WO2021192611A1 - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator Download PDF

Info

Publication number
WO2021192611A1
WO2021192611A1 PCT/JP2021/003503 JP2021003503W WO2021192611A1 WO 2021192611 A1 WO2021192611 A1 WO 2021192611A1 JP 2021003503 W JP2021003503 W JP 2021003503W WO 2021192611 A1 WO2021192611 A1 WO 2021192611A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse tube
flow path
flow
stage
path resistance
Prior art date
Application number
PCT/JP2021/003503
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 平山
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2021192611A1 publication Critical patent/WO2021192611A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the present invention relates to a pulse tube refrigerator.
  • a type of pulse tube refrigerator in which a loop path for refrigerant gas including a pulse tube and a regenerator is formed.
  • a gas flow with a DC component also called a "DC flow”
  • the DC flow affects the refrigerating performance of the pulse tube refrigerator. Therefore, in order to adjust the DC flow, a needle valve incorporating an orifice is arranged in the loop path. This orifice is designed so that the geometric shape of the flow path differs depending on the flow direction passing through the needle valve (see, for example, Patent Document 1).
  • One of the exemplary objects of an aspect of the present invention is to provide a simple configuration for adjusting the DC flow of a pulse tube refrigerator.
  • the pulse tube refrigerating machine is a bidirectional flow path connected to a pulse tube and a pulse tube inflow flow and a pulse tube outflow flow alternately, and has a flow path resistance portion. It has a bidirectional flow path in which the pulse tube inflow flow passes through the flow path resistance portion from its inlet side, and the pulse tube outflow flow passes through the flow path resistance section from its outlet side, and the pulse tube inflow flow is flow path resistance.
  • a temperature regulator provided in the bidirectional flow path so that the inlet side of the section is adjusted to the first temperature and the outflow of the pulse tube is adjusted to the second temperature different from the first temperature on the outlet side of the flow path resistance section. And.
  • FIG. 1 is a diagram schematically showing a part of the pulse tube refrigerator 10 according to the embodiment.
  • the pulse tube refrigerator 10 includes a pulse tube 50 and a bidirectional flow path 52 connected to the pulse tube 50 and having a flow path resistance portion 54.
  • the bidirectional flow path 52 is connected to the high temperature end of the pulse tube 50, and the flow of working gas (for example, helium gas) entering and exiting the pulse tube 50 is allowed.
  • working gas for example, helium gas
  • the pulse tube inflow flow 56 and the pulse tube outflow flow 58 alternately flow in the bidirectional flow path 52.
  • the pulse tube inflow flow 56 and the pulse tube outflow flow 58 are working gas flows that are opposite to each other.
  • the pulse tube inflow flow 56 passes through the flow path resistance portion 54 from its inlet side and flows into the pulse tube 50.
  • the pulse tube outflow flow 58 flows out from the pulse tube 50 and passes through the flow path resistance portion 54 from its outlet side.
  • the pulse tube inflow flow 56 is generated in one part of the refrigeration cycle of the pulse tube refrigerator 10 (eg, part of the intake process), and the pulse tube outflow flow 58 is the other part of the refrigeration cycle of the pulse tube refrigerator (eg exhaust). It is generated in a part of the process).
  • the pulse tube refrigerator 10 appropriately delays the phase of the displacement vibration of the gas element (also called a gas piston) in the pulse tube 50 with respect to the pressure vibration of the working gas, so that the pulse tube 50 PV work can be generated at the low temperature end to cool the cooling stage provided at the low temperature end of the pulse tube 50.
  • the pulse tube refrigerator 10 can cool a gas, liquid, or an object thermally coupled to the cooling stage that is in contact with the cooling stage.
  • the cooling stage of the first stage is cooled to, for example, less than 100K (for example, about 30K to 60K), and the cooling stage of the second stage is cooled to, for example, about 4K or less. Will be done.
  • Various known configurations can be appropriately adopted as basic components of the pulse tube refrigerator 10 such as a vibration flow source and a phase control mechanism. Some exemplary configurations will be described later with reference to FIGS. 4 and 5.
  • the flow path resistance portion 54 is, for example, a fixed orifice. That is, the shape of the orifice is fixed.
  • the flow path resistance portion 54 is a simple fixed orifice having the same flow path shape on the inlet side and the outlet side.
  • the fixed orifice is plane symmetric with respect to a plane of symmetry 60 that is orthogonal to the direction of the pulse tube inflow flow 56 and the pulse tube outflow flow 58 and passes through the center of the orifice.
  • a non-plane symmetric orifice that is, an orifice having different flow path shapes on the inlet side and the outlet side may be used as the flow path resistance portion 54.
  • variable orifice for example, an orifice having a variable flow path cross-sectional area perpendicular to the flow direction may be used as the flow path resistance portion 54, whereby the flow path resistance portion 54 is the working gas of the bidirectional flow path 52.
  • the flow rate may be adjustable.
  • the pulse tube refrigerator 10 includes a temperature controller 62 provided in the bidirectional flow path 52.
  • the temperature regulator 62 adjusts the pulse tube inflow flow 56 to the first temperature on the inlet side of the flow path resistance portion 54, and adjusts the pulse tube outflow flow 58 to the first temperature on the outlet side of the flow path resistance portion 54, which is different from the first temperature. It is configured to adjust to temperature.
  • the temperature controller 62 includes a heater 64 that heats the pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54.
  • the heater 64 is arranged in the bidirectional flow path 52 on the inlet side of the flow path resistance portion 54.
  • the heater 64 may be an appropriate heating appliance such as an electric heater.
  • the heater 64 may be a heating device that heats by utilizing exhaust heat from a component of the pulse tube refrigerator 10 that generates heat such as a buffer volume and a compressor or peripheral equipment.
  • the heater 64 may be a heat exchanger that heats the working gas by heat exchange between the temperature control fluid having a temperature higher than that of the working gas and the working gas.
  • the pulse tube inflow flow 56 flows into the flow path resistance portion 54 in a state of being heated to the first temperature by the heater 64. Then, the pulse tube inflow flow 56 passes through the flow path resistance portion 54 and flows into the pulse tube 50 from the high temperature end of the pulse tube 50. Since the ambient temperature (for example, room temperature) is around the high temperature end of the pulse tube 50, the working gas flowing into the pulse tube 50 dissipates heat and the temperature drops to a second temperature. The second temperature is lower than the first temperature. In this way, the pulse tube outflow flow 58 when flowing into the flow path resistance portion 54 from the outlet side of the flow path resistance portion 54 has a lower temperature than the pulse pipe inflow flow 56 on the inlet side of the flow path resistance portion 54. .. The temperature of the working gas flow flowing into the flow path resistance portion 54 differs depending on the direction of the flow.
  • FIG. 2 is a graph showing the temperature dependence of the pressure loss in the flow path resistance portion 54 according to the embodiment.
  • FIG. 2 shows the results of analysis and experiment on the flow path resistance generated in the gas flow when the helium gas passes through the flow path resistance portion 54 shown in FIG.
  • the horizontal axis represents the minimum cross-sectional area (mm 2 ) of the flow path resistance portion 54, that is, the flow path cross-sectional area at the plane of symmetry 60.
  • the vertical axis indicates the flow path resistance (MPa) of the flow path resistance portion 54, which corresponds to the pressure on the inlet side when the outlet side of the flow path resistance portion 54 is at atmospheric pressure.
  • the triangular reference numerals indicate the calculation results when the temperature of the gas flowing into the flow path resistance portion 54 is heated to 400K
  • the diamond-shaped reference numerals indicate the temperature of the gas flowing into the flow path resistance portion 54.
  • the calculation result in the case of 300K is shown. Circles indicate experimental results.
  • the flow path resistance that the flow path resistance portion 54 brings to the gas flow passing therethrough can be made different.
  • the difference in the flow path resistance depending on the flow direction in the flow path resistance portion 54 causes the pulse tube refrigerator 10 to generate a DC flow.
  • the pulse tube inflow flow 56 has a first temperature (for example, 400K) on the inlet side of the flow path resistance portion 54, and the pulse tube outflow flow 58 has a second temperature (for example, 300K) on the outlet side of the flow path resistance portion 54.
  • the pulse tube inflow flow 56 becomes more difficult to flow than the pulse tube outflow flow 58.
  • the DC flow 68 from the low temperature end to the high temperature end of the pulse tube 50 is promoted.
  • the temperature difference between the first temperature and the second temperature is 100K in the above example, and may be in the range of, for example, 50K to 150K.
  • the temperature regulator 62 sets the temperature difference selected from this temperature range between the pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54 and the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54. It may be configured to occur in between.
  • the temperature controller 62 may be configured to control the temperature difference.
  • the temperature regulator 62 can control the DC flow 68 by changing the temperature difference and changing the flow path resistance difference.
  • the temperature controller 62 may include a cooler 66 that cools the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54.
  • the cooler 66 is arranged in the bidirectional flow path 52 on the outlet side of the flow path resistance portion 54.
  • the cooler 66 may be a liquid-cooled heat exchanger, an air-cooled heat exchanger, for example, a cooler using a cooling element such as a Pelche element, or another appropriate cooler.
  • the heating temperature of the heater 64 for realizing a predetermined temperature difference can be lowered.
  • the heater 64 heats the working gas to 120 ° C. to generate a temperature difference of 100 ° C.
  • the cooler 66 cools the working gas to, for example, ⁇ 20 ° C.
  • the configuration of the heater 64 and the heat resistance of the pulse tube refrigerator 10 can be simplified.
  • the heater 64 adjusts the temperature of the working gas on the inlet side of the flow path resistance portion 54
  • the cooler 66 adjusts the temperature of the working gas on the outlet side of the flow path resistance portion 54, so that the temperature is more reliably adjusted.
  • the temperature difference can be managed.
  • the cooler 66 can cool the pulse tube inflow flow 56 heated by the heater 64 before flowing into the pulse tube 50. It is possible to prevent the gas from flowing into the pulse tube 50 at a high temperature and affecting the refrigerating performance of the pulse tube refrigerator 10.
  • FIG. 3 is a diagram schematically showing a part of the pulse tube refrigerator 10 according to the embodiment.
  • the embodiment shown in FIG. 3 is the same as the embodiment shown in FIG. 1, except for the configuration of the temperature controller 62.
  • the temperature controller 62 may include a heater 64 that heats the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54.
  • the temperature regulator 62 may include a cooler 66 that cools the pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54.
  • the heater 64 is arranged in the bidirectional flow path 52 on the outlet side of the flow path resistance portion 54
  • the cooler 66 is arranged in the bidirectional flow path 52 on the inlet side of the flow path resistance portion 54.
  • the flow path resistance section 54 can generate the DC flow 70 in the pulse tube refrigerator 10. Since the arrangement of the temperature regulator 62 is reversed with respect to the flow path resistance portion 54, the first temperature becomes lower than the second temperature.
  • the pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54 has a lower temperature than the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54. Due to the difference in flow path resistance of the flow path resistance portion 54, the pulse tube outflow flow 58 becomes more difficult to flow than the pulse tube inflow flow 56. In this case, it is expected that the DC flow 70 from the high temperature end to the low temperature end of the pulse tube 50 is promoted.
  • the DC flow 70 from the high temperature end to the low temperature end of the pulse tube 50 is not desirable. This is because when the DC flow 70 includes a working gas flow penetrating from the hot end of the pulse tube to the cold end of the pulse tube, such working gas flow results in thermal penetration from the hot end of the pulse tube to the cold end of the pulse tube. This is because the refrigerating efficiency of the pulse tube refrigerator 10 can be lowered.
  • the temperature controller 62 may have heaters 64 on both the inlet side and the outlet side of the flow path resistance portion 54, and these two heaters 64 provide a temperature difference between the pulse tube inflow flow 56 and the pulse tube outflow flow 58. It may act to give.
  • the temperature controller 62 may have coolers 66 on both the inlet side and the outlet side of the flow path resistance portion 54.
  • the temperature controller 62 may not have the heater 64, but may have only the cooler 66.
  • FIG. 4 is a diagram schematically showing the pulse tube refrigerator 10 according to the embodiment.
  • the pulse tube refrigerator 10 is a GM (Gifford-McMahon) type double inlet type two-stage pulse tube refrigerator, and in order to adjust the DC flow of the two-stage portion, refer to FIG. 1 (or FIG. 3).
  • the DC flow generator described above applies.
  • the pulse tube refrigerator 10 includes a compressor 12 and a cold head 14.
  • the cold head 14 includes a main pressure switching valve 22, a first-stage pulse tube 116, a first-stage regenerator 118, a first-stage cooling stage 120, a first-stage buffer volume 126, a first-stage double inlet flow path 134, and a first stage.
  • a stage buffer line 136 is provided.
  • the main pressure switching valve 22 is connected to the first stage regenerator 118 by the regenerator communication passage 32.
  • the first-stage double inlet flow path 134 is provided with the first-stage double inlet orifice 128, and the first-stage buffer line 136 is provided with the first-stage buffer orifice 130.
  • the pulse tube refrigerator 10 includes a second stage pulse tube 216, a second stage regenerator 218, a second stage cooling stage 220, a second stage buffer volume 226, a second stage double inlet flow path 234, and a second stage.
  • a buffer line 236 is provided.
  • the second-stage regenerator 218 is connected in series with the first-stage regenerator 118, and the low-temperature end of the second-stage regenerator 218 communicates with the low-temperature end 216b of the second-stage pulse tube 216.
  • the second stage double inlet flow path 234 connects the main pressure switching valve 22 to the second stage pulse pipe 216 so as to bypass the regenerator (118, 218).
  • the second-stage double inlet orifice 228 is provided in the second-stage double inlet flow path 234, and the second-stage double inlet orifice 234 is from the branch portion 32a on the cooler communication passage 32 to the second-stage double inlet orifice 228. It is connected to the high temperature end 216a of the second stage pulse tube via.
  • the second-stage buffer line 236 is provided with a second-stage buffer orifice 230, and the second-stage buffer line 236 has a second-stage buffer volume 226 and a second-stage pulse tube high-temperature end via the second-stage buffer orifice 230. Connect to 216a.
  • the second-stage double inlet flow path 234 and the second-stage double inlet orifice 228 of the pulse tube refrigerator 10 shown in FIG. 4 correspond to the bidirectional flow path 52 and the flow path resistance portion 54 shown in FIG. 1, respectively. Therefore, the temperature controller 62 is provided in the second stage double inlet flow path 234.
  • the temperature controller 62 is in thermal contact with the second stage buffer volume 226. Since the heat of compression of the working gas is generated in the second stage buffer volume 226, this exhaust heat can be used as a heat source.
  • a part of the second-stage double inlet orifice 228 on the inlet side of the second-stage double inlet flow path 234 is installed on the surface of the buffer tank that defines the second-stage buffer volume 226, or is a working gas pipe that passes through the inside of the buffer tank. It may be configured as. In this way, the heater 64 that heats the pulse tube inflow flow 56 on the inlet side of the second stage double inlet orifice 228 may be configured.
  • the temperature controller 62 may be in thermal contact with the second stage buffer volume 226 via the heat transfer member.
  • the heat transfer member may be attached to the buffer tank and extend from the buffer tank to the second stage double inlet flow path 234. Since the heat of compression of the working gas is also generated in the first stage buffer volume 126 and the compressor 12, the temperature regulator 62 may be in thermal contact with the first stage buffer volume 126 or the compressor 12.
  • a cooler 66 for cooling the pulse tube outflow flow 58 on the outlet side of the second stage double inlet orifice 228 is provided in the second stage double inlet flow path 234 together with the heater 64 or in place of the heater 64. May be good.
  • the heater 64 and the cooler 66 may be arranged in reverse with respect to the second stage double inlet orifice 228.
  • the pulse tube refrigerator 10 shown in FIG. 4 has a loop path including a second stage pulse tube 216, a second stage double inlet flow path 234, and a regenerator (118, 218). Therefore, DC flow 68 can occur in this loop path.
  • the temperature controller 62 By combining the temperature controller 62 with the second-stage double inlet orifice 228, the DC flow 68 of the pulse tube refrigerator 10 can be adjusted.
  • the second-stage double inlet orifice 234 may have a flow path resistance portion 54 connected in series with the second-stage double inlet orifice 228 separately from the second-stage double inlet orifice 228, and this flow path may be provided.
  • the DC flow 68 may be generated by the resistance portion 54.
  • the pulse tube refrigerator 10 shown in FIG. 4 also has a loop path in the first stage, the first stage double inlet flow is combined with the first stage double inlet orifice 128 in order to generate a DC flow in the first stage.
  • a temperature regulator 62 may be provided on the path 134.
  • FIG. 5 is a diagram schematically showing another example of the pulse tube refrigerator 10 according to the embodiment.
  • the pulse tube refrigerator 10 shown in FIG. 5 is a GM type 4-valve type two-stage pulse tube refrigerator. Therefore, the pulse tube refrigerator 10 includes a first-stage sub-pressure switching valve (V3, V4) and a second-stage sub-pressure switching valve (V5, V6) instead of the double inlet flow path.
  • V3, V4 first-stage sub-pressure switching valve
  • V5, V6 second-stage sub-pressure switching valve
  • the first-stage sub-pressure switching valves alternately connect the high-temperature ends of the first-stage pulse tube 116 to the discharge port and the suction port of the compressor 12.
  • the first-stage sub-pressure switching valves (V3, V4) are connected to the high-temperature end of the first-stage pulse tube 116 by the first-stage pulse tube communication passage 140.
  • the first-stage pulse tube communication passage 140 has a first-stage flow rate adjusting element 142.
  • the second-stage sub-pressure switching valves (V5, V6) alternately connect the high-temperature ends of the second-stage pulse tube 216 to the discharge port and the suction port of the compressor 12.
  • the second-stage sub-pressure switching valve (V5, V6) is connected to the high temperature end of the second-stage pulse tube 216 by the second-stage pulse tube communication passage 240.
  • the second-stage pulse tube communication passage 240 has a second-stage flow rate adjusting element 242. Since the GM type 4-valve type pulse tube refrigerator itself is well known, detailed description of each component of the pulse tube refrigerator 10 will be omitted.
  • the second-stage pulse tube communication passage 240 and the second-stage flow rate adjusting element 242 of the pulse tube refrigerator 10 shown in FIG. 5 correspond to the bidirectional flow path 52 and the flow path resistance portion 54 shown in FIG. 1, respectively. Therefore, the temperature regulator 62 is provided in the second-stage pulse tube connecting passage 240. The temperature controller 62 is in thermal contact with the second stage buffer volume 226. In this way, the heater 64 that heats the pulse tube inflow flow 56 on the inlet side of the second stage flow rate adjusting element 242 is configured.
  • a cooler 66 for cooling the pulse tube outflow flow 58 at the outlet side of the second stage flow rate adjusting element 242 is provided in the second stage pulse pipe connecting passage 240 together with the heater 64 or in place of the heater 64. May be good.
  • the heater 64 and the cooler 66 may be arranged in reverse with respect to the second stage flow rate adjusting element 242.
  • the pulse tube refrigerator 10 shown in FIG. 5 has a loop path including a compressor 12, a second stage pulse tube 216, and a regenerator (118, 218). Therefore, DC flow 68 can occur in this loop path.
  • the temperature regulator 62 With the second stage flow rate adjusting element 242, the DC flow 68 of the pulse tube refrigerator 10 can be adjusted.
  • the pulse tube refrigerator 10 shown in FIG. 5 also has a loop path in the first stage, the first stage pulse tube series is combined with the first stage flow rate adjusting element 142 in order to generate a DC flow in the first stage.
  • a temperature controller 62 may be provided in the passage 140.
  • the flow path resistance portion 54 is a fixed or variable orifice, but the present invention is not limited to this.
  • the flow path resistance portion 54 may be a needle valve or other valve.
  • the DC flow in the pulse tube refrigerator 10 can be adjusted by combining the flow path resistance portion 54 with the temperature regulator 62.
  • the bidirectional flow path 52 is connected to the high temperature end of the pulse tube 50.
  • the bidirectional flow path 52 may be a flow path connecting the pulse tube and the low temperature ends of the regenerator.
  • DC flow can also be generated by providing the flow path resistance portion 54 and the temperature controller 62 in the bidirectional flow path on the low temperature side.
  • the double inlet type and 4-valve type pulse tube refrigerator have been described as an example, but in the DC flow generator according to the present embodiment, a loop path of the working gas including the pulse tube is formed. It can also be applied to other pulse tube refrigerators. Further, the pulse tube refrigerator may be a single-stage type, a three-stage or other multi-stage type pulse tube refrigerator.
  • the present invention can be used in the field of pulse tube refrigerators.
  • pulse tube refrigerator 50 pulse tube, 52 bidirectional flow path, 54 flow path resistance part, 56 pulse tube inflow flow, 58 pulse tube outflow flow, 62 temperature controller, 64 heater, 66 cooler.

Abstract

A pulse tube refrigerator (10) comprising: a pulse tube (50); a two-way flow passage (52) that is connected to the pulse tube (50) and through which a pulse tube inflow (56) and a pulse tube outflow (58) alternately flow, said two-way flow passage (52) having a flow passage resistance part (54), wherein the pulse tube inflow (56) passes through the flow passage resistance part 54 from the entry side thereof and the pulse tube outflow (58) passes through the flow passage resistance part (54) from the exit side thereof; and a temperature adjuster (62) that is provided to the two-way flow passage (52) so as to adjust the pulse tube inflow (56) to a first temperature on the entry side of the flow passage resistance part (54) and adjust the pulse tube outflow (58) to a second temperature, which is different from the first temperature, on the exit side of the flow passage resistance part (54).

Description

パルス管冷凍機Pulse tube refrigerator
 本発明は、パルス管冷凍機に関する。 The present invention relates to a pulse tube refrigerator.
 パルス管冷凍機には、パルス管と蓄冷器を含む冷媒ガスのループ経路が形成されるタイプがある。このループ経路には、「DCフロー」とも称される、直流成分をもつガス流れが生成されうる。DCフローは、パルス管冷凍機の冷凍性能に影響する。そこで、DCフローを調節するために、オリフィスが組み込まれたニードルバルブがループ経路に配置される。このオリフィスは、ニードルバルブを通過する流れ方向に応じて流路の幾何学的形状が異なるように設計される(例えば、特許文献1参照。)。 There is a type of pulse tube refrigerator in which a loop path for refrigerant gas including a pulse tube and a regenerator is formed. A gas flow with a DC component, also called a "DC flow", can be generated in this loop path. The DC flow affects the refrigerating performance of the pulse tube refrigerator. Therefore, in order to adjust the DC flow, a needle valve incorporating an orifice is arranged in the loop path. This orifice is designed so that the geometric shape of the flow path differs depending on the flow direction passing through the needle valve (see, for example, Patent Document 1).
特開2016-57013号公報Japanese Unexamined Patent Publication No. 2016-57013
 しかしながら、上述のDCフロー調節機構は、流路の形状が複雑であり、設計および製作が煩雑であり、コストも掛かる。 However, in the above-mentioned DC flow adjustment mechanism, the shape of the flow path is complicated, the design and manufacture are complicated, and the cost is high.
 本発明のある態様の例示的な目的のひとつは、パルス管冷凍機のDCフローを調節する簡易な構成を提供することにある。 One of the exemplary objects of an aspect of the present invention is to provide a simple configuration for adjusting the DC flow of a pulse tube refrigerator.
 本発明のある態様によると、パルス管冷凍機は、パルス管と、パルス管に接続され、パルス管流入流れとパルス管流出流れが交互に流れる双方向流路であって、流路抵抗部を有し、パルス管流入流れが流路抵抗部をその入口側から通過し、パルス管流出流れが流路抵抗部をその出口側から通過する双方向流路と、パルス管流入流れを流路抵抗部の入口側で第1温度に調整し、パルス管流出流れを流路抵抗部の出口側で第1温度と異なる第2温度に調整するように、双方向流路に設けられた温度調整器と、を備える。 According to an aspect of the present invention, the pulse tube refrigerating machine is a bidirectional flow path connected to a pulse tube and a pulse tube inflow flow and a pulse tube outflow flow alternately, and has a flow path resistance portion. It has a bidirectional flow path in which the pulse tube inflow flow passes through the flow path resistance portion from its inlet side, and the pulse tube outflow flow passes through the flow path resistance section from its outlet side, and the pulse tube inflow flow is flow path resistance. A temperature regulator provided in the bidirectional flow path so that the inlet side of the section is adjusted to the first temperature and the outflow of the pulse tube is adjusted to the second temperature different from the first temperature on the outlet side of the flow path resistance section. And.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the components and expressions of the present invention that are mutually replaced between methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、パルス管冷凍機のDCフローを調節する簡易な構成を提供することができる。 According to the present invention, it is possible to provide a simple configuration for adjusting the DC flow of the pulse tube refrigerator.
実施の形態に係るパルス管冷凍機の一部を概略的に示す図である。It is a figure which shows roughly a part of the pulse tube refrigerator which concerns on embodiment. 実施の形態に係る流路抵抗部における圧力損失の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the pressure loss in the flow path resistance part which concerns on embodiment. 実施の形態に係るパルス管冷凍機の一部を概略的に示す図である。It is a figure which shows roughly a part of the pulse tube refrigerator which concerns on embodiment. 実施の形態に係るパルス管冷凍機を概略的に示す図である。It is a figure which shows schematicly the pulse tube refrigerator which concerns on embodiment. 実施の形態に係るパルス管冷凍機の他の例を概略的に示す図である。It is a figure which shows typically another example of the pulse tube refrigerator which concerns on embodiment.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, a mode for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are designated by the same reference numerals, and duplicate description will be omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience of explanation and are not to be interpreted in a limited manner unless otherwise specified. Embodiments are exemplary and do not limit the scope of the invention in any way. Not all features and combinations thereof described in the embodiments are essential to the invention.
 図1は、実施の形態に係るパルス管冷凍機10の一部を概略的に示す図である。パルス管冷凍機10は、パルス管50と、パルス管50に接続され、流路抵抗部54を有する双方向流路52と、を備える。双方向流路52は、パルス管50の高温端に接続され、パルス管50に出入りする作動ガス(たとえばヘリウムガス)の流れが許容される。 FIG. 1 is a diagram schematically showing a part of the pulse tube refrigerator 10 according to the embodiment. The pulse tube refrigerator 10 includes a pulse tube 50 and a bidirectional flow path 52 connected to the pulse tube 50 and having a flow path resistance portion 54. The bidirectional flow path 52 is connected to the high temperature end of the pulse tube 50, and the flow of working gas (for example, helium gas) entering and exiting the pulse tube 50 is allowed.
 双方向流路52には、パルス管流入流れ56とパルス管流出流れ58が交互に流れる。パルス管流入流れ56とパルス管流出流れ58は、互いに反対向きの作動ガス流れである。パルス管流入流れ56は、流路抵抗部54をその入口側から通過し、パルス管50に流入する。パルス管流出流れ58は、パルス管50から流出し、流路抵抗部54をその出口側から通過する。パルス管流入流れ56は、パルス管冷凍機10の冷凍サイクルの一部分(例えば吸気工程の一部)において生成され、パルス管流出流れ58は、パルス管冷凍機の冷凍サイクルの他の一部分(例えば排気工程の一部)において生成される。 The pulse tube inflow flow 56 and the pulse tube outflow flow 58 alternately flow in the bidirectional flow path 52. The pulse tube inflow flow 56 and the pulse tube outflow flow 58 are working gas flows that are opposite to each other. The pulse tube inflow flow 56 passes through the flow path resistance portion 54 from its inlet side and flows into the pulse tube 50. The pulse tube outflow flow 58 flows out from the pulse tube 50 and passes through the flow path resistance portion 54 from its outlet side. The pulse tube inflow flow 56 is generated in one part of the refrigeration cycle of the pulse tube refrigerator 10 (eg, part of the intake process), and the pulse tube outflow flow 58 is the other part of the refrigeration cycle of the pulse tube refrigerator (eg exhaust). It is generated in a part of the process).
 知られているように、パルス管冷凍機10は、作動ガスの圧力振動に対しパルス管50内のガス要素(ガスピストンとも呼ばれる)の変位振動の位相を適切に遅らせることによって、パルス管50の低温端にPV仕事を発生し、パルス管50の低温端に設けられた冷却ステージを冷却することができる。このようにして、パルス管冷凍機10は、冷却ステージに接触する気体、液体、または、冷却ステージに熱的に結合された物体を冷却することができる。パルス管冷凍機10が二段式である場合、第1段の冷却ステージは例えば100K未満(たとえば30K~60K程度)に冷却され、第2段の冷却ステージは例えば約4K程度またはそれ以下に冷却される。振動流発生源や位相制御機構などパルス管冷凍機10の基本的な構成要素には、様々な公知の構成が適宜採用されうる。いくつかの例示的な構成は、図4および図5を参照して後述される。 As is known, the pulse tube refrigerator 10 appropriately delays the phase of the displacement vibration of the gas element (also called a gas piston) in the pulse tube 50 with respect to the pressure vibration of the working gas, so that the pulse tube 50 PV work can be generated at the low temperature end to cool the cooling stage provided at the low temperature end of the pulse tube 50. In this way, the pulse tube refrigerator 10 can cool a gas, liquid, or an object thermally coupled to the cooling stage that is in contact with the cooling stage. When the pulse tube refrigerator 10 is a two-stage type, the cooling stage of the first stage is cooled to, for example, less than 100K (for example, about 30K to 60K), and the cooling stage of the second stage is cooled to, for example, about 4K or less. Will be done. Various known configurations can be appropriately adopted as basic components of the pulse tube refrigerator 10 such as a vibration flow source and a phase control mechanism. Some exemplary configurations will be described later with reference to FIGS. 4 and 5.
 図1に模式的に示されるように、流路抵抗部54は、例えば、固定オリフィスである。すなわち、オリフィスの形状は固定されている。この実施形態では、流路抵抗部54は、入口側と出口側で同じ流路形状をもつシンプルな固定オリフィスである。固定オリフィスは、パルス管流入流れ56およびパルス管流出流れ58の方向に直交しオリフィスの中心を通る対称面60に関して面対称である。ただし、流路抵抗部54として非面対称のオリフィス、すなわち入口側と出口側で異なる流路形状をもつオリフィスが使用されてもよい。あるいは、流路抵抗部54として可変オリフィス、たとえば流れの方向に垂直な流路断面積を可変とするオリフィスが使用されてもよく、それにより流路抵抗部54が双方向流路52の作動ガス流量を調整可能であってもよい。 As schematically shown in FIG. 1, the flow path resistance portion 54 is, for example, a fixed orifice. That is, the shape of the orifice is fixed. In this embodiment, the flow path resistance portion 54 is a simple fixed orifice having the same flow path shape on the inlet side and the outlet side. The fixed orifice is plane symmetric with respect to a plane of symmetry 60 that is orthogonal to the direction of the pulse tube inflow flow 56 and the pulse tube outflow flow 58 and passes through the center of the orifice. However, a non-plane symmetric orifice, that is, an orifice having different flow path shapes on the inlet side and the outlet side may be used as the flow path resistance portion 54. Alternatively, a variable orifice, for example, an orifice having a variable flow path cross-sectional area perpendicular to the flow direction may be used as the flow path resistance portion 54, whereby the flow path resistance portion 54 is the working gas of the bidirectional flow path 52. The flow rate may be adjustable.
 また、パルス管冷凍機10は、双方向流路52に設けられた温度調整器62を備える。温度調整器62は、パルス管流入流れ56を流路抵抗部54の入口側で第1温度に調整し、パルス管流出流れ58を流路抵抗部54の出口側で第1温度と異なる第2温度に調整するように構成される。 Further, the pulse tube refrigerator 10 includes a temperature controller 62 provided in the bidirectional flow path 52. The temperature regulator 62 adjusts the pulse tube inflow flow 56 to the first temperature on the inlet side of the flow path resistance portion 54, and adjusts the pulse tube outflow flow 58 to the first temperature on the outlet side of the flow path resistance portion 54, which is different from the first temperature. It is configured to adjust to temperature.
 この実施形態では、温度調整器62は、パルス管流入流れ56を流路抵抗部54の入口側で加熱するヒーター64を備える。ヒーター64は、流路抵抗部54の入口側で双方向流路52に配置される。ヒーター64は、例えば電気ヒーターなど適宜の加熱器具であってもよい。あるいは、後述するように、ヒーター64は、バッファ容積、圧縮機など発熱するパルス管冷凍機10の構成要素または周辺機器からの排熱を利用して加熱する加熱器具でもよい。ヒーター64は、作動ガスよりも高温の温調流体と作動ガスの熱交換により作動ガスを加熱する熱交換器でもよい。 In this embodiment, the temperature controller 62 includes a heater 64 that heats the pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54. The heater 64 is arranged in the bidirectional flow path 52 on the inlet side of the flow path resistance portion 54. The heater 64 may be an appropriate heating appliance such as an electric heater. Alternatively, as will be described later, the heater 64 may be a heating device that heats by utilizing exhaust heat from a component of the pulse tube refrigerator 10 that generates heat such as a buffer volume and a compressor or peripheral equipment. The heater 64 may be a heat exchanger that heats the working gas by heat exchange between the temperature control fluid having a temperature higher than that of the working gas and the working gas.
 パルス管流入流れ56はヒーター64によって第1温度に加熱された状態で流路抵抗部54に流入する。そして、パルス管流入流れ56は、流路抵抗部54を通過してパルス管50の高温端からパルス管50に流入する。パルス管50の高温端の周りは周囲温度(例えば室温)であるから、パルス管50に流入した作動ガスは放熱し温度が下がり、第2温度となる。第2温度は、第1温度よりも低い。こうして、流路抵抗部54の出口側から流路抵抗部54に流入するときのパルス管流出流れ58は、流路抵抗部54の入口側でのパルス管流入流れ56に比べて低い温度を有する。流路抵抗部54に流入する作動ガス流れは、流れの方向によって温度が異なる。 The pulse tube inflow flow 56 flows into the flow path resistance portion 54 in a state of being heated to the first temperature by the heater 64. Then, the pulse tube inflow flow 56 passes through the flow path resistance portion 54 and flows into the pulse tube 50 from the high temperature end of the pulse tube 50. Since the ambient temperature (for example, room temperature) is around the high temperature end of the pulse tube 50, the working gas flowing into the pulse tube 50 dissipates heat and the temperature drops to a second temperature. The second temperature is lower than the first temperature. In this way, the pulse tube outflow flow 58 when flowing into the flow path resistance portion 54 from the outlet side of the flow path resistance portion 54 has a lower temperature than the pulse pipe inflow flow 56 on the inlet side of the flow path resistance portion 54. .. The temperature of the working gas flow flowing into the flow path resistance portion 54 differs depending on the direction of the flow.
 図2は、実施の形態に係る流路抵抗部54における圧力損失の温度依存性を示すグラフである。図2には、図1に示される流路抵抗部54をヘリウムガスが通過するときガス流れに生じる流路抵抗についての解析と実験の結果が示される。横軸は、流路抵抗部54の最小断面積(mm)、すなわち対称面60における流路断面積を示す。縦軸は、流路抵抗部54の流路抵抗(MPa)を示し、これは流路抵抗部54の出口側を大気圧としたときの入口側での圧力に相当する。 FIG. 2 is a graph showing the temperature dependence of the pressure loss in the flow path resistance portion 54 according to the embodiment. FIG. 2 shows the results of analysis and experiment on the flow path resistance generated in the gas flow when the helium gas passes through the flow path resistance portion 54 shown in FIG. The horizontal axis represents the minimum cross-sectional area (mm 2 ) of the flow path resistance portion 54, that is, the flow path cross-sectional area at the plane of symmetry 60. The vertical axis indicates the flow path resistance (MPa) of the flow path resistance portion 54, which corresponds to the pressure on the inlet side when the outlet side of the flow path resistance portion 54 is at atmospheric pressure.
 図2において、三角の符号は、流路抵抗部54に流入するガスの温度を400Kに加熱した場合についての計算結果を示し、菱形の符号は、流路抵抗部54に流入するガスの温度が300Kである場合についての計算結果を示す。丸印は実験結果を示す。 In FIG. 2, the triangular reference numerals indicate the calculation results when the temperature of the gas flowing into the flow path resistance portion 54 is heated to 400K, and the diamond-shaped reference numerals indicate the temperature of the gas flowing into the flow path resistance portion 54. The calculation result in the case of 300K is shown. Circles indicate experimental results.
 計算結果は、実験結果と同様に、流路断面積が大きくなるほど流路抵抗が小さくなることを示している。よって、計算結果が示す流路抵抗の変化の傾向は、実験により裏付けられ、信頼できると評価される。300Kでの流路抵抗(約0.11MPa@0.28mm)と400K(約0.15MPa@0.28mm)での流路抵抗を比べると、400Kでの流路抵抗が300Kでの流路抵抗に対しておよそ1.3倍に増えている。 The calculation results show that, as with the experimental results, the flow path resistance decreases as the flow path cross-sectional area increases. Therefore, the tendency of the change in the flow path resistance shown by the calculation result is supported by the experiment and evaluated as reliable. Comparing the flow path resistance of the flow path resistance at 300K (about 0.11MPa@0.28mm 2) and 400K (about 0.15MPa@0.28mm 2), the flow of the flow path resistance at 400K is in 300K It has increased about 1.3 times the road resistance.
 このように、流路抵抗部54に流入するガスの温度を異ならせることによって、流路抵抗部54がそこを通過するガス流れにもたらす流路抵抗を異ならせることができる。流路抵抗部54における流れ方向に依存する流路抵抗の違いは、パルス管冷凍機10にDCフローを発生させる。 In this way, by making the temperature of the gas flowing into the flow path resistance portion 54 different, the flow path resistance that the flow path resistance portion 54 brings to the gas flow passing therethrough can be made different. The difference in the flow path resistance depending on the flow direction in the flow path resistance portion 54 causes the pulse tube refrigerator 10 to generate a DC flow.
 パルス管流入流れ56が流路抵抗部54の入口側で第1温度(例えば400K)を有し、パルス管流出流れ58が流路抵抗部54の出口側で第2温度(例えば300K)を有するとき、流路抵抗部54の流路抵抗差により、パルス管流入流れ56がパルス管流出流れ58よりも流れにくくなる。この場合、本発明者の知見によると、パルス管50の低温端から高温端に向かうDCフロー68が促進される。 The pulse tube inflow flow 56 has a first temperature (for example, 400K) on the inlet side of the flow path resistance portion 54, and the pulse tube outflow flow 58 has a second temperature (for example, 300K) on the outlet side of the flow path resistance portion 54. At this time, due to the difference in flow path resistance of the flow path resistance portion 54, the pulse tube inflow flow 56 becomes more difficult to flow than the pulse tube outflow flow 58. In this case, according to the findings of the present inventor, the DC flow 68 from the low temperature end to the high temperature end of the pulse tube 50 is promoted.
 第1温度と第2温度の温度差は、上述の例では100Kであり、例えば50K~150Kの範囲にあってもよい。温度調整器62は、この温度範囲から選択される温度差を、流路抵抗部54の入口側でのパルス管流入流れ56と流路抵抗部54の出口側でのパルス管流出流れ58との間に発生させるように構成されてもよい。 The temperature difference between the first temperature and the second temperature is 100K in the above example, and may be in the range of, for example, 50K to 150K. The temperature regulator 62 sets the temperature difference selected from this temperature range between the pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54 and the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54. It may be configured to occur in between.
 また、温度調整器62は、温度差を制御するように構成されてもよい。温度差を変え、流路抵抗差を変化させることによって、温度調整器62は、DCフロー68を制御することができる。 Further, the temperature controller 62 may be configured to control the temperature difference. The temperature regulator 62 can control the DC flow 68 by changing the temperature difference and changing the flow path resistance difference.
 図1に示されるように、温度調整器62は、パルス管流出流れ58を流路抵抗部54の出口側で冷却するクーラー66を備えてもよい。クーラー66は、流路抵抗部54の出口側で双方向流路52に配置される。クーラー66は、液冷式の熱交換器、空冷式の熱交換器、例えばペルチェ素子など冷却素子を用いる冷却器、またはその他適宜の冷却器であってもよい。 As shown in FIG. 1, the temperature controller 62 may include a cooler 66 that cools the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54. The cooler 66 is arranged in the bidirectional flow path 52 on the outlet side of the flow path resistance portion 54. The cooler 66 may be a liquid-cooled heat exchanger, an air-cooled heat exchanger, for example, a cooler using a cooling element such as a Pelche element, or another appropriate cooler.
 ヒーター64と組み合わせてクーラー66を設けることにより、所定の温度差を実現するためのヒーター64の加熱温度を低くすることができる。例えば、クーラー66が無く流路抵抗部54の出口側で作動ガスが室温(例えば20℃)にあるとき、100℃の温度差を発生させるには、ヒーター64は作動ガスを120℃に加熱しなければならない。しかし、クーラー66が作動ガスを例えば-20℃に冷却する場合には、100℃の温度差を発生させるために、ヒーター64は作動ガスを80℃に加熱するだけで十分である。ヒーター64の構成やパルス管冷凍機10の耐熱性を簡素化しうる。 By providing the cooler 66 in combination with the heater 64, the heating temperature of the heater 64 for realizing a predetermined temperature difference can be lowered. For example, when there is no cooler 66 and the working gas is at room temperature (for example, 20 ° C.) on the outlet side of the flow path resistance portion 54, the heater 64 heats the working gas to 120 ° C. to generate a temperature difference of 100 ° C. There must be. However, when the cooler 66 cools the working gas to, for example, −20 ° C., it is sufficient for the heater 64 to heat the working gas to 80 ° C. in order to generate a temperature difference of 100 ° C. The configuration of the heater 64 and the heat resistance of the pulse tube refrigerator 10 can be simplified.
 また、ヒーター64が流路抵抗部54の入口側で作動ガスの温度調整をするだけでなく、クーラー66が流路抵抗部54の出口側でも作動ガスの温度調整をすることによって、より確実に温度差を管理することができる。 Further, not only the heater 64 adjusts the temperature of the working gas on the inlet side of the flow path resistance portion 54, but also the cooler 66 adjusts the temperature of the working gas on the outlet side of the flow path resistance portion 54, so that the temperature is more reliably adjusted. The temperature difference can be managed.
 クーラー66によって、ヒーター64で加熱されたパルス管流入流れ56をパルス管50に流入する前に冷却することができる。ガスが高温のままパルス管50に流入し、パルス管冷凍機10の冷凍性能に影響を及ぼすことを避けられる。 The cooler 66 can cool the pulse tube inflow flow 56 heated by the heater 64 before flowing into the pulse tube 50. It is possible to prevent the gas from flowing into the pulse tube 50 at a high temperature and affecting the refrigerating performance of the pulse tube refrigerator 10.
 図3は、実施の形態に係るパルス管冷凍機10の一部を概略的に示す図である。図3に示される実施形態は、温度調整器62の構成を除いて、図1に示される実施形態と同様である。図3に示されるように、温度調整器62は、パルス管流出流れ58を流路抵抗部54の出口側で加熱するヒーター64を備えてもよい。また、温度調整器62は、パルス管流入流れ56を流路抵抗部54の入口側で冷却するクーラー66を備えてもよい。ヒーター64は、流路抵抗部54の出口側で双方向流路52に配置され、クーラー66は、流路抵抗部54の入口側で双方向流路52に配置される。 FIG. 3 is a diagram schematically showing a part of the pulse tube refrigerator 10 according to the embodiment. The embodiment shown in FIG. 3 is the same as the embodiment shown in FIG. 1, except for the configuration of the temperature controller 62. As shown in FIG. 3, the temperature controller 62 may include a heater 64 that heats the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54. Further, the temperature regulator 62 may include a cooler 66 that cools the pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54. The heater 64 is arranged in the bidirectional flow path 52 on the outlet side of the flow path resistance portion 54, and the cooler 66 is arranged in the bidirectional flow path 52 on the inlet side of the flow path resistance portion 54.
 この場合にも、流路抵抗部54に流入するガスの温度が流れ方向によって異なるので、流路抵抗部54は、パルス管冷凍機10にDCフロー70を発生させることができる。温度調整器62の配置が流路抵抗部54に対して逆になっているので、第1温度が第2温度よりも低くなる。流路抵抗部54の入口側でのパルス管流入流れ56が、流路抵抗部54の出口側でのパルス管流出流れ58に比べて低い温度を有する。流路抵抗部54の流路抵抗差により、パルス管流出流れ58がパルス管流入流れ56よりも流れにくくなる。この場合、パルス管50の高温端から低温端に向かうDCフロー70が促進されることが期待される。 Also in this case, since the temperature of the gas flowing into the flow path resistance section 54 differs depending on the flow direction, the flow path resistance section 54 can generate the DC flow 70 in the pulse tube refrigerator 10. Since the arrangement of the temperature regulator 62 is reversed with respect to the flow path resistance portion 54, the first temperature becomes lower than the second temperature. The pulse tube inflow flow 56 on the inlet side of the flow path resistance portion 54 has a lower temperature than the pulse tube outflow flow 58 on the outlet side of the flow path resistance portion 54. Due to the difference in flow path resistance of the flow path resistance portion 54, the pulse tube outflow flow 58 becomes more difficult to flow than the pulse tube inflow flow 56. In this case, it is expected that the DC flow 70 from the high temperature end to the low temperature end of the pulse tube 50 is promoted.
 一般に、パルス管50の高温端から低温端に向かうDCフロー70は望ましくないと考えられている。なぜなら、DCフロー70が、パルス管高温端からパルス管低温端へと貫通する作動ガス流れを含む場合には、そうした作動ガス流れはパルス管高温端からパルス管低温端への熱侵入をもたらし、それによりパルス管冷凍機10の冷凍効率が低下しうるためである。 Generally, it is considered that the DC flow 70 from the high temperature end to the low temperature end of the pulse tube 50 is not desirable. This is because when the DC flow 70 includes a working gas flow penetrating from the hot end of the pulse tube to the cold end of the pulse tube, such working gas flow results in thermal penetration from the hot end of the pulse tube to the cold end of the pulse tube. This is because the refrigerating efficiency of the pulse tube refrigerator 10 can be lowered.
 しかしながら、例えばパルス管冷凍機10が大型で蓄冷器の流路抵抗が大きい場合など、パルス管冷凍機10の設計に起因して、パルス管50の低温端から高温端に向かう過剰なDCフローが発生し、冷凍性能に影響することも起こりうる。これを緩和するには、パルス管50の高温端から低温端に向かうDCフロー70を発生させることが望まれる。 However, due to the design of the pulse tube refrigerator 10, for example, when the pulse tube refrigerator 10 is large and the flow path resistance of the regenerator is large, an excessive DC flow from the low temperature end to the high temperature end of the pulse tube 50 is generated. It can occur and affect refrigeration performance. In order to alleviate this, it is desired to generate a DC flow 70 from the high temperature end to the low temperature end of the pulse tube 50.
 図3に示される実施形態によれば、パルス管50の高温端から低温端に向かうDCフロー70を発生させることができるので、上述の過剰なDCフローを緩和し、それにより起こりうるパルス管冷凍機10の冷凍性能の低下を抑えることができる。 According to the embodiment shown in FIG. 3, since the DC flow 70 from the high temperature end to the low temperature end of the pulse tube 50 can be generated, the above-mentioned excessive DC flow can be alleviated, and the pulse tube freezing that can occur thereby. It is possible to suppress the deterioration of the refrigerating performance of the machine 10.
 温度調整器62の構成は、ほかにもありうる。温度調整器62は、流路抵抗部54の入口側と出口側の両方にヒーター64を有してもよく、これら2つのヒーター64がパルス管流入流れ56とパルス管流出流れ58に温度差を与えるように動作してもよい。あるいは、温度調整器62は、流路抵抗部54の入口側と出口側の両方にクーラー66を有してもよい。あるいは、温度調整器62は、ヒーター64を有しなくてもよく、クーラー66のみを有してもよい。 There may be other configurations of the temperature controller 62. The temperature regulator 62 may have heaters 64 on both the inlet side and the outlet side of the flow path resistance portion 54, and these two heaters 64 provide a temperature difference between the pulse tube inflow flow 56 and the pulse tube outflow flow 58. It may act to give. Alternatively, the temperature controller 62 may have coolers 66 on both the inlet side and the outlet side of the flow path resistance portion 54. Alternatively, the temperature controller 62 may not have the heater 64, but may have only the cooler 66.
 図4は、実施の形態に係るパルス管冷凍機10を概略的に示す図である。パルス管冷凍機10は、GM(Gifford-McMahon)方式のダブルインレット型の二段パルス管冷凍機であり、二段部のDCフローを調節するために、図1(または図3)を参照して説明したDCフロー発生器が適用される。 FIG. 4 is a diagram schematically showing the pulse tube refrigerator 10 according to the embodiment. The pulse tube refrigerator 10 is a GM (Gifford-McMahon) type double inlet type two-stage pulse tube refrigerator, and in order to adjust the DC flow of the two-stage portion, refer to FIG. 1 (or FIG. 3). The DC flow generator described above applies.
 パルス管冷凍機10は、圧縮機12と、コールドヘッド14とを備える。コールドヘッド14は、主圧力切替弁22、第1段パルス管116、第1段蓄冷器118、第1段冷却ステージ120、第1段バッファ容積126、第1段ダブルインレット流路134、第1段バッファライン136を備える。主圧力切替弁22は、蓄冷器連通路32により第1段蓄冷器118に接続されている。第1段ダブルインレット流路134には第1段ダブルインレットオリフィス128が設けられ、第1段バッファライン136には第1段バッファオリフィス130が設けられている。 The pulse tube refrigerator 10 includes a compressor 12 and a cold head 14. The cold head 14 includes a main pressure switching valve 22, a first-stage pulse tube 116, a first-stage regenerator 118, a first-stage cooling stage 120, a first-stage buffer volume 126, a first-stage double inlet flow path 134, and a first stage. A stage buffer line 136 is provided. The main pressure switching valve 22 is connected to the first stage regenerator 118 by the regenerator communication passage 32. The first-stage double inlet flow path 134 is provided with the first-stage double inlet orifice 128, and the first-stage buffer line 136 is provided with the first-stage buffer orifice 130.
 加えて、パルス管冷凍機10は、第2段パルス管216、第2段蓄冷器218、第2段冷却ステージ220、第2段バッファ容積226、第2段ダブルインレット流路234、第2段バッファライン236を備える。第2段蓄冷器218は、第1段蓄冷器118に直列に接続され、第2段蓄冷器218の低温端は、第2段パルス管216の低温端216bと連通している。 In addition, the pulse tube refrigerator 10 includes a second stage pulse tube 216, a second stage regenerator 218, a second stage cooling stage 220, a second stage buffer volume 226, a second stage double inlet flow path 234, and a second stage. A buffer line 236 is provided. The second-stage regenerator 218 is connected in series with the first-stage regenerator 118, and the low-temperature end of the second-stage regenerator 218 communicates with the low-temperature end 216b of the second-stage pulse tube 216.
 第2段ダブルインレット流路234は、蓄冷器(118、218)をバイパスするように主圧力切替弁22を第2段パルス管216に接続する。第2段ダブルインレット流路234には、第2段ダブルインレットオリフィス228が設けられ、第2段ダブルインレット流路234は、蓄冷器連通路32上の分岐部32aから第2段ダブルインレットオリフィス228を介して第2段パルス管高温端216aに接続されている。第2段バッファライン236には、第2段バッファオリフィス230が設けられ、第2段バッファライン236は、第2段バッファオリフィス230を介して第2段バッファ容積226を第2段パルス管高温端216aに接続する。 The second stage double inlet flow path 234 connects the main pressure switching valve 22 to the second stage pulse pipe 216 so as to bypass the regenerator (118, 218). The second-stage double inlet orifice 228 is provided in the second-stage double inlet flow path 234, and the second-stage double inlet orifice 234 is from the branch portion 32a on the cooler communication passage 32 to the second-stage double inlet orifice 228. It is connected to the high temperature end 216a of the second stage pulse tube via. The second-stage buffer line 236 is provided with a second-stage buffer orifice 230, and the second-stage buffer line 236 has a second-stage buffer volume 226 and a second-stage pulse tube high-temperature end via the second-stage buffer orifice 230. Connect to 216a.
 GM方式のダブルインレット型のパルス管冷凍機それ自体はよく知られているから、パルス管冷凍機10の各構成要素の詳細な説明は省略する。 Since the GM type double inlet type pulse tube refrigerator itself is well known, detailed description of each component of the pulse tube refrigerator 10 will be omitted.
 図4に示されるパルス管冷凍機10の第2段ダブルインレット流路234および第2段ダブルインレットオリフィス228がそれぞれ、図1に示される双方向流路52および流路抵抗部54に相当する。よって、温度調整器62は、第2段ダブルインレット流路234に設けられている。 The second-stage double inlet flow path 234 and the second-stage double inlet orifice 228 of the pulse tube refrigerator 10 shown in FIG. 4 correspond to the bidirectional flow path 52 and the flow path resistance portion 54 shown in FIG. 1, respectively. Therefore, the temperature controller 62 is provided in the second stage double inlet flow path 234.
 温度調整器62は、第2段バッファ容積226と熱接触している。第2段バッファ容積226では作動ガスの圧縮熱が発生するから、この排熱を熱源として利用することができる。第2段ダブルインレット流路234における第2段ダブルインレットオリフィス228の入口側の一部分が、第2段バッファ容積226を定めるバッファタンクの表面に設置され、またはバッファタンクの内部を経由する作動ガス配管として構成されてもよい。このようにして、パルス管流入流れ56を第2段ダブルインレットオリフィス228の入口側で加熱するヒーター64が構成されてもよい。 The temperature controller 62 is in thermal contact with the second stage buffer volume 226. Since the heat of compression of the working gas is generated in the second stage buffer volume 226, this exhaust heat can be used as a heat source. A part of the second-stage double inlet orifice 228 on the inlet side of the second-stage double inlet flow path 234 is installed on the surface of the buffer tank that defines the second-stage buffer volume 226, or is a working gas pipe that passes through the inside of the buffer tank. It may be configured as. In this way, the heater 64 that heats the pulse tube inflow flow 56 on the inlet side of the second stage double inlet orifice 228 may be configured.
 あるいは、温度調整器62は、伝熱部材を介して第2段バッファ容積226と熱接触してもよい。伝熱部材は、バッファタンクに取り付けられ、バッファタンクから第2段ダブルインレット流路234まで延在してもよい。なお、作動ガスの圧縮熱は、第1段バッファ容積126、圧縮機12でも発生するから、温度調整器62は、第1段バッファ容積126または圧縮機12と熱接触してもよい。 Alternatively, the temperature controller 62 may be in thermal contact with the second stage buffer volume 226 via the heat transfer member. The heat transfer member may be attached to the buffer tank and extend from the buffer tank to the second stage double inlet flow path 234. Since the heat of compression of the working gas is also generated in the first stage buffer volume 126 and the compressor 12, the temperature regulator 62 may be in thermal contact with the first stage buffer volume 126 or the compressor 12.
 上述のように、ヒーター64とともに、またはヒーター64に代えて、パルス管流出流れ58を第2段ダブルインレットオリフィス228の出口側で冷却するクーラー66が第2段ダブルインレット流路234に設けられてもよい。ヒーター64とクーラー66は第2段ダブルインレットオリフィス228に対して逆の配置でもよい。 As described above, a cooler 66 for cooling the pulse tube outflow flow 58 on the outlet side of the second stage double inlet orifice 228 is provided in the second stage double inlet flow path 234 together with the heater 64 or in place of the heater 64. May be good. The heater 64 and the cooler 66 may be arranged in reverse with respect to the second stage double inlet orifice 228.
 図4に示されるパルス管冷凍機10は、第2段パルス管216、第2段ダブルインレット流路234、および蓄冷器(118、218)を含むループ経路を有する。したがって、このループ経路にDCフロー68が発生しうる。第2段ダブルインレットオリフィス228に温度調整器62を組み合わせることにより、パルス管冷凍機10のDCフロー68を調節することができる。 The pulse tube refrigerator 10 shown in FIG. 4 has a loop path including a second stage pulse tube 216, a second stage double inlet flow path 234, and a regenerator (118, 218). Therefore, DC flow 68 can occur in this loop path. By combining the temperature controller 62 with the second-stage double inlet orifice 228, the DC flow 68 of the pulse tube refrigerator 10 can be adjusted.
 なお、第2段ダブルインレット流路234は、第2段ダブルインレットオリフィス228と直列に接続された流路抵抗部54を第2段ダブルインレットオリフィス228とは別に有してもよく、この流路抵抗部54によりDCフロー68を発生させてもよい。 The second-stage double inlet orifice 234 may have a flow path resistance portion 54 connected in series with the second-stage double inlet orifice 228 separately from the second-stage double inlet orifice 228, and this flow path may be provided. The DC flow 68 may be generated by the resistance portion 54.
 図4に示されるパルス管冷凍機10は第1段にもループ経路を有するから、第1段にDCフローを発生させるために、第1段ダブルインレットオリフィス128と組み合わせて第1段ダブルインレット流路134に温度調整器62が設けられてもよい。 Since the pulse tube refrigerator 10 shown in FIG. 4 also has a loop path in the first stage, the first stage double inlet flow is combined with the first stage double inlet orifice 128 in order to generate a DC flow in the first stage. A temperature regulator 62 may be provided on the path 134.
 図5は、実施の形態に係るパルス管冷凍機10の他の例を概略的に示す図である。図5に示されるパルス管冷凍機10は、GM方式の4バルブ型の二段パルス管冷凍機である。よって、パルス管冷凍機10は、ダブルインレット流路に代えて、第1段副圧力切替弁(V3,V4)と第2段副圧力切替弁(V5,V6)を備える。以下では、両者の異なる構成を中心に説明し、共通する構成については簡単に説明するか、あるいは説明を省略する。 FIG. 5 is a diagram schematically showing another example of the pulse tube refrigerator 10 according to the embodiment. The pulse tube refrigerator 10 shown in FIG. 5 is a GM type 4-valve type two-stage pulse tube refrigerator. Therefore, the pulse tube refrigerator 10 includes a first-stage sub-pressure switching valve (V3, V4) and a second-stage sub-pressure switching valve (V5, V6) instead of the double inlet flow path. In the following, the different configurations of the two will be mainly described, and the common configurations will be briefly described or omitted.
 第1段副圧力切替弁(V3,V4)は、第1段パルス管116の高温端を圧縮機12の吐出口と吸入口に交互に接続する。第1段副圧力切替弁(V3,V4)は、第1段パルス管連通路140により第1段パルス管116の高温端に接続される。第1段パルス管連通路140は、第1段流量調整要素142を有する。同様に、第2段副圧力切替弁(V5,V6)は、第2段パルス管216の高温端を圧縮機12の吐出口と吸入口に交互に接続する。第2段副圧力切替弁(V5,V6)は、第2段パルス管連通路240により第2段パルス管216の高温端に接続される。第2段パルス管連通路240は、第2段流量調整要素242を有する。GM方式の4バルブ型のパルス管冷凍機それ自体はよく知られているから、パルス管冷凍機10の各構成要素の詳細な説明は省略する。 The first-stage sub-pressure switching valves (V3, V4) alternately connect the high-temperature ends of the first-stage pulse tube 116 to the discharge port and the suction port of the compressor 12. The first-stage sub-pressure switching valves (V3, V4) are connected to the high-temperature end of the first-stage pulse tube 116 by the first-stage pulse tube communication passage 140. The first-stage pulse tube communication passage 140 has a first-stage flow rate adjusting element 142. Similarly, the second-stage sub-pressure switching valves (V5, V6) alternately connect the high-temperature ends of the second-stage pulse tube 216 to the discharge port and the suction port of the compressor 12. The second-stage sub-pressure switching valve (V5, V6) is connected to the high temperature end of the second-stage pulse tube 216 by the second-stage pulse tube communication passage 240. The second-stage pulse tube communication passage 240 has a second-stage flow rate adjusting element 242. Since the GM type 4-valve type pulse tube refrigerator itself is well known, detailed description of each component of the pulse tube refrigerator 10 will be omitted.
 図5に示されるパルス管冷凍機10の第2段パルス管連通路240および第2段流量調整要素242がそれぞれ、図1に示される双方向流路52および流路抵抗部54に相当する。よって、温度調整器62は、第2段パルス管連通路240に設けられている。温度調整器62は、第2段バッファ容積226と熱接触している。このようにして、パルス管流入流れ56を第2段流量調整要素242の入口側で加熱するヒーター64が構成される。 The second-stage pulse tube communication passage 240 and the second-stage flow rate adjusting element 242 of the pulse tube refrigerator 10 shown in FIG. 5 correspond to the bidirectional flow path 52 and the flow path resistance portion 54 shown in FIG. 1, respectively. Therefore, the temperature regulator 62 is provided in the second-stage pulse tube connecting passage 240. The temperature controller 62 is in thermal contact with the second stage buffer volume 226. In this way, the heater 64 that heats the pulse tube inflow flow 56 on the inlet side of the second stage flow rate adjusting element 242 is configured.
 上述のように、ヒーター64とともに、またはヒーター64に代えて、パルス管流出流れ58を第2段流量調整要素242の出口側で冷却するクーラー66が第2段パルス管連通路240に設けられてもよい。ヒーター64とクーラー66は第2段流量調整要素242に対して逆の配置でもよい。 As described above, a cooler 66 for cooling the pulse tube outflow flow 58 at the outlet side of the second stage flow rate adjusting element 242 is provided in the second stage pulse pipe connecting passage 240 together with the heater 64 or in place of the heater 64. May be good. The heater 64 and the cooler 66 may be arranged in reverse with respect to the second stage flow rate adjusting element 242.
 図5に示されるパルス管冷凍機10は、圧縮機12、第2段パルス管216、および蓄冷器(118、218)を含むループ経路を有する。したがって、このループ経路にDCフロー68が発生しうる。第2段流量調整要素242に温度調整器62を組み合わせることにより、パルス管冷凍機10のDCフロー68を調節することができる。 The pulse tube refrigerator 10 shown in FIG. 5 has a loop path including a compressor 12, a second stage pulse tube 216, and a regenerator (118, 218). Therefore, DC flow 68 can occur in this loop path. By combining the temperature regulator 62 with the second stage flow rate adjusting element 242, the DC flow 68 of the pulse tube refrigerator 10 can be adjusted.
 図5に示されるパルス管冷凍機10は第1段にもループ経路を有するから、第1段にDCフローを発生させるために、第1段流量調整要素142と組み合わせて第1段パルス管連通路140に温度調整器62が設けられてもよい。 Since the pulse tube refrigerator 10 shown in FIG. 5 also has a loop path in the first stage, the first stage pulse tube series is combined with the first stage flow rate adjusting element 142 in order to generate a DC flow in the first stage. A temperature controller 62 may be provided in the passage 140.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。ある実施の形態に関連して説明した種々の特徴は、他の実施の形態にも適用可能である。組合せによって生じる新たな実施の形態は、組み合わされる実施の形態それぞれの効果をあわせもつ。 The present invention has been described above based on examples. It will be understood by those skilled in the art that the present invention is not limited to the above embodiment, various design changes are possible, various modifications are possible, and such modifications are also within the scope of the present invention. By the way. The various features described in relation to one embodiment are also applicable to other embodiments. The new embodiments resulting from the combination have the effects of each of the combined embodiments.
 上述の実施の形態では、流路抵抗部54は、固定または可変のオリフィスであるが、これに限られない。例えば、流路抵抗部54は、ニードルバルブまたはその他のバルブでもよい。この場合にも、流路抵抗部54に温度調整器62を組み合わせることにより、パルス管冷凍機10におけるDCフローを調節することができる。 In the above-described embodiment, the flow path resistance portion 54 is a fixed or variable orifice, but the present invention is not limited to this. For example, the flow path resistance portion 54 may be a needle valve or other valve. Also in this case, the DC flow in the pulse tube refrigerator 10 can be adjusted by combining the flow path resistance portion 54 with the temperature regulator 62.
 上述の実施の形態では、双方向流路52は、パルス管50の高温端に接続される。取り扱いを容易にするうえで、流路抵抗部54と温度調整器62を高温側に設けることが有利である。しかし、双方向流路52は、パルス管と蓄冷器の低温端どうしをつなぐ流路であってもよい。原理的には、こうした低温側の双方向流路に流路抵抗部54と温度調整器62を設けることによっても、DCフローは発生しうる。 In the above-described embodiment, the bidirectional flow path 52 is connected to the high temperature end of the pulse tube 50. In order to facilitate handling, it is advantageous to provide the flow path resistance portion 54 and the temperature controller 62 on the high temperature side. However, the bidirectional flow path 52 may be a flow path connecting the pulse tube and the low temperature ends of the regenerator. In principle, DC flow can also be generated by providing the flow path resistance portion 54 and the temperature controller 62 in the bidirectional flow path on the low temperature side.
 上述の実施の形態では、ダブルインレット型、4バルブ型のパルス管冷凍機を例に挙げて説明したが、本実施形態に係るDCフロー発生器は、パルス管を含む作動ガスのループ経路が形成されるそのほかのパルス管冷凍機にも適用できる。また、パルス管冷凍機は、単段式、または三段そのほかの多段式のパルス管冷凍機であってもよい。 In the above-described embodiment, the double inlet type and 4-valve type pulse tube refrigerator have been described as an example, but in the DC flow generator according to the present embodiment, a loop path of the working gas including the pulse tube is formed. It can also be applied to other pulse tube refrigerators. Further, the pulse tube refrigerator may be a single-stage type, a three-stage or other multi-stage type pulse tube refrigerator.
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。 Although the present invention has been described using specific terms and phrases based on the embodiments, the embodiments show only one aspect of the principles and applications of the present invention, and the embodiments are claimed. Many modifications and arrangement changes are permitted within the range not departing from the idea of the present invention defined in the scope.
 本発明は、パルス管冷凍機の分野における利用が可能である。 The present invention can be used in the field of pulse tube refrigerators.
 10 パルス管冷凍機、 50 パルス管、 52 双方向流路、 54 流路抵抗部、 56 パルス管流入流れ、 58 パルス管流出流れ、 62 温度調整器、 64 ヒーター、 66 クーラー。 10 pulse tube refrigerator, 50 pulse tube, 52 bidirectional flow path, 54 flow path resistance part, 56 pulse tube inflow flow, 58 pulse tube outflow flow, 62 temperature controller, 64 heater, 66 cooler.

Claims (8)

  1.  パルス管と、
     前記パルス管に接続され、パルス管流入流れとパルス管流出流れが交互に流れる双方向流路であって、流路抵抗部を有し、前記パルス管流入流れが前記流路抵抗部をその入口側から通過し、前記パルス管流出流れが前記流路抵抗部をその出口側から通過する双方向流路と、
     前記パルス管流入流れを前記流路抵抗部の入口側で第1温度に調整し、前記パルス管流出流れを前記流路抵抗部の出口側で前記第1温度と異なる第2温度に調整するように、前記双方向流路に設けられた温度調整器と、を備えることを特徴とするパルス管冷凍機。
    With a pulse tube
    It is a bidirectional flow path connected to the pulse tube and in which a pulse tube inflow flow and a pulse tube outflow flow alternately flow, and has a flow path resistance portion, and the pulse tube inflow flow enters the flow path resistance portion. A bidirectional flow path that passes from the side and the pulse tube outflow flow passes through the flow path resistance portion from the outlet side.
    The pulse tube inflow flow is adjusted to the first temperature on the inlet side of the flow path resistance portion, and the pulse tube outflow flow is adjusted to a second temperature different from the first temperature on the outlet side of the flow path resistance portion. A pulse tube refrigerator comprising a temperature controller provided in the bidirectional flow path.
  2.  前記温度調整器は、前記パルス管流入流れを前記流路抵抗部の入口側で加熱するヒーターを備えることを特徴とする請求項1に記載のパルス管冷凍機。 The pulse tube refrigerator according to claim 1, wherein the temperature controller includes a heater that heats the pulse tube inflow flow on the inlet side of the flow path resistance portion.
  3.  前記温度調整器は、前記パルス管流出流れを前記流路抵抗部の出口側で冷却するクーラーを備えることを特徴とする請求項1または2に記載のパルス管冷凍機。 The pulse tube refrigerator according to claim 1 or 2, wherein the temperature controller includes a cooler that cools the pulse tube outflow flow on the outlet side of the flow path resistance portion.
  4.  前記温度調整器は、前記パルス管流出流れを前記流路抵抗部の出口側で加熱するヒーターを備えることを特徴とする請求項1に記載のパルス管冷凍機。 The pulse tube refrigerator according to claim 1, wherein the temperature controller includes a heater that heats the pulse tube outflow flow on the outlet side of the flow path resistance portion.
  5.  前記温度調整器は、前記パルス管流入流れを前記流路抵抗部の入口側で冷却するクーラーを備えることを特徴とする請求項1または4に記載のパルス管冷凍機。 The pulse tube refrigerator according to claim 1 or 4, wherein the temperature controller includes a cooler that cools the pulse tube inflow flow on the inlet side of the flow path resistance portion.
  6.  前記パルス管に接続されたバッファ容積をさらに備え、
     前記温度調整器は、前記バッファ容積と熱接触していることを特徴とする請求項1から5のいずれかに記載のパルス管冷凍機。
    Further comprising a buffer volume connected to the pulse tube
    The pulse tube refrigerator according to any one of claims 1 to 5, wherein the temperature controller is in thermal contact with the buffer volume.
  7.  前記パルス管冷凍機は、ダブルインレット型の二段パルス管冷凍機であり、前記パルス管は、第二段パルス管であり、
     前記第二段パルス管の低温端に接続された蓄冷器をさらに備え、
     前記双方向流路は、前記蓄冷器をバイパスして前記第二段パルス管の高温端に接続されたダブルインレット流路であることを特徴とする請求項1から6のいずれかに記載のパルス管冷凍機。
    The pulse tube refrigerator is a double inlet type two-stage pulse tube refrigerator, and the pulse tube is a second-stage pulse tube.
    Further equipped with a cold storage connected to the low temperature end of the second stage pulse tube,
    The pulse according to any one of claims 1 to 6, wherein the bidirectional flow path is a double inlet flow path that bypasses the refrigerator and is connected to a high temperature end of the second stage pulse tube. Tube refrigerator.
  8.  前記パルス管冷凍機は、4バルブ型の二段パルス管冷凍機であり、前記パルス管は、第二段パルス管であり、
     圧縮機と、前記第二段パルス管の高温端を前記圧縮機の吐出口と吸入口に交互に接続する圧力切替弁と、をさらに備え、
     前記双方向流路は、前記圧力切替弁を前記第二段パルス管の高温端に接続することを特徴とする請求項1から6のいずれかに記載のパルス管冷凍機。
    The pulse tube refrigerator is a 4-valve type two-stage pulse tube refrigerator, and the pulse tube is a second-stage pulse tube.
    Further provided with a compressor and a pressure switching valve for alternately connecting the high temperature end of the second stage pulse tube to the discharge port and the suction port of the compressor.
    The pulse tube refrigerator according to any one of claims 1 to 6, wherein the bidirectional flow path connects the pressure switching valve to a high temperature end of the second stage pulse tube.
PCT/JP2021/003503 2020-03-23 2021-02-01 Pulse tube refrigerator WO2021192611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020051332A JP2021148395A (en) 2020-03-23 2020-03-23 Pulse tube refrigerator
JP2020-051332 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021192611A1 true WO2021192611A1 (en) 2021-09-30

Family

ID=77848286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003503 WO2021192611A1 (en) 2020-03-23 2021-02-01 Pulse tube refrigerator

Country Status (2)

Country Link
JP (1) JP2021148395A (en)
WO (1) WO2021192611A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313645A (en) * 1993-04-28 1994-11-08 Aisin Seiki Co Ltd Cooling equipment for object
JP2001241792A (en) * 2000-02-24 2001-09-07 Sumitomo Heavy Ind Ltd Pulse tube refrigerating machine and method for operating the same
JP2006234338A (en) * 2005-02-28 2006-09-07 Iwatani Industrial Gases Corp Two-stage pulse tube refrigerator
JP2016057016A (en) * 2014-09-10 2016-04-21 住友重機械工業株式会社 Stirling type pulse tube refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313645A (en) * 1993-04-28 1994-11-08 Aisin Seiki Co Ltd Cooling equipment for object
JP2001241792A (en) * 2000-02-24 2001-09-07 Sumitomo Heavy Ind Ltd Pulse tube refrigerating machine and method for operating the same
JP2006234338A (en) * 2005-02-28 2006-09-07 Iwatani Industrial Gases Corp Two-stage pulse tube refrigerator
JP2016057016A (en) * 2014-09-10 2016-04-21 住友重機械工業株式会社 Stirling type pulse tube refrigerator

Also Published As

Publication number Publication date
JP2021148395A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JPH10132404A (en) Pulse pipe freezer
CN107328130B (en) Multi-stage pulse tube refrigerator system adopting active phase modulation mechanism and adjusting method thereof
TWI716097B (en) Temperature control system
US20070261416A1 (en) Hybrid cryocooler with multiple passive stages
CN105783319B (en) The low temperature J T j-t refrigerators of philip refrigerator precooling
JP3702964B2 (en) Multistage low temperature refrigerator
JP3806185B2 (en) Thermal storage type refrigerator with fluid control mechanism and pulse tube type refrigerator with fluid control mechanism
JP5882110B2 (en) Regenerator type refrigerator, regenerator
WO2021192611A1 (en) Pulse tube refrigerator
CN113803905A (en) Efficient precooling and liquefying system of clearance type refrigerating machine
WO2021192721A1 (en) Pulse tube refrigerator
CN105509361B (en) The multistage philip refrigerator of sound work(transmission part with barrier flowing
US7305835B2 (en) Pulse tube cooling by circulation of buffer gas
US5575155A (en) Cooling system
US20150033766A1 (en) Refrigerator
JP2015117838A (en) Regenerative refrigerator
JP2013217516A (en) Regenerative refrigerator
US7047750B2 (en) Pulse tube refrigerating machine
JP2007502928A (en) Vacuum equipment
TWI759219B (en) Stirling freezer
WO2020235554A1 (en) Pulse pipe refrigerator, and cold head for pulse pipe refrigerator
CN1388344A (en) Space cryogenic refrigerator with combined radiation refrigeration and pulse tube refrigeration
JP2000220902A (en) Cooler
US20220049878A1 (en) Hybrid double-inlet valve for pulse tube cryocooler
Zhu et al. Numerical simulation of a step-piston type series two-stage pulse tube refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21777042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21777042

Country of ref document: EP

Kind code of ref document: A1