WO2020232851A1 - 一种用于内窥镜的电脉冲消融仪 - Google Patents

一种用于内窥镜的电脉冲消融仪 Download PDF

Info

Publication number
WO2020232851A1
WO2020232851A1 PCT/CN2019/101290 CN2019101290W WO2020232851A1 WO 2020232851 A1 WO2020232851 A1 WO 2020232851A1 CN 2019101290 W CN2019101290 W CN 2019101290W WO 2020232851 A1 WO2020232851 A1 WO 2020232851A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
electrode
ablation
displacement
motor
Prior art date
Application number
PCT/CN2019/101290
Other languages
English (en)
French (fr)
Inventor
陈永刚
Original Assignee
杭州睿笛生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州睿笛生物科技有限公司 filed Critical 杭州睿笛生物科技有限公司
Priority to US17/600,473 priority Critical patent/US20220175442A1/en
Priority to EP19929732.6A priority patent/EP3973901A4/en
Publication of WO2020232851A1 publication Critical patent/WO2020232851A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1475Electrodes retractable in or deployable from a housing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Definitions

  • the invention relates to the technical field of pulse ablation, and more specifically to an electric pulse ablation instrument for endoscopes.
  • the current clinical treatment of tumors is mainly based on radical surgical resection, but for tumors in areas with dense ducts such as the pancreas, bile ducts, and liver ducts, open cavity surgery is more traumatic and the wound healing time is long. During the wound healing period, the wound should not touch water. , It will bring inconvenience to the patient's daily life.
  • the medical endoscope can enter the human body through the natural orifice of the human body or through a small incision made by operation, and the inspection through the endoscope can cause little trauma to the human body.
  • Some endoscopes even have a working channel, which can carry special equipment, and have multiple functions such as lighting, surgery, irrigation, and suction. This kind of endoscope with a working channel undoubtedly provides the possibility for the application of electric pulse ablation technology.
  • the existing ablation equipment that uses double-needle parallel electrodes has a fixed distance between the two electrodes, and the electric field generated is fixed.
  • the electric field cannot be adjusted with the ablation section of the tumor during the progress of the electrode, which requires multiple operations. The effect is achieved, but the ablation effect is poor.
  • the technical problem to be solved by the present invention is to overcome the above-mentioned shortcomings in the prior art and provide an electric pulse ablation instrument for endoscopes, which can accurately control the electrode insertion, generate a variable electric field, and release energy uniformly. Little trauma to the human body.
  • an electric pulse ablation instrument for an endoscope including an electrode assembly, including a center electrode and a barrel electrode, configured to pass through the endoscope during use
  • the working channel of ” travels through the body and delivers pulses to the tissue
  • a pulse waveform generator coupled to the electrode assembly, for delivering pulse voltage to the electrode assembly
  • electrode driving device for driving the center pole and the barrel pole
  • parameters An input device for configuring the coordinate information of the ablation area
  • a control device signally connected to the parameter input device, and controlly connected to the electrode driving device, and the control device controls the center respectively through the electrode driving device according to preset coordinate information
  • the control device controls the pulse waveform generator to connect with the electrode assembly; when the electrode assembly is connected with the pulse waveform generator, the center pole
  • the ablation electric field is generated between the discharge end and the barrel pole, and the size or radius of the ablation electric field is positively correlated with the distance
  • the first electrode driving device is arranged on the fixed part and is used to drive the cylindrical electrode.
  • the natural passage of the human body is used to transport the electrode assembly to the complex area of the human body for ablation, thereby reducing the trauma to the human body;
  • the central pole and the cylindrical pole are controlled by the control device to shift during the displacement process.
  • the difference is that the electric field is adjusted by the displacement difference so that the electric field is adjusted with the (tumor) ablation section to ensure that the electric field energy per unit area on the section at different positions is similar, the treatment effect is good, and the number of treatments is reduced.
  • a further preferred solution of the present invention is that the front end of the fixing part is connected to the entrance end of the working channel of the endoscope, the electrode assembly is placed in the working channel of the endoscope, and the end of the outer sheath is fixedly connected to the fixing part
  • the end of the barrel pole is fixed to the displacement part, and the first electric actuator drives the displacement part to drive the barrel pole to expand and contract within the outer sheath.
  • the fixing part is in the shape of a needle, and the front end of the fixing part is provided with an interface for docking with the endoscope;
  • the outer sheath tube passes through the fixing part, and one end of the outer sheath tube extends into the endoscope through the interface
  • the end of the inner and outer sheath tube and the fixed part are fastened by an interference fit cap;
  • the displacement part is cylindrical, and the displacement part is sleeved outside the fixed part and slidably arranged with the fixed part in the axial direction;
  • the end of the part is provided with a tube pole tube seat for fixing the tube pole.
  • a further preferred solution of the present invention is that: the first driving device and/or the second driving device include a motor screw nut mechanism or a linear motor.
  • the first driving mechanism is a motor screw nut mechanism, including a first motor, a screw rod and a nut; the first motor is fixed on the fixing part, and the nut is sleeved on the screw rod And it is fixedly connected with the displacement part, the first motor and the nut are connected by a screw drive; the control device controls the displacement and speed of the barrel pole in the outer sheath by controlling the number of turns and the speed of the rotation of the first motor.
  • the second driving mechanism is a linear motor, including a second motor and a push rod; the second motor is fixed on the displacement part, and the second motor is drivingly connected to one end of the push rod. The other end is connected with the center pole through a connecting piece; the control device controls the displacement and speed of the center pole in the barrel pole by controlling the number of turns and the rotation speed of the second motor.
  • the parameter input device includes an ultrasonic probe for detecting tissue boundaries and electrode positions, and a touch screen for imaging;
  • the ablation area coordinate information includes a long axis for determining the size of the ablation area And short axis, long axis and short axis are determined by clicking the image on the touch screen.
  • the center pole includes a working section at the end and a conducting section at the rear end for conducting voltage; during operation, a pulsed electric field is generated between the working section and the barrel pole;
  • the insulating layer is plated outside the conductive section.
  • a further preferred solution of the present invention is: the central pole is tubular, and the inside is hollow to form a drug delivery channel for drug delivery; the front end of the working section is provided with a spiked portion.
  • the present invention has the following beneficial effects: on the one hand, the natural passage of the human body is used to transport the electrode assembly to the complex area of the human body for ablation, thereby reducing the trauma to the human body; on the other hand, the central electrode and the cylindrical electrode are controlled by the control device.
  • the displacement difference between the two is made, and the electric field is adjusted by the displacement difference, so that the electric field is adjusted with the (tumor) ablation section to ensure that the electric field energy per unit area on the section at different positions is similar, and the treatment effect Good, and reduced the number of treatments.
  • Figure 1 is a block diagram of the ablation instrument
  • Figure 2 is a schematic circuit diagram of the pulse waveform generator
  • Figure 3 is a cross-sectional view of the electrode driving device
  • Figure 4 is a positional state diagram of the electrode assembly when it reaches the vicinity of the target
  • Figure 5 is a state diagram of the position where the central pole penetrates the target
  • Figure 6 is a state diagram of the position of the central pole and the cylindrical pole in the middle of the target
  • Figure 7 is a diagram showing the position of the central pole and the cylindrical pole when they reach the target end
  • Fig. 8 is a diagram showing the displacement change of the reference system of the center pole and the sheath outside the cylindrical pole (the position of the nozzle is the origin).
  • Electrode assembly 11. Center pole; 13, Cylindrical pole; 14, Outer sheath; 2. Pulse waveform generator; 31, Fixed part; 32, Displacement section; 33, Cap; 34, Cylindrical pole Base; 51, first motor; 52, screw rod; 53, nut; 54, second motor; 55, push rod; 56, connecting piece.
  • an electric pulse ablation instrument for endoscopes which mainly includes an electrode assembly 1, a pulse waveform generator 2, an electrode driving device, and a parameter input device And control device.
  • the electrode assembly 1 includes a center pole 11 and a barrel pole 13, which are configured to travel into the body through a working channel of an endoscope and deliver pulses to tissue during use.
  • the electrode assembly 1 has a layered structure, and the center electrode 11 includes a working section at the end and a conductive section at the rear end for conducting voltage.
  • a pulsed electric field is generated between the working section and the barrel pole 13.
  • the insulating layer is plated outside the conductive section.
  • the working section covering the insulating layer on the central pole 11 exposes the cylindrical pole 13.
  • the central pole 11 is telescopically arranged in the cylindrical pole 13, and the cylindrical pole 13 is telescopically arranged in the outer sheath 14.
  • the central pole 11 is in a tubular shape, with a hollow inside forming a drug delivery channel for drug delivery, and a spiked portion is provided at the front end of the working section to penetrate the tissue.
  • the pulse waveform generator 2 is coupled to the electrode assembly 1 for delivering a pulse voltage to the electrode assembly 1.
  • the working principle of the pulse waveform generator 2 is the prior art, which will not be described in detail here.
  • the electrode driving device is fixed on the endoscope for driving the center pole 11 and the barrel pole 13.
  • the electrode driving device includes a fixed part 31 and a displacement part 32 capable of generating relative displacement, a first electric actuator arranged on the fixed part 31 and used to drive the cylindrical pole 13, and a first electric actuator arranged on the displacement part 32 and used to drive the central pole 11 second electric actuator.
  • the fixing part 31 is in the shape of a needle tube, and its front end is provided with an interface for docking with the entrance end of the working channel of the endoscope.
  • the outer sheath 14 penetrates the fixing part 31, one end of the outer sheath 14 extends into the working channel of the endoscope through the interface, and the end of the outer sheath 14 and the fixing part 31 are fastened by an interference fit cap 33.
  • the displacement portion 32 has a cylindrical shape, and is sleeved outside the fixing portion 31 and slidably arranged with the fixing portion 31 in the axial direction.
  • the distal end of the displacement portion 32 is provided with a cylindrical pole 13 tube socket for fixing the cylindrical pole 13 and a cylindrical pole 13 connection socket.
  • the first driving device and/or the second driving device include a motor screw-nut mechanism or a linear motor.
  • the first drive mechanism is illustrated by a motor screw-nut mechanism
  • the second drive mechanism is illustrated by a linear motor.
  • the first driving mechanism includes a first motor 51, a screw rod 52 and a nut 53.
  • the first motor 51 is fixed on the fixing part 31, the nut 53 is sleeved on the screw rod 52 and fixed to the displacement part 32, the first motor 51 and the nut 53 are connected by the screw rod 52 in transmission, and the cylinder pole is driven by the displacement part 32. 13 expands and contracts within the outer sheath 14.
  • the second driving mechanism includes a second motor 54 and a push rod 55.
  • the second motor 54 is fixed on the displacement part 32.
  • the second motor 54 is drivingly connected to one end of the push rod 55.
  • the other end of the push rod 55 is connected to the center pole 11 through a connecting piece 56.
  • the center is driven by the expansion and contraction of the push rod 55.
  • the displacement and speed of the pole 11 telescoping in the cylindrical pole 13.
  • the control device indirectly controls the displacement and speed of the cylindrical pole 13 in the outer sheath 14 and the central pole 11 in the cylindrical pole 13 by controlling the number of rotations and the speed of the first motor 51 and the second motor 54 respectively.
  • the parameter input device is used to configure the coordinate information of the ablation area.
  • the parameter input device includes an ultrasonic probe for detecting tissue boundaries and electrode positions, and a touch screen for imaging.
  • the control device is signal-connected to the parameter input device, and controlly connected to the first motor 51 and the second motor 54 in the electrode driving device (the first motor 51 and the second motor 54 are connected through the motor drive circuit).
  • the control device controls the displacement of the central pole 11 and the cylindrical pole 13 respectively through the electrode driving device according to the preset coordinate information.
  • the control device includes an embedded computer and various input and output devices connected to it. Input devices include buttons (switches) and ultrasonic probes, and input and output devices include touch screens.
  • the control device controls the pulse waveform generator 2 to connect with the electrode assembly 1.
  • an ablation electric field is generated between the discharge end of the center electrode 11 and the barrel electrode 13.
  • the size (or radius) of the ablation electric field is related to the distance from the discharge end of the center electrode 11 to the barrel electrode 13 The distance is positively correlated.
  • the control device adjusts the size of the ablation electric field by changing the displacement difference between the cylinder pole 13 and the central pole 11, so that the size (or radius) of the ablation electric field is first small and then large, and then large. Become smaller.
  • the selection of the ablation area determines the displacement of the two electrodes and the maximum value of the displacement difference between the two electrodes during the displacement process.
  • the ablation area is exemplified by an ellipsoid
  • the ablation area coordinate information includes at least the long axis and the short axis used to determine the shape and size of the ablation area.
  • the long axis and the short axis are determined by clicking the ultrasound image displayed on the touch screen.
  • an endoscope with an ultrasonic probe can be used to detect the target position (tumor tissue) by the ultrasonic probe, and then select the electrode assembly 1.
  • the control device determines the position and size of the ablation area according to the length of the long axis and the short axis, and first controls the first motor 51 to start, so that the central pole 11 and the cylindrical pole 13 maintain the same speed and extend the outer sheath 14 until the central pole 11 Thoroughly penetrated the target, and the tube pole 13 just reached the boundary of the target.
  • the control device controls the pulse waveform generator 2 to connect with the electrodes, and the ablation electric field generated between the central electrode 11 and the barrel electrode 13 ablates the target and forms the first ablation layer; the ablation electric field to be released in the first ablation layer
  • the control device controls the first motor 51 and the second motor 54 to start synchronously, so that the central pole 11 and the cylindrical pole 13 enter the second ablation layer for ablation, (because the second motor 54 is started in the process Therefore, the speed of the central pole 11 is greater than the speed of the barrel pole 13.) and so on until several ablation layers overlap (partially) connect to form an ablation area.
  • the positions of the center pole 11 and the cylindrical pole 13 are shown in Figs. 5-8.
  • Figure 8 is a diagram showing the displacement relationship of the origin of the sheath 14 outside the central pole 11 and the cylindrical pole 13 during the formation of the ablation zone. In the figure, during the seven time periods t1-t7, the electric field is released. Ablation.
  • step 5 the ablation area is divided into several ablation layers in advance. It is ensured that the energy released by the ablation electric field received by each ablation layer per unit area (unit volume) is as equal as possible, generally between 80% and 120% of the preset value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种用于内窥镜的电脉冲消融仪,包括,电极组件(1),包括中心极(11)和筒极(13),被配置用于在使用期间通过内窥镜的工作通道穿行至体内并将脉冲递送至组织;脉冲波形发生器(2),耦接于电极组件(1),用于向电极组件(1)递送脉冲电压;电极驱动装置,用于驱动中心极(11)和筒极(13);参数输入设备,用于配置消融区域的坐标信息;以及控制装置,与参数输入设备信号连接,与电极驱动装置控制连接,控制装置根据预设的坐标信息通过电极驱动装置分别控制中心极(11)和筒极(13)的位移;当电极组件(1)的放电端到达预设的位置时,控制装置控制脉冲波形发生器(2)与电极组件(1)接通;利用人体自然通道将电极输送至人体复杂的区域进行消融,减小对人体的创伤。

Description

一种用于内窥镜的电脉冲消融仪 技术领域
本发明涉及脉冲消融技术领域,更具体地说是一种用于内窥镜的电脉冲消融仪。
背景技术
目前肿瘤的临床治疗以根治性手术切除为主,但对于胰腺、胆管、肝管等管道密集区域位置肿瘤来说,开腔手术创伤较大,创口愈合时间长,在伤口愈合期间,创口不能碰水,会给病人的日常生活带来不便。
而医学内窥镜能够可以经人体的天然孔道,或者是经手术做的小切口进入人体内,通过窥镜进行检查,对人体造成的创伤小。某些内窥镜甚至具有工作通道,能携带特殊设备,具有照明、手术、冲洗及吸引等多种功能,这种具有工作通道的内窥镜无疑为电脉冲消融技术的应用提供了可能。
另外,现有使用双针平行电极的消融设备,其两电极间的距离固定,产生的电场大小固定,电场大小在电极前进的过程中并不能随肿瘤的消融截面调整,导致需要多次操作才能达到效果,消融效果差。
为此,本领域工作人员急需一种能够借助内窥镜将电脉冲消融设备的电极输送至体内且能调整电场大小、精确治疗的设备,以便在治疗胰腺、胆管、肝管等管道密集区域位置肿瘤时,减小对人体的创伤。
发明内容
本发明所要解决的技术问题是克服上述现有技术中存在的缺陷,提供一种用于内窥镜的电脉冲消融仪,能够精确控制电极进针,产生可变电场,均匀释放能量,减小对人体的创伤。
为实现上述目的,本发明通过以下技术方案得以实现:一种用于内窥镜的电脉冲消融仪,包括,电极组件,包括中心极和筒极,被配置用于在使用期间通过内窥镜的工作通道穿行至体内并将脉冲递送至组织;脉冲波形发生器,耦接于电极组件,用于以向所述电极组件递送脉冲电压;电极驱动装置,用于驱动中心极和筒极;参数输入设备,用于配置消融区域的坐标信息;以及,控制装置,与所述参数输入设备信号连接,与所述电极驱动装置控制连接,控制装置根据预设的坐标信息通过电极驱动装置分别控制中心极和筒极的位移;当电极组件的放电端到达预设的位置时,控制装置控制脉冲波形发生器与电极组件接通;所述电极组件与脉冲波形发生器接通时,所述中心极的放电端与筒极之间产生消融电场,所述消融 电场的大小或半径与所述中心极的放电端到筒极的距离呈正相关;所述消融电场在按照预设路径移动后形成所述消融区域,所述消融区域呈椭圆球状;所述电极组件为层状结构,所述中心极外侧镀有绝缘层,中心极覆盖绝缘层的部位露出所述筒极;所述中心极可伸缩的设置于筒极内,所述筒极可伸缩的设置于外鞘管内;所述电极驱动装置包括能够产生相对位移的固定部和位移部,设于固定部上且用于驱动筒极的第一电动执行机构,以及设于位移部上且用于驱动中心极的第二电动执行机构;所述控制装置通过改变筒极和中心极两者之间的位移差来调整消融电场的大小。
如此,一方面利用人体自然通道将电极组件输送至人体复杂的区域进行消融,减小对人体的创伤;另一方面,通过控制装置控制中心极和筒极在位移过程中,使两者产生位移差,通过位移差调整电场的大小,以便使电场大小随(肿瘤的)消融截面调整,保证不同位置截面上的单位面积上所受电场能量相近,治疗效果好,且减少了治疗次数。
本发明进一步优选方案为:所述固定部的前端与内窥镜工作通道的入口端对接,所述电极组件放置于内窥镜的工作通道内,所述外鞘管的末端与固定部固接,所述筒极的末端与位移部固接,所述第一电动执行机构驱动位移部带动筒极在外鞘管内伸缩。
本发明进一步优选方案为:所述固定部呈针管状,其前端设有用于与内窥镜对接的接口;所述外鞘管穿设固定部,外鞘管一端经该接口伸入内窥镜内,外鞘管的末端与固定部之间通过过盈配合的盖帽紧固;所述位移部呈筒状,其套设于固定部外并与固定部在轴向上滑动设置;所述位移部的末端设有用于固定筒极的筒极管座。
本发明进一步优选方案为:所述第一驱动装置和/或第二驱动装置包括电机丝杠螺母机构或直线马达。
本发明进一步优选方案为:所述第一驱动机构为电机丝杠螺母机构,包括第一电机、丝杆和螺母;所述第一电机固定在固定部上,所述螺母套设在丝杆上并与位移部固接,第一电机与螺母通过丝杆传动连接;所述控制装置通过控制第一电机的转动圈数和转速来控制筒极在外鞘管内伸缩的位移及速度。
本发明进一步优选方案为:所述第二驱动机构为直线马达,包括第二电机与推杆;所述第二电机固定在位移部上,第二电机与推杆的一端传动连接,推杆的另一端通过一连接件与中心极连接;所述控制装置通过控制第二电机的转动圈数和转速来控制中心极在筒极内伸缩的位移及速度。
本发明进一步优选方案为:所述参数输入设备包括用于探测组织边界和电极位置的超声波探头,以及用于成像的触控屏;所述消融区域坐标信息包括用于确定消融区域大小的 长轴和短轴,长轴和短轴通过点击触控屏上的影像来确定。
本发明进一步优选方案为:所述中心极包括位于端部的工作段和位于后端且用于传导电压的传导段;在工作时,所述工作段与筒极之间产生脉冲电场;所述绝缘层镀在传导段外。
本发明进一步优选方案为:所述中心极呈管状,内部中空形成用于输送药物的给药通道;所述工作段的前端设有尖刺部。
综上所述,本发明具有以下有益效果:一方面利用人体自然通道将电极组件输送至人体复杂的区域进行消融,减小对人体的创伤;另一方面,通过控制装置控制中心极和筒极在位移过程中,使两者产生位移差,通过位移差调整电场的大小,以便使电场大小随(肿瘤的)消融截面调整,保证不同位置截面上的单位面积上所受电场能量相近,治疗效果好,且减少了治疗次数。
附图说明
图1是消融仪的原理框图;
图2是脉冲波形发生器的电路原理图;
图3是电极驱动装置的剖面图;
图4是电极组件到达目标附近时的位置状态图;
图5是中心极刺入目标的位置状态图;
图6是中心极和筒极在目标中部的位置状态图;
图7是中心极和筒极到达目标末端时的位置状态图;
图8是中心极和筒极以外鞘管(管口位置为原点)为参考系的位移变化图。
图中:1、电极组件;11、中心极;13、筒极;14、外鞘管;2、脉冲波形发生器;31、固定部;32、位移部;33、盖帽;34、筒极管座;51、第一电机;52、丝杆;53、螺母;54、第二电机;55、推杆;56、连接件。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。
如图1、图2、图3和图4所示,示出了一种用于内窥镜的电脉冲消融仪,主要包括电极组件1、脉冲波形发生器2、电极驱动装置、参数输入设备和控制装置。
电极组件1包括中心极11和筒极13,被配置用于在使用期间通过内窥镜的工作通道穿行至体内并将脉冲递送至组织。
在本实施例中,电极组件1为层状结构,中心极11包括位于端部的工作段和位于后端且用于传导电压的传导段。在工作时,工作段与筒极13之间产生脉冲电场。绝缘层镀在传导段外。中心极11上覆盖绝缘层的工作段露出筒极13。中心极11可伸缩的设置于筒极13内,筒极13可伸缩的设置于外鞘管14内。
为了方便在消融后能及时上药,中心极11呈管状设置,其内部中空形成用于输送药物的给药通道,工作段的前端设有尖刺部,以便能够刺入组织。
脉冲波形发生器2耦接于电极组件1,用于以向电极组件1递送脉冲电压。脉冲波形发生器2的工作原理为现有技术,此处不在一一详述,电路原理图和工作原理可以参考申请号为2019102479418的中国申请。
电极驱动装置固定在内窥镜上,用于驱动中心极11和筒极13。电极驱动装置包括能够产生相对位移的固定部31和位移部32,设于固定部31上且用于驱动筒极13的第一电动执行机构,以及设于位移部32上且用于驱动中心极11的第二电动执行机构。
固定部31呈针管状,其前端设有用于与内窥镜工作通道的入口端对接的接口。外鞘管14穿设固定部31,外鞘管14一端经该接口伸入内窥镜的工作通道内,外鞘管14的末端与固定部31之间通过过盈配合的盖帽33紧固。
位移部32呈筒状,其套设于固定部31外并与固定部31在轴向上滑动设置。位移部32的末端设有用于固定筒极13的筒极13管座以及筒极13接线座。
第一驱动装置和/或第二驱动装置包括电机丝杠螺母机构或直线马达。在本实施例中,第一驱动机构以电机丝杠螺母机构举例说明,第二驱动机构以直线马达举例说明。
第一驱动机构包括第一电机51、丝杆52和螺母53。第一电机51固定在固定部31上,螺母53套设在丝杆52上并与位移部32固接,第一电机51与螺母53通过丝杆52传动连接,通过驱动位移部32带动筒极13在外鞘管14内伸缩。
第二驱动机构包括第二电机54与推杆55。第二电机54固定在位移部32上,第二电机54与推杆55的一端传动连接,推杆55的另一端通过一连接件56与中心极11连接,用推杆55的伸缩来带动中心极11在筒极13内伸缩的位移和速度。
控制装置分别通过控制第一电机51和第二电机54的转动圈数和转速,间接控制筒极13在外鞘管14内、以及中心极11在筒极13内伸缩的位移、速度。
参数输入设备,用于配置消融区域的坐标信息。在本实施例中,参数输入设备包括 用于探测组织边界和电极位置的超声波探头,以及用于成像的触控屏。
控制装置,与参数输入设备信号连接,与电极驱动装置内的第一电机51和第二电机54控制连接(通过电机驱动电路连接第一电机51和第二电机54)。控制装置根据预设的坐标信息通过电极驱动装置分别控制中心极11和筒极13的位移。在本实施例中,控制装置包括嵌入式计算机,以及与其相连的各种输入、输出设备。输入设备包括按键(开关)以及超声波探头,输入、输出设备包括触摸屏。
当电极组件1的放电端到达预设的位置时,控制装置控制脉冲波形发生器2与电极组件1接通。
在电极组件1与脉冲波形发生器2接通时,中心极11的放电端与筒极13之间产生消融电场,消融电场的大小(或半径)与中心极11的放电端到筒极13的距离呈正相关。
消融电场在按照预设路径移动后形成消融区域,消融区域呈椭圆球状。在消融电场的移动过程中,控制装置通过改变筒极13和中心极11两者之间的位移差来调整消融电场的大小,使得消融电场的大小(或半径)先小变大,再有大变小。
因此,消融区域的选定,决定了两电极的位移以及在位移过程中两者位移差的最值。
为了简化操作,消融区域以椭圆球形举例说明,那么消融区域坐标信息至少包括用于确定消融区域形状大小的长轴和短轴。在本实施例中,长轴和短轴通过点击触控屏上显示的超声波的影像来确定。
本实施例的具体操作过程如下:
1、选取合适长度及类型的电极组件1;可以采用带有超声波探头的内窥镜,通过超声波探头探测到的目标位置(肿瘤组织),再选取电极组件1。
2、将电极组件1安装到电极驱动装置上,并通过电极接线座与脉冲波形发生器2(此时脉冲波形发生器2未工作)相连。安装过程保证中心极11的工作段露出筒极13,同时筒极13未露出外鞘管14,参见图4。再将电极组件1的放电端通过内窥镜的工作通道输送至目标附近,并将固定部31与内窥镜固定。(注:要选取合适角度,保证中心极11所在直线与目标重合的部分最长,该角度通过事先探测目标形状确定,该角度选取方法不涉及本实施例的工作原理,此处不再详述。)
3、通过点击触控屏上目标的超声波图像边界,获得长轴的长度数据和短轴的长度数据。
4、控制装置根据长轴和短轴的长度确定消融区域的位置和大小,先控制第一电机51启动,让中心极11和筒极13保持相同的速度伸出外鞘管14,直至中心极11完全刺入目 标,筒极13刚好抵达目标的边界。
5、控制装置控制脉冲波形发生器2与电极接通,中心极11和筒极13之间产生的消融电场对目标行进消融并形成第一消融层;待消融电场在第一消融层内释放的能量达到预设值后,控制装置再控制第一电机51和第二电机54同步启动,使中心极11和筒极13进入第二消融层进行消融,(由于该过程中启动了第二电机54,因此中心极11的速度大于筒极13的速度。)依次类推直至若干消融层相叠(部分)连成消融区域。该过程中,中心极11与筒极13的位置状态参见图5-8。图8为在消融区域的形成过程中,中心极11和筒极13以外鞘管14的管口位置为原点的位移关系图,图中,在t1-t7这七个时间段内,释放电场进行消融。
在步骤5中,事先将消融区域划分成若干个消融层。保证每一消融层在单位面积(单位体积)上接收的消融电场释放的能量尽可能相等,一般在预设值的80%-120%之间。

Claims (9)

  1. 一种用于内窥镜的电脉冲消融仪,其特征在于:包括,
    电极组件(1),包括中心极(11)和筒极(13),被配置用于在使用期间通过内窥镜的工作通道穿行至体内并将脉冲递送至组织;
    脉冲波形发生器(2),耦接于电极组件(1),用于以向所述电极组件(1)递送脉冲电压;
    电极驱动装置,用于驱动中心极(11)和筒极(13);
    参数输入设备,用于配置消融区域的坐标信息;以及,
    控制装置,与所述参数输入设备信号连接,与所述电极驱动装置控制连接,控制装置根据预设的坐标信息通过电极驱动装置分别控制中心极(11)和筒极(13)的位移;当电极组件(1)的放电端到达预设的位置时,控制装置控制脉冲波形发生器(2)与电极组件(1)接通;
    所述电极组件(1)与脉冲波形发生器(2)接通时,所述中心极(11)的放电端与筒极(13)之间产生消融电场,所述消融电场的大小或半径与所述中心极(11)的放电端到筒极(13)的距离呈正相关;
    所述消融电场在按照预设路径移动后形成所述消融区域,所述消融区域呈椭圆球状;
    所述电极组件(1)为层状结构,所述中心极(11)外侧镀有绝缘层,中心极(11)覆盖绝缘层的部位露出所述筒极(13);所述中心极(11)可伸缩的设置于筒极(13)内,所述筒极(13)可伸缩的设置于外鞘管(14)内;
    所述电极驱动装置包括能够产生相对位移的固定部(31)和位移部(32),设于固定部(31)上且用于驱动筒极(13)的第一电动执行机构,以及设于位移部(32)上且用于驱动中心极(11)的第二电动执行机构;所述控制装置通过改变筒极(13)和中心极(11)两者之间的位移差来调整消融电场的大小。
  2. 根据权利要求1所述的电脉冲消融仪,其特征在于:所述固定部(31)的前端与内窥镜工作通道的入口端对接,所述电极组件(1)放置于内窥镜的工作通道内,所述外鞘管(14)的末端与固定部(31)固接,所述筒极(13)的末端与位移部(32)固接,所述第一电动执行机构驱动位移部(32)带动筒极(13)在外鞘管(14)内伸缩。
  3. 根据权利要求2所述的电脉冲消融仪,其特征在于:所述固定部(31)呈针管状,其前端设有用于与内窥镜对接的接口;所述外鞘管(14)穿设固定部(31),外鞘管(14)一端经该接口伸入内窥镜内,外鞘管(14)的末端与固定部(31)之间通过过盈配合的盖帽紧固(33);所述位移部(32)呈筒状,其套设于固定部(31)外并与固定部(31)在轴向上滑动设置;所述位移部(32)的末端设有用于固定筒极(13)的筒极(13)管座。
  4. 根据权利要求3所述的电脉冲消融仪,其特征在于:所述第一驱动装置和/或第二驱动装置包括电机丝杠螺母机构或直线马达。
  5. 根据权利要求4所述的电脉冲消融仪,其特征在于:所述第一驱动机构为电机丝杠螺母机构,包括第一电机(51)、丝杆(52)和螺母(53);所述第一电机(51)固定在固定部(31)上,所述螺母(53)套设在丝杆(52)上并与位移部(32)固接,第一电机(51)与螺母(53)通过丝杆(52)传动连接;
    所述控制装置通过控制第一电机(51)的转动圈数和转速来控制筒极(13)在外鞘管(14)内伸缩的位移及速度。
  6. 根据权利要求4所述的电脉冲消融仪,其特征在于:所述第二驱动机构为直线马达,包括第二电机(54)与推杆(55);所述第二电机(54)固定在位移部(32)上,第二电机(54)与推杆(55)的一端传动连接,推杆(55)的另一端通过一连接件(56)与中心极(11)连接;
    所述控制装置通过控制第二电机(54)的转动圈数和转速来控制中心极(11)在筒极(13)内伸缩的位移及速度。
  7. 根据权利要求5或6所述的电脉冲消融仪,其特征在于:所述参数输入设备包括用于探测组织边界和电极位置的超声波探头,以及用于成像的触控屏;所述消融区域坐标信息包括用于确定消融区域大小的长轴和短轴,长轴和短轴通过点击触控屏上的影像来确定。
  8. 根据权利要求1所述的电脉冲消融仪,其特征在于:所述中心极(11)包括位于端部的工作段和位于后端且用于传导电压的传导段;在工作时,所述工作段与筒极(13)之间产生脉冲电场;所述绝缘层镀在传导段外。
  9. 根据权利要求8所述的电脉冲消融仪,其特征在于:所述中心极(11)呈管状,内部中空形成用于输送药物的给药通道;所述工作段的前端设有尖刺部。
PCT/CN2019/101290 2019-05-18 2019-08-19 一种用于内窥镜的电脉冲消融仪 WO2020232851A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/600,473 US20220175442A1 (en) 2019-05-18 2019-08-19 Electric pulse ablatograph for endoscope
EP19929732.6A EP3973901A4 (en) 2019-05-18 2019-08-19 ELECTRIC PULSE ABLATION INSTRUMENT FOR USE IN AN ENDOSCOPE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910415844.5 2019-05-18
CN201910415844.5A CN110151301A (zh) 2019-05-18 2019-05-18 一种用于内窥镜的电脉冲消融仪

Publications (1)

Publication Number Publication Date
WO2020232851A1 true WO2020232851A1 (zh) 2020-11-26

Family

ID=67631377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101290 WO2020232851A1 (zh) 2019-05-18 2019-08-19 一种用于内窥镜的电脉冲消融仪

Country Status (4)

Country Link
US (1) US20220175442A1 (zh)
EP (1) EP3973901A4 (zh)
CN (1) CN110151301A (zh)
WO (1) WO2020232851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116196081A (zh) * 2023-02-07 2023-06-02 上海玮启医疗器械有限公司 一种用于脉冲消融导管的电路切换系统和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111938806A (zh) * 2020-07-15 2020-11-17 杭州睿笛生物科技有限公司 一种适形消融针
CN112890948B (zh) * 2021-01-26 2022-03-01 四川大学华西医院 一种可协同给药的电脉冲消融装置
CN113633372B (zh) * 2021-10-18 2022-03-01 北京智愈医疗科技有限公司 一种用于组织切除的消融工具阵列装置及其控制方法
CN116077178B (zh) * 2023-04-04 2023-06-27 浙江伽奈维医疗科技有限公司 陡脉冲肿瘤治疗仪的模拟布针方法、系统及治疗仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563040A (zh) * 2006-07-21 2009-10-21 埃姆奇赛恩有限公司 组织消融器
CN103251452A (zh) * 2013-05-24 2013-08-21 常承忠 用于治疗肿瘤的双极消融电极
US20170360502A1 (en) * 2012-06-06 2017-12-21 Peter Osypka Electrode catheter device
CN108013931A (zh) * 2018-01-04 2018-05-11 成都美创医疗科技股份有限公司 一种低温等离子体手术电极
CN108272503A (zh) * 2018-03-07 2018-07-13 南京微创医学科技股份有限公司 一种可双通道注液的双极高频电刀
CN207804370U (zh) * 2017-06-16 2018-09-04 北京博莱德光电技术开发有限公司 一种射频消融电极装置、内窥镜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175693B2 (ja) * 1998-06-15 2008-11-05 オリンパス株式会社 内視鏡用処置具挿抜装置
US7655004B2 (en) * 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US8105230B2 (en) * 2007-07-09 2012-01-31 Olympus Medical Systems Corp. Medical system
EP2519175A1 (en) * 2009-12-30 2012-11-07 Koninklijke Philips Electronics N.V. Dynamic ablation device
US20110160514A1 (en) * 2009-12-31 2011-06-30 Ethicon Endo-Surgery, Inc. Electrical ablation devices
CN103025261A (zh) * 2010-06-24 2013-04-03 艾姆西森有限公司 改进的消融器械
US9254169B2 (en) * 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
AU2015259303B2 (en) * 2014-05-12 2021-10-28 Arena, Christopher B. Selective modulation of intracellular effects of cells using pulsed electric fields
US20180028267A1 (en) * 2015-02-04 2018-02-01 Rfemb Holdings, Llc Radio-frequency electrical membrane breakdown for the treatment of benign prostatic hyperplasia
CN109157280A (zh) * 2018-08-10 2019-01-08 重庆大学 不可逆电穿孔组织消融效果动态实时评估设备
CN210749473U (zh) * 2019-05-18 2020-06-16 杭州睿笛生物科技有限公司 一种用于内窥镜的电脉冲消融仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563040A (zh) * 2006-07-21 2009-10-21 埃姆奇赛恩有限公司 组织消融器
US20170360502A1 (en) * 2012-06-06 2017-12-21 Peter Osypka Electrode catheter device
CN103251452A (zh) * 2013-05-24 2013-08-21 常承忠 用于治疗肿瘤的双极消融电极
CN207804370U (zh) * 2017-06-16 2018-09-04 北京博莱德光电技术开发有限公司 一种射频消融电极装置、内窥镜
CN108013931A (zh) * 2018-01-04 2018-05-11 成都美创医疗科技股份有限公司 一种低温等离子体手术电极
CN108272503A (zh) * 2018-03-07 2018-07-13 南京微创医学科技股份有限公司 一种可双通道注液的双极高频电刀

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116196081A (zh) * 2023-02-07 2023-06-02 上海玮启医疗器械有限公司 一种用于脉冲消融导管的电路切换系统和方法
CN116196081B (zh) * 2023-02-07 2024-02-23 上海玮启医疗器械有限公司 一种用于脉冲消融导管的电路切换系统和方法

Also Published As

Publication number Publication date
US20220175442A1 (en) 2022-06-09
CN110151301A (zh) 2019-08-23
EP3973901A4 (en) 2022-07-13
EP3973901A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2020232851A1 (zh) 一种用于内窥镜的电脉冲消融仪
US11925512B2 (en) Methods and systems for controlled deployment of needles in tissue
US10765474B2 (en) Injectate delivery devices, systems and methods
AU2019202452B2 (en) Injectate delivery devices, systems and methods
EP3003461B1 (en) Systems and devices for reducing the luminal surface area of the gastrointestinal tract
US7004940B2 (en) Devices for performing thermal ablation having movable ultrasound transducers
US11166761B2 (en) Injectate delivery devices, systems and methods
JP2017501000A (ja) 生体組織内へ電磁エネルギーおよび/または熱プラズマを供給する能力を有する外科用スネア
JP2023021242A (ja) ドップラー超音波を用いたアブレーション進行過程の監視のための方法
JP2017051615A (ja) 広範囲粘膜切除のための切除装置
TW201900116A (zh) 用於治療學能量之陰道內輸送的系統
CN210749473U (zh) 一种用于内窥镜的电脉冲消融仪
KR102214341B1 (ko) 핸드 피스, rf 치료 장치 및 rf 치료 장치의 제어 방법
US20140031808A1 (en) Medical device tracking and energy feedback
WO2024041285A1 (zh) 一种对象消融系统、控制方法、装置、介质及电子设备
JP2017080142A (ja) 内視鏡用高周波処置具
JP2022553793A (ja) 組織を切除するための医療システム
JP2024520990A (ja) 腫瘍アブレーション器具及び技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019929732

Country of ref document: EP

Effective date: 20211220