WO2020233343A1 - 微流控芯片及其制备方法和微流控装置 - Google Patents

微流控芯片及其制备方法和微流控装置 Download PDF

Info

Publication number
WO2020233343A1
WO2020233343A1 PCT/CN2020/086671 CN2020086671W WO2020233343A1 WO 2020233343 A1 WO2020233343 A1 WO 2020233343A1 CN 2020086671 W CN2020086671 W CN 2020086671W WO 2020233343 A1 WO2020233343 A1 WO 2020233343A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
laser light
microfluidic chip
upper substrate
planarization layer
Prior art date
Application number
PCT/CN2020/086671
Other languages
English (en)
French (fr)
Inventor
耿越
董学
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/043,985 priority Critical patent/US20230149920A1/en
Publication of WO2020233343A1 publication Critical patent/WO2020233343A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Definitions

  • the present disclosure relates to the technical field of digital microfluidics, and in particular, to a microfluidic chip, a preparation method thereof, and a microfluidic device.
  • Digital microfluidic technology can precisely control the movement of droplets, realize the fusion and separation of droplets, and complete various biochemical reactions. Compared with general microfluidics technology, digital microfluidics can operate liquid accurately to each droplet, complete the target reaction with less reagent volume, and control the reaction rate and reaction progress more accurately. Therefore, digital microfluidic technology has excellent development prospects in the field of biological detection.
  • the digital microfluidic chip only has the function of droplet manipulation. To achieve the final detection, it must be supplemented with necessary light sources and detection equipment. At this stage, all biological detection scenes that require light sources are installed on detection equipment or instruments, which is obviously not conducive to the development trend of miniaturization and portable equipment.
  • the present disclosure provides a microfluidic chip, including:
  • the upper substrate and the lower substrate are arranged in a pair, a gap is formed between the upper substrate and the lower substrate, and the gap is used for accommodating liquid droplets;
  • the driving electrode is located on the side of the upper substrate or the side of the lower substrate, and the driving electrode is configured to control the movement of the droplet in a energized state
  • the microfluidic chip further includes a laser light source, the laser light source is arranged on the upper substrate or the lower substrate side, and is used to provide light for the detection of the droplets.
  • the microfluidic chip further includes a detection element, and the detection element is arranged on the upper substrate or the lower substrate for detecting the droplets,
  • the detection element and the laser light source are separately arranged on opposite sides of the gap, and the detection element and the orthographic projection of the laser light source on the upper substrate at least partially overlap.
  • the laser light source is arranged on a side of the upper substrate close to the lower substrate, and the detection element is arranged on a side of the lower substrate close to the upper substrate.
  • the laser light source is disposed on a side of the lower substrate close to the upper substrate
  • the detection element is disposed on a side of the upper substrate close to the lower substrate.
  • the light emitting direction of the laser light source is parallel to the thickness direction of the microfluidic chip.
  • a first planarization layer is further provided on the side of the upper substrate where the laser light source is provided, and a via hole is opened in the first planarization layer.
  • Bottom electrodes are provided on the upper substrate or the lower substrate, and top electrodes are provided on opposite sides of the top opening of the via;
  • the laser light source includes a first pole and a second pole, the first pole is connected to the bottom electrode, the second pole is connected to the top electrode, and the The bottom electrode and the top electrode are respectively connected to the output end of a power source, and are used to provide power to the laser light source;
  • a second planarization layer is further provided on the side of the laser light source away from the first planarization layer, and a first hydrophobic layer is further provided on the side of the second planarization layer away from the laser light source.
  • a hydrophobic layer is used to contact the droplets.
  • a first planarization layer is further provided on the side of the lower substrate where the laser light source is provided, and a via hole is opened in the first planarization layer.
  • Bottom electrodes are provided on the upper substrate or the lower substrate, and top electrodes are provided on opposite sides of the top opening of the via;
  • the laser light source includes a first pole and a second pole, the first pole is connected to the bottom electrode, the second pole is connected to the top electrode, and the The bottom electrode and the top electrode are respectively connected to the output end of a power source, and are used to provide power to the laser light source;
  • a second planarization layer is further provided on the side of the laser light source away from the first planarization layer, and a first hydrophobic layer is further provided on the side of the second planarization layer away from the laser light source.
  • a hydrophobic layer is used to contact the droplets.
  • a micro lens structure is further provided on the light exit surface of the laser light source, and the micro lens structure is used to converge the light emitted by the laser light source.
  • the laser light source includes a vertical cavity surface emitting laser.
  • a third planarization layer is further provided on the side of the detection element away from the lower substrate;
  • a second hydrophobic layer is also provided on the side of the third planarization layer away from the detection element, and the second hydrophobic layer is used to contact the droplets.
  • a third planarization layer is further provided on the side of the detection element away from the upper substrate;
  • a second hydrophobic layer is also provided on the side of the third planarization layer away from the detection element, and the second hydrophobic layer is used to contact the droplets.
  • the drive electrode is disposed on the third planarization layer and is located between the third planarization layer and the second hydrophobic layer, and the drive electrode and the second hydrophobic layer A first insulating layer is also arranged between.
  • the drive electrode is disposed on the second planarization layer and is located between the second planarization layer and the first hydrophobic layer, and the drive electrode and the first hydrophobic layer A second insulating layer is also arranged between.
  • the present disclosure also provides a microfluidic device, comprising the microfluidic chip according to any one of claims 1-13 and a signal processing unit, and the signal processing unit is connected to the microfluidic chip for detection
  • the element is used to process the signal obtained by the detection of the detection element to obtain the detection result of the droplet.
  • the microfluidic chip is the microfluidic chip according to any one of claims 1-13, and the method includes:
  • a laser light source is formed on the upper substrate or the lower substrate side.
  • forming the laser light source on the upper substrate or the lower substrate side includes: preparing the laser light source on a wafer;
  • top electrodes on opposite sides of the opening at the top of the via
  • the laser light source is transferred into the via hole by a method of semiconductor stripping and transfer, and the first electrode and the second electrode of the laser light source are respectively connected to the bottom electrode and the top electrode.
  • the method further includes forming a micro lens structure on the light exit surface of the laser light source.
  • FIG. 1 is a structural cross-sectional view of a microfluidic chip in an embodiment of the disclosure
  • Figure 2 is a structural cross-sectional view of the microfluidic chip preparation step (1) in the embodiment
  • Figure 3 is a structural cross-sectional view of the microfluidic chip preparation step (2) in the embodiment
  • Figure 5 is a structural cross-sectional view of the microfluidic chip preparation step (4) in the embodiment
  • FIG. 6 is a structural cross-sectional view of the preparation step (5) of the microfluidic chip in the embodiment
  • Figure 7 is a structural cross-sectional view of the microfluidic chip preparation step (6) in the embodiment.
  • FIG. 9 is a structural cross-sectional view of the preparation step (8) of the microfluidic chip in the embodiment.
  • FIG. 10 is a structural cross-sectional view of the preparation step (9) of the microfluidic chip in the embodiment.
  • Figure 11 is a structural cross-sectional view of the microfluidic chip preparation step (10) in the embodiment.
  • Figure 12 is a structural cross-sectional view of the microfluidic chip preparation step (11) in the embodiment.
  • Figure 13 is a structural cross-sectional view of the microfluidic chip preparation step (12) in the embodiment.
  • FIG. 14 is a cross-sectional view of the structure of a microfluidic chip in an embodiment of the disclosure.
  • 15 is a cross-sectional view of the structure of the laser light source in the microfluidic chip of the embodiment.
  • microfluidic chip of the present disclosure a preparation method thereof, and a microfluidic device will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
  • the embodiment of the present disclosure provides a microfluidic chip, as shown in FIG. 1, which includes an upper substrate 1 and a lower substrate 2 arranged in an opposite manner. A gap is formed between the upper substrate 1 and the lower substrate 2, and the gap is used to contain the biological fluid.
  • the droplet 3 is also provided with a driving electrode 4 on one side of the lower substrate. The driving electrode 4 can control the movement of the biological droplet 3 in the energized state.
  • the microfluidic chip also includes a laser light source 5 which is arranged on a side of the upper substrate 1. Side, used to provide light for the detection of droplets 3.
  • the microfluidic chip adopts a data microfluidic chip.
  • the digital microfluidic chip can precisely control the movement of the droplet 3 through the driving electrode 4 provided therein, realize the fusion and separation of the droplet 3 and other operations, and complete various biochemical reactions.
  • digital microfluidic chips can operate droplets 3 accurately to each droplet 3, complete the target reaction with less reagent volume, and control the reaction rate and reaction progress more accurately. accurate.
  • the driving electrode 4 may also be provided on one side of the upper substrate 1.
  • the side of the upper substrate may be expressed as the position between the upper substrate 1 and the droplet 3 (or gap), which is also referred to as the upper substrate side hereinafter.
  • the side of the lower substrate can be expressed as the position between the lower substrate 2 and the droplet 3 (or gap), and the lower is also called the lower substrate side.
  • the laser light source 5 By arranging the laser light source 5 in the microfluidic chip, compared with the existing detection chip provided with only the driving electrode 4 capable of manipulating the droplet 3, it integrates the detection chip on the basis of the manipulation of the droplet 3 Light source, thereby improving the integration of the microfluidic chip, and at the same time, eliminating the need for the detection light source to be installed on an additional detection device, thereby facilitating the portability of the microfluidic chip and the testing equipment using the microfluidic chip miniaturization.
  • the microfluidic chip further includes a detection element 6 which is arranged on the side of the lower substrate and is used to detect the liquid drop 3.
  • the detection element 6 is used to detect light passing through a droplet.
  • the detection element 6 and the laser light source 5 are separately arranged on opposite sides of the gap, and the detection element 6 and the laser light source 5 are in positions corresponding to each other.
  • the orthographic projections of the detection element 6 and the laser light source 5 on the upper substrate 1 (or the lower substrate 2) at least partially overlap.
  • the orthographic projections of the detection element 6 and the laser light source 5 on the upper substrate 1 (or the lower substrate 2) completely overlap.
  • the detection element 6 adopts an optical signal detection device, such as a charge-coupled device (CCD), which is a detection element that uses the amount of charge to indicate the signal size and transmits the signal in a coupling manner.
  • CCD is also called an image sensor, which is used to convert optical images into electrical signals.
  • the optical signal detection device is used to receive the laser light emitted from the droplet 3 and convert the laser light into an electrical signal, thereby realizing the detection of the droplet 3.
  • the detection element 6 corresponds to the position of the laser light source 5, so that the laser light source 5 can provide sufficient light for the detection of the liquid droplet 3, thereby facilitating the detection element 6 to accurately detect the liquid droplet 3.
  • This microfluidic chip compared to the existing detection chip provided with only the drive electrode 4 capable of manipulating the liquid 3, integrates the detection element 6 for detection on the basis of manipulating the liquid drop 3, thereby improving the The degree of integration of the microfluidic chip also eliminates the need for the detection element 6 to be provided on an additional detection device, thereby facilitating the portability of the microfluidic chip and the miniaturization of the detection device using the microfluidic chip.
  • the laser light source 5 is disposed on the side of the upper substrate 1 close to the lower substrate 2
  • the detection element 6 is disposed on the side of the lower substrate 2 close to the upper substrate 1.
  • the light emitting direction of the laser light source 5 is parallel to the thickness direction of the microfluidic chip.
  • the laser light source 5 adopts a vertical cavity surface emitting laser (VCSEL). Since the vertical cavity surface emitting laser emits light perpendicular to the device surface, it can increase the area of the gap area illuminated by the laser light source 5 while reducing
  • the microfluidic chip integrates the laser light source 5 with the degree of integration (that is, the optical waveguide and the device for collimating the beam are omitted); in addition, the vertical cavity surface emitting laser also has a small beam far-field divergence angle, which is easy to achieve low
  • the advantages of threshold current operation, etc., are all conducive to the integration of vertical cavity surface emitting lasers on microfluidic chips.
  • vertical cavity surface emitting lasers can be divided into top emitting type and bottom emitting type, corresponding to different usage scenarios, but their working principles are the same, which can be summarized as: mirrors at both ends of the resonator and the gain active area in the middle They are all formed by epitaxial growth of semiconductor materials, and the laser emission direction is perpendicular to the plane of the epitaxial layer.
  • a vertical cavity surface emitting laser includes a distributed Bragg reflector (DBR) with high reflectivity (>99%), a quantum well active region and a metal electrode; the quantum well active region is located in the n-type doped DBR and Between p-type doped DBRs; DBR mirrors are alternately grown from high refractive index layer materials and low refractive index materials.
  • the optical thickness of each layer of material is 1/4 of the laser wavelength, and the optical thickness of the active region of the quantum well It is an integer multiple of 1/2 laser wavelength to meet the resonance condition.
  • the metal electrode includes a first electrode and a second electrode respectively connected to the n-type doped DBR and the p-type doped DBR.
  • the vertical cavity surface emitting laser is an existing relatively mature laser emitting device, and its structure and working principle are not repeated here.
  • a first planarization layer 7 is further provided on the side of the upper substrate 1 where the laser light source 5 is provided, and a via hole is opened in the first planarization layer 7 to accommodate the laser light source 5, and at the bottom of the via hole
  • the upper substrate 1 is provided with bottom electrodes 8, and top electrodes 9 are provided on opposite sides of the top opening of the via hole; a part of the laser light source 5 is located in the via hole, and the laser light source 5 includes a first pole and a second pole. One pole is connected to the bottom electrode 8, the second pole is connected to the top electrode 9, and the bottom electrode 8 and the top electrode 9 are respectively connected to the output terminals of the power source for supplying power to the laser light source.
  • the side of the laser light source 5 away from the first planarization layer 7 is further provided with a second planarization layer 10, and the side of the second planarization layer 10 away from the laser light source 5 is further provided with a first hydrophobic layer 11, and a first hydrophobic layer 11 Used to contact with droplets 3.
  • the detection element 6 is provided on the side of the lower substrate 2 close to the upper substrate 1, and the detection element 6 is further provided on the side far away from the lower substrate 2 and the side of the lower substrate 2 close to the upper substrate 1.
  • the third planarization layer 12; a second hydrophobic layer 13 is also provided on the side of the third planarization layer 12 away from the detection element 6, and the second hydrophobic layer 13 is used to contact the droplets 3.
  • the driving electrode 4 is disposed on the third planarization layer 12 and is located between the third planarization layer 12 and the second hydrophobic layer 13, and is also disposed between the driving electrode 4 and the second hydrophobic layer 13. There is a first insulating layer 14.
  • the droplet 3 is between the upper substrate 1 and the lower substrate 2, and its movement is controlled by the driving electrode 4 on the lower substrate 2.
  • the laser light source 5 emits laser light toward the liquid droplet 3, and the laser light passes through the liquid droplet 3 and is detected by the detection element 6.
  • the intensity of the laser light detected by the detection element 6 can determine the concentration of the droplet 3, so as to realize the detection of the droplet 3.
  • the structural layers on the upper substrate 1 and the lower substrate 2 are both transparent film layers.
  • the first planarization layer 7, the second planarization layer 10, the third planarization layer 12, and the first insulating layer 14 are all insulating layers, and the insulating layer is made of optically transparent resin such as SiO, SiN, PI, or PMMA.
  • the second planarization layer 10 can fill the gaps between the laser light sources 5, so that the light exit side of the laser light source 5 tends to be flat;
  • the third planarization layer 12 can fill the gaps between the detection elements 6 to make the detection elements The side of 6 facing the laser light source 5 tends to be flat.
  • the first hydrophobic layer 11 and the second hydrophobic layer 13 are made of materials such as Teflon, CYTOP or fluorinated silane, which can make the droplet 3 have a hydrophobic initial contact angle when it comes into contact with it.
  • the driving electrode 4 is formed of a transparent conductive layer such as ITO or IZO material.
  • the upper substrate 1 and the lower substrate 2 are joined to form a barrier structure by applying the frame sealant 20 on the periphery, so that the gap between the upper substrate 1 and the lower substrate 2 forms a droplet 3 to flow Space.
  • embodiments of the present disclosure also provide a method for preparing the microfluidic chip, which includes forming a laser light source on the upper substrate side and forming a driving electrode on the lower substrate side.
  • forming the laser light source on the upper substrate side includes: preparing the laser light source on the wafer;
  • top electrodes on opposite sides of the opening at the top of the via
  • the laser light source is transferred into the via hole by the method of semiconductor peeling and transfer, and the first electrode and the second electrode of the laser light source are respectively connected to the bottom electrode and the top electrode.
  • FIGS. 2-13 (1) deposit a bottom electrode film layer 15 on the upper substrate 1; (2) etch a pattern of the bottom electrode 8; (3) deposit a first planarization layer 7; 4) Etching the first planarization layer 7 to form vias; (5) Filling the vias with the sacrificial layer 16; (6) Depositing the top electrode film layer 17; (7) Etching the top electrode film layer 17; (8) Engraving The top electrode film layer 17 and the sacrificial layer are etched to form the final pattern of the top electrode 9; (9) the laser light source is transferred into the via hole using semiconductor lift-off and transfer technology and connected to the bottom electrode 8 and the top electrode 9; (10) deposition Two planarization layers 10; (11) deposit a first hydrophobic layer 11; (12) combine the upper substrate 1 and the lower substrate 2 that have completed the above steps to form the final microfluidic chip structure.
  • the detection element, the third planarization layer, the driving electrode, the first insulating layer, and the second hydrophobic layer are sequentially prepared and formed on the lower substrate using a traditional patterning process (including film formation, exposure, development, etching, etc.). Layer, I won’t go into details here.
  • the embodiment of the present disclosure provides a microfluidic chip.
  • the difference from the above embodiment is that, as shown in FIG. 14, the laser light source 5 is arranged on the side of the lower substrate 2 close to the upper substrate 1, and the detection element 6 is arranged on The side of the upper substrate 1 close to the lower substrate 2.
  • both the laser light source 5 and the driving electrode 4 are located on the lower substrate side.
  • the lower substrate 2 where the laser light source 5 is located is provided with a first planarization layer 7 on the side close to the upper substrate.
  • the first planarization layer 7 is provided with a via hole
  • the lower substrate at the bottom of the via hole 2 is provided with a bottom electrode 8 and a top electrode 9 is provided on the opposite side edges of the top opening of the via hole; a part of the laser light source 5 is located in the via hole.
  • the laser light source 5 includes a first pole and a second pole, and the first pole is connected
  • the bottom electrode 8 and the second electrode are connected to the top electrode 9, and the bottom electrode 8 and the top electrode 9 are respectively connected to the output terminals of the power supply for supplying power to the laser light source.
  • the side of the laser light source 5 away from the first planarization layer 7 is further provided with a second planarization layer 10, and the side of the second planarization layer 10 away from the laser light source 5 is further provided with a first hydrophobic layer 11, and a first hydrophobic layer 11 Used to contact with droplets 3.
  • the detection element 6 is provided on the side of the upper substrate 1 close to the lower substrate 2, and the third planarization layer 12 is also provided on the side of the detection element 6 away from the upper substrate 1;
  • the side of the layer 12 away from the detection element 6 is also provided with a second hydrophobic layer 13, and the second hydrophobic layer 13 is used to contact the droplets 3.
  • the driving electrode 4 is disposed on the second planarization layer 10 and is located between the second planarization layer 10 and the first hydrophobic layer 11, and is also disposed between the driving electrode 4 and the first hydrophobic layer 11.
  • the second insulating layer 18 uses an optically transparent resin such as SiO, SiN, PI, or PMMA.
  • the other structures of the microfluidic chip and the materials and functions of the film layers of the structures are the same as those in the above embodiments, and will not be repeated here.
  • embodiments of the present disclosure also provide a method for preparing the microfluidic chip.
  • the difference from the above embodiments is that the laser light source is formed on the lower substrate side and the detection element is formed on the upper substrate side. .
  • the embodiment of the present disclosure provides a microfluidic chip.
  • the difference from the foregoing embodiment is that, as shown in FIG. 15, on the basis of the foregoing embodiment, a microlens structure is also provided on the light exit surface of the laser light source 5. 19.
  • the microlens structure 19 is used to converge the light emitted by the laser light source 5.
  • the preparation method of the microfluidic chip further includes forming the microlens structure 19 on the light-emitting surface of the laser light source 5 on the basis of the preparation method in the foregoing embodiment 2.
  • the laser light source 5 is transferred from the semiconductor wafer to the upper substrate or the lower substrate, an additional process is used to form a microlens structure 19 at the light exit of each laser light source 5.
  • the addition is conducive to the convergence of the light beams emitted by the laser light source 5 and improves the quality of light emission and light signal detection.
  • the microlens structure 19 can be made of SiO, SiN, or optically transparent resin, and its processing technology is photoresist hot melt method, RIE/ICP dry etching, or laser direct writing.
  • the specific processing techniques are relatively mature traditional techniques, so I won’t repeat them here.
  • the above-mentioned beneficial effects in the microfluidic chip provided by the embodiment of the present disclosure, by arranging the laser light source on the microfluidic chip, compared to the existing detection chip which is only provided with driving electrodes capable of manipulating droplets, It integrates the detection light source on the basis of the control of the liquid drop, thereby improving the integration of the microfluidic chip, and at the same time, the detection light source does not need to be installed on an additional detection device, which is beneficial to the microfluidic The portability of the control chip and the miniaturization of the detection equipment using the microfluidic chip.
  • the embodiments of the present disclosure provide a microfluidic device, which includes the microfluidic chip in any of the above embodiments, and further includes a signal processing unit connected to the detection element of the microfluidic chip for detecting the detection element The obtained signal is processed to obtain the detection result of the droplet.
  • the integration degree of the microfluidic device is improved, which is beneficial to the portability and miniaturization of the microfluidic device.

Abstract

一种微流控芯片及其制备方法和微流控装置,该微流控芯片包括:对合设置的上基板(1)和下基板(2),上基板(1)与下基板(2)之间形成间隙,间隙用于容纳液滴(3);驱动电极(4),位于上基板(1)侧或下基板(4)侧,驱动电极(4)构造为在通电状态下控制液滴(3)移动,其中,微流控芯片还包括激光光源(5),激光光源(5)设置于上基板(1)或下基板(2)侧,用于为液滴(3)的检测提供光照。

Description

微流控芯片及其制备方法和微流控装置
相关申请的交叉引用
本申请要求于2019年5月17日提交的中国专利申请NO.201910412333.8的优先权,其公开内容以引用方式并入本文中。
技术领域
本公开涉及数字微流控技术领域,具体地,涉及一种微流控芯片及其制备方法和微流控装置。
背景技术
数字微流控技术能够精确操控液滴移动,实现液滴的融合、分离等操作,完成各种生物化学反应。同一般微流控技术相比,数字微流控对液体的操作能够精确到每个液滴,以更少的试剂量完成目标反应,对反应速率和反应进度的控制更为精确。因此,数字微流控技术在生物检测领域具有卓越的发展前景。
对于生物检测使用场景来讲,数字微流控芯片仅具有液滴操控的功能,要实现最终的检测,必须要辅以必要的光源和检测设备。目前阶段,所有需要光源的生物检测场景,光源都是安装在检测设备或仪器上的,这显然不利于设备小型化、便携式的发展趋势。
发明内容
一方面,本公开提供一种微流控芯片,包括:
对合设置的上基板和下基板,所述上基板与所述下基板之间形成间隙,所述间隙用于容纳液滴;
驱动电极,位于上基板侧或下基板侧,所述驱动电极构造为在通电状态下控制所述液滴移动,
其中,所述微流控芯片还包括激光光源,所述激光光源设置于所述上基板或所述下基板侧,用于为所述液滴的检测提供光照。
在实施例中,微流控芯片还包括检测元件,所述检测元件设置在所述上基板或所述下基板侧,用于检测所述液滴,
其中,所述检测元件与所述激光光源分设于所述间隙的相对两侧,且所述检测元件与所述激光光源在所述上基板上的正投影至少部分重叠。
在实施例中,所述激光光源设置于所述上基板的靠近所述下基板的一侧,所述检测元件设置于所述下基板的靠近所述上基板的一侧。
在实施例中,所述激光光源设置于所述下基板的靠近所述上基板的一侧,所述检测元件设置于所述上基板的靠近所述下基板的一侧。
在实施例中,所述激光光源的出光方向平行于所述微流控芯片的厚度方向。
在实施例中,所述上基板的设置有所述激光光源的一侧还设置有第一平坦化层,所述第一平坦化层中开设有过孔,在所述过孔底部的所述上基板或所述下基板上设置有底部电极,在所述过孔顶部开口的相对两侧边缘设置有顶部电极;
所述激光光源的一部分位于所述过孔中,所述激光光源包括第一极和第二极,所述第一极连接所述底部电极,所述第二极连接所述顶部电极,所述底部电极和所述顶部电极分别连接电源的输出端,用于向所述激光光源提供电力;
所述激光光源远离所述第一平坦化层的一侧还设置有第二平坦化层,所述第二平坦化层远离所述激光光源的一侧还设置有第一疏水层,所述第一疏水层用于与所述液滴接触。
在实施例中,所述下基板的设置有所述激光光源的一侧还设置有第一平坦化层,所述第一平坦化层中开设有过孔,在所述过孔底部的所述上基板或所述下基板上设置有底部电极,在所述过孔顶部开口的相对两侧边缘设置有顶部电极;
所述激光光源的一部分位于所述过孔中,所述激光光源包括第一极和第二极,所述第一极连接所述底部电极,所述第二极连 接所述顶部电极,所述底部电极和所述顶部电极分别连接电源的输出端,用于向所述激光光源提供电力;
所述激光光源远离所述第一平坦化层的一侧还设置有第二平坦化层,所述第二平坦化层远离所述激光光源的一侧还设置有第一疏水层,所述第一疏水层用于与所述液滴接触。
在实施例中,在所述激光光源的出光面上还设置有微透镜结构,所述微透镜结构用于使所述激光光源发出的光线汇聚。
在实施例中,所述激光光源包括垂直腔面发射激光器。
在实施例中,在所述检测元件远离所述下基板的一侧还设置有第三平坦化层;
在所述第三平坦化层远离所述检测元件的一侧还设置有第二疏水层,所述第二疏水层用于与所述液滴接触。
在实施例中,在所述检测元件远离所述上基板的一侧还设置有第三平坦化层;
在所述第三平坦化层远离所述检测元件的一侧还设置有第二疏水层,所述第二疏水层用于与所述液滴接触。
在实施例中,所述驱动电极设置于所述第三平坦化层上,且位于所述第三平坦化层与所述第二疏水层之间,所述驱动电极与所述第二疏水层之间还设置有第一绝缘层。
在实施例中,所述驱动电极设置于所述第二平坦化层上,且位于所述第二平坦化层与所述第一疏水层之间,所述驱动电极与所述第一疏水层之间还设置有第二绝缘层。
另一方面,本公开还提供一种微流控装置,包括权利要求1-13任意一项所述的微流控芯片以及信号处理单元,所述信号处理单元连接所述微流控芯片的检测元件,用于对检测元件检测获得的信号进行处理,以获得所述液滴的检测结果。
在实施例中,所述微流控芯片为权利要求1-13任意一项所述的微流控芯片,所述方法包括:
在上基板或下基板侧形成驱动电极;以及
在所述上基板或所述下基板侧形成激光光源。
在实施例中,在所述上基板或所述下基板侧形成所述激光光源包括:将所述激光光源制备于晶片上;
在所述上基板或所述下基板的待形成所述激光光源的一侧形成第一平坦化层;
在所述第一平坦化层中形成过孔;
在所述过孔底部的所述上基板或所述下基板上形成底部电极;
在所述过孔顶部开口的相对两侧边缘形成顶部电极;
通过半导体剥离及转移的方法将所述激光光源转移到所述过孔内,并使所述激光光源的第一极和第二极分别与所述底部电极和所述顶部电极连接。
在实施例中,所述方法还包括在所述激光光源的出光面上形成微透镜结构。
附图说明
图1为本公开实施例中微流控芯片的结构剖视图;
图2为实施例中微流控芯片制备步骤(1)的结构剖视图;
图3为实施例中微流控芯片制备步骤(2)的结构剖视图;
图4为实施例中微流控芯片制备步骤(3)的结构剖视图;
图5为实施例中微流控芯片制备步骤(4)的结构剖视图;
图6为实施例中微流控芯片制备步骤(5)的结构剖视图;
图7为实施例中微流控芯片制备步骤(6)的结构剖视图;
图8为实施例中微流控芯片制备步骤(7)的结构剖视图;
图9为实施例中微流控芯片制备步骤(8)的结构剖视图;
图10为实施例中微流控芯片制备步骤(9)的结构剖视图;
图11为实施例中微流控芯片制备步骤(10)的结构剖视图;
图12为实施例中微流控芯片制备步骤(11)的结构剖视图;
图13为实施例中微流控芯片制备步骤(12)的结构剖视图;
图14为本公开实施例中微流控芯片的结构剖视图;
图15为实施例微流控芯片中激光光源的结构剖视图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开一种微流控芯片及其制备方法和微流控装置作进一步详细描述。
本公开的实施例提供一种微流控芯片,如图1所示,包括对合设置的上基板1和下基板2,上基板1与下基板2之间形成间隙,间隙用于容纳生物液滴3,在下基板的一侧还设置有驱动电极4,驱动电极4能在通电状态下控制生物液滴3移动,微流控芯片还包括激光光源5,激光光源5设置于上基板1的一侧,用于为液滴3的检测提供光照。
在实施例中,微流控芯片采用数据微流控芯片。数字微流控芯片通过设置在其中的驱动电极4,能够精确操控液滴3移动,实现液滴3的融合、分离等操作,完成各种生物化学反应。同非数字微流控芯片相比,数字微流控芯片对液滴3的操作能够精确到每个液滴3,以更少的试剂量完成目标反应,对反应速率和反应进度的控制更为精确。
需要说明的是,驱动电极4也可以设置在上基板1的一侧。
在实施例中,上基板的一侧可以表示为上基板1与液滴3(或间隙)之间的位置,下文也称为上基板侧。下基板的一侧可以表示为下基板2与液滴3(或间隙)之间的位置,下为也称为下基板侧。
通过将激光光源5设置于微流控芯片中,相对于现有的仅设置有能够操控液滴3的驱动电极4的检测芯片,使其在操控液滴3的基础上又集成了检测用的光源,从而提高了该微流控芯片的集成度,同时使检测用光源无需再设置在额外的检测设备上,进而有利于该微流控芯片的便携式和采用该微流控芯片的检测设备的小型化。
本公开的实施例中,微流控芯片还包括检测元件6,检测元 件6设置在下基板侧,用于检测液滴3。例如,检测元件6用于检测通过液滴的光。检测元件6与激光光源5分设于间隙的相对两侧,且检测元件6与激光光源5位置相对应。在实施例中,检测元件6和激光光源5在上基板1(或下基板2)上的正投影至少部分重叠。例如,检测元件6和激光光源5在上基板1(或下基板2)上的正投影完全重叠。
在实施例中,检测元件6采用光信号检测器件,如电荷耦合器件(CCD),其是一种用电荷量表示信号大小,用耦合方式传输信号的探测元件。CCD也称为图像传感器,用于将光学影像转换为电信号。光信号检测器件用于接收液滴3中射出的激光,并将该激光转换成电信号,从而实现对液滴3的检测。检测元件6与激光光源5位置相对应,使激光光源5能为液滴3的检测提供充足光照,从而有利于检测元件6对液滴3的精确检测。
该微流控芯片,相对于现有的仅设置有能够操控液3的驱动电极4的检测芯片,使其在操控液滴3的基础上又集成了检测用的检测元件6,从而提高了该微流控芯片的集成度,同时使检测元件6无需再设置在额外的检测设备上,进而有利于该微流控芯片的便携式和采用该微流控芯片的检测设备的小型化。
本公开的实施例中,激光光源5设置于上基板1的靠近下基板2的一侧,检测元件6设置于下基板2的靠近上基板1的一侧。
本公开的实施例中,激光光源5的出光方向平行于微流控芯片的厚度方向。本公开的实施例中,激光光源5采用垂直腔面发射激光器(VCSEL),垂直腔面发射激光器由于光垂直于器件表面射出,所以能够增大激光光源5照射到间隙区域的面积,同时还降低了微流控芯片集成了激光光源5后的集成度(即,省略了光波导和用于准直光束的装置);另外,垂直腔面发射激光器还具有光束远场发散角小、易实现低阈值电流工作等优势,这些优势均有利于垂直腔面发射激光器在微流控芯片上的集成。
根据出光方向不同,垂直腔面发射激光器可分为顶出光型和底出光型,对应不同的使用场景,但其工作原理相同,可以概括 为:谐振腔两端的反射镜以及中间的增益有源区均由半导体材料外延生长构成,激光的出射方向垂直于外延层平面。例如,垂直腔面发射激光器包括高反射率(>99%)的布拉格反射镜(distributed Bragg reflector,DBR)、量子阱有源区和金属电极;量子阱有源区位于n型掺杂的DBR和p型掺杂的DBR之间;DBR反射镜由高折射率层材料和低折射率材料交替生长而成,每层材料的光学厚度为激光波长的1/4,量子阱有源区的光学厚度为1/2激光波长的整数倍,以满足谐振条件。金属电极包括分别与n型掺杂的DBR和p型掺杂的DBR连接的第一极和第二极。垂直腔面发射激光器为现有的比较成熟的激光发射器件,其结构及工作原理这里不再赘述。
本公开的实施例中,上基板1的设置有激光光源5的一侧还设置有第一平坦化层7,第一平坦化层7中开设有过孔以容纳激光光源5,在过孔底部的上基板1上设置有底部电极8,在过孔顶部开口的相对两侧边缘设置有顶部电极9;激光光源5的一部分位于过孔中,激光光源5包括第一极和第二极,第一极连接底部电极8,第二极连接顶部电极9,底部电极8和顶部电极9分别连接电源的输出端,用于向激光光源提供电力。激光光源5远离第一平坦化层7的一侧还设置有第二平坦化层10,第二平坦化层10远离激光光源5的一侧还设置有第一疏水层11,第一疏水层11用于与液滴3接触。
本公开的实施例中,检测元件6设置于下基板2的靠近上基板1的一侧,在检测元件6远离下基板2的一侧以及下基板2的靠近上基板1的一侧还设置有第三平坦化层12;在第三平坦化层12远离检测元件6的一侧还设置有第二疏水层13,第二疏水层13用于与液滴3接触。
本公开的实施例中,驱动电极4设置于第三平坦化层12上,且位于第三平坦化层12与第二疏水层13之间,驱动电极4与第二疏水层13之间还设置有第一绝缘层14。
在实施例中,液滴3在上基板1和下基板2之间,通过下基 板2上的驱动电极4控制其移动。本公开的实施例中,激光光源5朝向液滴3发射激光,该激光透过液滴3并被检测元件6检测。在实施例中,例如,通过检测元件6检测到的激光的强度可以判断液滴3的浓度,从而实现对液滴3的检测。在实施例中,上基板1和下基板2上的结构层均为透明膜层。第一平坦化层7、第二平坦化层10、第三平坦化层12和第一绝缘层14均为绝缘层,绝缘层采用如SiO、SiN、PI或PMMA等光学透明树脂。第二平坦化层10可以填平各激光光源5之间的空隙,使激光光源5的出光侧趋于平坦;第三平坦化层12可以填平各检测元件6之间的空隙,使检测元件6的面向激光光源5的一侧趋于平坦。第一疏水层11和第二疏水层13采用如Teflon、CYTOP或氟化硅烷等材料,能使液滴3与其接触时具有疏水性的初始接触角。驱动电极4采用透明导电层如ITO或IZO材料形成。
本公开的实施例中,对合的上基板1和下基板2通过涂覆在周边的封框胶20形成挡墙结构,从而使上基板1和下基板2之间的间隙形成液滴3流动的空间。
基于微流控芯片的上述结构,本公开的实施例还提供一种该微流控芯片的制备方法,包括在上基板侧形成激光光源和在下基板侧形成驱动电极。
在实施例中,在上基板侧形成激光光源包括:将激光光源制备于晶片上;
在上基板上形成第一平坦化层;
在第一平坦化层中形成过孔;
在过孔底部的上基板上形成底部电极;
在过孔顶部开口的相对两侧边缘形成顶部电极;
通过半导体剥离及转移的方法将激光光源转移到过孔内,并使激光光源的第一极和第二极分别与底部电极和顶部电极连接。
例如,如图2-图13所示,(1)在上基板1上沉积底部电极膜层15;(2)刻蚀形成底部电极8的图案;(3)沉积第一平坦化层7;(4)刻蚀第一平坦化层7形成过孔;(5)牺牲层16填 平过孔;(6)沉积顶部电极膜层17;(7)刻蚀顶部电极膜层17;(8)刻蚀顶部电极膜层17和牺牲层形成最终顶部电极9的图案;(9)将激光光源利用半导体剥离及转移技术转移到过孔内并与底部电极8和顶部电极9连接;(10)沉积第二平坦化层10;(11)沉积第一疏水层11;(12)将完成上述步骤的上基板1与下基板2对盒形成最终微流控芯片结构。
在实施例中,采用传统的构图工艺(包括成膜、曝光、显影、刻蚀等步骤)在下基板上依次制备形成检测元件、第三平坦化层、驱动电极、第一绝缘层和第二疏水层,这里不再赘述。
本公开的实施例提供一种微流控芯片,与上述实施例中不同的是,如图14所示,激光光源5设置于下基板2的靠近上基板1的一侧,检测元件6设置于上基板1的靠近下基板2的一侧。
也就是说,激光光源5和驱动电极4均位于下基板侧。
本公开的实施例中,激光光源5所在的下基板2的靠近上基板的一侧设置有第一平坦化层7,第一平坦化层7中开设有过孔,在过孔底部的下基板2上设置有底部电极8,在过孔顶部开口的相对两侧边缘设置有顶部电极9;激光光源5的一部分位于过孔中,激光光源5包括第一极和第二极,第一极连接底部电极8,第二极连接顶部电极9,底部电极8和顶部电极9分别连接电源的输出端,用于向激光光源提供电力。激光光源5远离第一平坦化层7的一侧还设置有第二平坦化层10,第二平坦化层10远离激光光源5的一侧还设置有第一疏水层11,第一疏水层11用于与液滴3接触。
本公开的实施例中,检测元件6设置于上基板1的靠近下基板2的一侧,在检测元件6远离上基板1的一侧还设置有第三平坦化层12;在第三平坦化层12远离检测元件6的一侧还设置有第二疏水层13,第二疏水层13用于与液滴3接触。
本公开的实施例中,驱动电极4设置于第二平坦化层10上,且位于第二平坦化层10与第一疏水层11之间,驱动电极4与第一疏水层11之间还设置有第二绝缘层18。
在实施例中,第二绝缘层18采用如SiO、SiN、PI或PMMA 等光学透明树脂。
本公开的实施例中,微流控芯片的其他结构以及各结构膜层的材质和作用均与上述实施例中相同,此处不再赘述。
基于微流控芯片的上述结构,本公开的实施例还提供一种该微流控芯片的制备方法,与上述实施例中不同的是,在下基板侧形成激光光源和在上基板侧形成检测元件。
在实施例中,在下基板侧形成激光光源的具体工艺步骤与上述实施例中相同,此处不再赘述。
本公开的实施例提供一种微流控芯片,与上述实施例中不同的是,如图15所示,在上述实施例的基础上,在激光光源5的出光面上还设置有微透镜结构19,微透镜结构19用于使激光光源5发出的光线汇聚。
本公开的实施例中,微流控芯片的制备方法在上述实施例2中制备方法的基础上还包括在激光光源5的出光面上形成微透镜结构19。
本公开的实施例中,在激光光源5从半导体晶元转移到上基板或下基板上之后,利用额外的工艺,在每个激光光源5的出光口形成微透镜结构19,微透镜结构19的添加有利于激光光源5发出光束的聚集,提高发光及光信号检测的质量。微透镜结构19可以为SiO、SiN或光学透明树脂等材料,其加工工艺为光刻胶热熔法、RIE/ICP干法刻蚀或激光直写等。具体加工工艺均为比较成熟的传统工艺,这里不再赘述。
本公开的实施例中微流控芯片的其他结构及制备方法与上述实施例中相同,此处不再赘述。
上述的有益效果:在本公开的实施例提供的微流控芯片中,通过将激光光源设置于微流控芯片上,相对于现有的仅设置有能够操控液滴的驱动电极的检测芯片,使其在操控液滴的基础上又集成了检测用的光源,从而提高了该微流控芯片的集成度,同时使检测用光源无需再设置在额外的检测设备上,进而有利于该微流控芯片的便携式和采用该微流控芯片的检测设备的小型化。
本公开的实施例提供一种微流控装置,包括上述实施例任一中的微流控芯片,还包括信号处理单元,信号处理单元连接微流控芯片的检测元件,用于对检测元件检测获得的信号进行处理,以获得液滴的检测结果。
通过采用上述实施例任一中的微流控芯片,提高了该微流控装置的集成度,有利于该微流控装置的便携式和小型化。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (17)

  1. 一种微流控芯片,包括:
    对合设置的上基板和下基板,所述上基板与所述下基板之间形成间隙,所述间隙用于容纳所述液滴;
    驱动电极,位于上基板侧或下基板侧,所述驱动电极构造为在通电状态下控制所述液滴移动,
    其中,所述微流控芯片还包括激光光源,所述激光光源设置于所述上基板或所述下基板侧,用于为所述液滴的检测提供光照。
  2. 根据权利要求1所述的微流控芯片,还包括检测元件,所述检测元件设置在所述上基板或所述下基板侧,用于检测所述液滴,
    其中,所述检测元件与所述激光光源分设于所述间隙的相对两侧,且所述检测元件与所述激光光源在所述上基板上的正投影至少部分重叠。
  3. 根据权利要求2所述的微流控芯片,其中,所述激光光源设置于所述上基板的靠近所述下基板的一侧,所述检测元件设置于所述下基板的靠近所述上基板的一侧。
  4. 根据权利要求2所述的微流控芯片,其中,所述激光光源设置于所述下基板的靠近所述上基板的一侧,所述检测元件设置于所述上基板的靠近所述下基板的一侧。
  5. 根据权利要求3所述的微流控芯片,其中,所述激光光源的出光方向平行于所述微流控芯片的厚度方向。
  6. 根据权利要求3所述的微流控芯片,其中
    所述上基板的设置有所述激光光源的一侧还设置有第一平坦 化层,所述第一平坦化层中开设有过孔,在所述过孔底部的所述上基板或所述下基板上设置有底部电极,在所述过孔顶部开口的相对两侧边缘设置有顶部电极;
    所述激光光源的一部分位于所述过孔中,所述激光光源包括第一极和第二极,所述第一极连接所述底部电极,所述第二极连接所述顶部电极,所述底部电极和所述顶部电极分别连接电源的输出端,用于向所述激光光源提供电力;
    所述激光光源远离所述第一平坦化层的一侧还设置有第二平坦化层,所述第二平坦化层远离所述激光光源的一侧还设置有第一疏水层,所述第一疏水层用于与所述液滴接触。
  7. 根据权利要求4所述的微流控芯片,其中
    所述下基板的设置有所述激光光源的一侧还设置有第一平坦化层,所述第一平坦化层中开设有过孔,在所述过孔底部的所述上基板或所述下基板上设置有底部电极,在所述过孔顶部开口的相对两侧边缘设置有顶部电极;
    所述激光光源的一部分位于所述过孔中,所述激光光源包括第一极和第二极,所述第一极连接所述底部电极,所述第二极连接所述顶部电极,所述底部电极和所述顶部电极分别连接电源的输出端,用于向所述激光光源提供电力;
    所述激光光源远离所述第一平坦化层的一侧还设置有第二平坦化层,所述第二平坦化层远离所述激光光源的一侧还设置有第一疏水层,所述第一疏水层用于与所述液滴接触。
  8. 根据权利要求6所述的微流控芯片,其中,在所述激光光源的出光面上还设置有微透镜结构,所述微透镜结构用于使所述激光光源发出的光线汇聚。
  9. 根据权利要求6所述的微流控芯片,其中,所述激光光源包括垂直腔面发射激光器。
  10. 根据权利要求6所述的微流控芯片,其中,在所述检测元件远离所述下基板的一侧还设置有第三平坦化层;
    在所述第三平坦化层远离所述检测元件的一侧还设置有第二疏水层,所述第二疏水层用于与所述液滴接触。
  11. 根据权利要求7所述的微流控芯片,其中,在所述检测元件远离所述上基板的一侧还设置有第三平坦化层;
    在所述第三平坦化层远离所述检测元件的一侧还设置有第二疏水层,所述第二疏水层用于与所述液滴接触。
  12. 根据权利要求10所述的微流控芯片,其中,所述驱动电极设置于所述第三平坦化层上,且位于所述第三平坦化层与所述第二疏水层之间,所述驱动电极与所述第二疏水层之间还设置有第一绝缘层。
  13. 根据权利要求10所述的微流控芯片,其中,所述驱动电极设置于所述第二平坦化层上,且位于所述第二平坦化层与所述第一疏水层之间,所述驱动电极与所述第一疏水层之间还设置有第二绝缘层。
  14. 一种微流控装置,包括权利要求1-13任意一项所述的微流控芯片以及信号处理单元,所述信号处理单元连接所述微流控芯片的检测元件,用于对检测元件检测获得的信号进行处理,以获得所述液滴的检测结果。
  15. 一种微流控芯片的制备方法,其中,所述微流控芯片为权利要求1-13任意一项所述的微流控芯片,所述方法包括:
    在上基板或下基板侧形成驱动电极;以及
    在所述上基板或所述下基板侧形成激光光源。
  16. 根据权利要求15所述的微流控芯片的制备方法,其中,在所述上基板或所述下基板侧形成所述激光光源包括:将所述激光光源制备于晶片上;
    在所述上基板或所述下基板的待形成所述激光光源的一侧形成第一平坦化层;
    在所述第一平坦化层中形成过孔;
    在所述过孔底部的所述上基板或所述下基板上形成底部电极;
    在所述过孔顶部开口的相对两侧边缘形成顶部电极;
    通过半导体剥离及转移的方法将所述激光光源转移到所述过孔内,并使所述激光光源的第一极和第二极分别与所述底部电极和所述顶部电极连接。
  17. 根据权利要求16所述的微流控芯片的制备方法,还包括在所述激光光源的出光面上形成微透镜结构。
PCT/CN2020/086671 2019-05-17 2020-04-24 微流控芯片及其制备方法和微流控装置 WO2020233343A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,985 US20230149920A1 (en) 2019-05-17 2020-04-24 Micro-fluidic chip, fabrication method thereof and micro-fluidic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910412333.8 2019-05-17
CN201910412333.8A CN110064449B (zh) 2019-05-17 2019-05-17 一种生物液滴检测基板及其制备方法和检测装置

Publications (1)

Publication Number Publication Date
WO2020233343A1 true WO2020233343A1 (zh) 2020-11-26

Family

ID=67370951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086671 WO2020233343A1 (zh) 2019-05-17 2020-04-24 微流控芯片及其制备方法和微流控装置

Country Status (3)

Country Link
US (1) US20230149920A1 (zh)
CN (1) CN110064449B (zh)
WO (1) WO2020233343A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110064449B (zh) * 2019-05-17 2021-09-03 北京京东方传感技术有限公司 一种生物液滴检测基板及其制备方法和检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666841A (zh) * 2009-10-30 2012-09-12 英格朗公司 减少精子细胞群中的dna断裂的方法和系统
US20140030717A1 (en) * 2011-11-11 2014-01-30 The Regents Of The University Of California Valveless microfluidic device
CN104422781A (zh) * 2013-09-06 2015-03-18 财团法人工业技术研究院 微流体检测装置
CN108816299A (zh) * 2018-04-20 2018-11-16 京东方科技集团股份有限公司 微流控基板及其驱动方法、微全分析系统
CN110064449A (zh) * 2019-05-17 2019-07-30 北京京东方传感技术有限公司 一种生物液滴检测基板及其制备方法和检测装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7430355B2 (en) * 2003-12-08 2008-09-30 University Of Cincinnati Light emissive signage devices based on lightwave coupling
US20060260919A1 (en) * 2005-05-17 2006-11-23 Marco Aimi Methods and apparatus for filling a microswitch with liquid metal
US9476856B2 (en) * 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US7815871B2 (en) * 2006-04-18 2010-10-19 Advanced Liquid Logic, Inc. Droplet microactuator system
US10078078B2 (en) * 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8809068B2 (en) * 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US8202686B2 (en) * 2007-03-22 2012-06-19 Advanced Liquid Logic, Inc. Enzyme assays for a droplet actuator
CN103707643B (zh) * 2007-12-23 2016-06-01 先进液体逻辑公司 液滴致动器配置以及引导液滴操作的方法
US8926065B2 (en) * 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
US20140124037A1 (en) * 2012-11-07 2014-05-08 Advanced Liquid Logic, Inc. Methods of manipulating a droplet in a droplet actuator
US9782775B2 (en) * 2013-03-06 2017-10-10 Srinivas Akella Method and system for coordination on optically controlled microfluidic systems
CN107847930B (zh) * 2015-03-20 2020-06-30 亿明达股份有限公司 在竖直或大致竖直的位置中使用的流体盒
WO2016164592A1 (en) * 2015-04-10 2016-10-13 Illumina, Inc. Methods of conducting biochemical reactions while reducing reactive molecular species during electrowetting
CN107921432A (zh) * 2015-09-02 2018-04-17 伊卢米纳剑桥有限公司 改善流控系统中的液滴操作的系统和方法
KR20180105439A (ko) * 2017-03-15 2018-09-28 포항공과대학교 산학협력단 영상 기반의 유세포 분석 장치 및 분석방법
EP3658908A4 (en) * 2017-07-24 2021-04-07 Miroculus Inc. DIGITAL MICROFLUIDIC SYSTEMS AND PROCESSES WITH INTEGRATED PLASMA COLLECTION DEVICE
EP3676009A4 (en) * 2017-09-01 2021-06-16 Miroculus Inc. DIGITAL MICROFLUIDIC DEVICES AND THEIR METHODS OF USE
CN107607475B (zh) * 2017-09-06 2020-05-26 京东方科技集团股份有限公司 微全分析系统及方法
CN109216266B (zh) * 2018-09-10 2020-09-01 华南理工大学 过孔的制作方法、阵列基板的制作方法及阵列基板
CN109136087A (zh) * 2018-09-11 2019-01-04 京东方科技集团股份有限公司 分离芯片和分离方法
US11524298B2 (en) * 2019-07-25 2022-12-13 Miroculus Inc. Digital microfluidics devices and methods of use thereof
US11946901B2 (en) * 2020-01-27 2024-04-02 Nuclera Ltd Method for degassing liquid droplets by electrical actuation at higher temperatures

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666841A (zh) * 2009-10-30 2012-09-12 英格朗公司 减少精子细胞群中的dna断裂的方法和系统
US20140030717A1 (en) * 2011-11-11 2014-01-30 The Regents Of The University Of California Valveless microfluidic device
CN104422781A (zh) * 2013-09-06 2015-03-18 财团法人工业技术研究院 微流体检测装置
CN108816299A (zh) * 2018-04-20 2018-11-16 京东方科技集团股份有限公司 微流控基板及其驱动方法、微全分析系统
CN110064449A (zh) * 2019-05-17 2019-07-30 北京京东方传感技术有限公司 一种生物液滴检测基板及其制备方法和检测装置

Also Published As

Publication number Publication date
US20230149920A1 (en) 2023-05-18
CN110064449A (zh) 2019-07-30
CN110064449B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
US11125862B2 (en) Emitter structures for ultra-small vertical cavity surface emitting lasers (VCSELS) and arrays incorporating the same
US8989230B2 (en) Method and apparatus including movable-mirror mems-tuned surface-emitting lasers
JP4899344B2 (ja) 表面発光型半導体レーザおよびその製造方法
CN107976666B (zh) 一种多线激光雷达及其光发射器
US20110058587A1 (en) Vertical cavity surface emitting laser, vertical cavity surface emitting laser device, optical transmission device, and information processing apparatus
JP2008192733A (ja) 面発光型半導体レーザ、面発光型半導体レーザの製造方法、光学装置、光照射装置、情報処理装置、光送信装置、光空間伝送装置および光伝送システム。
US9300114B2 (en) Laser device, method of manufacturing the same, laser device array, light source and light module
JP3767496B2 (ja) 面発光型発光素子およびその製造方法、光モジュール、光伝達装置
JP2002353564A (ja) 面発光レ−ザ、面発光レ−ザの製造方法、及び受光素子、受光素子の製造方法、並びに光伝送モジュ−ル
Seifried et al. Monolithically integrated CMOS-compatible III–V on silicon lasers
CN111295608B (zh) 光组件
JP2019075557A (ja) 光源一体型光センシングシステム、及びそれを含む電子機器
WO2020233343A1 (zh) 微流控芯片及其制备方法和微流控装置
KR20070055764A (ko) 화합물 반도체의 선택적 식각을 이용한 마이크로렌즈 및마이크로 렌즈가 집적된 광전소자 제조 방법
KR20150112657A (ko) 다파장 표면 플라즈몬 레이저
US20190386464A1 (en) Opto-electronic device having a backside illuminating vcsel array with integrated diffractive optical elements (doe), diffuser and/or lens
US9671627B2 (en) Transmissive optical shutter and method of manufacturing the same
US20190115725A1 (en) Vertical cavity surface emitting laser and method for fabricating the same
CN103078251B (zh) 表面发光激光器和图像形成装置
JP3818386B2 (ja) 面発光型発光素子およびその製造方法、光モジュール、光伝達装置
JPH11261111A (ja) モニタ機構を備えた発光装置
US20230006421A1 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method of producing vertical cavity surface emitting laser element
CN112821197A (zh) 一种光发射芯片的制作方法和光发射芯片
TWM588387U (zh) 具有檢光結構之電激發光子晶體面射型雷射元件
CN110752509B (zh) 一种具有非对称氧化结构vcsel单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809086

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20809086

Country of ref document: EP

Kind code of ref document: A1