection port 40 at the high temperature end 16a of the pulse tube, the various features mentioned in the first embodiment are the pulse tube refrigerator according to the second embodiment. It is equally applicable to 210.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 The present invention has been described using specific terms and phrases based on the embodiments, but the embodiments show only one aspect of the principles and applications of the present invention, and the embodiments are claimed. Many modifications and arrangement changes are permitted within the range not departing from the idea of the present invention defined in the scope.
 本発明は、パルス管冷凍機の分野における利用が可能である。 The present invention can be used in the field of pulse tube refrigerators.
 10 パルス管冷凍機、 12 圧縮機、 12a 圧縮機吐出口、 12b 圧縮機吸入口、 14 コールドヘッド、 16 パルス管、 16a パルス管高温端、 16b パルス管低温端、 18 蓄冷器、 18a 蓄冷器高温端、 18b 蓄冷器低温端、 22 主圧力切換弁、 26 バッファ容積、 32 蓄冷器連通路、 32a 分岐部、 34 ダブルインレット流路、 38 第1接続口、 40 第2接続口、 42 中心、 44 副圧力切換弁、 46 パルス管連通路、 A 軸方向、 t1 第1距離、 t2 第2距離。 10 pulse tube refrigerator, 12 compressor, 12a compressor discharge port, 12b compressor suction port, 14 cold head, 16 pulse tube, 16a pulse tube high temperature end, 16b pulse tube low temperature end, 18 cold storage, 18a cold storage high temperature End, 18b cold storage cold end, 22 main pressure switching valve, 26 buffer volume, 32 cold storage communication passage, 32a branch, 34 double inlet flow path, 38 1st connection port, 40 2nd connection port, 42 center, 44 Sub-pressure switching valve, 46 pulse tube communication passage, A axial direction, t1 first distance, t2 second distance.

Claims (8)

  1.  圧縮機吐出口と圧縮機吸入口とを有する圧縮機と、
     異なる位置に設けられた第1接続口および第2接続口を有するパルス管高温端と、パルス管低温端と、を有するパルス管と、
     蓄冷器高温端と、前記パルス管低温端と連通している蓄冷器低温端と、を有する蓄冷器と、
     前記蓄冷器高温端を前記圧縮機吐出口および前記圧縮機吸入口に交互に接続する主圧力切換弁と、
     前記蓄冷器をバイパスするように、前記主圧力切換弁と前記蓄冷器高温端との間の分岐部から流量制御部を介して前記パルス管高温端の前記第1接続口に接続されたダブルインレット流路と、
     前記パルス管高温端の前記第2接続口に接続されたバッファ容積と、を備えることを特徴とするパルス管冷凍機。
    A compressor having a compressor discharge port and a compressor suction port,
    A pulse tube having a high temperature end of a pulse tube having a first connection port and a second connection port provided at different positions, and a low temperature end of the pulse tube.
    A cold storage device having a cold storage device high temperature end and a cold storage device low temperature end communicating with the pulse tube low temperature end.
    A main pressure switching valve that alternately connects the high temperature end of the cold storage to the compressor discharge port and the compressor suction port,
    A double inlet connected from a branch portion between the main pressure switching valve and the high temperature end of the cold storage to the first connection port of the high temperature end of the pulse pipe via a flow control unit so as to bypass the cold storage. Channel and
    A pulse tube refrigerator comprising a buffer volume connected to the second connection port at the high temperature end of the pulse tube.
  2.  前記第1接続口および前記第2接続口のうち一方が、前記パルス管高温端の中心または中心から径方向外側に第1距離の位置に設けられ、前記第1接続口および前記第2接続口のうち他方が、前記パルス管高温端の中心から径方向外側に第2距離の位置に設けられ、前記第2距離は前記第1距離より短いことを特徴とする請求項1に記載のパルス管冷凍機。 One of the first connection port and the second connection port is provided at a position at a first distance radially outward from the center or the center of the high temperature end of the pulse tube, and the first connection port and the second connection port are provided. The pulse tube according to claim 1, wherein the other is provided at a position of a second distance radially outward from the center of the high temperature end of the pulse tube, and the second distance is shorter than the first distance. refrigerator.
  3.  前記第2接続口が、前記パルス管高温端の中心または中心から前記第2距離の位置に設けられ、前記第1接続口が、前記パルス管高温端の中心から前記第1距離の位置に設けられていることを特徴とする請求項2に記載のパルス管冷凍機。 The second connection port is provided at the center or a position of the second distance from the center of the high temperature end of the pulse tube, and the first connection port is provided at a position of the first distance from the center of the high temperature end of the pulse tube. The pulse tube refrigerator according to claim 2, wherein the pulse tube refrigerator is characterized by the above.
  4.  前記第1接続口および前記第2接続口は、前記パルス管高温端の中心から等距離に設けられていることを特徴とする請求項1に記載のパルス管冷凍機。 The pulse tube refrigerator according to claim 1, wherein the first connection port and the second connection port are provided at equal distances from the center of the high temperature end of the pulse tube.
  5.  前記第1接続口および前記第2接続口はともに、前記第1接続口および前記第2接続口それぞれを通じて前記パルス管の軸方向にガスが流れるように前記パルス管高温端に設けられていることを特徴とする請求項1から4のいずれかに記載のパルス管冷凍機。 Both the first connection port and the second connection port are provided at the high temperature end of the pulse tube so that gas flows in the axial direction of the pulse tube through each of the first connection port and the second connection port. The pulse tube refrigerator according to any one of claims 1 to 4.
  6.  圧縮機吐出口と圧縮機吸入口とを有する圧縮機と、
     異なる位置に設けられた第1接続口および第2接続口を有するパルス管高温端と、パルス管低温端と、を有するパルス管と、
     蓄冷器高温端と、前記パルス管低温端と連通している蓄冷器低温端と、を有する蓄冷器と、
     前記蓄冷器高温端を前記圧縮機吐出口および前記圧縮機吸入口に交互に接続する主圧力切換弁と、
     前記パルス管高温端の前記第1接続口を前記圧縮機吐出口および前記圧縮機吸入口に交互に接続する副圧力切換弁と、
     前記パルス管高温端の前記第2接続口に接続されたバッファ容積と、を備えることを特徴とするパルス管冷凍機。
    A compressor having a compressor discharge port and a compressor suction port,
    A pulse tube having a high temperature end of a pulse tube having a first connection port and a second connection port provided at different positions, and a low temperature end of the pulse tube.
    A cold storage device having a cold storage device high temperature end and a cold storage device low temperature end communicating with the pulse tube low temperature end.
    A main pressure switching valve that alternately connects the high temperature end of the cold storage to the compressor discharge port and the compressor suction port,
    An auxiliary pressure switching valve that alternately connects the first connection port at the high temperature end of the pulse tube to the compressor discharge port and the compressor suction port.
    A pulse tube refrigerator comprising a buffer volume connected to the second connection port at the high temperature end of the pulse tube.
  7.  異なる位置に設けられた第1接続口および第2接続口を有するパルス管高温端と、パルス管低温端と、を有するパルス管と、
     蓄冷器高温端と、前記パルス管低温端と連通している蓄冷器低温端と、を有する蓄冷器と、
     前記蓄冷器高温端を主圧力切換弁に接続する蓄冷器連通路と、
     前記蓄冷器をバイパスするように、前記蓄冷器連通路上の分岐部から流量制御部を介して前記パルス管高温端の前記第1接続口に接続されたダブルインレット流路と、
     前記パルス管高温端の前記第2接続口に接続されたバッファ容積と、を備えることを特徴とするパルス管冷凍機のコールドヘッド。
    A pulse tube having a high temperature end of a pulse tube having a first connection port and a second connection port provided at different positions, and a low temperature end of the pulse tube.
    A cold storage device having a cold storage device high temperature end and a cold storage device low temperature end communicating with the pulse tube low temperature end.
    A cold storage passage that connects the high temperature end of the cold storage to the main pressure switching valve, and
    A double inlet flow path connected to the first connection port at the high temperature end of the pulse pipe from a branch portion on the cold storage communication passage so as to bypass the cold storage device via a flow rate control unit.
    A cold head of a pulse tube refrigerator comprising a buffer volume connected to the second connection port at the high temperature end of the pulse tube.
  8.  前記ダブルインレット流路に代えて、前記パルス管高温端の前記第1接続口を副圧力切換弁に接続するパルス管連通路を備えることを特徴とする請求項7に記載のパルス管冷凍機のコールドヘッド。 The pulse tube refrigerator according to claim 7, wherein the pulse tube refrigerator is provided with a pulse tube communication passage for connecting the first connection port at the high temperature end of the pulse tube to the auxiliary pressure switching valve instead of the double inlet flow path. Cold head.
PCT/JP2020/019768 2019-05-20 2020-05-19 Pulse pipe refrigerator, and cold head for pulse pipe refrigerator WO2020235554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-094247 2019-05-20
JP2019094247A JP2020190337A (en) 2019-05-20 2019-05-20 Pulse tube refrigerator and cold head of pulse tube refrigerator

Publications (1)

Publication Number Publication Date
WO2020235554A1 true WO2020235554A1 (en) 2020-11-26

Family

ID=73454962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019768 WO2020235554A1 (en) 2019-05-20 2020-05-19 Pulse pipe refrigerator, and cold head for pulse pipe refrigerator

Country Status (2)

Country Link
JP (1) JP2020190337A (en)
WO (1) WO2020235554A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101916A (en) * 1992-09-18 1994-04-12 Toshiba Corp Pulse tube refrigerator
JPH09196486A (en) * 1996-01-17 1997-07-31 Iwatani Internatl Corp Pulse tube refrigerator
JPH10267445A (en) * 1997-03-28 1998-10-09 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Pulse pipe freezer
JPH1114173A (en) * 1997-06-25 1999-01-22 Daikin Ind Ltd Pulse pipe refrigerator
JPH1114174A (en) * 1997-06-25 1999-01-22 Daikin Ind Ltd Pulsation pipe type freezer
JP2000249415A (en) * 1999-03-02 2000-09-14 Iwatani Internatl Corp Double inlet type pulse tube refrigerating machine
JP2001304708A (en) * 2000-04-26 2001-10-31 Toshiba Corp Pulse pipe refrigerating machine
JP2002061976A (en) * 2000-08-15 2002-02-28 National Institute Of Advanced Industrial & Technology Method for controlling pulse tube refrigerator
US6442947B1 (en) * 2001-07-10 2002-09-03 Matthew P. Mitchell Double inlet arrangement for pulse tube refrigerator with vortex heat exchanger
JP2003532045A (en) * 2000-04-24 2003-10-28 アイジーシー−エーピーディー クライオジェニクス、 インコーポレイテッド Hybrid two-stage pulse tube refrigerator
JP2006284060A (en) * 2005-03-31 2006-10-19 Sumitomo Heavy Ind Ltd Pulse pipe refrigerating machine
CN101153755A (en) * 2006-09-29 2008-04-02 住友重机械工业株式会社 Refrigerator of pulse tube

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101916A (en) * 1992-09-18 1994-04-12 Toshiba Corp Pulse tube refrigerator
JPH09196486A (en) * 1996-01-17 1997-07-31 Iwatani Internatl Corp Pulse tube refrigerator
JPH10267445A (en) * 1997-03-28 1998-10-09 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk Pulse pipe freezer
JPH1114173A (en) * 1997-06-25 1999-01-22 Daikin Ind Ltd Pulse pipe refrigerator
JPH1114174A (en) * 1997-06-25 1999-01-22 Daikin Ind Ltd Pulsation pipe type freezer
JP2000249415A (en) * 1999-03-02 2000-09-14 Iwatani Internatl Corp Double inlet type pulse tube refrigerating machine
JP2003532045A (en) * 2000-04-24 2003-10-28 アイジーシー−エーピーディー クライオジェニクス、 インコーポレイテッド Hybrid two-stage pulse tube refrigerator
JP2001304708A (en) * 2000-04-26 2001-10-31 Toshiba Corp Pulse pipe refrigerating machine
JP2002061976A (en) * 2000-08-15 2002-02-28 National Institute Of Advanced Industrial & Technology Method for controlling pulse tube refrigerator
US6442947B1 (en) * 2001-07-10 2002-09-03 Matthew P. Mitchell Double inlet arrangement for pulse tube refrigerator with vortex heat exchanger
JP2006284060A (en) * 2005-03-31 2006-10-19 Sumitomo Heavy Ind Ltd Pulse pipe refrigerating machine
CN101153755A (en) * 2006-09-29 2008-04-02 住友重机械工业株式会社 Refrigerator of pulse tube

Also Published As

Publication number Publication date
JP2020190337A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
CN107328130B (en) Multi-stage pulse tube refrigerator system adopting active phase modulation mechanism and adjusting method thereof
JPH0933124A (en) Multistage type pulse pipe refrigerator
US11022353B2 (en) Pulse tube cryocooler and rotary valve unit for pulse tube cryocooler
US5642623A (en) Gas cycle refrigerator
WO2020241377A1 (en) Multi-stage pulse tube refrigerator and cold head of multi-stage pulse tube refrigerator
KR102059088B1 (en) Hybrid brayton-gifford-mcmahon expander
WO2020235554A1 (en) Pulse pipe refrigerator, and cold head for pulse pipe refrigerator
US10677498B2 (en) Brayton cycle engine with high displacement rate and low vibration
JP3936117B2 (en) Pulse tube refrigerator and superconducting magnet system
US7047749B2 (en) Regenerative refrigerating apparatus
US11215385B2 (en) Hybrid Gifford-McMahon-Brayton expander
US10976080B2 (en) Pulse tube cryocooler and method of manufacturing pulse tube cryocooler
CN111936802B (en) Heat station for cooling circulating refrigerant
JP6909167B2 (en) Active buffer pulse tube refrigerator
JPH11304271A (en) Cold storage type refrigerating machine and superconducting magnet using it
CN112236628B (en) Pulse tube refrigerator
JPH07260269A (en) Pulse tube refrigerator
JP2001099506A (en) Pulse tube refrigerating machine
CN105509361A (en) Multistage heat-regeneration refrigerator with acoustic power transmission components capable of stopping flow
US11118818B2 (en) Pulse tube cryocooler
JP2014163614A (en) Cryogenic refrigeration machine
JP2002286312A (en) Pulse tube refrigerating machine
JP2019190678A (en) Active buffer pulse tube refrigerator
TWI803953B (en) Cryogenic expander
WO2021192611A1 (en) Pulse tube refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810594

Country of ref document: EP

Kind code of ref document: A1