JP2001241792A - Pulse tube refrigerating machine and method for operating the same - Google Patents

Pulse tube refrigerating machine and method for operating the same

Info

Publication number
JP2001241792A
JP2001241792A JP2000047567A JP2000047567A JP2001241792A JP 2001241792 A JP2001241792 A JP 2001241792A JP 2000047567 A JP2000047567 A JP 2000047567A JP 2000047567 A JP2000047567 A JP 2000047567A JP 2001241792 A JP2001241792 A JP 2001241792A
Authority
JP
Japan
Prior art keywords
pulse tube
regenerator
gas
temperature end
buffer tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000047567A
Other languages
Japanese (ja)
Other versions
JP3589401B2 (en
Inventor
Tama Ri
瑞 李
Tomohiro Koyama
知大 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2000047567A priority Critical patent/JP3589401B2/en
Publication of JP2001241792A publication Critical patent/JP2001241792A/en
Application granted granted Critical
Publication of JP3589401B2 publication Critical patent/JP3589401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulse tube refrigerating machine which can adjust cooling temperature and can be easily maintained and managed. SOLUTION: A cold storage device having a high temperature end and a low temperature end defined therein performs a heat exchange between working gas flowing therein and itself. A cooling stage, connects the low temperature end of a pulse tube having a high temperature end and a low temperature end defined therein to the low temperature end of the cold storage device. The cooling stage has a gas passage through which the gas passage of the cold storage device communicates with the inner hollow part of the pulse tube. A pressure vibration source is connected to the high temperature end of the cold storage device. The pressure vibration source periodically repeated the supply of the working gas to the gas passage in the cold storage device and the recovery of the working gas from the gas passage in the cold storage device. A buffer means has an inner hollow part capable of changing an effective volume. The inner hollow part of the pulse tube communicates with the inner hollow part of the buffer means through a gas transport path.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パルス管冷凍機に
関し、特に冷却温度と冷凍能力を調節することが可能な
パルス管冷凍機に関する。
The present invention relates to a pulse tube refrigerator, and more particularly, to a pulse tube refrigerator capable of adjusting a cooling temperature and a refrigerating capacity.

【0002】[0002]

【従来の技術】パルス管冷凍機は、低温部に可動部分が
なく構造も簡単である。このため、振動の少ない冷凍機
として、多くの低温機器に用いられている。低温機器が
必要とする冷却温度または冷凍能力は多種多様である。
また、運転状況、時間、季節等によって、必要とされる
冷却温度または冷凍能力が変動する場合もある。このよ
うな要求に応えるために、冷却温度や冷凍能力を調節す
る機構が必要となる。
2. Description of the Related Art A pulse tube refrigerator has a simple structure with no moving parts in a low temperature part. For this reason, it is used in many low-temperature devices as a refrigerator having less vibration. The cooling temperature or refrigeration capacity required by cryogenic equipment varies widely.
Further, the required cooling temperature or refrigeration capacity may fluctuate depending on the operating conditions, time, season, and the like. In order to meet such demands, a mechanism for adjusting the cooling temperature and the refrigeration capacity is required.

【0003】冷却温度や冷凍能力を調節するために、冷
却ステージに電気ヒータを熱的に結合させる方法が知ら
れている。パルス管冷凍機の余分の冷凍能力を電気ヒー
タからの発熱により相殺し、冷凍能力を調節することが
できる。
[0003] In order to adjust the cooling temperature and the refrigerating capacity, a method is known in which an electric heater is thermally coupled to a cooling stage. The excess refrigerating capacity of the pulse tube refrigerator can be offset by the heat generated from the electric heater, and the refrigerating capacity can be adjusted.

【0004】[0004]

【発明が解決しようとする課題】冷却ステージは、通
常、真空容器内に配置される。電気ヒータが故障する
と、電気ヒータを修理するために、冷凍機の運転を停止
して低温部分を室温まで昇温させ、真空容器内から冷却
ステージを取り出す必要がある。運転開始時には、低温
ステージを真空容器内に配置し、真空容器内を真空排気
しなければならない。
The cooling stage is usually arranged in a vacuum vessel. When the electric heater breaks down, it is necessary to stop the operation of the refrigerator, raise the temperature of the low-temperature part to room temperature, and take out the cooling stage from the vacuum vessel in order to repair the electric heater. At the start of operation, the low-temperature stage must be placed in a vacuum vessel and the inside of the vacuum vessel must be evacuated.

【0005】本発明の目的は、冷却温度を調節すること
ができ、かつ維持管理の容易なパルス管冷凍機を提供す
ることである。
An object of the present invention is to provide a pulse tube refrigerator which can control the cooling temperature and can be easily maintained.

【0006】[0006]

【課題を解決するための手段】本発明の一観点による
と、高温端と低温端とが画定され、内部にガス流路を有
し、内部を流れる作動ガスと熱交換を行う蓄冷器と、高
温端と低温端とが画定され、内部空洞を有するパルス管
と、前記蓄冷器とパルス管との低温端同士を接続し、前
記蓄冷器内のガス流路と前記パルス管の内部空洞とを連
通させるガス流路を有する冷却ステージと、前記蓄冷器
の高温端に接続され、該蓄冷器内のガス流路への作動ガ
スの供給と、該蓄冷器内のガス流路からの作動ガスの回
収とを周期的に繰り返す圧力振動源と、実効的な容積を
変化させることが可能な内部空洞を有するバッファ手段
と、前記パルス管の内部空洞と前記バッファ手段の内部
空洞とを連通させるガス輸送路とを有するパルス管冷凍
機が提供される。
According to one aspect of the present invention, a regenerator having a high-temperature end and a low-temperature end defined therein, having a gas flow path therein, and performing heat exchange with a working gas flowing therein; A high-temperature end and a low-temperature end are defined, the pulse tube having an internal cavity, the low-temperature ends of the regenerator and the pulse tube are connected to each other, and a gas flow path in the regenerator and an internal cavity of the pulse tube are formed. A cooling stage having a gas flow path to be communicated, connected to a high-temperature end of the regenerator, supplying a working gas to a gas flow path in the regenerator, and supplying a working gas from the gas flow path in the regenerator A pressure vibration source that periodically repeats collection, a buffer means having an internal cavity capable of changing an effective volume, and a gas transport that communicates the internal cavity of the pulse tube with the internal cavity of the buffer means. A pulse tube refrigerator having a path is provided.

【0007】バッファ手段の内部空洞の容積を変化させ
ることにより、冷凍能力を変えることができる。
The refrigeration capacity can be changed by changing the volume of the internal cavity of the buffer means.

【0008】[0008]

【発明の実施の形態】図1に、本発明の第1の実施例に
よるパルス管冷凍機の概略図を示す。蓄冷器1の低温端
1Lとパルス管2の低温端2Lとが、冷却ステージ4に
より接続されている。蓄冷器1は、例えばステンレス管
内に、蓄冷材3を充填したものである。蓄冷材3は、例
えばステンレス金網であり、蓄冷器1内を流れる作動ガ
スと熱交換を行う。パルス管2は、例えば内径3〜30
mmの中空のステンレス管である。冷却ステージ4は、
銅製のブロックであり、その内部にガス流路5が形成さ
れている。ガス流路5は、蓄冷器1内の空間とパルス管
2内の空間とを連通させる。冷却ステージ4に、温度セ
ンサ7が取り付けられている。
FIG. 1 is a schematic view of a pulse tube refrigerator according to a first embodiment of the present invention. A low-temperature end 1L of the regenerator 1 and a low-temperature end 2L of the pulse tube 2 are connected by a cooling stage 4. The regenerator 1 is, for example, a stainless tube filled with a regenerator material 3. The cold storage material 3 is, for example, a stainless wire mesh, and exchanges heat with the working gas flowing in the cold storage 1. The pulse tube 2 has, for example, an inner diameter of 3 to 30.
mm hollow stainless steel tube. The cooling stage 4
The block is made of copper, and has a gas passage 5 formed therein. The gas flow path 5 communicates the space inside the regenerator 1 with the space inside the pulse tube 2. A temperature sensor 7 is attached to the cooling stage 4.

【0009】蓄冷器1、パルス管2、及び冷却ステージ
4は、真空容器6内に配置される。蓄冷器1の高温端1
H及びパルス管2の高温端2Hが、真空容器6の壁に固
定される。パルス管2の高温端2Hに、放熱フィンが取
り付けられている。
The regenerator 1, the pulse tube 2, and the cooling stage 4 are arranged in a vacuum vessel 6. High temperature end 1 of regenerator 1
H and the hot end 2H of the pulse tube 2 are fixed to the wall of the vacuum vessel 6. A radiation fin is attached to the high-temperature end 2H of the pulse tube 2.

【0010】蓄冷器1の高温端1Hに、圧力振動源10
が接続されている。圧力振動源10は、ガス圧縮機1
1、ロータリバルブ12を含んで構成される。ガス圧縮
機11のガス排出口及び吸気口が、ロータリバルブ12
を介して蓄冷器1の高温端1Hに接続されている。ロー
タリバルブ12を回転させると、ガス圧縮機11のガス
排出口が蓄冷器1に連通するガス供給フェーズと、吸気
口が蓄冷器1に連通するガス回収フェーズとが交互に繰
り返される。
A high-temperature end 1H of the regenerator 1 is provided with a pressure vibration source 10
Is connected. The pressure vibration source 10 includes the gas compressor 1
1. It is configured to include the rotary valve 12. The gas outlet and the inlet of the gas compressor 11 are connected to the rotary valve 12.
Is connected to the high-temperature end 1H of the regenerator 1. When the rotary valve 12 is rotated, a gas supply phase in which the gas discharge port of the gas compressor 11 communicates with the regenerator 1 and a gas recovery phase in which the intake port communicates with the regenerator 1 are alternately repeated.

【0011】ガス供給フェーズには、高圧の作動ガス、
例えばヘリウムガスが蓄冷器1の高温端1Hに供給され
る。ガス回収フェーズには、作動ガスが、蓄冷器1の高
温端1Hからガス圧縮機11に回収される。
In the gas supply phase, a high-pressure working gas,
For example, helium gas is supplied to the high temperature end 1H of the regenerator 1. In the gas recovery phase, the working gas is recovered by the gas compressor 11 from the high temperature end 1H of the regenerator 1.

【0012】ガス輸送路21の一端が、パルス管2の高
温端2Hに接続されている。ガス輸送路21内に、内径
0.2〜1mmのオリフィス20が配置されている。オ
リフィス20は、ガス輸送路21内を流れる作動ガスに
対して流路抵抗として作用する。ガス輸送路21の他端
に、4本の分岐路22a〜22dが連結している。分岐
路22a〜22dは、それぞれ開閉弁23a〜23dを
介してバッファタンク25a〜25dに接続されてい
る。バッファタンク25a〜25dの容積は、それぞれ
100cm3、200cm3、400cm3、及び800
cm3である。開閉弁23a〜23dは、例えば手動の
ボールバルブである。
One end of the gas transport path 21 is connected to the high temperature end 2H of the pulse tube 2. An orifice 20 having an inner diameter of 0.2 to 1 mm is arranged in the gas transport path 21. The orifice 20 acts as a flow path resistance for the working gas flowing in the gas transport path 21. Four branch paths 22a to 22d are connected to the other end of the gas transport path 21. The branch paths 22a to 22d are connected to buffer tanks 25a to 25d via on-off valves 23a to 23d, respectively. The volume of the buffer tank 25a~25d are each 100 cm 3, 200 cm 3, 400 cm 3, and 800
cm 3 . The on-off valves 23a to 23d are, for example, manual ball valves.

【0013】開閉弁23a〜23dの開閉により、バッ
ファタンクの合計容積を変化させることができる。例え
ば、開閉弁23aを開け、他の開閉弁を閉じると、バッ
ファタンクの合計容積は100cm3になり、開閉弁2
3aと23bを開け、他の開閉弁を閉じると、バッファ
タンクの合計容積は300cm3になる。すなわち、複
数のバッファタンク25a〜25d及び開閉弁23a〜
23dは、実効的に、容積可変のひとつのバッファタン
クを取り付けた場合と同様の機能を果たす。
The total volume of the buffer tank can be changed by opening and closing the on-off valves 23a to 23d. For example, when the on-off valve 23a is opened and the other on-off valves are closed, the total volume of the buffer tank becomes 100 cm 3 and the on-off valve 2
When 3a and 23b are opened and the other on-off valves are closed, the total volume of the buffer tank becomes 300 cm 3 . That is, the plurality of buffer tanks 25a to 25d and the on-off valves 23a to 23d
23d effectively performs the same function as when one buffer tank having a variable volume is attached.

【0014】圧力振動源10を運転し、作動ガスの供給
と回収を繰り返すと、パルス管2の低温端2Lで吸熱が
生じ、高温端2Hで発熱が生ずる。低温端2Lで吸熱が
生ずることにより、冷却ステージ4が冷却される。高温
端2Hで発生した熱は、放熱フィンから放熱される。
When the supply and recovery of the working gas are repeated by operating the pressure vibration source 10, heat is absorbed at the low temperature end 2L of the pulse tube 2 and heat is generated at the high temperature end 2H. Heat generation occurs at the low temperature end 2L, so that the cooling stage 4 is cooled. The heat generated at the high temperature end 2H is radiated from the radiation fins.

【0015】図2は、図1に示すパルス管冷凍機を運転
した時の冷却ステージ4の温度を、バッファタンクの合
計容積の関数として示す。横軸はバッファタンクの合計
容積を単位「cm3」で表し、縦軸は冷却ステージの温
度を絶対温度で表す。運転周波数は2Hz、運転前のヘ
リウムガスの封入圧力は1.7MPaである。
FIG. 2 shows the temperature of the cooling stage 4 when operating the pulse tube refrigerator shown in FIG. 1 as a function of the total volume of the buffer tank. The horizontal axis represents the total volume of the buffer tank in units of “cm 3 ”, and the vertical axis represents the temperature of the cooling stage in absolute temperature. The operation frequency was 2 Hz, and the pressure of the filled helium gas before the operation was 1.7 MPa.

【0016】バッファタンクの合計容積が100cm3
から1500cm3までの範囲であれば、合計容積が増
加するに従って、冷却ステージ温度が低下する。すなわ
ち、冷凍能力が向上する。このように、バッファタンク
の容積を変化させることにより、冷却温度、及び冷凍能
力を調節することができる。
The total volume of the buffer tank is 100 cm 3
When the total volume increases, the cooling stage temperature decreases in the range from 1 to 1500 cm 3 . That is, the refrigeration capacity is improved. Thus, by changing the volume of the buffer tank, the cooling temperature and the refrigerating capacity can be adjusted.

【0017】第1のパルス管冷凍機を運転する場合に
は、まず、パルス管冷凍機に必要とされる冷凍能力を決
定する。これは、必要とされる到達温度、冷却ステージ
への熱の流入量等から決定することができる。次に、決
定された冷凍能力を発揮するためのバッファタンクの容
積を決定する。これは、例えば、図2に示すグラフから
求めることができる。バッファタンクの容積が、決定さ
れた容積になるように、開閉弁23a〜23bを適宜開
閉する。この状態でパルス管冷凍機を運転すると、所望
の冷凍能力を発揮でき、冷却ステージ4の温度を所望の
温度まで冷却することができる。
When operating the first pulse tube refrigerator, first, the refrigerating capacity required for the pulse tube refrigerator is determined. This can be determined from the required ultimate temperature, the amount of heat flowing into the cooling stage, and the like. Next, the capacity of the buffer tank for exhibiting the determined refrigeration capacity is determined. This can be determined, for example, from the graph shown in FIG. The on-off valves 23a to 23b are appropriately opened and closed so that the volume of the buffer tank becomes the determined volume. By operating the pulse tube refrigerator in this state, a desired refrigerating capacity can be exhibited, and the temperature of the cooling stage 4 can be cooled to a desired temperature.

【0018】次に、図3を参照して、第2の実施例によ
るパルス管冷凍機について説明する。第2の実施例によ
るパルス管冷凍機を、第1の実施例によるパルス管冷凍
機と比較すると、主としてバッファタンクの接続方法が
異なる。
Next, a pulse tube refrigerator according to a second embodiment will be described with reference to FIG. When the pulse tube refrigerator according to the second embodiment is compared with the pulse tube refrigerator according to the first embodiment, the connection method of the buffer tank differs mainly.

【0019】図3は、第2の実施例によるパルス管冷凍
機の概略図を示す。ここでは、図1に示す第1の実施例
によるパルス管冷凍機の構成と異なる部分についてのみ
説明する。図3に示すパルス管冷凍機の各構成部分に
は、図1に示すパルス管冷凍機の対応する構成部分に付
された参照符号と同一の参照符号が付されている。
FIG. 3 is a schematic view of a pulse tube refrigerator according to a second embodiment. Here, only the portions different from the configuration of the pulse tube refrigerator according to the first embodiment shown in FIG. 1 will be described. Each component of the pulse tube refrigerator shown in FIG. 3 is denoted by the same reference numeral as that of the corresponding component of the pulse tube refrigerator shown in FIG.

【0020】一方の端部がパルス管2の高温端2Hに接
続されたガス輸送路21の他方の端部に、開閉弁28
a、バッファタンク30a、開閉弁28b、バッファタ
ンク30b、開閉弁28c、バッファタンク30c、開
閉弁28d、及びバッファタンク30dが、この順番に
直列に接続されている。開閉弁28a〜28dは、例え
ば電磁弁であり、冷却ステージの温度に基づいて自動制
御される。
An on-off valve 28 is connected to the other end of the gas transport path 21 whose one end is connected to the high temperature end 2H of the pulse tube 2.
a, the buffer tank 30a, the on-off valve 28b, the buffer tank 30b, the on-off valve 28c, the buffer tank 30c, the on-off valve 28d, and the buffer tank 30d are connected in series in this order. The on-off valves 28a to 28d are, for example, electromagnetic valves, and are automatically controlled based on the temperature of the cooling stage.

【0021】圧力振動源10が、シリンダ15とピスト
ン16とを含んで構成される。シリンダ15とピストン
16により画定されたガス圧縮室が、ガス流路を介して
蓄冷器1の高温端1Hに接続されている。ピストン16
を往復駆動させることにより、蓄冷器1への作動ガスの
供給と、蓄冷器1からの作動ガスの回収が周期的に繰り
返される。なお、この圧力振動源10の代わりに、図1
に示す第1の実施例で用いたロータリバルブ型の圧力振
動源を用いてもよい。逆に、第1の実施例のパルス管冷
凍機に、図3に示すシリンダピストン型のガス圧縮機を
使用してもよい。
The pressure vibration source 10 includes a cylinder 15 and a piston 16. A gas compression chamber defined by a cylinder 15 and a piston 16 is connected to a high temperature end 1H of the regenerator 1 via a gas flow path. Piston 16
Is reciprocated, supply of the working gas to the regenerator 1 and collection of the working gas from the regenerator 1 are periodically repeated. Note that, instead of the pressure vibration source 10, FIG.
The rotary vibration source of the rotary valve type used in the first embodiment shown in FIG. Conversely, a cylinder piston type gas compressor shown in FIG. 3 may be used for the pulse tube refrigerator of the first embodiment.

【0022】蓄冷器1の高温端1Hとパルス管2の高温
端2Hとが、ガス流路によって相互に接続され、このガ
ス流路内にオリフィス20aが配置されている。オリフ
ィス20aを挿入することにより、パルス管2内の作動
ガスの圧力変化と体積変化の位相差を調整することがで
きる。位相差が適切に調整されると、冷凍効率を高める
ことができる。
The high-temperature end 1H of the regenerator 1 and the high-temperature end 2H of the pulse tube 2 are connected to each other by a gas flow path, and an orifice 20a is arranged in the gas flow path. By inserting the orifice 20a, the phase difference between the pressure change and the volume change of the working gas in the pulse tube 2 can be adjusted. When the phase difference is appropriately adjusted, the refrigeration efficiency can be increased.

【0023】第2の実施例の場合にも、開閉弁28a〜
28dを開閉状態を適宜変えることにより、バッファタ
ンクの実効的な容積を変化させることができる。また、
閉じられた開閉弁よりも、パルス管から遠い位置に接続
されたバッファタンク及び開閉弁を、冷凍機の運転中に
保守点検、及び交換することができる。
Also in the case of the second embodiment, the on-off valves 28a-28c
The effective volume of the buffer tank can be changed by appropriately changing the open / close state of 28d. Also,
The buffer tank and the on-off valve connected to a position farther from the pulse tube than the closed on-off valve can be maintained and inspected and replaced during operation of the refrigerator.

【0024】図4は、第3の実施例によるパルス管冷凍
機に用いられるバッファタンクの概略図を示す。このバ
ッファタンクは、シリンダ35、ピストン36、及び駆
動装置37を含んで構成される。シリンダ35内にピス
トン36が挿入され、シリンダ35とピストン36とに
より空洞38が画定される。駆動装置37は、ピストン
36の挿入量を変化させ、所望の位置でピストン36を
保持する。ピストン36の挿入量を変化させることによ
り、空洞38の容積を変化させることができる。空洞3
8が、ガス輸送路21を介して、パルス管の内部空洞に
連通している。第3の実施例の場合には、バッファタン
クの容積を連続的に変化させることができる。
FIG. 4 is a schematic view of a buffer tank used in a pulse tube refrigerator according to a third embodiment. The buffer tank includes a cylinder 35, a piston 36, and a driving device 37. A piston 36 is inserted into the cylinder 35, and a cavity 38 is defined by the cylinder 35 and the piston 36. The driving device 37 changes the insertion amount of the piston 36 and holds the piston 36 at a desired position. By changing the insertion amount of the piston 36, the volume of the cavity 38 can be changed. Cavity 3
8 communicates with the internal cavity of the pulse tube via a gas transport path 21. In the case of the third embodiment, the volume of the buffer tank can be changed continuously.

【0025】上記実施例によるパルス管冷凍機では、冷
却ステージの温度調整のためのバッファタンク及び開閉
弁が、真空容器の外に配置される。このため、電気ヒー
タで加熱する場合によく見られる放出ガスによる真空状
態への悪影響を防止することができる。また、真空容器
の真空状態を保ったまま、保守作業を行うことができ
る。
In the pulse tube refrigerator according to the above embodiment, the buffer tank and the on-off valve for adjusting the temperature of the cooling stage are arranged outside the vacuum vessel. For this reason, it is possible to prevent an adverse effect on the vacuum state due to released gas, which is often seen when heating with an electric heater. Further, maintenance work can be performed while maintaining the vacuum state of the vacuum container.

【0026】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせ等が可能なことは当業者に
自明であろう。
The present invention has been described in connection with the preferred embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
パルス管の高温端に接続されたバッファ手段の実効的な
容積を変化させることにより、冷却温度を調節すること
が可能になる。
As described above, according to the present invention,
By changing the effective volume of the buffer means connected to the hot end of the pulse tube, it is possible to adjust the cooling temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例によるパルス管冷凍機の
概略図である。
FIG. 1 is a schematic view of a pulse tube refrigerator according to a first embodiment of the present invention.

【図2】第1の実施例によるパルス管冷凍機の冷却ステ
ージの温度を、バッファタンクの実効的な容積の関数と
して示すグラフである。
FIG. 2 is a graph showing the temperature of the cooling stage of the pulse tube refrigerator according to the first embodiment as a function of the effective volume of the buffer tank.

【図3】本発明の第2の実施例によるパルス管冷凍機の
概略図である。
FIG. 3 is a schematic view of a pulse tube refrigerator according to a second embodiment of the present invention.

【図4】本発明の第3の実施例によるパルス管冷凍機に
用いられるバッファタンクの概略図である。
FIG. 4 is a schematic view of a buffer tank used in a pulse tube refrigerator according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 蓄冷器 2 パルス管 3 蓄冷材 4 冷却ステージ 5 ガス流路 6 真空容器 7 温度センサ 10 圧力振動源 11 ガス圧縮機 12 ロータリバルブ 15 シリンダ 16 ピストン 20、20a オリフィス 21 ガス輸送路 22a〜22d 分岐路 23a〜23d、28a〜28d 開閉弁 25a〜25d、30a〜30d バッファタンク 35 シリンダ 36 ピストン 37 駆動装置 38 空洞 REFERENCE SIGNS LIST 1 regenerator 2 pulse tube 3 regenerator material 4 cooling stage 5 gas flow path 6 vacuum vessel 7 temperature sensor 10 pressure vibration source 11 gas compressor 12 rotary valve 15 cylinder 16 piston 20, 20a orifice 21 gas transport path 22a to 22d branch path 23a to 23d, 28a to 28d On-off valve 25a to 25d, 30a to 30d Buffer tank 35 Cylinder 36 Piston 37 Drive unit 38 Cavity

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高温端と低温端とが画定され、内部にガ
ス流路を有し、内部を流れる作動ガスと熱交換を行う蓄
冷器と、 高温端と低温端とが画定され、内部空洞を有するパルス
管と、 前記蓄冷器とパルス管との低温端同士を接続し、前記蓄
冷器内のガス流路と前記パルス管の内部空洞とを連通さ
せるガス流路を有する冷却ステージと、 前記蓄冷器の高温端に接続され、該蓄冷器内のガス流路
への作動ガスの供給と、該蓄冷器内のガス流路からの作
動ガスの回収とを周期的に繰り返す圧力振動源と、 実効的な容積を変化させることが可能な内部空洞を有す
るバッファ手段と、 前記パルス管の内部空洞と前記バッファ手段の内部空洞
とを連通させるガス輸送路とを有するパルス管冷凍機。
1. A regenerator having a high temperature end and a low temperature end defined therein, having a gas flow passage therein for exchanging heat with a working gas flowing therein, a high temperature end and a low temperature end being defined, and an internal cavity formed therein. A cooling stage having a gas flow path connecting low-temperature ends of the regenerator and the pulse tube to each other, and communicating a gas flow path in the regenerator and an internal cavity of the pulse tube; A pressure vibration source connected to the high-temperature end of the regenerator and supplying a working gas to the gas flow path in the regenerator and periodically collecting and recovering the working gas from the gas flow path in the regenerator, A pulse tube refrigerator comprising: buffer means having an internal cavity capable of changing an effective volume; and a gas transport path communicating the internal cavity of the pulse tube with the internal cavity of the buffer means.
【請求項2】 前記ガス輸送路が、作動ガスに対して流
路抵抗として作用するオリフィスを有する請求項1に記
載のパルス管冷凍機。
2. The pulse tube refrigerator according to claim 1, wherein the gas transport path has an orifice acting as a flow path resistance for a working gas.
【請求項3】 前記バッファ手段が、 前記輸送路から分岐した複数の分岐路と、 前記分岐路の各々に接続されたバッファタンクと、 前記複数の分岐路の各々に取り付けられた開閉弁とを含
む請求項1または2に記載のパルス管冷凍機。
3. The buffer means includes: a plurality of branch paths branching from the transport path; a buffer tank connected to each of the branch paths; and an on-off valve attached to each of the plurality of branch paths. The pulse tube refrigerator according to claim 1, comprising:
【請求項4】 前記バッファ手段が、 直列に接続された複数のバッファタンクであって、少な
くともひとつが前記ガス輸送路に接続された前記バッフ
ァタンクと、 隣り合うバッファタンク間のガスの流れの開閉を行う開
閉弁とを含む請求項1または2に記載のパルス管冷凍
機。
4. The buffer means is a plurality of buffer tanks connected in series, at least one of which is connected to the gas transport path, and the opening and closing of gas flow between adjacent buffer tanks. The pulse tube refrigerator according to claim 1, further comprising: an on-off valve that performs the operation.
【請求項5】 蓄冷器、パルス管、該蓄冷器とパルス管
との低温端同士を接続する冷却ステージ、該蓄冷器への
作動ガスの供給と回収とを繰り返す圧力振動源、及び該
パルス管の高温端に接続された実効的容積可変のバッフ
ァタンクを含むパルス管冷凍機を準備する工程と、 前記パルス管冷凍機に必要とされる冷凍能力を決定する
工程と、 決定された冷凍能力を発揮するためのバッファタンクの
容積を決定し、前記バッファタンクの容積が、決定され
た容積になるように該バッファタンクの実効的な容積を
調節する工程とを有するパルス管冷凍機の運転方法。
5. A regenerator, a pulse tube, a cooling stage connecting low-temperature ends of the regenerator and the pulse tube, a pressure vibration source for repeating supply and recovery of a working gas to the regenerator, and the pulse tube Preparing a pulse tube refrigerator including a buffer tank of an effective volume variable connected to the high temperature end of; a step of determining a refrigerating capacity required for the pulse tube refrigerator; and Determining the volume of the buffer tank to be exercised, and adjusting the effective volume of the buffer tank so that the volume of the buffer tank becomes the determined volume.
JP2000047567A 2000-02-24 2000-02-24 Pulse tube refrigerator Expired - Fee Related JP3589401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000047567A JP3589401B2 (en) 2000-02-24 2000-02-24 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000047567A JP3589401B2 (en) 2000-02-24 2000-02-24 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JP2001241792A true JP2001241792A (en) 2001-09-07
JP3589401B2 JP3589401B2 (en) 2004-11-17

Family

ID=18569801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000047567A Expired - Fee Related JP3589401B2 (en) 2000-02-24 2000-02-24 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP3589401B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192611A1 (en) * 2020-03-23 2021-09-30 住友重機械工業株式会社 Pulse tube refrigerator
WO2022153713A1 (en) * 2021-01-14 2022-07-21 住友重機械工業株式会社 Pulse tube freezer and superconductive magnet apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192611A1 (en) * 2020-03-23 2021-09-30 住友重機械工業株式会社 Pulse tube refrigerator
WO2022153713A1 (en) * 2021-01-14 2022-07-21 住友重機械工業株式会社 Pulse tube freezer and superconductive magnet apparatus

Also Published As

Publication number Publication date
JP3589401B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
TWI583903B (en) Very low temperature refrigeration equipment, and very low temperature refrigeration device control method
CN102102934B (en) Refrigerator and operation control method thereof
JPH10132404A (en) Pulse pipe freezer
US6263677B1 (en) Multistage low-temperature refrigeration machine
CN105709452B (en) The control method of cold-trap and cold-trap
JP2880142B2 (en) Pulse tube refrigerator and method of operating the same
US6351954B1 (en) Pulse tube refrigerator
CN206269436U (en) A kind of flow controller for adapting to cryogenic quick freezing
JP3589401B2 (en) Pulse tube refrigerator
CN111854276B (en) Refrigerating appliance
US6393845B1 (en) Pulse tube refrigerator
JP2001248927A (en) Low-temperature device using pulse tube refrigeration unit
Duband et al. Experimental results on inertance and permanent flow in pulse tube coolers
JP6087168B2 (en) Cryogenic refrigerator
JP2016118372A (en) Cryogenic temperature refrigerator and operation method of cryogenic temperature refrigerator
RU2273808C2 (en) Refrigeration machine with pulsating pipe
JP2000205682A (en) Cooler
JP2000046426A (en) Temperature raising method for pulse pipe refrigerating machine
JPH08271074A (en) Pulse tube refrigerator
CN210772961U (en) Dryer assembly and refrigeration appliance with same
KR101233778B1 (en) Refrigerator having heating apparatus
CN219889808U (en) Refrigeration assembly and refrigeration equipment
KR20050063218A (en) Refrigerating cycle in direct cooling type refrigerator and method thereof
JPH0420754A (en) Freezer and method for adjusting its freezing capacity
JPH0136029B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees