WO2020232764A1 - 加热控制方法、装置及制冰机 - Google Patents
加热控制方法、装置及制冰机 Download PDFInfo
- Publication number
- WO2020232764A1 WO2020232764A1 PCT/CN2019/090520 CN2019090520W WO2020232764A1 WO 2020232764 A1 WO2020232764 A1 WO 2020232764A1 CN 2019090520 W CN2019090520 W CN 2019090520W WO 2020232764 A1 WO2020232764 A1 WO 2020232764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ice
- water inlet
- inlet pipe
- ice maker
- water
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
- F25C1/22—Construction of moulds; Filling devices for moulds
- F25C1/25—Filling devices for moulds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C1/00—Producing ice
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2600/00—Control issues
- F25C2600/02—Timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25C—PRODUCING, WORKING OR HANDLING ICE
- F25C2600/00—Control issues
- F25C2600/04—Control means
Definitions
- This application relates to the technical field of intelligent control of electrical appliances, in particular to a heating control method, device and ice maker.
- Ice maker (English name: icemaker or ice machine) is a kind of ice-making machinery equipment that generates ice after passing water through an evaporator and cooled by the ice-making agent of the ice-making system.
- the ice-making system uses water as the carrier and is energized. After passing through a certain device in the state, ice is produced.
- the shape of the ice cubes produced is also different; generally ice machines are divided into pellet ice machines, flake ice machines, plate ice machines, tube ice machines, shell ice machines, etc. .
- the water remaining in the water inlet pipe of the ice maker is likely to condense into ice due to the cold temperature or low room temperature after the ice-making is finished. Therefore, when the ice maker starts the next ice making state, it cannot obtain sufficient water through the water inlet pipe for ice making, which affects the normal ice making of the ice maker.
- the water inlet pipe heater is always in the heating state, or heating according to a fixed time on-off ratio to prevent the water remaining in the water inlet pipe of the ice maker from condensing into Ice, which affects the normal ice making of the ice maker.
- the heating control technology of the inlet pipe of the ice maker in the prior art has the problem of high energy consumption.
- the embodiments of the present application provide a heating control method, a device, and an ice maker to solve the problem of high energy consumption in the heating control technology of the inlet pipe of the ice maker in the prior art.
- a heating control method including:
- a heating control device including a control module, a heater, and a water inlet valve:
- the control module is configured to confirm that the ice maker is in an ice making state, and the current water inflow is the first water inflow after the target ice maker is turned on; controls the heater to continue heating the water inlet pipe for a first preset period of time; controls the water intake The valve remains closed until the heating of the water inlet pipe is completed; among them, it is necessary to ensure that after the water inlet pipe is continuously heated for the first preset period of time, there is no ice in the water inlet pipe or even if there is ice, it can ensure that water smoothly enters the storage of the ice maker. In the sink.
- an ice maker which is characterized by including the control device described in any one of the above.
- an electronic device including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
- the processor implements any of the foregoing when the program is executed.
- One step of the heating control method One step of the heating control method.
- a non-transitory computer-readable storage medium the non-transitory computer-readable storage medium storing computer instructions that cause the computer to execute any of the above The heating control method.
- the embodiments of the present application provide a heating control method, a device, and an ice maker.
- the heating control method includes: confirming that the ice maker is in an ice making state, and the current water intake is the first water intake after the target ice maker is turned on;
- the water inlet pipe is continuously heated for the first preset time; the water inlet valve is controlled to remain closed until the heating of the water inlet pipe ends.
- the embodiment of the application solves the problem of high energy consumption in the heating control technology of the water inlet pipe of the ice maker in the prior art, and has the beneficial effect of accurately and low energy consumption heating control of the water inlet pipe of the ice maker.
- FIG. 1 is a schematic diagram of the overall flow of a heating control method provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of the overall structure of a heating control device provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of the overall flow of another heating control method provided by an embodiment of the present application.
- FIG. 4 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present application.
- Fig. 1 shows a schematic diagram of the overall flow of a heating control method according to an embodiment of the present application, including:
- the water inlet pipe heater is not always in the heating state when the ice maker is turned on, or Heating is performed according to a fixed time on-off ratio.
- the ice maker will cause the water in the forward water pipe to freeze when the ice maker is first turned on, causing the water inlet pipe to be blocked, and water cannot enter the ice maker, affecting the ice maker’s normal production. ice.
- the water inlet pipe is not heated for the first time, but after receiving the instruction to enter the ice making state, first confirm that the ice maker is in the ice making state , And the current water inflow is the first water inflow after the target ice maker is turned on; the heater is controlled to heat the water inlet pipe for the first preset time.
- the heater is any type in the prior art and is a device for heating the water inlet pipe.
- the water inlet pipe heater in the prior art is usually a heating resistance wire surrounding the water inlet pipe.
- the embodiment of the present application can confirm that the ice maker is in the ice making state by at least the following two ways: confirm that the compressor of the ice maker is working, or confirm that the ice maker is executing the ice making process through the control chip of the ice maker.
- the first preset time length is preset, which is pre-calculated or measured according to the size of the inner pipe diameter of the water inlet pipe and the heating power of the heater; it is necessary to ensure that the water inlet pipe is continuously heated for the first preset time period. There is no ice or even if there is ice, it can ensure that water smoothly enters the water storage tank of the ice maker.
- the water inlet valve needs to be controlled to keep closed to ensure that the water in the water inlet pipe can accelerate the melting of the ice in the water inlet pipe. Play the beneficial effect of saving energy.
- a specific embodiment of the present application provides a heating control method.
- the heating control method confirms that the ice maker is in an ice making state, and the current water intake is the first water intake after the target ice maker is turned on; the water intake pipe is continuously heated The first preset duration; the water inlet valve is controlled to remain closed until the heating of the water inlet pipe ends.
- the beneficial effect of accurate and low-energy heating control on the water inlet pipe of the ice maker is achieved.
- a heating control method which further includes:
- the embodiment of the present application does not heat the water inlet pipe at the first time after the last ice-making working state is ended, but when receiving the ice-making working state
- the instruction first confirm that the ice maker is in the ice making state and that the current water inflow is not the first water inflow after the target ice maker is turned on; then confirm that the time between the current time and the end of the last ice making state reaches the second The preset duration.
- the last ice-making working state After the last ice-making working state is over, it takes a certain period of time before the water inlet pipe may produce ice, so it needs to be reconfirmed.
- control The heater continues to heat the water inlet pipe for a first preset period of time.
- the second preset duration is calculated based on experiments, or calculated based on the mechanical structure and ice making power of the target ice maker, that is, it is necessary to ensure that the target ice maker finishes an ice making state and the water inlet pipe is in the interval Icing may occur after the second preset period of time.
- the water inlet valve needs to be controlled to keep closed to ensure that the water in the water inlet pipe can accelerate the melting of the ice in the water inlet pipe. To save energy.
- the specific embodiment of the present application provides a heating control method.
- the heating control method confirms that the ice maker is in an ice making state, and the current water intake is not the first water intake after the target ice maker is turned on, and the current time is far away
- the time at the end of the secondary ice making working state reaches the second preset time; the water inlet pipe is continuously heated for the first preset time; the water inlet valve is controlled to remain closed until the heating of the water inlet pipe ends.
- a heating control method which further includes:
- the control water inlet valve remains open until the target ice maker completes the current water inlet.
- the embodiment of the present application does not heat the water inlet pipe at the first time after finishing the last ice-making working state, but when receiving an instruction to enter the ice-making working state, First confirm that the ice maker is in the ice making state and that the current water inflow is not the first water inflow after the target ice maker is turned on; then confirm that the time between the current time and the end of the last ice making state has reached the second preset time period . After the last ice-making working state is over, it takes a certain period of time before the water inlet pipe may produce ice, so it needs to be reconfirmed. After the current time and the last ice-making working state end time reaches the second preset time, control The heater continues to heat the water inlet pipe for a first preset period of time.
- the water inlet valve is controlled to remain open until the target ice maker completes the current water inlet, so as to achieve the beneficial effect of saving energy.
- the specific embodiment of the present application provides a heating control method.
- the heating control method confirms that the ice maker is in an ice making state, and the current water intake is not the first water intake after the target ice maker is turned on, and the current time is far away At the end of the secondary ice making working state, the interval duration does not reach the second preset duration; the water inlet valve is controlled to remain open until the target ice maker completes the current water inlet.
- the beneficial effect of accurate and low-energy heating control on the water inlet pipe of the ice maker is achieved.
- a heating control method which further includes: after the ice-making working state ends, not heating the water inlet pipe until the current time is away from the last ice-making working state ending time, The interval duration reaches the second preset duration.
- the embodiment of the present application does not heat the water inlet pipe at the first time after the last ice-making working state is ended. After the last ice-making working state is over, it takes a certain interval of time before the water inlet pipe may produce ice, so it needs to be reconfirmed. The interval between the current time and the end of the last ice-making working state reaches the second preset time period , Control the heater to heat the water inlet pipe for a preset duration.
- the second preset duration is calculated based on experiments, or calculated based on the mechanical structure and ice making power of the target ice maker. It is necessary to ensure that after the target ice maker ends an ice making state, the water inlet pipe is at the second interval. Icing may occur after a preset period of time.
- the specific embodiment of the present application provides a heating control method.
- the heating control method does not heat the water inlet pipe after the ice-making working state ends until the current time is the first time the last ice-making working state ends. 2.
- the preset duration In order to solve the problem of high energy consumption in the heating control technology of the water inlet pipe of the ice maker in the prior art, the beneficial effect of accurate and low-energy heating control on the water inlet pipe of the ice maker is achieved.
- a heating control method which further includes: after the ice-making working state ends, not heating the water inlet pipe until the current time is away from the last ice-making working state ending time, The interval time reaches the second preset time length, and the water inlet pipe is heated based on the preset time on-off ratio.
- the embodiment of the present application does not heat the water inlet pipe at the first time after the last ice-making working state is ended. After the last ice-making working state is over, it takes a certain interval of time before the water inlet pipe may produce ice, so it needs to be reconfirmed. The interval between the current time and the end of the last ice-making working state reaches the second preset time period , The heater is controlled based on the preset time on-off ratio to heat the water inlet pipe for a preset duration.
- a specific embodiment of the present application provides a heating control method.
- the heating control method does not heat the water inlet pipe at the first time after the ice-making working state ends, until the current time is away from the last ice-making working state ending time, When the interval time reaches the second preset time duration, the water inlet pipe is heated based on the preset time start-stop ratio.
- the beneficial effect of accurate and low-energy heating control on the water inlet pipe of the ice maker is achieved.
- a heating control method which further includes:
- the water inlet pipe is heated based on the preset time on-off ratio.
- the water inlet pipe is continuously heated for the first preset period of time before the first water inlet, and in the ice making state, there is always room temperature water flowing in the water inlet pipe, so there is no need to always
- the water inlet pipe is heated, and the water inlet pipe is heated based on the preset time on-off ratio, which can save energy consumption under the premise of ensuring that the water inlet pipe does not freeze.
- a heating control method which heats the water inlet pipe based on a preset time on-off ratio, and further includes:
- the water inlet pipe is heated based on the preset time start-stop ratio until the third preset time period is reached, or a new ice-making working state is started.
- a solution is to stop heating the water inlet pipe when the water inlet pipe is heated based on the preset time on/off ratio, and when the third preset time period is reached.
- the water inlet pipe when the water inlet pipe is heated based on the preset time on/off comparison, ice has just formed in the water inlet pipe. Therefore, it is considered that the water inlet pipe can be deiced by heating the water inlet pipe slightly. It starts to enter the ice-making working state at a time.
- another solution is: when the water inlet pipe is heated based on the preset time on-stop ratio, and the new ice-making working state is started, the water inlet pipe will be stopped. .
- a heating control device which includes a control module A01, a heater A02, and a water inlet valve A03:
- the control module A01 is configured to confirm that the ice maker is in the ice making state, and the current water intake is the first water intake after the target ice maker is turned on; control the heater A02 to continue heating the water intake pipe for the first preset time; control The water inlet valve A03 remains closed until the heating of the water inlet pipe is completed; among them, it is necessary to ensure that after the water inlet pipe is continuously heated for the first preset time, there is no ice in the water inlet pipe or even if there is ice, it can ensure that the water enters the ice making smoothly The machine's storage tank.
- the water inlet pipe heater is not always in the heating state when the ice maker is turned on, or Heating is performed according to a fixed time on-off ratio.
- the ice maker will cause the water in the water inlet pipe to freeze before it enters the ice making state for the first time when it is turned on under two conditions, causing the water inlet pipe to be blocked and water cannot enter the ice maker, affecting the normal operation of the ice maker Ice making.
- the control module A01 is not the first time to control the heater A02 (please add the label) to enter the ice making state. If the ice maker is turned on, the water inlet pipe is heated and deiced at the first time , It will cause the loss of electric energy, and the water in the water inlet pipe may freeze again before entering the ice-making state next time, which intensifies the loss of electric energy.
- the control module A01 after the ice maker is turned on, the control module A01 does not control the heater A02 to heat the water inlet pipe at the first time, but after receiving an instruction to enter the ice making state, the control module A01 First confirm that the ice maker is in the ice making state, and the current water intake is the first water intake after the target ice maker is turned on; the control module A01 controls the heater A02 to continue heating the water inlet pipe for the first preset time.
- the heater A02 is any type of device in the prior art that can heat the water inlet pipe.
- the water inlet pipe heater A02 in the prior art is usually a heating resistance wire surrounding the water inlet pipe.
- the first preset time length is preset, which is pre-calculated or measured according to the size of the inner pipe diameter of the water inlet pipe and the heating power of the heater A02; it is necessary to ensure that the water inlet pipe is continuously heated for the first preset time period. There is no ice in the tube or even if there is ice, it can ensure that water smoothly enters the water storage tank of the ice maker.
- control module A01 controls the heater A02 to continuously heat the water inlet pipe, and the continuous heating time does not reach the first preset time, it needs to control the water inlet valve A03 to keep closed to ensure that the water in the water inlet pipe can accelerate
- the melting of ice in the inlet pipe has the beneficial effect of saving energy.
- the heating control device includes a control module A01, a heater A02, and a water inlet valve A03: the control module A01 is configured to confirm that the ice maker is in an ice making state, and The current water intake is the first water intake after the target ice maker is turned on; the heater A02 is controlled to continue heating the water inlet pipe for the first preset time; the water inlet valve A03 is controlled to remain closed until the heating of the water inlet pipe ends.
- the beneficial effect of accurate and low-energy heating control on the water inlet pipe of the ice maker is achieved.
- a heating control device is provided, and the control module A01 is further configured to:
- the heater A02 is controlled to continue heating the water inlet pipe for a first preset period of time; the water inlet valve A03 is controlled to remain closed until the heating of the water inlet pipe ends.
- the control module A01 does not control the heater A02 to heat the water inlet pipe at the first time after the last ice making working state is ended in the embodiment of the present application.
- the control module A01 After receiving the instruction to enter the ice making state, first confirm that the ice maker is in the ice making state and that the current water intake is not the first water intake after the target ice maker is turned on; then confirm that the current time is away from the last ice making operation At the end of the state, the interval duration reaches the second preset duration. After the last ice-making working state is over, it takes a certain interval of time before the water inlet pipe may produce ice.
- control module A01 needs to reconfirm that the interval between the current time and the end of the last ice-making working state reaches the second pre-determined time. After setting the time length, control the heater A02 to continuously heat the water inlet pipe for the first preset time period.
- the second preset duration is calculated based on experiments, or calculated based on the mechanical structure and ice making power of the target ice maker. It is necessary to ensure that after the target ice maker ends an ice making state, the water inlet pipe is at the second interval. Icing may occur after a preset period of time.
- the control module A01 does not need to control the heater A02 to enter The water pipe is heated.
- control module A01 controls the water inlet valve A03 to keep open until the target ice maker completes the current water inlet, so as to achieve the beneficial effect of saving energy.
- a specific embodiment of the present application provides a heating control device, and the control module A01 is further configured to: confirm that the ice maker is in an ice making state, and the current water intake is not the first water intake after the target ice maker is turned on, and the current time The interval time from the end of the last ice making state reaches the second preset duration; the heater A02 is controlled to continue heating the inlet pipe for the first preset duration; the inlet valve A03 is controlled to remain closed until the heating of the inlet pipe ends .
- the beneficial effect of accurate and low-energy heating control on the water inlet pipe of the ice maker is achieved.
- a heating control device is provided, and the control module A01 is further configured to: after the ice-making working state ends, control the heater A02 not to heat the water inlet pipe until the distance is above the current time At the end of the second ice making state, the interval time reaches the second preset time length.
- the embodiment of the present application does not heat the water inlet pipe at the first time after the last ice-making working state is ended. After the last ice-making working state is over, it takes a certain interval of time before the water inlet pipe may produce ice. Therefore, the control module A01 needs to reconfirm that the interval between the current time and the end of the last ice-making working state reaches the second pre-determined time. After setting the time length, control the heater A02 to continue heating the water inlet pipe for the preset time.
- control module A01 controls the heater A02 to continuously heat the water inlet pipe, and the continuous heating time does not reach the preset time.
- the water inlet valve A03 needs to be controlled to keep closed to ensure that the water in the water inlet pipe can accelerate the water inlet
- the melting of ice in the tube has the beneficial effect of saving energy.
- a specific embodiment of the present application provides a heating control device.
- the control module A01 is further configured to: after the ice making state is over, control the heater A02 not to heat the water inlet pipe until the current time When the ice-making working state ends, the interval time length reaches the second preset time length.
- a heating control device is provided, and the control module A01 is further configured to: after the ice-making working state ends, control the heater A02 not to heat the water inlet pipe until the distance is above the current time At the end of the secondary ice making working state, the interval time reaches the second preset time period, and the heater A02 is controlled to heat the water inlet pipe based on the preset time on-off ratio.
- control module A01 does not control the heater A02 to heat the water inlet pipe at the first time after the last ice making working state is ended in the embodiment of the present application. After the last ice-making working state is over, it takes a certain interval of time before the water inlet pipe may produce ice. Therefore, the control module A01 needs to reconfirm that the interval between the current time and the end of the last ice-making working state reaches the second pre-determined time. After setting the time length, control the heater A02 based on the preset time on/off ratio to heat the water inlet pipe for the preset time.
- control module A01 controls the heater A02 to continuously heat the water inlet pipe, and the continuous heating time does not reach the preset time, while the water inlet valve A03 needs to be controlled to keep closed to ensure that the water in the water inlet pipe can accelerate to the water inlet pipe
- the melting of ice has the beneficial effect of saving energy.
- a specific embodiment of the present application provides a heating control device.
- the control module A01 is further configured to: after the ice making state is over, control the heater A02 not to heat the water inlet pipe until the current time At the end of the ice making working state, the interval time reaches the second preset time length, and the heater A02 is controlled to heat the water inlet pipe based on the preset time on-off ratio.
- a heating control device is provided, the control module A01 is further configured to: confirm that the ice maker is in an ice making state, and the current water intake is not the target ice maker to start After the first water inflow; control the heater A02 to heat the water inlet pipe based on the preset time on-off ratio.
- the control module A01 does not There is no need to control the heating module to heat the water inlet pipe all the time, and the water inlet pipe is heated based on the preset time on-off ratio, which can save energy consumption on the premise of ensuring that the water inlet pipe does not freeze.
- a heating control device is provided, and the control module A01 is further configured as:
- the heater A02 is controlled to heat the water inlet pipe based on the preset time on-off ratio until the third preset time period is reached, or the target ice maker starts to enter a new ice making state.
- the control module A01 controls the heater A02 to start heating the water inlet pipe based on the preset time on/off ratio. Ice has just formed in the water inlet pipe. Therefore, it is considered that the water inlet pipe can be de-iced by heating the water inlet pipe slightly.
- another solution is: when the control module A01 controls the heater A02 to heat the water inlet pipe based on the preset time on/off ratio, start to enter In the new ice making state, the control module A01 controls the heater A02 to stop heating the water inlet pipe.
- an ice maker is provided, including the heating control device in any of the foregoing specific embodiments.
- the ice maker in the prior art generally divides the ice maker into a particle ice maker, a flake ice maker, a plate ice maker, a tube ice maker, a shell ice maker, etc. in the shape of ice.
- This embodiment does not specifically limit the type of ice maker, as long as it includes any of the heating control devices in the above specific embodiments, it is the ice maker described in this embodiment.
- FIG. 3 a heating control method is provided, as shown in FIG. 3, which includes the following steps.
- the heater A02 of the water inlet pipe is normally open for a preset time, and the water inlet valve A03 is closed to ensure that there is no ice blockage in the water inlet pipe when the water enters for the first time; the water inlet pipe heater A02 is controlled according to the fixed on-stop ratio from the end of the first water inlet procedure to the end of the ice making cycle.
- This embodiment of the invention can ensure that the water inlet pipe is not blocked by ice, and at the same time reduce the energy loss when the ice maker is not working.
- the inlet pipe heater A02 When the ice maker is in a non-icing state, the inlet pipe heater A02 is in a non-working state.
- the water inlet pipe heater A02 When the ice maker is in the ice making state, the water inlet pipe heater A02 is normally open when the target ice maker is turned on for the first time, and the water inlet valve A03 is closed at this time to ensure that there is no water inlet pipe during the first water inlet Ice blocking; the first water inlet program ends to the end of the ice making cycle, the inlet pipe heater A02 is controlled according to the fixed on-off ratio. This control invention can ensure that the water inlet pipe is not blocked by ice, and at the same time reduce the energy loss when the ice maker is not working.
- FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device.
- the electronic device may include: a processor 401, a communication interface 402, a memory 403, and a communication bus 404, Among them, the processor 405, the communication interface 406, and the memory 407 communicate with each other through the communication bus 408.
- the processor 401 can call the logic instructions in the memory 403 to execute the following method: confirm that the ice maker is in an ice making state, and the current water inflow is the first water inflow after the ice maker is turned on; and continue to heat the water inlet pipe.
- a preset period of time control the water inlet valve to remain closed until the heating of the water inlet pipe ends; among them, it is necessary to ensure that after the water inlet pipe is continuously heated for the first preset time, there is no ice in the water inlet pipe or even if there is ice, it can be guaranteed The water smoothly enters the water storage tank of the ice maker.
- the above-mentioned logical instructions in the memory 403 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
- the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .
- the embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored.
- the computer program is implemented when executed by a processor to perform the methods provided in the foregoing embodiments, for example, including: confirming an ice maker It is in the state of ice making, and the current water inflow is the first water inflow after the target ice maker is turned on; the water inlet pipe is continuously heated for the first preset time; the water inlet valve is controlled to remain closed until the heating of the water inlet pipe ends; , It is necessary to ensure that after the water inlet pipe is continuously heated for the first preset time, there is no ice in the water inlet pipe or even if there is ice, it can be ensured that water can smoothly enter the water storage tank of the ice maker.
- the device embodiments described above are merely illustrative.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
- each implementation manner can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
- the above technical solutions can be embodied in the form of software products, which can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., include a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Production, Working, Storing, Or Distribution Of Ice (AREA)
Abstract
Description
Claims (17)
- 一种加热控制方法,其特征在于,包括:确认制冰机处于制冰工作状态,且当前次进水为目标制冰机开机后的首次进水;对进水管持续加热第一预设时长;控制进水阀保持关闭,直至对进水管的加热结束;其中,需保证对进水管持续加热第一预设时长后,进水管内不存在冰或即使存在冰,也能够保证水顺利进入制冰机的蓄水槽中。
- 根据权利要求1所述的加热控制方法,其特征在于,还包括:确认制冰机处于制冰工作状态,且当前次进水不是目标制冰机开机后的首次进水,且当前时刻距离上次制冰工作状态结束时刻的时长达到第二预设时长;对进水管持续加热第一预设时长;控制进水阀保持关闭,直至对进水管的加热结束。
- 根据权利要求1所述的加热控制方法,其特征在于,还包括:确认制冰机处于制冰工作状态,且当前次进水不是目标制冰机开机后的首次进水,且当前时刻距离上次制冰工作状态结束时刻的时长未达到第二预设时长;控制进水阀保持打开,直至目标制冰机完成当前次进水。
- 根据权利要求1-3任一所述的加热控制方法,其特征在于,还包括:制冰工作状态结束后,不对进水管进行加热,直至当前时刻距离上次制冰工作状态结束时刻的时长达到第二预设时长。
- 根据权利要求1所述的加热控制方法,其特征在于,还包括:制冰工作状态结束后,不对进水管进行加热,直至当前时刻距离上次制冰工作状态结束时刻的时长达到第二预设时长,基于预设时间开停比对进水管进行加热。
- 根据权利要求1所述的加热控制方法,其特征在于,还包括:确认制冰机处于制冰工作状态,且当前次进水不是目标制冰机开机后的首次进水;基于预设时间开停比对进水管进行加热。
- 根据权利要求5或6所述的加热控制方法,其特征在于,基于预 设时间开停比对进水管进行加热,进一步包括:基于预设时间开停比对进水管进行加热,直至达到第三预设时长,或开始进入新的制冰工作状态。
- 一种加热控制装置,其特征在于,包括控制模块、加热器和进水阀:控制模块,被配置为确认制冰机处于制冰工作状态,且当前次进水为目标制冰机开机后的首次进水;控制加热器对进水管持续加热第一预设时长;控制进水阀保持关闭,直至对进水管的加热结束;其中,需保证对进水管持续加热第一预设时长后,进水管内不存在冰或即使存在冰,也能够保证水顺利进入制冰机的蓄水槽中。
- 根据权利要求8所述的加热控制装置,其特征在于,控制模块还被配置为:确认制冰机处于制冰工作状态,且当前次进水不是目标制冰机开机后的首次进水,且当前时刻距离上次制冰工作状态结束时刻的时长达到第二预设时长;控制加热器对进水管持续加热第一预设时长;控制进水阀保持关闭,直至对进水管的加热结束。
- 根据权利要求8所述的加热控制装置,其特征在于,控制模块还被配置为:确认制冰机处于制冰工作状态,且当前次进水不是目标制冰机开机后的首次进水,且当前时刻距离上次制冰工作状态结束时刻的时长未达到第二预设时长;控制进水阀保持打开,直至完成当前制冰工作状态的加水。
- 根据权利要求8-10任一所述的加热控制装置,其特征在于,控制模块还被配置为:制冰工作状态结束后,控制加热器不对进水管进行加热,直至当前时刻距离上次制冰工作状态结束时刻的时长达到第二预设时长。
- 根据权利要求8所述的加热控制装置,其特征在于,控制模块还被配置为:制冰工作状态结束后,控制加热器不对进水管进行加热,直至当前时刻距离上次制冰工作状态结束时刻的时长达到第二预设时长,控制加热器基于预设时间开停比对进水管进行加热。
- 根据权利要求8所述的加热控制装置,其特征在于,控制模块,还被配置为:确认制冰机处于制冰工作状态,且当前次进水不是目标制冰机开机后 的首次进水;控制加热器基于预设时间开停比对进水管进行加热。
- 根据权利要求12或13所述的控制装置,其特征在于,控制模块,进一步被配置为:控制加热器基于预设时间开停比对进水管进行加热,直至达到第三预设时长,或目标制冰机开始进入新的制冰工作状态。
- 一种制冰机,其特征在于,包括权利要求8-14任一项所述的控制装置。
- 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至7任一项所述加热控制方法的步骤。
- 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行如权利要求1至7中任一项所述的加热控制方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3068643A CA3068643C (en) | 2019-05-17 | 2019-06-10 | Heating conrol method, device and ice maker |
EP19897574.0A EP3767205B1 (en) | 2019-05-17 | 2019-06-10 | Heating control method, apparatus, and ice maker |
AU2019299869A AU2019299869B2 (en) | 2019-05-17 | 2019-06-10 | Heating control method, device and ice maker |
US16/706,830 US10760844B1 (en) | 2019-05-17 | 2019-12-09 | Heating control method, device and ice maker |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910410475.0 | 2019-05-17 | ||
CN201910410475.0A CN110145907B (zh) | 2019-05-17 | 2019-05-17 | 加热控制方法、装置及制冰机 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/706,830 Continuation US10760844B1 (en) | 2019-05-17 | 2019-12-09 | Heating control method, device and ice maker |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020232764A1 true WO2020232764A1 (zh) | 2020-11-26 |
Family
ID=67595634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/090520 WO2020232764A1 (zh) | 2019-05-17 | 2019-06-10 | 加热控制方法、装置及制冰机 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3767205B1 (zh) |
CN (1) | CN110145907B (zh) |
AU (1) | AU2019299869B2 (zh) |
WO (1) | WO2020232764A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111238120A (zh) * | 2020-01-17 | 2020-06-05 | 合肥华凌股份有限公司 | 除霜控制方法、制冰机及其控制装置和存储装置 |
JP2022104681A (ja) * | 2020-12-29 | 2022-07-11 | アクア株式会社 | 冷蔵庫 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020067176A (ko) * | 2001-02-15 | 2002-08-22 | 엘지전자주식회사 | 냉장고 자동제빙기의 급수관히터 작동구조 |
CN1435627A (zh) * | 2002-01-31 | 2003-08-13 | 乐金电子(天津)电器有限公司 | 冰箱给水系统 |
CN1435617A (zh) * | 2002-01-31 | 2003-08-13 | 乐金电子(天津)电器有限公司 | 冰箱自动制冰机给水管加热器启动结构 |
CN1453551A (zh) * | 2002-04-25 | 2003-11-05 | 乐金电子(天津)电器有限公司 | 电冰箱给水管防止结冰装置及其方法 |
KR20060039094A (ko) * | 2004-11-02 | 2006-05-08 | 주식회사 대우일렉트로닉스 | 냉장고 자동제빙기의 급수호스 히터 제어방법 |
DE102012202790A1 (de) * | 2012-02-23 | 2013-08-29 | BSH Bosch und Siemens Hausgeräte GmbH | Kältegerät mit einem Eisbereiter |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05280846A (ja) * | 1992-03-31 | 1993-10-29 | Matsushita Refrig Co Ltd | 冷蔵庫用自動製氷機 |
KR100376164B1 (ko) * | 2000-12-23 | 2003-03-15 | 삼성전자주식회사 | 자동제빙기를 구비한 냉장고 |
JP2002267303A (ja) * | 2001-03-08 | 2002-09-18 | Matsushita Refrig Co Ltd | 冷蔵庫 |
JP4902296B2 (ja) * | 2006-09-01 | 2012-03-21 | 日立アプライアンス株式会社 | 冷蔵庫 |
DE102015222731A1 (de) * | 2015-11-18 | 2017-05-18 | BSH Hausgeräte GmbH | Kältegerät mit Wasserzuführung |
KR101798542B1 (ko) * | 2016-07-12 | 2017-11-17 | 동부대우전자 주식회사 | 아이스 메이커를 갖는 냉장고 및 급수유닛 |
CN107830668B (zh) * | 2017-10-31 | 2019-08-27 | 海信容声(广东)冰箱有限公司 | 一种冰箱制冰机的进水组件及冰箱 |
-
2019
- 2019-05-17 CN CN201910410475.0A patent/CN110145907B/zh active Active
- 2019-06-10 WO PCT/CN2019/090520 patent/WO2020232764A1/zh unknown
- 2019-06-10 EP EP19897574.0A patent/EP3767205B1/en active Active
- 2019-06-10 AU AU2019299869A patent/AU2019299869B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020067176A (ko) * | 2001-02-15 | 2002-08-22 | 엘지전자주식회사 | 냉장고 자동제빙기의 급수관히터 작동구조 |
CN1435627A (zh) * | 2002-01-31 | 2003-08-13 | 乐金电子(天津)电器有限公司 | 冰箱给水系统 |
CN1435617A (zh) * | 2002-01-31 | 2003-08-13 | 乐金电子(天津)电器有限公司 | 冰箱自动制冰机给水管加热器启动结构 |
CN1453551A (zh) * | 2002-04-25 | 2003-11-05 | 乐金电子(天津)电器有限公司 | 电冰箱给水管防止结冰装置及其方法 |
KR20060039094A (ko) * | 2004-11-02 | 2006-05-08 | 주식회사 대우일렉트로닉스 | 냉장고 자동제빙기의 급수호스 히터 제어방법 |
DE102012202790A1 (de) * | 2012-02-23 | 2013-08-29 | BSH Bosch und Siemens Hausgeräte GmbH | Kältegerät mit einem Eisbereiter |
Also Published As
Publication number | Publication date |
---|---|
AU2019299869B2 (en) | 2021-05-06 |
EP3767205B1 (en) | 2023-08-02 |
EP3767205A1 (en) | 2021-01-20 |
CN110145907B (zh) | 2021-03-16 |
AU2019299869A1 (en) | 2020-12-10 |
EP3767205A4 (en) | 2021-06-23 |
CN110145907A (zh) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103982976B (zh) | 空调器除霜控制方法及空调器 | |
CN107062771B (zh) | 化霜控制方法及风冷冰箱 | |
WO2020232764A1 (zh) | 加热控制方法、装置及制冰机 | |
CN106288245A (zh) | 一种水机防冻控制方法、系统及空调设备 | |
JPWO2008053975A1 (ja) | 自動製氷機およびその運転方法 | |
JP2005201545A (ja) | 自動製氷機の多重製氷判定方法および運転方法 | |
CN104567150A (zh) | 一种热泵热水器除霜控制方法及使用该方法的热泵热水器 | |
US10760844B1 (en) | Heating control method, device and ice maker | |
CN110836504B (zh) | 空调器除霜控制方法 | |
WO2023071153A1 (zh) | 一种空调除霜控制方法、控制装置及空调器 | |
WO2020098389A1 (zh) | 一种空调室外机加热除霜控制方法及系统 | |
CN112815587A (zh) | 热泵除霜退出控制方法、装置、电子设备及存储介质 | |
WO2020237716A1 (zh) | 加热控制方法、装置及制冰机 | |
CN113606834B (zh) | 单系统混冷冰箱及其化霜控制方法 | |
JP2017003158A (ja) | ヒートポンプ装置及び貯湯式給湯機 | |
CN104390415A (zh) | 一种风冷冰箱化霜系统及其控制方法、风冷冰箱 | |
US10794623B1 (en) | Heating control method, device and ice maker | |
CN204313551U (zh) | 一种风冷冰箱化霜系统及风冷冰箱 | |
CN108120211A (zh) | 一种冰箱自动除霜系统及具有其的冰箱 | |
CN104634062A (zh) | 家用水机的制冷控制方法及装置 | |
CN202928255U (zh) | 一种冷库除霜装置 | |
CN113758138B (zh) | 冰箱的控制方法 | |
CN112444016B (zh) | 制冰结构、方法及电器 | |
CN201488384U (zh) | 机械冰箱的制冷回路 | |
JP3000907B2 (ja) | 蓄氷型冷水装置の運転制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 3068643 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 3068643 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019897574 Country of ref document: EP Effective date: 20200701 |
|
ENP | Entry into the national phase |
Ref document number: 2019299869 Country of ref document: AU Date of ref document: 20190610 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19897574 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |