WO2020235381A1 - 基板処理装置および基板処理方法 - Google Patents
基板処理装置および基板処理方法 Download PDFInfo
- Publication number
- WO2020235381A1 WO2020235381A1 PCT/JP2020/018854 JP2020018854W WO2020235381A1 WO 2020235381 A1 WO2020235381 A1 WO 2020235381A1 JP 2020018854 W JP2020018854 W JP 2020018854W WO 2020235381 A1 WO2020235381 A1 WO 2020235381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ozone water
- ozone
- supply line
- substrate processing
- substrate
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 218
- 239000000758 substrate Substances 0.000 title claims abstract description 146
- 238000003672 processing method Methods 0.000 title claims description 8
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 424
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 394
- 239000003085 diluting agent Substances 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 40
- 230000008569 process Effects 0.000 claims abstract description 23
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 147
- 239000007788 liquid Substances 0.000 claims description 65
- 238000011282 treatment Methods 0.000 claims description 55
- 239000000243 solution Substances 0.000 claims description 37
- 239000000126 substance Substances 0.000 claims description 33
- 239000002253 acid Substances 0.000 claims description 32
- 238000002156 mixing Methods 0.000 claims description 18
- 239000011259 mixed solution Substances 0.000 claims description 13
- 238000007865 diluting Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 108
- 229910021641 deionized water Inorganic materials 0.000 description 77
- 239000008367 deionised water Substances 0.000 description 67
- 239000007789 gas Substances 0.000 description 56
- 230000004048 modification Effects 0.000 description 16
- 238000012986 modification Methods 0.000 description 16
- 238000011084 recovery Methods 0.000 description 14
- 238000012546 transfer Methods 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 239000000498 cooling water Substances 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 229910001882 dioxygen Inorganic materials 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 239000002994 raw material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 108010004350 tyrosine-rich amelogenin polypeptide Proteins 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
Definitions
- the disclosed embodiment relates to a substrate processing apparatus and a substrate processing method.
- Patent Document 1 a technique for treating a substrate such as a semiconductor wafer (hereinafter, also referred to as a wafer) with ozone water is known (see Patent Document 1).
- the present disclosure provides a technique capable of performing a process requiring a high removal ability and a process not requiring a high removal ability while being mixed in one substrate processing apparatus.
- the substrate processing apparatus includes an ozone water generation unit, a substrate processing unit, an ozone water supply line, a diluent supply line, and a control unit.
- the ozone water generator generates ozone water having a given ozone concentration.
- the substrate processing unit processes the substrate.
- the ozone water supply line is interposed between the ozone water generation unit and the substrate processing unit, and supplies the ozone water to the substrate processing unit.
- the diluent supply line is connected to the ozone water supply line and supplies the diluent to the ozone water supply line.
- the control unit controls the ozone water generation unit, the substrate processing unit, the ozone water supply line, and the diluent supply line.
- the control unit controls the supply amount of the ozone water and the diluent to the substrate processing unit according to the recipe related to the processing of the substrate.
- a process that requires a high removal capacity and a process that does not require a high removal capacity can be performed while being mixed in one substrate processing apparatus.
- FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
- FIG. 2 is a schematic view showing a piping configuration of the substrate processing system according to the embodiment.
- FIG. 3 is a schematic view showing a configuration example of the processing unit according to the embodiment.
- FIG. 4 is a schematic cross-sectional view showing a configuration example of the liquid supply unit according to the embodiment.
- FIG. 5 is a schematic cross-sectional view showing another configuration example of the liquid supply unit according to the embodiment.
- FIG. 6 is a schematic view showing a piping configuration of the substrate processing system according to the first modification of the embodiment.
- FIG. 7 is a schematic view showing a piping configuration of the substrate processing system according to the second modification of the embodiment.
- FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
- FIG. 2 is a schematic view showing a piping configuration of the substrate processing system according to the embodiment.
- FIG. 3 is a schematic view showing
- FIG. 8 is a schematic view showing a piping configuration of the substrate processing system according to the third modification of the embodiment.
- FIG. 9 is a flowchart showing a substrate processing procedure executed by the substrate processing system according to the embodiment.
- FIG. 10 is a flowchart showing a procedure of ozone water generation processing executed by the substrate processing system according to the embodiment.
- a technique for treating a substrate such as a semiconductor wafer (hereinafter, also referred to as a wafer) with ozone water is known.
- a substrate such as a semiconductor wafer (hereinafter, also referred to as a wafer)
- ozone water the higher the ozone concentration in the liquid, the higher the ability to remove the resist film and residues on the substrate.
- the treatment liquid does not necessarily require high removal ability, such as the treatment for removing the residue after dry etching.
- the conventional technique it has been difficult to carry out a process that requires a high removal ability and a process that does not require a high removal ability while being mixed in one substrate processing apparatus.
- FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment.
- the substrate processing system 1 is an example of a substrate processing apparatus.
- the X-axis, Y-axis, and Z-axis that are orthogonal to each other are defined, and the positive direction of the Z-axis is defined as the vertically upward direction.
- the substrate processing system 1 includes a loading / unloading station 2 and a processing station 3.
- the loading / unloading station 2 and the processing station 3 are provided adjacent to each other.
- the loading / unloading station 2 includes a hoop mounting section 11 and a transport section 12.
- a plurality of substrates, in the embodiment, a plurality of hoops C for accommodating a semiconductor wafer W (hereinafter, referred to as a wafer W) in a horizontal state are mounted on the hoop mounting portion 11.
- the transport section 12 is provided adjacent to the hoop mounting section 11, and includes a substrate transport device 13 and a delivery section 14 inside.
- the substrate transfer device 13 includes a wafer holding mechanism for holding the wafer W. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and can rotate around the vertical axis, and transfers the wafer W between the hoop C and the delivery portion 14 by using the wafer holding mechanism. Do.
- the processing station 3 is provided adjacent to the transport unit 12.
- the processing station 3 includes a transport unit 15 and a plurality of processing units 16.
- the processing unit 16 is an example of a substrate processing unit.
- the plurality of processing units 16 are provided side by side on both sides of the transport unit 15.
- the transport unit 15 includes a substrate transport device 17 inside.
- the substrate transfer device 17 includes a wafer holding mechanism for holding the wafer W. Further, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and swivel around the vertical axis, and transfers the wafer W between the delivery unit 14 and the processing unit 16 by using the wafer holding mechanism. I do.
- the processing unit 16 performs predetermined substrate processing on the wafer W transported by the substrate transport device 17. Details of the processing unit 16 will be described later.
- the substrate processing system 1 includes a control device 4.
- the control device 4 is, for example, a computer, and includes a control unit 18 and a storage unit 19.
- the storage unit 19 stores programs that control various processes executed in the substrate processing system 1.
- the control unit 18 controls the operation of the substrate processing system 1 by reading and executing the program stored in the storage unit 19.
- Such a program may be recorded on a storage medium readable by a computer, and may be installed from the storage medium in the storage unit 19 of the control device 4.
- Examples of storage media that can be read by a computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card.
- the substrate processing system 1 includes an ozone water generation unit 5.
- the ozone water generation unit 5 generates ozone water having a given ozone concentration, and supplies the generated ozone water to the processing unit 16. The details of the ozone water generation unit 5 will be described later.
- the substrate transfer device 13 of the loading / unloading station 2 takes out the wafer W from the hoop C mounted on the hoop mounting portion 11, and receives the taken out wafer W. Placed on Watanabe 14.
- the wafer W placed on the delivery section 14 is taken out from the delivery section 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16.
- the wafer W carried into the processing unit 16 is processed by the processing unit 16, then carried out from the processing unit 16 by the substrate transfer device 17, and placed on the delivery unit 14. Then, the processed wafer W placed on the delivery section 14 is returned to the hoop C of the hoop mounting section 11 by the substrate transfer device 13.
- FIG. 2 is a schematic view showing a piping configuration of the substrate processing system 1 according to the embodiment.
- FIG. 2 shows a case where six processing areas X including one processing unit 16 are arranged.
- the piping configuration in the processing area X other than the processing area X shown in the lower left is not shown.
- the substrate treatment system 1 includes an ozone water generation unit 5, an ozone water supply line 6, a diluent supply line 7, and a treatment unit 16.
- the ozone water generation unit 5 generates ozone water having a given ozone concentration.
- the "given ozone concentration" is, for example, an ozone concentration capable of removing (peeling) the resist film formed on the wafer W (see FIG. 1), and is, for example, 100 mg / L to 400 mg / L. The range.
- the ozone water generation unit 5 has a tank 21, a pure water supply line 22, and an ozone gas supply line 23.
- the tank 21 internally generates ozone water having a given ozone concentration and stores the generated ozone water.
- the pure water supply line 22 supplies DIW (DeIonized Water), which is a raw material for ozone water, to the tank 21.
- the DIW supplied from the pure water supply line 22 is an example of pure water.
- the pure water supply line 22 is configured by connecting the first line 24, the tank 25, and the second line 26 in series in this order.
- the first line 24 supplies DIW to the tank 25.
- the first line 24 has a DIW supply source 22a, a valve 22b, a back pressure valve 22c, and a flow meter 22d in this order from the upstream side.
- the DIW supply source 22a is, for example, a tank for storing DIW.
- the back pressure valve 22c adjusts the flow rate of the DIW supplied to the tank 25 based on the flow rate of the DIW measured by the flow meter 22d. That is, the back pressure valve 22c performs feedback control based on the flow rate of DIW measured by the flow meter 22d.
- a confluence 28 is provided on the downstream side of the flow meter 22d in the first line 24. Then, an acid-based chemical solution supply line 27 is connected to the confluence portion 28.
- the acid-based chemical supply line 27 supplies acid-based chemicals such as organic acids (citric acid, acetic acid, etc.), hydrochloric acid, sulfuric acid, etc. to the first line 24 of the pure water supply line 22.
- acid-based chemicals such as organic acids (citric acid, acetic acid, etc.), hydrochloric acid, sulfuric acid, etc.
- concentration of ozone dissolved in the DIW can be increased by supplying an acid-based chemical solution to the DIW to lower the pH value of the DIW.
- the acid-based chemical solution supply line 27 has an acid-based chemical solution supply source 27a, a valve 27b, a back pressure valve 27c, and a flow meter 27d in this order from the upstream side.
- the acid-based chemical solution supply source 27a is, for example, a cabinet or a circulation line capable of producing the acid-based chemical solution.
- the back pressure valve 27c adjusts the flow rate of the acid-based chemical solution supplied to the first line 24 based on the flow rate of the acid-based chemical solution measured by the flow meter 27d. That is, the back pressure valve 27c performs feedback control based on the flow rate of the acid-based chemical solution measured by the flow meter 27d.
- a degas unit 57, a filter 29, and a densitometer 30 are provided on the downstream side of the merging portion 28 in the first line 24.
- the degas unit 57 removes the dissolved gas contained in the DIW mixed with the acid-based chemical solution. By removing the dissolved gas contained in the DIW mixed with the acid-based chemical solution with the degas unit 57, ozone gas can be efficiently dissolved in the DIW mixed with the acid-based chemical solution.
- the filter 29 removes contaminants such as particles contained in the DIW flowing through the first line 24 and the acid-based chemical solution flowing through the acid-based chemical solution supply line 27.
- the densitometer 30 measures the pH value of DIW flowing through the first line 24.
- the DIW whose pH value has been adjusted by mixing with the acid-based chemical solution at the confluence 28 is stored in the tank 25.
- a second line 26 is connected to the bottom of the tank 25.
- the tank 25 is connected to the drain portion DR via the valve 31.
- the control unit 18 (see FIG. 1) can control the valve 31 to discharge the DIW in the tank 25 to the drain unit DR when the DIW in the tank 25 is replaced.
- the second line 26 is interposed between the tank 25 and the tank 21, and has a mixing unit 37 and a pump 38 in this order from the upstream side. Further, an ozone gas supply line 23 is connected to the mixing unit 37.
- the ozone gas supply line 23 supplies ozone gas to the mixing unit 37.
- the ozone gas supply line 23 includes an ozone gas generation unit 32, a filter 33, a valve 34, and a check valve 35 in this order from the upstream side.
- the ozone gas generation unit 32 generates ozone gas from oxygen gas by a known technique.
- Oxygen gas which is a raw material for ozone gas, is supplied to the ozone gas generation unit 32 from the oxygen gas supply line 36.
- the oxygen gas supply line 36 includes an oxygen gas supply source 36a, a back pressure valve 36b, and a valve 36c.
- the oxygen gas supply source 36a is, for example, a tank for storing oxygen gas.
- the ozone gas generation unit 32 is connected to a cooling water supply unit that supplies cooling water and a cooling water discharge unit that discharges the used cooling water.
- the filter 33 removes contaminants such as particles contained in the ozone gas flowing through the ozone gas supply line 23.
- the check valve 35 prevents ozone gas from flowing back from the mixing unit 37.
- the pH value of the mixing unit 37 is adjusted, and ozone gas supplied from the ozone gas supply line 23 is injected as bubbles into the DIW liquid flowing through the second line 26 to dissolve ozone in the DIW.
- the mixing unit 37 can dissolve ozone in a DIW whose pH value has been adjusted, for example, by a bubbling method using a bubbler with open pores or an ejector method in which ozone gas is blown into a high-speed water stream.
- the pump 38 boosts the mixed solution in which ozone is dissolved in DIW and supplies it to the tank 21. In this way, by boosting the pressure of the mixed solution in which ozone is dissolved in DIW, ozone water having a given ozone concentration can be efficiently generated.
- An ozone recovery line 41 is connected to the upper part of the tank 21.
- the ozone recovery line 41 recovers ozone gas that has not been dissolved in DIW from the tank 21. As a result, it is possible to prevent the ozone gas excessively boosted in the tank 21 from leaking from the tank 21.
- the ozone recovery line 41 is connected to the gas-liquid separation trap 43 via the back pressure valve 42. By controlling the back pressure valve 42, the internal pressure of the boosted tank 21 can be adjusted.
- the gas-liquid separation trap 43 separates ozone water from the ozone gas recovered via the ozone recovery line 41.
- the gas-liquid separation trap 43 is connected to the drain portion DR via the valve 44.
- the control unit 18 can control the valve 44 to discharge the ozone water separated from the ozone gas to the drain unit DR.
- An ozone recovery line 45 is connected to the upper part of the gas-liquid separation trap 43. Then, the ozone gas separated from the ozone water is supplied to the ozone gas removing unit 46 via the ozone recovery line 45, and is detoxified by the ozone gas removing unit 46.
- the detoxified ozone gas is discharged to the outside from the exhaust section EXH. Further, the ozone recovery line 45 is provided with a check valve 47. Although not shown in FIG. 2, the ozone gas removing unit 46 is connected to a cooling water supply unit that supplies cooling water and a cooling water discharge unit that discharges the used cooling water.
- the ozone gas supply line 23 and the ozone recovery line 45 are connected via a valve 48.
- the control unit 18 opens the valve 48 to generate the ozone gas of insufficient quality. It can be detoxified by the removing unit 46.
- ozone gas of sufficient quality can be supplied to the mixing unit 37, so that ozone water of good quality can be generated.
- the ozone water supply line 6 is interposed between the ozone water generation unit 5 and the treatment unit 16.
- the ozone water supply line 6 supplies the ozone water having a given ozone concentration generated by the ozone water generation unit 5 to the treatment unit 16.
- the ozone water supply line 6 is provided with a back pressure valve 51, a filter 52, a flow meter 53, a heater 54, a densitometer 55, and a valve 56 in this order from the upstream side.
- the back pressure valve 51 depressurizes the ozone water boosted in the tank 21. As a result, it is possible to prevent the device provided on the downstream side of the back pressure valve 51 from being damaged by the pressurized ozone water. Further, by controlling the back pressure valve 51, the internal pressure of the boosted tank 21 can be adjusted.
- the filter 52 removes contaminants such as particles contained in the ozone water flowing through the ozone water supply line 6.
- the heater 54 raises the temperature of ozone water flowing through the ozone water supply line 6 to a given temperature (for example, 80 ° C.). As a result, the heated ozone water can be supplied to the processing unit 16.
- the concentration meter 55 measures the ozone concentration of ozone water passing through the ozone water supply line 6.
- the control unit 18 adjusts the ozone concentration of the ozone water generated by the ozone water generation unit 5 based on the ozone concentration of the ozone water measured by the concentration meter 55.
- control unit 18 increases the flow rate of the acid-based chemical solution supplied from the acid-based chemical solution supply line 27.
- the pH value of the DIW supplied from the pure water supply line 22 is lowered, so that the ozone concentration of the ozone water generated by the ozone water generation unit 5 can be increased.
- control unit 18 increases at least one of the flow rate and the concentration of the ozone gas supplied from the ozone gas supply line 23. May be good.
- the amount of ozone molecules mixed in the mixing unit 37 increases, so that the ozone concentration of the ozone water generated in the ozone water generating unit 5 can be increased.
- control unit 18 reduces the flow rate of the acid-based chemical solution supplied from the acid-based chemical solution supply line 27.
- control unit 18 reduces at least one of the flow rate and the concentration of the ozone gas supplied from the ozone gas supply line 23. May be good.
- the amount of ozone molecules mixed in the mixing unit 37 is reduced, so that the ozone concentration of the ozone water generated in the ozone water generating unit 5 can be reduced.
- the ozone concentration of the ozone water generated by the ozone water generation unit 5 is feedback-controlled based on the ozone concentration of the ozone water measured by the concentration meter 55. As a result, ozone water having a given ozone concentration can be stably supplied to the processing unit 16.
- the downstream side of the ozone water supply line 6 from the valve 56 has a plurality of parallel lines 6a provided in parallel with each other, and a plurality of branch lines 6b branching from the parallel lines 6a to each processing unit 16.
- a plurality of parallel lines 6a provided in parallel with each other, and a plurality of branch lines 6b branching from the parallel lines 6a to each processing unit 16.
- three parallel lines 6a are provided, and each parallel line 6a supplies ozone water to two processing units 16.
- the branch line 6b that branches from the parallel line 6a has a back pressure valve 61, a flow meter 62, a valve 63, and a confluence portion 64 in this order from the upstream side.
- the back pressure valve 61 adjusts the flow rate of ozone water flowing through the branch line 6b based on the flow rate of ozone water measured by the flow meter 62. That is, the back pressure valve 61 performs feedback control based on the flow rate of ozone water measured by the flow meter 62.
- a diluent supply line 7 is connected to the confluence portion 64.
- the diluent supply line 7 has a DIW supply source 7a, a valve 7b, a back pressure valve 7c, a flow meter 7d, and a heater 7e in this order from the upstream side.
- the DIW supply source 7a is, for example, a tank for storing DIW.
- the DIW stored in the DIW supply source 7a is an example of a diluent.
- the diluent according to the embodiment is not limited to DIW, and may be any chemical solution capable of diluting ozone water.
- the back pressure valve 7c adjusts the flow rate of the DIW flowing through the diluent supply line 7 based on the flow rate of the DIW measured by the flow meter 7d. That is, the back pressure valve 7c performs feedback control based on the flow rate of DIW measured by the flow meter 7d.
- the heater 7e adjusts the temperature of the DIW flowing through the diluent supply line 7 based on the command from the control unit 18.
- the diluent supply line 7 selectively combines the heated DIW (hereinafter, also referred to as Hot-DIW) and the room temperature DIW (hereinafter, also referred to as RT-DIW) into the confluence 64. Can be supplied.
- control unit 18 controls the supply amount of ozone water and the diluent to the processing unit 16 according to the recipe related to the processing of the wafer W.
- control unit 18 supplies ozone water from the ozone water supply line 6 according to the recipe for processing the wafer W carried into the liquid processing unit 80 (see FIG. 3) in the processing unit 16. And the supply amount of DIW supplied from the diluent supply line 7 are controlled respectively.
- the treatment liquid when performing a residue removal treatment (hereinafter, also referred to as post-etch clean) of the dry-etched wafer W, the treatment liquid does not need to have a high removal capacity. Therefore, when the post-etch clean recipe is selected, the control unit 18 generates a treatment liquid in which ozone water and RT-DIW are mixed at the confluence unit 64, and treats the wafer W with the treatment liquid.
- a residue removal treatment hereinafter, also referred to as post-etch clean
- the control unit 18 when the post-etch clean recipe is selected, the control unit 18 generates a treatment liquid in which ozone water and RT-DIW are mixed at the confluence unit 64, and treats the wafer W with the treatment liquid.
- the treatment liquid requires a higher removal capacity than the post-etch clean.
- control unit 18 when the post-ash clean recipe is selected, the control unit 18 generates a treatment liquid in which ozone water and Hot-DIW are mixed at the confluence unit 64, and treats the wafer W with such treatment liquid.
- the processing solution requires a removal ability even higher than that of post-ash clean.
- the control unit 18 treats the wafer W with ozone water having a given ozone concentration without diluting the ozone water with DIW.
- the ozone concentration of the initial ozone water is not limited to the ozone concentration that can remove the resist film formed on the wafer W, and the polymer residue film formed on the bevel and the edge portion is removed in the post-ash clean. It may be an ozone concentration that can be obtained.
- the supply amount of ozone water and the diluent to the wafer W is controlled according to the recipe related to the processing of the wafer W.
- processing that requires high removal capacity (for example, resist removal) and processing that does not require high removal capacity (for example, post-etch clean) can be performed while being mixed in one substrate processing system 1. it can.
- the temperature of the mixed solution of ozone water and the diluted solution is adjusted by controlling the temperature of the diluent (DIW) according to the recipe related to the processing of the wafer W.
- DIW diluent
- the ozone water generated by the ozone water generation unit 5 has an ozone concentration capable of removing, for example, the resist film formed on the wafer W.
- the resist removal processing that requires a high removal capacity can also be performed in the same substrate processing system 1.
- the IPA supply line 8 is connected to the processing unit 16.
- the IPA supply line 8 supplies IPA (isopropyl alcohol) to the wafer W carried into the processing unit 16.
- the IPA supply line 8 has an IPA supply source 8a, a valve 8b, a back pressure valve 8c, and a flow meter 8d in this order from the upstream side.
- the IPA source 8a is, for example, a tank for storing IPA.
- the back pressure valve 8c adjusts the flow rate of the IPA flowing through the IPA supply line 8 based on the flow rate of the IPA measured by the flow meter 8d. That is, the back pressure valve 8c performs feedback control based on the flow rate of the IPA measured by the flow meter 8d.
- the control unit 18 can supply ozone water and IPA to the wafer W at the same time. In this way, by adding IPA to ozone water, ozone contained in ozone water can be autolyzed to generate OH radicals.
- the wafer W can be treated with ozone water containing OH radicals, which has a higher processing capacity than ozone water alone.
- a specific discharge method of such IPA will be described later.
- the ozone water discharge timings do not overlap between the processing units 16 connected to the same parallel line 6a (so-called exclusive control).
- exclusive control the amount of ozone water generated by the ozone water generation unit 5 can be reduced.
- the heater 54 of the ozone water supply line 6 raises the temperature of the ozone water.
- ozone water having a given ozone concentration can be efficiently generated as compared with the case where the temperature is raised by the ozone water generation unit 5 when generating ozone water.
- the processing unit 16 is connected to the drain portion DR via the discharge line 65. As a result, the processing liquid used for processing the wafer W in the processing unit 16 can be discharged to the drain unit DR.
- the parallel line 6a is also connected to the drain portion DR via the back pressure valve 66. As a result, ozone water that has not been used in the processing unit 16 can be discharged to the drain unit DR.
- FIG. 3 is a schematic view showing a configuration example of the processing unit 16 according to the embodiment
- FIG. 4 is a schematic cross-sectional view showing a configuration example of the liquid supply unit 90 according to the embodiment.
- the processing unit 16 includes a chamber 70, a liquid processing unit 80, a liquid supply unit 90, and a recovery cup 100.
- the chamber 70 accommodates the liquid treatment unit 80, the liquid supply unit 90, and the recovery cup 100.
- An FFU (Fan Filter Unit) 71 is provided on the ceiling of the chamber 70. The FFU 71 forms a downflow in the chamber 70.
- the liquid treatment unit 80 includes a holding unit 81, a support column 82, and a drive unit 83, and performs liquid treatment on the mounted wafer W.
- the holding unit 81 holds the wafer W horizontally.
- the support column 82 is a member extending in the vertical direction, and the base end portion is rotatably supported by the drive portion 83, and the holding portion 81 is horizontally supported at the tip portion.
- the drive unit 83 rotates the support unit 82 around a vertical axis.
- the liquid treatment unit 80 rotates the holding unit 81 supported by the support column 82 by rotating the support column 82 using the drive unit 83, thereby rotating the wafer W held by the holding unit 81. ..
- a holding member 81a for holding the wafer W from the side surface is provided on the upper surface of the holding portion 81 included in the liquid processing unit 80.
- the wafer W is horizontally held by the holding member 81a in a state of being slightly separated from the upper surface of the holding portion 81.
- the wafer W is held by the holding portion 81 with the surface on which the substrate treatment is performed facing upward.
- the liquid supply unit 90 supplies ozone water and IPA to the wafer W.
- the liquid supply unit 90 includes nozzles 91a and 91b, an arm 92 that horizontally supports the nozzles 91a and 91b, and a swivel elevating mechanism 93 that swivels and elevates the arm 92.
- the nozzle 91a is an example of an ozone water discharge nozzle, and is connected to a branch line 6b of the ozone water supply line 6. As shown in FIG. 4, a discharge port 91aa is formed in the nozzle 91a.
- the liquid supply unit 90 can arrange the discharge port 91aa directly above the central portion of the wafer W.
- the liquid supply unit 90 can discharge the ozone water supplied via the ozone water supply line 6 to the central portion of the wafer W. Then, the ozone water discharged to the central portion of the wafer W spreads from the central portion to the edge portion due to the rotation of the wafer W.
- the nozzle 91b is an example of an IPA discharge nozzle and is connected to the IPA supply line 8.
- a plurality of discharge ports 91ba are formed in the nozzle 91b.
- the liquid supply unit 90 can arrange a plurality of discharge ports 91ba along the radial direction from the central portion of the wafer W.
- the liquid supply unit 90 can discharge the IPA supplied via the IPA supply line 8 along the radial direction of the wafer W. Then, the IPA discharged along the radial direction of the wafer W spreads over the entire wafer W due to the rotation of the wafer W.
- the ozone water and the IPA are discharged to the wafer W separately into the nozzle 91a arranged in the central portion of the wafer W and the nozzle 91b arranged along the radial direction of the wafer W.
- the OH radicals generated when ozone water and IPA are mixed are inactivated in a short time. Therefore, if both ozone water and IPA are discharged from the two nozzles arranged in the central portion of the wafer W, the OH radicals generated in the central portion are deactivated by the time the ozone water reaches the edge portion. There is a risk of doing it.
- ozone water and IPA are separately discharged to the wafer W by dividing the nozzle 91a arranged in the central portion and the nozzle 91b arranged along the radial direction into the wafer W, so that ozone is generated on the entire surface of the wafer W.
- Water and IPA can be mixed.
- OH radicals can be generated on the entire surface of the wafer W.
- the treatment with OH radicals can be uniformly performed on the entire surface of the wafer W, the treatment having a higher processing capacity than that of ozone water alone can be performed on the entire surface of the wafer W.
- ozone water is discharged from the nozzle 91a arranged in the central portion, and IPA is discharged from the nozzle 91b arranged along the radial direction.
- the IPA is discharged from the nozzle 91a.
- Ozone water may be discharged from the nozzle 91b.
- FIG. 5 is a schematic cross-sectional view showing another configuration example of the liquid supply unit 90 according to the embodiment.
- IPA is discharged from the discharge port 91ba provided in the nozzle 91b, which is a long nozzle, and ozone water is discharged from the discharge port 91bb provided in the vicinity of the discharge port 91ba.
- ozone water and IPA can be mixed in the mixing region M.
- the OH radicals generated in the mixed region M can be quickly supplied to the wafer W, so that processing having a higher processing capacity than ozone water alone can be performed on the entire surface of the wafer W.
- the liquid supply unit 90 has a DIW discharge nozzle (not shown) and an SC1 discharge nozzle (not shown) in addition to the nozzles 91a and 91b described above.
- the DIW discharge nozzle can discharge DIW, which is an example of the rinse liquid, onto the wafer W.
- the SC1 discharge nozzle can discharge SC1 (a mixed solution of ammonia and hydrogen peroxide solution) that prevents reattachment of particles on the surface of the wafer W to the wafer W.
- the nozzles 91a and 91b are arranged above the wafer W (front surface side) is shown, but the nozzles 91a and 91b are located below the wafer W (back surface side). It may be arranged.
- the recovery cup 100 is arranged so as to surround the holding portion 81, and collects the processing liquid scattered from the wafer W by the rotation of the holding portion 81.
- a drainage port 101 is formed at the bottom of the recovery cup 100, and the treatment liquid collected by the recovery cup 100 is discharged from the drainage port 101 to the outside of the treatment unit 16.
- an exhaust port 102 for discharging the gas supplied from the FFU 71 to the outside of the processing unit 16 is formed.
- FIG. 6 is a schematic view showing a piping configuration of the substrate processing system 1 according to the first modification of the embodiment.
- the piping configuration of the ozone water supply line 6 is different from that of the embodiment. Therefore, in the following examples, the same parts as those in the embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
- a plurality of parallel lines 6a are connected to the ozone water generation unit 5 instead of the drain unit DR. Specifically, the plurality of parallel lines 6a are connected to the tank 25 of the ozone water generation unit 5 via the circulation line 9.
- the ozone water that was not used in the treatment unit 16 can be returned to the ozone water generation unit 5 via the circulation line 9. Therefore, according to the first modification, since the unused ozone water can be utilized to generate more ozone water, the ozone water generation unit 5 can efficiently generate the ozone water.
- the circulation line 9 is provided with a valve 67 and a back pressure valve 68 in this order from the upstream side. Further, since the solution stored in the tank 25 is a solution containing ozone, the exhaust gas from the tank 25 is supplied to the ozone gas removing unit 46 via the line 58 to be detoxified.
- FIG. 7 is a schematic view showing a piping configuration of the substrate processing system 1 according to the second modification of the embodiment.
- FIG. 7 detailed illustration of the ozone water generation unit 5 is omitted.
- the substrate processing system 1 according to the modification 2 has a different configuration of the branch line 6b of the ozone water supply line 6 from the modification 1.
- one branch line 6b1 branches from one parallel line 6a first, and the branch line 6b1 is further divided into a branch line 6b2 connected to each processing unit 16.
- the heater 54 is not provided on the upstream side of the valve 56 in the ozone water supply line 6, and the heater 54A is provided on each branch line 6b1.
- the heated ozone water can be supplied to the processing unit 16 by raising the temperature of the ozone water with the heater 54A.
- the ozone water that was not used in the processing unit 16 can be returned to the ozone water generation unit 5 without raising the temperature. As a result, it is possible to suppress an increase in the temperature of the ozone water when the unused ozone water is used to generate the ozone water.
- the ozone water generation unit 5 can generate ozone water more efficiently.
- FIG. 8 is a schematic view showing a piping configuration of the substrate processing system 1 according to the third modification of the embodiment. Note that in FIG. 8, the processing area X in which the processing unit 16 and the like are provided is not shown.
- a mixing unit 37 is provided on the downstream side of the pump 38 in the second line 26.
- ozone can be dissolved in the DIW boosted by the pump 38, so that ozone water having a given ozone concentration can be efficiently generated.
- the substrate processing apparatus (board processing system 1) according to the embodiment includes an ozone water generation unit 5, a substrate processing unit (processing unit 16), an ozone water supply line 6, a diluent supply line 7, and a control unit 18. To be equipped.
- the ozone water generation unit 5 generates ozone water having a given ozone concentration.
- the substrate processing unit (processing unit 16) processes the substrate (wafer W).
- the ozone water supply line 6 is interposed between the ozone water generation unit 5 and the substrate processing unit (processing unit 16), and supplies ozone water to the substrate processing unit (processing unit 16).
- the diluent supply line 7 is connected to the ozone water supply line 6 and supplies the diluent to the ozone water supply line 6.
- the control unit 18 controls the ozone water generation unit 5, the substrate processing unit (treatment unit 16), the ozone water supply line 6, and the diluent supply line 7.
- the control unit 18 controls the supply amount of ozone water and the diluent to the substrate processing unit (processing unit 16) according to the recipe related to the processing of the substrate (wafer W).
- the ozone water generation unit 5 has a tank 21, a pure water supply line 22, and an ozone gas supply line 23.
- the pure water supply line 22 is connected to the tank 21 and supplies pure water (DIW) to the tank 21.
- the ozone gas supply line 23 is connected to the pure water supply line 22 and supplies ozone gas to the pure water supply line 22.
- the control unit 18 mixes pure water (DIW) and ozone gas in the pure water supply line 22, and pressurizes the mixed solution of pure water (DIW) and ozone gas in the tank 21 to generate ozone water. As a result, ozone water having a given ozone concentration can be efficiently generated.
- the acid-based chemical solution is supplied to the pure water supply line 22 via the acid-based chemical solution supply line 27.
- the pH value of DIW which is a raw material for ozone water, can be lowered.
- the ozone water supply line 6 has a densitometer 55 for measuring the ozone concentration of ozone water.
- the control unit 18 adjusts the flow rate of the acid-based chemical solution supplied to the pure water supply line 22 based on the ozone concentration of the ozone water measured by the concentration meter 55. As a result, ozone water having a given ozone concentration can be stably supplied to the processing unit 16.
- the ozone water supply line 6 has a densitometer 55 for measuring the ozone concentration of ozone water.
- the control unit 18 adjusts at least one of the flow rate and the concentration of ozone gas supplied to the pure water supply line 22 based on the ozone concentration of ozone water measured by the concentration meter 55. As a result, ozone water having a given ozone concentration can be stably supplied to the processing unit 16.
- the substrate processing unit (processing unit 16) has an ozone water discharge nozzle (nozzle 91a) and an IPA discharge nozzle (nozzle 91b).
- the ozone water discharge nozzle (nozzle 91a) is connected to the ozone water supply line 6 and discharges ozone water or a mixed solution of ozone water and a diluted solution onto the substrate (wafer W).
- the IPA ejection nozzle (nozzle 91b) ejects IPA onto the substrate (wafer W).
- the wafer W can be treated with ozone water containing OH radicals, which has a higher processing capacity than ozone water alone.
- the IPA discharge nozzle (nozzle 91b) is a long nozzle formed by arranging a plurality of discharge ports 91ba in the radial direction of the substrate (wafer W). is there.
- processing having a higher processing capacity than ozone water alone can be performed on the entire surface of the wafer W.
- the diluent supply line 7 has a heater 7e for heating the diluent (DIW).
- the control unit 18 controls the heater 7e according to the recipe related to the processing of the substrate (wafer W), and adjusts the temperature of the mixed solution of ozone water and the diluted solution. As a result, the heated DIW and the room temperature DIW can be selectively supplied to the confluence 64.
- the substrate processing apparatus (board processing system 1) according to the embodiment further includes a circulation line 9 for returning ozone water not used in the substrate processing unit (processing unit 16) to the ozone water generation unit 5.
- a circulation line 9 for returning ozone water not used in the substrate processing unit (processing unit 16) to the ozone water generation unit 5.
- the ozone water supply line 6 has a back pressure valve 51. As a result, it is possible to prevent the device provided on the downstream side of the back pressure valve 51 from being damaged by the pressurized ozone water.
- FIG. 9 is a flowchart showing a substrate processing procedure executed by the substrate processing system 1 according to the embodiment.
- control unit 18 controls the ozone water generation unit 5 to carry out an ozone water generation process for generating ozone water having a given ozone concentration (step S101). Details of such ozone water generation treatment will be described later.
- control unit 18 controls the loading / unloading station 2 to read the hoop ID or wafer ID of the wafer W to be processed (step S102).
- the hoop ID and the wafer ID are individually registered in the hoop C capable of accommodating and transporting a plurality of wafers W, and are read when the hoop C is carried into the hoop mounting portion 11. Can be done.
- control unit 18 determines the process of the wafer W based on the read hoop ID or the wafer ID (step S103). Then, when it is determined that the wafer W process is post-etch clean (step S104, post-etch clean), the control unit 18 selects a post-etch clean recipe (step S105).
- control unit 18 controls the ozone water supply line 6 and the diluent supply line 7 to generate a treatment liquid in which ozone water and RT-DIW are mixed (step S106). Then, the control unit 18 controls the processing unit 16 to perform liquid treatment of the wafer W with the processing liquid (step S107).
- the ratio of ozone water to RT-DIW itself may be set in the recipe in advance. Further, in the processing of steps S105 to S107, the ozone concentration of ozone water may be set in the recipe in advance, and the ratio of ozone water to RT-DIW may be feedback-controlled based on the ozone concentration measured by the concentration meter 55. Good.
- control unit 18 controls the DIW discharge nozzle of the liquid supply unit 90 to perform the rinsing process of the wafer W by the DIW (step S108). Then, the control unit 18 controls the SC1 discharge nozzle of the liquid supply unit 90 to carry out the reattachment prevention processing of the wafer W by the SC1 (step S109).
- control unit 18 controls the DIW discharge nozzle of the liquid supply unit 90 to perform the rinsing process of the wafer W by the DIW (step S110). Then, the control unit 18 controls the liquid treatment unit 80 to perform a drying process (for example, spin drying) of the wafer W (step S111). When the step S111 is completed, a series of processes is completed.
- step S104 If it is determined that the wafer W process is post-ash clean (step S104, post-ash clean), the control unit 18 selects a post-ash clean recipe (step S112).
- control unit 18 controls the ozone water supply line 6 and the diluent supply line 7 to generate a treatment liquid in which ozone water and Hot-DIW are mixed (step S113). Then, the control unit 18 controls the processing unit 16 to perform liquid processing of the wafer W with the processing liquid (step S114), and shifts to the processing of step S108.
- the ratio itself of ozone water and Hot-DIW may be set in the recipe in advance. Further, in the processing of steps S112 to S114, the ozone concentration of ozone water may be set in the recipe in advance, and the ratio of ozone water to Hot-DIW may be feedback-controlled based on the ozone concentration measured by the concentration meter 55. Good.
- step S104 resist removal
- the control unit 18 selects a resist removal recipe (step S115).
- control unit 18 controls the ozone water supply line 6, the IPA supply line 8 and the treatment unit 16 to perform liquid treatment with ozone water or ozone water and IPA (step S116), and in the treatment of step S108. Transition.
- the ratio of ozone water may be set to 100% in the recipe in advance, or the ratio of ozone water to IPA itself may be set in the recipe in advance.
- FIG. 10 is a flowchart showing a procedure of ozone water generation processing executed by the substrate processing system 1 according to the embodiment.
- the control unit 18 controls the ozone water generation unit 5 to mix the DIW and the acid-based chemical solution to generate a DIW having a given pH value (step S201).
- control unit 18 controls the ozone water generation unit 5 to mix ozone gas with the DIW having a given pH value (step S202). Then, the pressure of the mixed solution of DIW and ozone gas is increased in the tank 21 (step S203). When the step S203 is completed, a series of ozone water generation treatments are completed.
- the substrate treatment method includes a step of generating ozone water (step S101) and a step of liquid treatment (steps S107, S114, S116).
- the step of producing ozone water (step S101) produces ozone water having a given ozone concentration.
- the liquid treatment step is a liquid treatment with a treatment liquid in which the ratio of ozone water and a diluent for diluting ozone water is controlled according to the recipe for processing the substrate (wafer W). To do. As a result, the processing that requires a high removal capacity and the processing that does not require a high removal capacity can be performed while being mixed in one substrate processing system 1.
- the step of generating ozone water includes the step of mixing pure water and ozone gas (step S202) and the mixed solution of pure water and ozone gas in the tank 21. (Step S203), and the like. As a result, ozone water having a given ozone concentration can be efficiently generated.
- step S101 in the step of generating ozone water (step S101), pure water and an acid-based chemical solution are mixed before the step of mixing pure water and ozone gas (step S202).
- step S201 is included.
- the pH value of DIW which is a raw material for ozone water, can be lowered.
- the processing liquid and the IPA are simultaneously discharged to the substrate (wafer W).
- the wafer W can be treated with ozone water containing OH radicals, which has a higher processing capacity than ozone water alone.
- the present disclosure is not limited to the above embodiments, and various changes can be made as long as the purpose is not deviated.
- the ozone water supply line 6 may be provided with a degassing mechanism. As a result, when the ozone gas is degassed from the ozone water heated by the heater 54, it is possible to prevent the ozone gas from leaking to the outside.
- the wafer W held in the liquid treatment unit 80 may be heated to a given temperature by a heating mechanism, and ozone water may be discharged to the heated wafer W for liquid treatment.
- the liquid treatment of the wafer W with ozone water can be performed in a high temperature environment, so that the treatment performance of the wafer W with ozone water can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
本開示の一態様による基板処理装置は、オゾン水生成部(5)と、基板処理部と、オゾン水供給ライン(6)と、希釈液供給ライン(7)と、制御部(18)とを備える。オゾン水生成部(5)は、所与のオゾン濃度を有するオゾン水を生成する。基板処理部は、基板を処理する。オゾン水供給ライン(6)は、オゾン水生成部(5)と基板処理部との間に介設され、オゾン水を基板処理部に供給する。希釈液供給ライン(7)は、オゾン水供給ライン(6)に接続され、希釈液をオゾン水供給ラインに供給する。制御部(18)は、オゾン水生成部(5)と、基板処理部と、オゾン水供給ライン(6)と、希釈液供給ライン(7)とを制御する。制御部(18)は、基板の処理に係るレシピに応じて、基板処理部へのオゾン水と希釈液との供給量を制御する。
Description
開示の実施形態は、基板処理装置および基板処理方法に関する。
従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板をオゾン水で処理する技術が知られている(特許文献1参照)。
本開示は、高い除去能力が必要となる処理と、高い除去能力が必要でない処理とを1つの基板処理装置内で混在させながら実施することができる技術を提供する。
本開示の一態様による基板処理装置は、オゾン水生成部と、基板処理部と、オゾン水供給ラインと、希釈液供給ラインと、制御部とを備える。オゾン水生成部は、所与のオゾン濃度を有するオゾン水を生成する。基板処理部は、基板を処理する。オゾン水供給ラインは、前記オゾン水生成部と前記基板処理部との間に介設され、前記オゾン水を前記基板処理部に供給する。希釈液供給ラインは、前記オゾン水供給ラインに接続され、希釈液を前記オゾン水供給ラインに供給する。制御部は、前記オゾン水生成部と、前記基板処理部と、前記オゾン水供給ラインと、前記希釈液供給ラインとを制御する。前記制御部は、前記基板の処理に係るレシピに応じて、前記基板処理部への前記オゾン水と前記希釈液との供給量を制御する。
本開示によれば、高い除去能力が必要となる処理と、高い除去能力が必要でない処理とを1つの基板処理装置内で混在させながら実施することができる。
以下、添付図面を参照して、本願の開示する基板処理装置および基板処理方法の実施形態を詳細に説明する。なお、以下に示す各実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
半導体ウェハ(以下、ウェハとも呼称する。)などの基板をオゾン水で処理する技術が知られている。かかるオゾン水による液処理では、液中のオゾン濃度が高いほど基板上のレジスト膜や残渣などを除去する能力が高くなる。
一方で、ドライエッチング後の残渣を除去する処理のように、処理液に必ずしも高い除去能力が必要でない場合もある。しかしながら、従来の技術では、高い除去能力が必要となる処理と、高い除去能力が必要でない処理とを1つの基板処理装置内で混在させながら実施することが困難であった。
なぜなら、オゾン水を生成する工程において、それぞれの基板で必要となる処理能力に合わせて液中のオゾン濃度をすばやく変更することは非常に困難であるからである。
そこで、オゾン水で基板を処理する際に、高い除去能力が必要となる処理と、高い除去能力が必要でない処理とを1つの基板処理装置内で混在させながら実施することができる技術が期待されている。
<基板処理システムの概要>
最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。なお、基板処理システム1は、基板処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。なお、基板処理システム1は、基板処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。
搬入出ステーション2は、フープ載置部11と、搬送部12とを備える。フープ載置部11には、複数枚の基板、実施形態では半導体ウェハW(以下、ウェハWと呼称する。)を水平状態で収容する複数のフープCが載置される。
搬送部12は、フープ載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてフープCと受渡部14との間でウェハWの搬送を行う。
処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。処理ユニット16は、基板処理部の一例である。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。
搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と処理ユニット16との間でウェハWの搬送を行う。
処理ユニット16は、基板搬送装置17によって搬送されるウェハWに対して所定の基板処理を行う。かかる処理ユニット16の詳細については後述する。
また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。
なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
さらに、基板処理システム1は、オゾン水生成部5を備える。オゾン水生成部5は、所与のオゾン濃度を有するオゾン水を生成し、生成したオゾン水を処理ユニット16に供給する。かかるオゾン水生成部5の詳細については後述する。
上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、フープ載置部11に載置されたフープCからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。
処理ユニット16へ搬入されたウェハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、基板搬送装置13によってフープ載置部11のフープCへ戻される。
<基板処理システムの配管構成>
次に、基板処理システム1の配管構成について、図2を参照しながら説明する。図2は、実施形態に係る基板処理システム1の配管構成を示す模式図である。
次に、基板処理システム1の配管構成について、図2を参照しながら説明する。図2は、実施形態に係る基板処理システム1の配管構成を示す模式図である。
図2の例では、1つの処理ユニット16を含んだ処理領域Xが6つ配置された場合について示している。なお、理解の容易のため、左下に図示した処理領域X以外の処理領域X内の配管構成は、図示を省略する。
図2に示すように、実施形態に係る基板処理システム1は、オゾン水生成部5と、オゾン水供給ライン6と、希釈液供給ライン7と、処理ユニット16とを備える。
オゾン水生成部5は、所与のオゾン濃度を有するオゾン水を生成する。かかる「所与のオゾン濃度」とは、たとえば、ウェハW(図1参照)に形成されるレジスト膜を除去(剥離)することができるオゾン濃度であり、たとえば、100mg/L~400mg/Lの範囲である。
オゾン水生成部5は、タンク21と、純水供給ライン22と、オゾンガス供給ライン23とを有する。タンク21は、内部で所与のオゾン濃度を有するオゾン水を生成するとともに、生成されたオゾン水を貯留する。
純水供給ライン22は、オゾン水の原料となるDIW(DeIonized Water:脱イオン水)をタンク21に供給する。かかる純水供給ライン22から供給されるDIWは、純水の一例である。純水供給ライン22は、第1ライン24と、タンク25と、第2ライン26とがこの順に直列に接続されて構成される。
第1ライン24は、タンク25にDIWを供給する。かかる第1ライン24は、上流側から順にDIW供給源22aと、バルブ22bと、背圧弁22cと、流量計22dとを有する。DIW供給源22aは、たとえば、DIWを貯留するタンクである。
背圧弁22cは、流量計22dで計測されるDIWの流量に基づいて、タンク25に供給されるDIWの流量を調整する。すなわち、背圧弁22cは、流量計22dで計測されるDIWの流量に基づいたフィードバック制御を実施する。
第1ライン24における流量計22dの下流側には、合流部28が設けられる。そして、かかる合流部28には、酸系薬液供給ライン27が接続される。
酸系薬液供給ライン27は、有機酸(クエン酸、酢酸など)、塩酸、硫酸などの酸系薬液を純水供給ライン22の第1ライン24に供給する。実施形態では、DIWに酸系薬液を供給してDIWのpH値を下げることにより、かかるDIWに溶解するオゾンの濃度を増加させることができる。
酸系薬液供給ライン27は、上流側から順に酸系薬液供給源27aと、バルブ27bと、背圧弁27cと、流量計27dとを有する。酸系薬液供給源27aは、たとえば、酸系薬液を生成可能なキャビネットや循環ラインなどである。
背圧弁27cは、流量計27dで計測される酸系薬液の流量に基づいて、第1ライン24に供給される酸系薬液の流量を調整する。すなわち、背圧弁27cは、流量計27dで計測される酸系薬液の流量に基づいたフィードバック制御を実施する。
第1ライン24における合流部28の下流側には、デガスユニット57と、フィルタ29と、濃度計30とが設けられる。デガスユニット57は、酸系薬液と混ざったDIWに含まれる溶存ガスを除去する。かかるデガスユニット57で酸系薬液と混ざったDIWに含まれる溶存ガスを除去することにより、酸系薬液と混ざったDIWにオゾンガスを効率的に溶解させることができる。
フィルタ29は、第1ライン24を通流するDIWや酸系薬液供給ライン27を通流する酸系薬液に含まれるパーティクルなどの汚染物質を除去する。濃度計30は、第1ライン24を通流するDIWのpH値を測定する。
そして、合流部28で酸系薬液と混ざってpH値が調整されたDIWは、タンク25に貯留される。かかるタンク25の底部には、第2ライン26が接続される。
また、タンク25は、バルブ31を介してドレン部DRに接続される。これにより、制御部18(図1参照)は、タンク25内のDIWを交換する際などに、バルブ31を制御して、タンク25内のDIWをドレン部DRに排出することができる。
第2ライン26は、タンク25とタンク21との間に介設され、上流側から順に混合部37と、ポンプ38とを有する。また、混合部37には、オゾンガス供給ライン23が接続される。
オゾンガス供給ライン23は、オゾンガスを混合部37に供給する。オゾンガス供給ライン23は、上流側から順にオゾンガス生成部32と、フィルタ33と、バルブ34と、逆止弁35とを有する。
オゾンガス生成部32は、公知の技術によって酸素ガスからオゾンガスを生成する。オゾンガスの原料となる酸素ガスは、酸素ガス供給ライン36からオゾンガス生成部32に供給される。酸素ガス供給ライン36は、酸素ガス供給源36aと、背圧弁36bと、バルブ36cとを有する。酸素ガス供給源36aは、たとえば、酸素ガスを貯留するタンクである。
なお、図2には図示していないが、オゾンガス生成部32には、冷却水を供給する冷却水供給部と、使用された冷却水を排出する冷却水排出部とが接続される。
フィルタ33は、オゾンガス供給ライン23を通流するオゾンガスに含まれるパーティクルなどの汚染物質を除去する。逆止弁35は、オゾンガスが混合部37から逆流することを防止する。
混合部37は、pH値が調整され、第2ライン26を通流するDIWの液中に、オゾンガス供給ライン23から供給されるオゾンガスを気泡として注入して、DIWにオゾンを溶解させる。混合部37は、たとえば、細孔の開いたバブラーを用いるバブリング法や、高速の水流にオゾンガスを吹き込むエジェクタ法によって、pH値が調整されたDIWにオゾンを溶解させることができる。
ポンプ38は、DIWにオゾンが溶解された混合液を昇圧して、タンク21に供給する。このように、DIWにオゾンが溶解された混合液を昇圧することにより、所与のオゾン濃度を有するオゾン水を効率よく生成することができる。
タンク21の上部には、オゾン回収ライン41が接続される。かかるオゾン回収ライン41は、DIWに溶解されなかったオゾンガスをタンク21から回収する。これにより、タンク21内で過剰に昇圧されたオゾンガスがタンク21から漏洩することを抑制することができる。
オゾン回収ライン41は、背圧弁42を介して気液分離トラップ43に接続される。この背圧弁42を制御することにより、昇圧されたタンク21の内部圧力を調整することができる。気液分離トラップ43は、オゾン回収ライン41を介して回収されるオゾンガスからオゾン水を分離する。
また、気液分離トラップ43は、バルブ44を介してドレン部DRに接続される。これにより、制御部18は、かかるバルブ44を制御して、オゾンガスから分離されたオゾン水をドレン部DRに排出することができる。
気液分離トラップ43の上部には、オゾン回収ライン45が接続される。そして、オゾン水を分離したオゾンガスは、かかるオゾン回収ライン45を介してオゾンガス除去部46に供給され、このオゾンガス除去部46で無害化される。
さらに、無害化されたオゾンガスは、エキゾースト部EXHから外部に排出される。また、オゾン回収ライン45には、逆止弁47が設けられる。なお、図2には図示していないが、オゾンガス除去部46には、冷却水を供給する冷却水供給部と、使用された冷却水を排出する冷却水排出部とが接続される。
また、実施形態に係るオゾン水生成部5は、オゾンガス供給ライン23とオゾン回収ライン45とが、バルブ48を介して接続される。これにより、制御部18は、オゾンガス生成部32の立ち上げ時などで十分な品質のオゾンガスを生成することができない場合に、バルブ48を開状態にすることによって、不十分な品質のオゾンガスをオゾンガス除去部46で無害化することができる。
したがって、実施形態によれば、十分な品質のオゾンガスに限って混合部37に供給することができることから、良好な品質のオゾン水を生成することができる。
オゾン水供給ライン6は、オゾン水生成部5と処理ユニット16との間に介設される。かかるオゾン水供給ライン6は、オゾン水生成部5で生成された所与のオゾン濃度を有するオゾン水を処理ユニット16に供給する。
オゾン水供給ライン6には、上流側から順に背圧弁51と、フィルタ52と、流量計53と、ヒータ54と、濃度計55と、バルブ56とが設けられる。
背圧弁51は、タンク21内で昇圧されたオゾン水を減圧する。これにより、背圧弁51よりも下流側に設けられる機器が昇圧されたオゾン水によって破損することを抑制することができる。また、背圧弁51を制御することにより、昇圧されたタンク21の内部圧力を調整することができる。
フィルタ52は、オゾン水供給ライン6を通流するオゾン水に含まれるパーティクルなどの汚染物質を除去する。ヒータ54は、オゾン水供給ライン6を通流するオゾン水を所与の温度(たとえば、80℃)に昇温する。これにより、昇温されたオゾン水を処理ユニット16に供給することができる。
濃度計55は、オゾン水供給ライン6を通流するオゾン水のオゾン濃度を測定する。制御部18は、濃度計55で計測されるオゾン水のオゾン濃度に基づいて、オゾン水生成部5で生成されるオゾン水のオゾン濃度を調整する。
たとえば、制御部18は、濃度計55で計測されるオゾン水のオゾン濃度が所与のオゾン濃度よりも低い場合、酸系薬液供給ライン27から供給される酸系薬液の流量を増加させる。
これにより、純水供給ライン22から供給されるDIWのpH値が下がることから、オゾン水生成部5で生成されるオゾン水のオゾン濃度を増加させることができる。
また、制御部18は、濃度計55で計測されるオゾン水のオゾン濃度が所与のオゾン濃度よりも低い場合、オゾンガス供給ライン23から供給されるオゾンガスの流量および濃度の少なくとも一方を増加させてもよい。
これにより、混合部37で混合されるオゾン分子の量が増加することから、オゾン水生成部5で生成されるオゾン水のオゾン濃度を増加させることができる。
一方で、制御部18は、濃度計55で計測されるオゾン水のオゾン濃度が所与のオゾン濃度よりも高い場合、酸系薬液供給ライン27から供給される酸系薬液の流量を減少させる。
これにより、純水供給ライン22から供給されるDIWのpH値が上がることから、オゾン水生成部5で生成されるオゾン水のオゾン濃度を減少させることができる。
また、制御部18は、濃度計55で計測されるオゾン水のオゾン濃度が所与のオゾン濃度よりも高い場合、オゾンガス供給ライン23から供給されるオゾンガスの流量および濃度の少なくとも一方を減少させてもよい。
これにより、混合部37で混合されるオゾン分子の量が減少することから、オゾン水生成部5で生成されるオゾン水のオゾン濃度を減少させることができる。
このように、実施形態では、濃度計55で計測されるオゾン水のオゾン濃度に基づいて、オゾン水生成部5で生成されるオゾン水のオゾン濃度をフィードバック制御する。これにより、所与のオゾン濃度のオゾン水を安定して処理ユニット16に供給することができる。
オゾン水供給ライン6におけるバルブ56よりも下流側は、互いに並列に設けられる複数の並列ライン6aと、かかる並列ライン6aから各処理ユニット16に分岐する複数の分岐ライン6bとを有する。図3の例では、並列ライン6aが3つ設けられ、各並列ライン6aは、それぞれ2つの処理ユニット16にオゾン水を供給する。
並列ライン6aから分岐する分岐ライン6bは、上流側から順に背圧弁61と、流量計62と、バルブ63と、合流部64とを有する。背圧弁61は、流量計62で計測されるオゾン水の流量に基づいて、分岐ライン6bを通流するオゾン水の流量を調整する。すなわち、背圧弁61は、流量計62で計測されるオゾン水の流量に基づいたフィードバック制御を実施する。
合流部64には、希釈液供給ライン7が接続される。希釈液供給ライン7は、上流側から順に、DIW供給源7aと、バルブ7bと、背圧弁7cと、流量計7dと、ヒータ7eとを有する。
DIW供給源7aは、たとえば、DIWを貯留するタンクである。かかるDIW供給源7aに貯留されるDIWは、希釈液の一例である。なお、実施形態に係る希釈液はDIWに限られず、オゾン水を希釈することができる薬液であればよい。
背圧弁7cは、流量計7dで計測されるDIWの流量に基づいて、希釈液供給ライン7を通流するDIWの流量を調整する。すなわち、背圧弁7cは、流量計7dで計測されるDIWの流量に基づいたフィードバック制御を実施する。
ヒータ7eは、制御部18からの指令に基づいて、希釈液供給ライン7を通流するDIWの温度を調整する。これにより、希釈液供給ライン7は、昇温されたDIW(以下、Hot-DIWとも呼称する。)と室温のDIW(以下、RT-DIWとも呼称する。)とを選択的に合流部64に供給することができる。
ここで、実施形態では、制御部18が、ウェハWの処理に係るレシピに応じて、処理ユニット16へのオゾン水と希釈液との供給量を制御する。
具体的には、制御部18は、処理ユニット16内の液処理部80(図3参照)に搬入されたウェハWの処理に係るレシピに応じて、オゾン水供給ライン6から供給されるオゾン水の供給量と、希釈液供給ライン7から供給されるDIWの供給量とをそれぞれ制御する。
たとえば、ドライエッチングされたウェハWの残渣除去処理(以下、ポストエッチクリーンとも呼称する。)を実施する場合、処理液に高い除去能力は必要でない。そこで、制御部18は、ポストエッチクリーンのレシピが選択された場合、オゾン水とRT-DIWとが混ざった処理液を合流部64で生成し、かかる処理液でウェハWを処理する。
また、レジストをアッシング処理したウェハWの残渣除去処理(以下、ポストアッシュクリーンとも呼称する。)を実施する場合、ポストエッチクリーンよりも高い除去能力が処理液に必要となる。
そこで、制御部18は、ポストアッシュクリーンのレシピが選択された場合、オゾン水とHot-DIWとが混ざった処理液を合流部64で生成し、かかる処理液でウェハWを処理する。
また、ウェハWに形成されるレジスト膜を除去する処理(以下、レジスト除去とも呼称する。)を実施する場合、ポストアッシュクリーンよりもさらに高い除去能力が処理液に必要となる。
そこで、制御部18は、レジスト除去のレシピが選択された場合、オゾン水をDIWで希釈せず、所与のオゾン濃度を有するオゾン水でウェハWを処理する。
なお、最初のオゾン水のオゾン濃度は、ウェハWに形成されるレジスト膜を除去することができるオゾン濃度に限られず、ポストアッシュクリーンにおいて、ベベルやエッジ部に形成されるポリマー残渣膜を除去することができるオゾン濃度としてもよい。
このように、実施形態では、ウェハWの処理に係るレシピに応じて、ウェハWに対するオゾン水と希釈液との供給量を制御する。これにより、高い除去能力が必要となる処理(たとえば、レジスト除去)と、高い除去能力が必要でない処理(たとえば、ポストエッチクリーン)とを1つの基板処理システム1内で混在させながら実施することができる。
また、実施形態では、ウェハWの処理に係るレシピに応じて希釈液(DIW)の温度を制御することにより、オゾン水と希釈液との混合液の温度を調整する。これにより、さらに多様な処理能力を有する処理液でウェハWを処理することができる。
また、実施形態では、オゾン水生成部5で生成されるオゾン水が、たとえばウェハWに形成されるレジスト膜を除去することができるオゾン濃度を有するとよい。これにより、高い除去能力が必要でない処理に加えて、高い除去能力が必要となるレジスト除去処理も同じ基板処理システム1内で実施することができる。
また、実施形態では、オゾン水供給ライン6に加えて、IPA供給ライン8が処理ユニット16に接続されている。かかるIPA供給ライン8は、処理ユニット16に搬入されたウェハWにIPA(イソプロピルアルコール)を供給する。
IPA供給ライン8は、上流側から順に、IPA供給源8aと、バルブ8bと、背圧弁8cと、流量計8dとを有する。IPA供給源8aは、たとえば、IPAを貯留するタンクである。
背圧弁8cは、流量計8dで計測されるIPAの流量に基づいて、IPA供給ライン8を通流するIPAの流量を調整する。すなわち、背圧弁8cは、流量計8dで計測されるIPAの流量に基づいたフィードバック制御を実施する。
かかるIPA供給ライン8を用いることにより、制御部18は、オゾン水とIPAとを同時にウェハWに供給することができる。このように、オゾン水にIPAを加えることにより、オゾン水に含まれるオゾンを自己分解させてOHラジカルを生じさせることができる。
したがって、実施形態によれば、オゾン水単体よりもさらに処理能力が高いOHラジカルを含んだオゾン水でウェハWを処理することができる。かかるIPAの具体的な吐出方法については後述する。
また、実施形態では、同じ並列ライン6aに接続される処理ユニット16同士でオゾン水の吐出タイミングが重ならないようにウェハWを処理するとよい(いわゆる、排他制御)。これにより、オゾン水生成部5で必要となるオゾン水の生成量を低減することができる。
たとえば、1つの処理ユニット16におけるオゾン水の吐出流量が2L/minである場合に、上述の排他制御を実施しない場合には、オゾン水生成部5で必要となるオゾン水の生成量は2L/min×6(処理ユニット16の数)=12L/minとなる。
一方で、実施形態では、上述の排他制御を実施することにより、オゾン水生成部5で必要となるオゾン水の生成量を2L/min×3(並列ライン6aの数)=6L/minに低減することができる。
また、実施形態では、オゾン水生成部5でオゾン水を生成した後に、オゾン水供給ライン6のヒータ54でオゾン水を昇温する。これにより、オゾン水を生成する際にオゾン水生成部5で昇温する場合に比べて、所与のオゾン濃度を有するオゾン水を効率よく生成することができる。
なぜなら、オゾン水を昇温すると溶解したオゾンが少なからず脱気してしまうことから、オゾン水生成部5でオゾン水を生成する際に昇温すると、脱気する分まで考慮したオゾンガスが必要となってしまうからである。
基板処理システム1におけるその他の配管構成についての説明を続ける。処理ユニット16は、排出ライン65を介してドレン部DRに接続される。これにより、処理ユニット16内でウェハWの処理に使用された処理液をドレン部DRに排出することができる。
また、実施形態では、並列ライン6aも背圧弁66を介してドレン部DRに接続される。これにより、処理ユニット16で用いられなかったオゾン水をドレン部DRに排出することができる。
<処理ユニットの構成>
次に、処理ユニット16の構成について、図3および図4を参照しながら説明する。図3は、実施形態に係る処理ユニット16の構成例を示す模式図であり、図4は、実施形態に係る液供給部90の構成例を示す概略断面図である。
次に、処理ユニット16の構成について、図3および図4を参照しながら説明する。図3は、実施形態に係る処理ユニット16の構成例を示す模式図であり、図4は、実施形態に係る液供給部90の構成例を示す概略断面図である。
図3に示すように、処理ユニット16は、チャンバ70と、液処理部80と、液供給部90と、回収カップ100とを備える。
チャンバ70は、液処理部80と、液供給部90と、回収カップ100とを収容する。チャンバ70の天井部には、FFU(Fan Filter Unit)71が設けられる。FFU71は、チャンバ70内にダウンフローを形成する。
液処理部80は、保持部81と、支柱部82と、駆動部83とを備え、載置されたウェハWに液処理を施す。保持部81は、ウェハWを水平に保持する。支柱部82は、鉛直方向に延在する部材であり、基端部が駆動部83によって回転可能に支持され、先端部において保持部81を水平に支持する。駆動部83は、支柱部82を鉛直軸まわりに回転させる。
かかる液処理部80は、駆動部83を用いて支柱部82を回転させることによって支柱部82に支持された保持部81を回転させ、これにより、保持部81に保持されたウェハWを回転させる。
液処理部80が備える保持部81の上面には、ウェハWを側面から保持する保持部材81aが設けられる。ウェハWは、かかる保持部材81aによって保持部81の上面からわずかに離間した状態で水平保持される。なお、ウェハWは、基板処理が行われる表面を上方に向けた状態で保持部81に保持される。
液供給部90は、ウェハWに対してオゾン水およびIPAを供給する。液供給部90は、ノズル91a、91bと、かかるノズル91a、91bを水平に支持するアーム92と、アーム92を旋回および昇降させる旋回昇降機構93とを備える。
ノズル91aは、オゾン水吐出ノズルの一例であり、オゾン水供給ライン6の分岐ライン6bに接続される。図4に示すように、ノズル91aには吐出口91aaが形成される。液供給部90は、吐出口91aaをウェハWにおける中央部の直上に配置することができる。
これにより、液供給部90は、オゾン水供給ライン6を介して供給されるオゾン水をウェハWの中央部に吐出することができる。そして、ウェハWの中央部に吐出されたオゾン水は、ウェハWの回動によって中央部から縁部に広がる。
ノズル91bは、IPA吐出ノズルの一例であり、IPA供給ライン8に接続される。ノズル91bには複数の吐出口91baが形成される。液供給部90は、複数の吐出口91baをウェハWの中央部から径方向に沿って配置することができる。
これにより、液供給部90は、IPA供給ライン8を介して供給されるIPAをウェハWの径方向に沿って吐出することができる。そして、ウェハWの径方向に沿って吐出されたIPAは、ウェハWの回動によってウェハWの全体に広がる。
このように、実施形態では、ウェハWにおける中央部に配置されるノズル91aと、ウェハWの径方向に沿って配置されるノズル91bとに分けてオゾン水とIPAとをウェハWに吐出する。
ここで、オゾン水とIPAとを混ぜた際に生じるOHラジカルは、短時間で失活してしまう。したがって、もし仮にウェハWの中央部に配置される2本のノズルからオゾン水とIPAとを両方吐出した場合、中央部で生じたOHラジカルは、オゾン水が縁部に到達するまでに失活してしまう恐れがある。
一方で、実施形態では、中央部に配置されるノズル91aと径方向に沿って配置されるノズル91bとに分けてオゾン水とIPAとをウェハWに吐出することにより、ウェハWの全面でオゾン水とIPAとを混ぜることができる。これにより、実施形態では、OHラジカルをウェハWの全面で生じさせることができる。
したがって、実施形態によれば、ウェハWの全面で均等にOHラジカルによる処理を実施することができることから、オゾン水単体よりも処理能力が高い処理をウェハWの全面で実施することができる。
なお、上述の例では、中央部に配置されるノズル91aからオゾン水を吐出し、径方向に沿って配置されるノズル91bからIPAを吐出した例について示したが、ノズル91aからIPAを吐出し、ノズル91bからオゾン水を吐出してもよい。
この場合でも、ウェハWの全面でオゾン水とIPAとを混ぜることができることから、OHラジカルをウェハWの全面で生じさせることができる。
また、径方向に沿って配置されるノズル91bからオゾン水とIPAとを両方吐出してもよい。図5は、実施形態に係る液供給部90の別の構成例を示す概略断面図である。
図5に示すように、長尺ノズルであるノズル91bに設けられる吐出口91baからIPAを吐出し、かかる吐出口91baに近接して設けられる吐出口91bbからオゾン水を吐出する。
さらに、ノズル91bとウェハWとの間に位置する混合領域Mに吐出口91baおよび吐出口91bbを向けることにより、かかる混合領域Mでオゾン水とIPAとを混ぜることができる。
これにより、混合領域Mで生じたOHラジカルをすばやくウェハWに供給することができることから、オゾン水単体よりも処理能力が高い処理をウェハWの全面で実施することができる。
実施形態に係る液供給部90は、上述したノズル91a、91bのほかに、DIW吐出ノズル(図示せず)と、SC1吐出ノズル(図示せず)とを有する。DIW吐出ノズルは、リンス液の一例であるDIWをウェハWに吐出することができる。SC1吐出ノズルは、ウェハWの表面でパーティクルの再付着を防止するSC1(アンモニアと過酸化水素水の混合液)をウェハWに吐出することができる。
なお、実施形態の処理ユニット16では、ノズル91a、91bがウェハWの上方(おもて面側)に配置された例について示したが、ノズル91a、91bがウェハWの下方(裏面側)に配置されていてもよい。
図3の説明に戻る。回収カップ100は、保持部81を取り囲むように配置され、保持部81の回転によってウェハWから飛散する処理液を捕集する。回収カップ100の底部には、排液口101が形成されており、回収カップ100によって捕集された処理液は、かかる排液口101から処理ユニット16の外部へ排出される。
また、回収カップ100の底部には、FFU71から供給される気体を処理ユニット16の外部へ排出する排気口102が形成される。
<各種変形例>
つづいて、実施形態の各種変形例に係る基板処理システム1の配管構成について、図6~図8を参照しながら説明する。図6は、実施形態の変形例1に係る基板処理システム1の配管構成を示す模式図である。
つづいて、実施形態の各種変形例に係る基板処理システム1の配管構成について、図6~図8を参照しながら説明する。図6は、実施形態の変形例1に係る基板処理システム1の配管構成を示す模式図である。
図6に示すように、変形例1に係る基板処理システム1は、オゾン水供給ライン6の配管構成が実施形態と異なる。そこで、以降の例では、実施形態と同様の部位については同じ符号を付して、詳細な説明は省略する。
変形例1に係る基板処理システム1は、複数の並列ライン6aがドレン部DRではなくオゾン水生成部5に接続される。具体的には、複数の並列ライン6aは、循環ライン9を介してオゾン水生成部5のタンク25に接続される。
これにより、処理ユニット16で使用されなかったオゾン水を、循環ライン9を介してオゾン水生成部5に戻すことができる。したがって、変形例1によれば、未使用のオゾン水を活用してさらなるオゾン水を生成することができることから、オゾン水生成部5でオゾン水を効率よく生成することができる。
なお、循環ライン9には、上流側から順にバルブ67と、背圧弁68とが設けられる。また、タンク25に貯留される溶液はオゾンを含む溶液となるため、かかるタンク25からの排気は、ライン58を介してオゾンガス除去部46に供給され、無害化される。
また、図6の例では、処理ユニット16で使用されなかったオゾン水をオゾン水生成部5に戻すのみである場合について示した。一方で、循環ライン9からドレン部DRに分岐させる分岐ライン(図示せず)を設けることにより、処理ユニット16で使用されなかったオゾン水をオゾン水生成部5に戻す場合と、ドレン部DRから排出する場合とで状況に応じて切り替えてもよい。
図7は、実施形態の変形例2に係る基板処理システム1の配管構成を示す模式図である。なお、図7では、オゾン水生成部5の詳細な図示を省略する。図7に示すように、変形例2に係る基板処理システム1は、オゾン水供給ライン6の分岐ライン6bの構成が変形例1と異なる。
具体的には、1つの並列ライン6aから1つの分岐ライン6b1がまず分岐し、さらに分岐ライン6b1がそれぞれの処理ユニット16に繋がる分岐ライン6b2に分かれる。そして、変形例2では、オゾン水供給ライン6におけるバルブ56の上流側にはヒータ54が設けられず、それぞれの分岐ライン6b1にヒータ54Aが設けられる。
かかる変形例2では、ヒータ54Aでオゾン水を昇温することにより、昇温されたオゾン水を処理ユニット16に供給することができる。
また、変形例2では、処理ユニット16で使用されなかったオゾン水を昇温することなくオゾン水生成部5に戻すことができる。これにより、未使用のオゾン水を活用してオゾン水を生成する際に、かかるオゾン水の温度が上昇することを抑制することができる。
したがって、変形例2によれば、オゾン水生成部5でオゾン水をさらに効率よく生成することができる。
図8は、実施形態の変形例3に係る基板処理システム1の配管構成を示す模式図である。なお、図8では、処理ユニット16などが設けられる処理領域Xの図示を省略している。
図8に示すように、変形例3に係るオゾン水生成部5は、第2ライン26において、ポンプ38の下流側に混合部37が設けられる。これにより、ポンプ38で昇圧されたDIWにオゾンを溶解することができることから、所与のオゾン濃度を有するオゾン水を効率よく生成することができる。
実施形態に係る基板処理装置(基板処理システム1)は、オゾン水生成部5と、基板処理部(処理ユニット16)と、オゾン水供給ライン6と、希釈液供給ライン7と、制御部18とを備える。オゾン水生成部5は、所与のオゾン濃度を有するオゾン水を生成する。基板処理部(処理ユニット16)は、基板(ウェハW)を処理する。オゾン水供給ライン6は、オゾン水生成部5と基板処理部(処理ユニット16)との間に介設され、オゾン水を基板処理部(処理ユニット16)に供給する。希釈液供給ライン7は、オゾン水供給ライン6に接続され、希釈液をオゾン水供給ライン6に供給する。制御部18は、オゾン水生成部5と、基板処理部(処理ユニット16)と、オゾン水供給ライン6と、希釈液供給ライン7とを制御する。制御部18は、基板(ウェハW)の処理に係るレシピに応じて、基板処理部(処理ユニット16)へのオゾン水と希釈液との供給量を制御する。これにより、高い除去能力が必要となる処理と、高い除去能力が必要でない処理とを1つの基板処理システム1内で混在させながら実施することができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、オゾン水生成部5は、タンク21と、純水供給ライン22と、オゾンガス供給ライン23とを有する。純水供給ライン22は、タンク21に接続され、タンク21に純水(DIW)を供給する。オゾンガス供給ライン23は、純水供給ライン22に接続され、オゾンガスを純水供給ライン22に供給する。制御部18は、純水供給ライン22内で純水(DIW)とオゾンガスとを混合するとともに、純水(DIW)とオゾンガスとの混合液をタンク21内で昇圧してオゾン水を生成する。これにより、所与のオゾン濃度を有するオゾン水を効率よく生成することができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、純水供給ライン22には、酸系薬液供給ライン27を介して酸系薬液が供給される。これにより、オゾン水の原料となるDIWのpH値を下げることができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、オゾン水供給ライン6は、オゾン水のオゾン濃度を計測する濃度計55を有する。制御部18は、濃度計55で計測されるオゾン水のオゾン濃度に基づいて、純水供給ライン22に供給される酸系薬液の流量を調整する。これにより、所与のオゾン濃度のオゾン水を安定して処理ユニット16に供給することができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、オゾン水供給ライン6は、オゾン水のオゾン濃度を計測する濃度計55を有する。制御部18は、濃度計55で計測されるオゾン水のオゾン濃度に基づいて、純水供給ライン22に供給されるオゾンガスの流量および濃度の少なくとも一方を調整する。これにより、所与のオゾン濃度のオゾン水を安定して処理ユニット16に供給することができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、基板処理部(処理ユニット16)は、オゾン水吐出ノズル(ノズル91a)と、IPA吐出ノズル(ノズル91b)とを有する。オゾン水吐出ノズル(ノズル91a)は、オゾン水供給ライン6に接続され、オゾン水またはオゾン水と希釈液との混合液を基板(ウェハW)に吐出する。IPA吐出ノズル(ノズル91b)は、IPAを基板(ウェハW)に吐出する。これにより、オゾン水単体よりもさらに処理能力が高いOHラジカルを含んだオゾン水でウェハWを処理することができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、IPA吐出ノズル(ノズル91b)は、複数の吐出口91baが基板(ウェハW)の径方向に並んで形成される長尺ノズルである。これにより、オゾン水単体よりも処理能力が高い処理をウェハWの全面で実施することができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、希釈液供給ライン7は、希釈液(DIW)を加熱するヒータ7eを有する。制御部18は、基板(ウェハW)の処理に係るレシピに応じてヒータ7eを制御し、オゾン水と希釈液との混合液の温度を調整する。これにより、昇温されたDIWと室温のDIWとを選択的に合流部64に供給することができる。
また、実施形態に係る基板処理装置(基板処理システム1)は、基板処理部(処理ユニット16)で使用されなかったオゾン水をオゾン水生成部5に戻す循環ライン9をさらに備える。これにより、未使用のオゾン水を活用してさらなるオゾン水を生成することができることから、オゾン水生成部5でオゾン水を効率よく生成することができる。
また、実施形態に係る基板処理装置(基板処理システム1)において、オゾン水供給ライン6は、背圧弁51を有する。これにより、背圧弁51よりも下流側に設けられる機器が昇圧されたオゾン水によって破損することを抑制することができる。
<基板処理の手順>
つづいて、実施形態に係る基板処理の手順について、図9および図10を参照しながら説明する。図9は、実施形態に係る基板処理システム1が実行する基板処理の手順を示すフローチャートである。
つづいて、実施形態に係る基板処理の手順について、図9および図10を参照しながら説明する。図9は、実施形態に係る基板処理システム1が実行する基板処理の手順を示すフローチャートである。
最初に、制御部18は、オゾン水生成部5を制御して、所与のオゾン濃度を有するオゾン水を生成するオゾン水生成処理を実施する(ステップS101)。かかるオゾン水生成処理の詳細については後述する。
次に、制御部18は、搬入出ステーション2を制御して、処理を行うウェハWのフープIDまたはウェハIDを読み込む(ステップS102)。このフープIDやウェハIDは、たとえば、複数のウェハWを収容して搬送可能なフープCにそれぞれ個別に登録されており、かかるフープCがフープ載置部11に搬入された際などに読み込むことができる。
次に、制御部18は、読み込まれたフープIDまたはウェハIDに基づいて、ウェハWの工程を判別する(ステップS103)。そして、ウェハWの工程がポストエッチクリーンであると判別された場合(ステップS104,ポストエッチクリーン)、制御部18は、ポストエッチクリーンのレシピを選択する(ステップS105)。
次に、制御部18は、オゾン水供給ライン6および希釈液供給ライン7を制御して、オゾン水とRT-DIWとを混合した処理液を生成する(ステップS106)。そして、制御部18は、処理ユニット16を制御して、かかる処理液でウェハWの液処理を実施する(ステップS107)。
なお、ステップS105~S107の処理では、オゾン水とRT-DIWとの比率自体をあらかじめレシピに設定してもよい。また、ステップS105~S107の処理では、オゾン水のオゾン濃度をあらかじめレシピに設定し、濃度計55で計測されるオゾン濃度に基づいて、オゾン水とRT-DIWとの比率をフィードバック制御してもよい。
次に、制御部18は、液供給部90のDIW吐出ノズルを制御して、DIWによるウェハWのリンス処理を実施する(ステップS108)。そして、制御部18は、液供給部90のSC1吐出ノズルを制御して、SC1によるウェハWの再付着防止処理を実施する(ステップS109)。
次に、制御部18は、液供給部90のDIW吐出ノズルを制御して、DIWによるウェハWのリンス処理を実施する(ステップS110)。そして、制御部18は、液処理部80を制御して、ウェハWの乾燥処理(たとえば、スピン乾燥)を実施する(ステップS111)。かかるステップS111が終了すると、一連の処理が完了する。
また、ウェハWの工程がポストアッシュクリーンであると判別された場合(ステップS104,ポストアッシュクリーン)、制御部18は、ポストアッシュクリーンのレシピを選択する(ステップS112)。
次に、制御部18は、オゾン水供給ライン6および希釈液供給ライン7を制御して、オゾン水とHot-DIWとを混合した処理液を生成する(ステップS113)。そして、制御部18は、処理ユニット16を制御して、かかる処理液でウェハWの液処理を実施し(ステップS114)、ステップS108の処理に移行する。
なお、ステップS112~S114の処理では、オゾン水とHot-DIWとの比率自体をあらかじめレシピに設定してもよい。また、ステップS112~S114の処理では、オゾン水のオゾン濃度をあらかじめレシピに設定し、濃度計55で計測されるオゾン濃度に基づいて、オゾン水とHot-DIWとの比率をフィードバック制御してもよい。
また、ウェハWの工程がレジスト除去であると判別された場合(ステップS104,レジスト除去)、制御部18は、レジスト除去のレシピを選択する(ステップS115)。
次に、制御部18は、オゾン水供給ライン6、IPA供給ライン8および処理ユニット16を制御して、オゾン水またはオゾン水及びIPAで液処理を実施し(ステップS116)、ステップS108の処理に移行する。
なお、ステップS115、S116の処理では、オゾン水の比率を100%としてあらかじめレシピに設定してもよいし、オゾン水とIPAとの比率自体をあらかじめレシピに設定してもよい。
図10は、実施形態に係る基板処理システム1が実行するオゾン水生成処理の手順を示すフローチャートである。最初に、制御部18は、オゾン水生成部5を制御して、DIWと酸系薬液とを混合し、所与のpH値を有するDIWを生成する(ステップS201)。
次に、制御部18は、オゾン水生成部5を制御して、所与のpH値を有するDIWにオゾンガスを混合する(ステップS202)。そして、DIWとオゾンガスとの混合液をタンク21内で昇圧する(ステップS203)。かかるステップS203が終了すると、一連のオゾン水生成処理が完了する。
実施形態に係る基板処理方法は、オゾン水を生成する工程(ステップS101)と、液処理する工程(ステップS107、S114、S116)とを含む。オゾン水を生成する工程(ステップS101)は、所与のオゾン濃度を有するオゾン水を生成する。液処理する工程(ステップS107、S114、S116)は、基板(ウェハW)の処理に係るレシピに応じて、オゾン水とオゾン水を希釈する希釈液との比率が制御された処理液で液処理する。これにより、高い除去能力が必要となる処理と、高い除去能力が必要でない処理とを1つの基板処理システム1内で混在させながら実施することができる。
また、実施形態に係る基板処理方法において、オゾン水を生成する工程(ステップS101)は、純水とオゾンガスとを混合する工程(ステップS202)と、純水とオゾンガスとの混合液をタンク21内で昇圧する工程(ステップS203)と、を含む。これにより、所与のオゾン濃度を有するオゾン水を効率よく生成することができる。
また、実施形態に係る基板処理方法において、オゾン水を生成する工程(ステップS101)は、純水とオゾンガスとを混合する工程(ステップS202)の前に、純水と酸系薬液とを混合する工程(ステップS201)を含む。これにより、オゾン水の原料となるDIWのpH値を下げることができる。
また、実施形態に係る基板処理方法において、液処理する工程(ステップS116)は、処理液とIPAとを同時に基板(ウェハW)に吐出する。これにより、オゾン水単体よりもさらに処理能力が高いOHラジカルを含んだオゾン水でウェハWを処理することができる。
以上、本開示の実施形態について説明したが、本開示は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、オゾン水供給ライン6に脱気機構を設けてもよい。これにより、ヒータ54で昇温されたオゾン水からオゾンガスが脱気した際に、かかるオゾンガスが外部に漏洩することを抑制することができる。
また、上述の実施形態では、オゾン水の原料となるDIWに酸系薬液を供給して、かかるDIWのpH値を調整した例について示したが、必ずしもオゾン水の原料となるDIWのpH値を調整する必要はない。
また、上述の実施形態において、液処理部80に保持されたウェハWを加熱機構で所与の温度に加熱し、かかる加熱されたウェハWにオゾン水を吐出して液処理してもよい。これにより、高い温度環境でオゾン水によるウェハWの液処理を実施することができることから、オゾン水によるウェハWの処理性能を向上させることができる。
今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
W ウェハ(基板の一例)
1 基板処理システム(基板処理装置の一例)
6 オゾン水供給ライン
7 希釈液供給ライン
7e ヒータ
8 IPA供給ライン
9 循環ライン
16 処理ユニット(基板処理部の一例)
18 制御部
21 タンク
22 純水供給ライン
23 オゾンガス供給ライン
27 酸系薬液供給ライン
51 背圧弁
54 ヒータ
55 濃度計
91a ノズル(オゾン水吐出ノズルの一例)
91aa 吐出口
91b ノズル(IPA吐出ノズルの一例)
91ba 吐出口
1 基板処理システム(基板処理装置の一例)
6 オゾン水供給ライン
7 希釈液供給ライン
7e ヒータ
8 IPA供給ライン
9 循環ライン
16 処理ユニット(基板処理部の一例)
18 制御部
21 タンク
22 純水供給ライン
23 オゾンガス供給ライン
27 酸系薬液供給ライン
51 背圧弁
54 ヒータ
55 濃度計
91a ノズル(オゾン水吐出ノズルの一例)
91aa 吐出口
91b ノズル(IPA吐出ノズルの一例)
91ba 吐出口
Claims (14)
- 所与のオゾン濃度を有するオゾン水を生成するオゾン水生成部と、
基板を処理する基板処理部と、
前記オゾン水生成部と前記基板処理部との間に介設され、前記オゾン水を前記基板処理部に供給するオゾン水供給ラインと、
前記オゾン水供給ラインに接続され、希釈液を前記オゾン水供給ラインに供給する希釈液供給ラインと、
前記オゾン水生成部と、前記基板処理部と、前記オゾン水供給ラインと、前記希釈液供給ラインとを制御する制御部と、
を備え、
前記制御部は、前記基板の処理に係るレシピに応じて、前記基板処理部への前記オゾン水と前記希釈液との供給量を制御する
基板処理装置。 - 前記オゾン水生成部は、
タンクと、
前記タンクに接続され、前記タンクに純水を供給する純水供給ラインと、
前記純水供給ラインに接続され、オゾンガスを前記純水供給ラインに供給するオゾンガス供給ラインと、
を有し、
前記制御部は、前記純水供給ライン内で純水とオゾンガスとを混合するとともに、純水とオゾンガスとの混合液を前記タンク内で昇圧して前記オゾン水を生成する
請求項1に記載の基板処理装置。 - 前記純水供給ラインには、酸系薬液供給ラインを介して酸系薬液が供給される
請求項2に記載の基板処理装置。 - 前記オゾン水供給ラインは、前記オゾン水のオゾン濃度を計測する濃度計を有し、
前記制御部は、前記濃度計で計測される前記オゾン水のオゾン濃度に基づいて、前記純水供給ラインに供給される前記酸系薬液の流量を調整する
請求項3に記載の基板処理装置。 - 前記オゾン水供給ラインは、前記オゾン水のオゾン濃度を計測する濃度計を有し、
前記制御部は、前記濃度計で計測される前記オゾン水のオゾン濃度に基づいて、前記純水供給ラインに供給されるオゾンガスの流量および濃度の少なくとも一方を調整する
請求項2~4のいずれか一つに記載の基板処理装置。 - 前記基板処理部は、
前記オゾン水供給ラインに接続され、前記オゾン水または前記オゾン水と前記希釈液との混合液を前記基板に吐出するオゾン水吐出ノズルと、
IPA(イソプロピルアルコール)を前記基板に吐出するIPA吐出ノズルと、
を有する請求項1~5のいずれか一つに記載の基板処理装置。 - 前記IPA吐出ノズルは、複数の吐出口が前記基板の径方向に並んで形成される長尺ノズルである
請求項6に記載の基板処理装置。 - 前記希釈液供給ラインは、前記希釈液を加熱するヒータを有し、
前記制御部は、前記基板の処理に係るレシピに応じて前記ヒータを制御し、前記オゾン水と前記希釈液との混合液の温度を調整する
請求項1~7のいずれか一つに記載の基板処理装置。 - 前記基板処理部で使用されなかった前記オゾン水を前記オゾン水生成部に戻す循環ラインをさらに備える
請求項1~8のいずれか一つに記載の基板処理装置。 - 前記オゾン水供給ラインは、背圧弁を有する
請求項1~9のいずれか一つに記載の基板処理装置。 - 所与のオゾン濃度を有するオゾン水を生成する工程と、
基板の処理に係るレシピに応じて、前記オゾン水と前記オゾン水を希釈する希釈液との比率が制御された処理液で液処理する工程と
を含む基板処理方法。 - 前記オゾン水を生成する工程は、純水とオゾンガスとを混合する工程と、純水とオゾンガスとの混合液をタンク内で昇圧する工程と、を含む
請求項11に記載の基板処理方法。 - 前記オゾン水を生成する工程は、前記純水とオゾンガスとを混合する工程の前に、純水と酸系薬液とを混合する工程を含む
請求項12に記載の基板処理方法。 - 前記液処理する工程は、
前記処理液とIPA(イソプロピルアルコール)とを同時に前記基板に吐出する
請求項11~13のいずれか一つに記載の基板処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019095006 | 2019-05-21 | ||
JP2019-095006 | 2019-05-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020235381A1 true WO2020235381A1 (ja) | 2020-11-26 |
Family
ID=73459225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018854 WO2020235381A1 (ja) | 2019-05-21 | 2020-05-11 | 基板処理装置および基板処理方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202112452A (ja) |
WO (1) | WO2020235381A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220219208A1 (en) * | 2021-01-14 | 2022-07-14 | Samsung Display Co., Ltd. | Deposition mask cleaning apparatus and deposition mask cleaning method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000005285A (ja) * | 1998-06-19 | 2000-01-11 | Koa Corporation:Kk | オゾン水供給設備 |
JP2000037695A (ja) * | 1998-07-24 | 2000-02-08 | Kurita Water Ind Ltd | オゾン水供給装置 |
JP2004079649A (ja) * | 2002-08-13 | 2004-03-11 | Sumitomo Mitsubishi Silicon Corp | 半導体基板又は素子の洗浄方法 |
JP2004356486A (ja) * | 2003-05-30 | 2004-12-16 | Seiko Epson Corp | 有機物除去方法および装置 |
JP2005161284A (ja) * | 2003-11-28 | 2005-06-23 | Nittetu Chemical Engineering Ltd | 定濃度オゾン水の供給方法 |
JP2006187757A (ja) * | 2005-01-07 | 2006-07-20 | Wen Wang | 高速遠心式オゾン水生成方法とシステム |
JP2007134600A (ja) * | 2005-11-11 | 2007-05-31 | Dainippon Screen Mfg Co Ltd | 基板処理装置および基板処理方法 |
JP2007236706A (ja) * | 2006-03-09 | 2007-09-20 | Hiroshima Univ | 食品製造設備の被洗浄物を洗浄する洗浄装置、および洗浄方法 |
JP2009297588A (ja) * | 2008-06-10 | 2009-12-24 | Nomura Micro Sci Co Ltd | 加熱オゾン水の製造方法 |
JP2011228406A (ja) * | 2010-04-16 | 2011-11-10 | Kurita Water Ind Ltd | オゾン水供給システム及びシリコンウエハの湿式酸化処理システム |
JP2018174346A (ja) * | 2014-07-31 | 2018-11-08 | 東京エレクトロン株式会社 | 基板洗浄システム、基板洗浄方法および記憶媒体 |
-
2020
- 2020-05-08 TW TW109115300A patent/TW202112452A/zh unknown
- 2020-05-11 WO PCT/JP2020/018854 patent/WO2020235381A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000005285A (ja) * | 1998-06-19 | 2000-01-11 | Koa Corporation:Kk | オゾン水供給設備 |
JP2000037695A (ja) * | 1998-07-24 | 2000-02-08 | Kurita Water Ind Ltd | オゾン水供給装置 |
JP2004079649A (ja) * | 2002-08-13 | 2004-03-11 | Sumitomo Mitsubishi Silicon Corp | 半導体基板又は素子の洗浄方法 |
JP2004356486A (ja) * | 2003-05-30 | 2004-12-16 | Seiko Epson Corp | 有機物除去方法および装置 |
JP2005161284A (ja) * | 2003-11-28 | 2005-06-23 | Nittetu Chemical Engineering Ltd | 定濃度オゾン水の供給方法 |
JP2006187757A (ja) * | 2005-01-07 | 2006-07-20 | Wen Wang | 高速遠心式オゾン水生成方法とシステム |
JP2007134600A (ja) * | 2005-11-11 | 2007-05-31 | Dainippon Screen Mfg Co Ltd | 基板処理装置および基板処理方法 |
JP2007236706A (ja) * | 2006-03-09 | 2007-09-20 | Hiroshima Univ | 食品製造設備の被洗浄物を洗浄する洗浄装置、および洗浄方法 |
JP2009297588A (ja) * | 2008-06-10 | 2009-12-24 | Nomura Micro Sci Co Ltd | 加熱オゾン水の製造方法 |
JP2011228406A (ja) * | 2010-04-16 | 2011-11-10 | Kurita Water Ind Ltd | オゾン水供給システム及びシリコンウエハの湿式酸化処理システム |
JP2018174346A (ja) * | 2014-07-31 | 2018-11-08 | 東京エレクトロン株式会社 | 基板洗浄システム、基板洗浄方法および記憶媒体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220219208A1 (en) * | 2021-01-14 | 2022-07-14 | Samsung Display Co., Ltd. | Deposition mask cleaning apparatus and deposition mask cleaning method |
Also Published As
Publication number | Publication date |
---|---|
TW202112452A (zh) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI278029B (en) | Liquid treatment device and liquid treatment method | |
KR101293809B1 (ko) | 기판처리장치 및 기판처리방법 | |
CN109427627B (zh) | 液处理装置和液处理方法 | |
CN110957239B (zh) | 基片处理系统和处理流体供给方法 | |
JP4811877B2 (ja) | 基板処理方法、基板処理装置およびコンピュータ読み取り可能な記録媒体 | |
JP7080134B2 (ja) | 基板処理装置のパーティクル除去方法および基板処理装置 | |
CN107026071A (zh) | 基板处理方法和基板处理装置 | |
TW202203314A (zh) | 液處理裝置及液處理方法 | |
JP2008034428A (ja) | 基板処理装置および基板処理方法 | |
JP6987244B2 (ja) | 基板処理方法および基板処理装置 | |
WO2020235381A1 (ja) | 基板処理装置および基板処理方法 | |
JPWO2019235275A1 (ja) | 基板処理装置および基板処理方法 | |
JP7530954B2 (ja) | 基板処理装置、基板処理方法及びコンピュータ読み取り可能な記録媒体 | |
JP6749405B2 (ja) | 基板処理方法および基板処理装置 | |
JP2020194842A (ja) | 基板処理方法および基板処理装置 | |
JP7475441B2 (ja) | 基板処理装置 | |
JP7422606B2 (ja) | 基板処理装置および基板処理方法 | |
WO2023282064A1 (ja) | 基板処理システム、及び基板処理方法 | |
TWI791956B (zh) | 基板處理裝置以及基板處理方法 | |
WO2021192990A1 (ja) | 基板処理装置および基板処理方法 | |
KR20230133231A (ko) | 기판 처리 방법 및 기판 처리 시스템 | |
CN116741621A (zh) | 基板处理方法和基板处理系统 | |
JP2022165461A (ja) | 基板処理装置および基板処理方法 | |
JP2022073574A (ja) | 基板処理システムおよび基板処理方法 | |
TW202133221A (zh) | 基板處理裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20809899 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20809899 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |