WO2020230902A1 - Casting device - Google Patents
Casting device Download PDFInfo
- Publication number
- WO2020230902A1 WO2020230902A1 PCT/JP2020/019638 JP2020019638W WO2020230902A1 WO 2020230902 A1 WO2020230902 A1 WO 2020230902A1 JP 2020019638 W JP2020019638 W JP 2020019638W WO 2020230902 A1 WO2020230902 A1 WO 2020230902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- cooling piece
- cavity
- mold
- insertion hole
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/06—Permanent moulds for shaped castings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D17/00—Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
- B22D17/20—Accessories: Details
- B22D17/22—Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/02—Pressure casting making use of mechanical pressure devices, e.g. cast-forging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
Definitions
- the present invention relates to a casting apparatus.
- a casting apparatus forms a cast product having a desired shape by pouring molten metal into a cavity formed between a fixed mold and a movable mold of a mold and cooling the molten metal (for example, a patent). Reference 1).
- a fixing plate (41) having a through hole (42) for circulating cooling water is arranged in the vicinity of the cavity (recess 31) of the fixed mold (30).
- the magnet (40) and the recess (31) are cooled with cooling water.
- the through hole (42) should be arranged in the vicinity of the cavity (recess 31). Is desired.
- FIG. 13 is a schematic cross-sectional view of a main part showing a cavity cooling structure of a conventional casting apparatus.
- the cooling flow path 300 is set in the cavity 200. It is desirable to place it in the vicinity.
- the conventional casting apparatus 100 forms a cooling flow path 500 at a position separated from the cavity 200 (cast product 400). Therefore, the cooling structure of the conventional casting apparatus 100 by the cooling flow path 500 has poor cooling efficiency, and it has been desired to efficiently cool the cavity 200 (cast product 400).
- an object of the present invention is to provide a casting apparatus capable of efficiently cooling the cavity.
- the present invention is a casting apparatus for casting a cast product by pouring molten metal into a cavity formed in a mold, and the mold has a surface on which the cavity is formed. It has a cooling piece insertion hole recessed toward the cavity and a cooling piece inserted into the cooling piece insertion hole on a surface different from the above, and the cooling piece is fitted into the cooling piece insertion hole. It is characterized in that a cooling flow path for flowing a cooling medium is formed between the cooling piece and the inner wall surface of the cooling piece insertion hole.
- the present invention can further provide a casting apparatus capable of efficiently cooling the cavity.
- FIG. 1 It is a figure which shows the casting apparatus which concerns on embodiment of this invention, and is the schematic sectional view which omitted the cooling piece and the like.
- FIG. 1 It is a schematic perspective view which shows the cooling piece of the casting apparatus which concerns on embodiment of this invention.
- It is an enlarged schematic sectional view of a main part which shows typically the installation state of a cooling piece.
- FIG. 1 shows the cooling piece of the 1st modification of the casting apparatus which concerns on embodiment of this invention. It is a schematic perspective view which shows the cooling piece of the 2nd modification of the casting apparatus which concerns on embodiment of this invention. It is a schematic perspective view which shows the cooling piece of the 3rd modification of the casting apparatus which concerns on embodiment of this invention. It is a schematic perspective view which shows the cooling piece of the 4th modification of the casting apparatus which concerns on embodiment of this invention. It is a figure which shows the cooling piece of the 5th modification of the casting apparatus which concerns on embodiment of this invention.
- FIG. It is schematic cross-sectional view of the main part which shows the cavity cooling structure of the conventional casting apparatus.
- FIG. 1 is a diagram showing a casting apparatus 1 according to an embodiment of the present invention, and is a schematic cross-sectional view in which a cooling piece 3 and the like are omitted.
- a case where the movable mold 21 arranged on the rear side (back side of the cavity surface 20a) shown in FIG. 1 moves in the front-rear direction (front side direction and back side direction) will be described as an example.
- the vertical and horizontal directions of the drawing of FIG. 1 will be described as the vertical and front-back directions.
- the casting apparatus 1 includes, for example, aluminum or the like in a cavity 20 formed between the movable insert 23 of the movable mold 21 of the mold 2 and the fixed insert 24 of the fixed mold 22.
- This is an apparatus for casting the cast product 4 by pouring the molten metal of No. 1 and cooling it.
- the mold 2 may have at least a movable mold 21 having a movable insert 23 and a fixed mold 22 having a fixed insert 24, and the shape, structure, etc. are not particularly limited. ..
- the casting device 1 may be a horizontal device in which the movable type 21 moves in the horizontal direction, or may be a vertical device in which the movable type 21 moves in the vertical direction.
- a casting apparatus 1 made of a horizontal type die casting will be described as an example.
- FIG. 2 is a schematic perspective view showing a cooling piece 3 of the casting apparatus 1 according to the embodiment of the present invention.
- the mold 2 will be described with reference mainly to FIGS. 1 and 2.
- the mold 2 is mainly composed of a fixed mold 22 arranged on the front side and a movable mold 21 arranged on the rear side of the fixed mold 22 and capable of advancing and retreating in the front-rear direction. Consists of molds.
- the mold 2 (movable mold 21) has a cooling piece insertion hole 2a (see FIG. 3) recessed toward the cavity 20 on a surface different from the surface on which the cavity 20 is formed, and cooling.
- cooling pieces 3, 31, 32, 33, 34 which are inserted into the piece insertion holes 2a.
- a molten metal such as an aluminum alloy, a magnesium alloy, or a zinc alloy is supplied from the holding furnace to the cavity 20 in the mold 2 at the time of casting.
- the cooling pieces 3 arranged in the mold 2 may be provided in either the movable mold 21 or the fixed mold 22, and an appropriate number may be provided at an appropriate position according to the shape of the cast product 4 or the like. Should be installed.
- the cooling pieces 3 are installed in the movable insert 23 and the slide core 27 of the movable type 21 will be described as an example.
- the movable mold 21 is composed of a rear mold that can move forward and backward with respect to the fixed mold 22 by an advancing / retreating mechanism (not shown) of the die casting machine 6.
- the movable type 21 includes a movable insert 23 arranged on the cavity 20 side of the movable main type 25, a movable main type 25 arranged so as to cover the movable insert 23 from the rear side, and a rear surface side of the movable main type 25. It is configured to include a die base 29 fixed to the surface and a cooling piece 3 (see FIG. 2).
- the movable mold 21 is formed with a cavity 20 on the movable mold side for forming a rear portion of the cast product 4.
- the fixed mold 22 includes a front mold fixed to the rear surface of a fixed die plate (not shown).
- the fixed mold 22 has a fixed insert 24 arranged to face the front side of the movable insert 23, a fixed main mold 26 arranged to face the front side of the movable main mold 25, and the fixed insert 24 facing forward from the outside. It is configured to include a cast-in bush 28 arranged so as to be provided.
- the fixed mold 22 is formed with a cavity 20 on the fixed mold side for forming the front side portion of the cast product 4.
- the movable nest 23 is a movable component that forms a part (for example, a rear surface) of the cavity 20. As shown in FIG. 2, on the rear surface of the movable insert 23, there are cooling piece installation holes (not shown) for mounting a plurality of (for example, 6) cooling pieces 34 for supplying cooling water for cooling the mold. It is formed in the front direction (direction of the cavity 20) from the rear surface.
- the slide core 27 is a movable component that forms a part (for example, a side surface) of the cavity 20.
- the slide core 27 is arranged in a recess 23a formed on the top, bottom, left, and right of the movable insert 23 so as to be able to move forward and backward by a moving device (not shown) or the like.
- a moving device not shown
- FIG. 2 only the slide core 27 installed on the upper side of the movable insert 23 is shown, and the slide core 27 installed on the lower side, the left side, and the right side is abbreviated as the upper slide core 27. Since they are the same, they are omitted.
- cooling piece insertion holes 2a for attaching a plurality of (for example, three) cooling pieces 3, 31, 32, 33 for supplying cooling water for cooling the mold, respectively. (See FIG. 3) is formed in the direction of the cavity 20 from the upper surface.
- FIG. 3 is an enlarged schematic cross-sectional view of a main part schematically showing an installed state of the cooling piece 3.
- the cooling piece insertion hole 2a is an insertion hole into which cooling pieces 31, 32, 33 (see FIG. 4) having different shapes are inserted.
- the inner wall surface 2b on the cavity 20 side of the cooling piece insertion hole 2a is formed up to the inside (inside) of the convex portion 2c of the mold 2 and is formed in the vicinity of the cavity 20.
- the inner wall surface 2b on the cavity 20 side of the cooling piece insertion hole 2a was formed on the tip surface 3c by fitting the cooling piece 3 into the cooling piece insertion hole 2a so that the tip surface 3c of the cooling piece 3 was brought into contact with the cooling piece 3.
- the grooves 3a are arranged so as to face each other.
- the cavity 20 is a space in which the molten metal is poured and cooled to form the casting product 4.
- the cavity 20 is formed by a fixed mold 22, a movable mold 21, and a slide core 27.
- the mold 2 (for example, the slide core 27) forming the cavity 20 is formed with a convex portion 2c protruding in the direction of the cavity 20.
- the cooling piece 3 is a flow path forming insert for providing a cooling flow path 30 inside the mold 2.
- the cooling pieces 3 include a plurality of cooling pieces 34 arranged in the movable insert 23 on the rear side, and a plurality of cooling pieces 31, 32, respectively arranged in the front, rear, left and right slide cores 27. 33 and is configured.
- the side surface of the cooling piece 3 is formed of a gently tapered surface or a straight surface.
- each cooling piece 3 is formed with a cooling flow path 30 that forms a part of a cooling circuit for cooling the molten metal poured into the cavity 20.
- Each cooling piece 3 includes an inflow port 3f and an outflow port 3g formed on the rear end surface, a supply path 3h extending from the inflow port 3f to the tip surface 3c, a groove 3a formed on the tip surface 3c, and the groove 3a.
- a cooling flow path 30 is formed by an outflow path 3i extending from an end (right end) to an outflow port 3g.
- each cooling piece 3 The outer peripheral portion and the stepped portion on the base end side of each cooling piece 3 are formed to have a larger diameter than the portion closer to the tip portion, and are formed of an O-ring, a gasket, a liquid packing, etc. that prevent the cooling liquid from leaking to the outside.
- An annular groove 3j for installing the sealing material O1 is formed.
- the groove 3a of the cooling piece 3 is fitted into the cooling piece insertion hole 2a of the mold 2 so that the cooling medium 5 flows between the groove 3a and the inner wall surface 2b of the cooling piece insertion hole 2a. It is a groove for forming a flow path that forms a part of the road 30.
- FIG. 4 is a schematic perspective view showing a cooling piece 3 arranged on the slide core 27.
- FIG. 5 is a schematic cross-sectional view showing the cooling piece 3 arranged on the slide core 27.
- FIG. 6 is a schematic vertical sectional view showing a cooling piece 3 arranged on the slide core 27.
- FIG. 7 is an enlarged perspective view having a cross section showing the tip end portion of the cooling piece 3.
- the cooling pieces 3, 31 to 34 are formed in an appropriate number, width, thickness, and shape according to the shape and size of the cavity 20, the load applied to the cooling piece 3, and the like. ing.
- the cooling pieces 31 to 33 arranged on the slide core 27 on the upper side of the mold 2 will be mainly described.
- Three cooling pieces 31 to 33 are arranged on the slide core 27 according to the width of the cavity 20 in the vertical and horizontal directions.
- the cooling pieces 31 to 33 are formed in a substantially thin plate shape in a plan view according to the length of the cavity 20 in the front-rear direction.
- the tip surfaces 3c of the cooling pieces 31 to 33 are formed substantially parallel to the cavity surface 20a according to the shape of the peripheral wall of the cavity 20.
- the tip surface 3c of the cooling piece 31 is formed flat when viewed from the front in accordance with the shape of the cavity surface 20a.
- the tip surface 3c of the cooling piece 32 is formed in a substantially triangular shape when viewed from the front in accordance with the shape of the cavity surface 20a.
- the tip surface 3c of the cooling piece 33 is formed in a stepped shape when viewed from the front in accordance with the shape of the cavity surface 20a.
- a groove 3a for forming the cooling flow path 30 is recessed in the tip surfaces 3c of the cooling pieces 31 to 33.
- the groove 3a is formed of a U-shaped groove or a concave groove in cross section formed from the left end portion to the right end portion of the tip surface 3c.
- the groove 3a is formed to a substantially uniform depth along the tip surfaces 3c of the cooling pieces 31 to 33.
- Supply passages 3h and outflow passages 3i are formed at the left and right ends of the grooves 3a of the cooling pieces 31 to 33 so as to penetrate the cooling pieces 3 toward the inflow port 3f and the outflow port 3g.
- the cooling pieces 31 to 33 are made of metal, resin, rubber, or the like. When the cooling pieces 31 to 33 are made of resin, they can be easily manufactured by resin molding.
- the cooling flow path 30 forms a part of the cooling flow path 30 inside the convex portion 2c, so that the tip surface 3c of the cooling piece 3 is formed.
- the groove 3a and the inner wall surface 2b of the cooling piece insertion hole 2a arranged to face the tip surface 3c are formed.
- the supply passage 3h and the outflow passage 3i formed in each cooling piece 3 are connected to an independent cooling circuit or a shared cooling circuit, and a cooling medium 5 such as cooling water is supplied.
- a cooling piece 34 is attached to the rear surface of the movable nest 23.
- the slide core 27 to which the cooling pieces 31 to 33 are attached is arranged in the recesses 23a on the top, bottom, left, and right of the movable insert 23.
- the movable mold 21 is moved and set on the rear surface of the fixed mold 22 to close the mold. As a result, the cavity 20 is formed in the mold 2.
- the molten metal in the holding furnace (not shown) is supplied into the mold 2 and sent so as to fill the cavity 20 with the molten metal.
- the heat of the molten metal is transferred to the mold 2 to heat the mold 2.
- the cooling medium 5 of the cooling circuit is supplied to the cooling flow path 30 of each cooling piece 3 and circulated so that the temperature of the molten metal and the mold 2 becomes a desired temperature.
- the cooling flow path 30 of each cooling piece 3 is formed up to the inside (inside) of the convex portion 2c of the cavity 20, the cooling medium 5 is sent to the vicinity of the cavity 20 to melt the molten metal. It can be easily lowered to the optimum temperature.
- the movable mold 21 is retracted by the die casting machine 6 advancing / retreating device (not shown) and separated from the fixed mold 22. Let me. Subsequently, the cast product 4 is taken out from the mold 2 by the moving device. As a result, the casting of the cast product 4 by the casting device 1 is completed.
- the present invention is a casting apparatus 1 in which molten metal is poured into the cavity 20 formed in the mold 2 to cast the casting product 4, and the mold 2 is a casting apparatus 1. It has a cooling piece insertion hole 2a recessed toward the cavity 20 on a surface different from the surface on which the cavity 20 is formed, and cooling pieces 3, 31 to 34 inserted into the cooling piece insertion hole 2a for cooling.
- the pieces 3, 31 to 34 are fitted into the cooling piece insertion holes 2a to allow the cooling medium 5 to flow between the cooling pieces 3, 31 to 34 and the inner wall surface 2b of the cooling piece insertion holes 2a.
- the cooling piece 3 in the vicinity of the cavity 20 and the inner wall surface 2b of the cooling piece insertion hole 2a are separated from each other.
- the cooling flow path 30 can be easily formed. Since the cooling piece 3 can form a two-dimensional or three-dimensional cooling flow path 30 by fitting it into the mold 2, the cooling piece 3 attached to the mold 2 and the slide core 27 are cooled. The flow path 30 can be formed. Further, since the cooling piece insertion hole 2a into which the cooling piece 3 is inserted is recessed toward the cavity 20 on a surface different from the surface on which the cavity 20 is formed, the cavity 20 can be efficiently cooled.
- a groove 3a forming a cooling flow path 30 is recessed in the tip surfaces 3c of the cooling pieces 3, 31 to 34.
- the cooling pieces 3, 31 to 34 have a groove 3a for forming a cooling flow path recessed in the tip surface 3c, so that the cooling piece insertion hole 2a facing the groove 3a is a flat surface.
- the cooling flow path 30 can be easily formed when the cooling piece is fitted into the cooling piece insertion hole 2a. Therefore, the shape of the surface of the cooling piece insertion hole 2a facing the groove 3a can be simplified.
- the cooling pieces 3, 31 to 34 are formed of metal, resin, or rubber.
- the cooling pieces 3, 31 to 34 are made of metal, resin, or rubber, and thus have a hollow cooling flow path 30, a groove 3a on the tip surface 3c, or a complicated shape. Even if it is a thing, it can be easily formed by one product.
- the cooling pieces 3, 31 to 34 are made of resin, it is possible to reduce the mold manufacturing cost and the cooling piece manufacturing cost, shorten the mold manufacturing time, and reduce the weight of the mold 2. ..
- cooling pieces 3, 31 to 34 made of resin have a heat insulating effect, the cooling medium 5 that has passed through the cooling flow path 30 of the cooling pieces 3, 31 to 34 is applied to a portion to be cooled locally. Can be cooled to. Therefore, cooling pieces 3, 31 to 34 can be installed in the mold 2 so that the cooling medium 5 does not touch the parts that are not desired to be cooled (for example, the parts far from the product part), so that the parts are not cooled. can do.
- the supply passages 3h and the outflow passages 3i of the cooling pieces 3, 31 to 34 may be formed by insert molding a resin pipe into the cooling pieces 3, 31 to 34.
- a convex portion 2c is formed in the cavity 20, and the cooling flow path 30 is formed inside the convex portion 2c.
- the cooling flow path 30 can be arranged at a position in the convex portion 2c near the cavity 20, so that the cavity 20 can be arranged. Can be cooled efficiently.
- the groove 3a has a cooling piece insertion hole 2a facing the tip surface 3c of the cooling pieces 3, 31 to 34 or the tip surface 3c of the cooling pieces 3, 31 to 34. Is formed in.
- the groove 3a is formed in the tip surface 3c of the cooling pieces 3, 31 to 34 or the cooling piece insertion hole 2a facing the tip surface 3c of the cooling pieces 3, 31 to 34, whereby the cavity is formed. Since the cooling flow path 30 can be formed in the vicinity of the cavity surface 20a according to the shape of the surface 20a, the molten metal can be cooled efficiently.
- FIG. 8 is a schematic perspective view showing a cooling piece 3A of a first modification of the casting apparatus 1 according to the embodiment of the present invention.
- the groove 3Aa of the tip surface 3Ac of the cooling piece 3A may be formed in a zigzag shape, a meandering shape, or a randomly bent shape.
- the groove 3Aa is formed in a zigzag shape, a meandering shape, or a randomly bent shape, so that the length of the groove 3Aa is formed to be long, and the cooling area can be widened. Therefore, the cooling capacity of the cooling flow path 30A formed by the groove 3Aa can be improved.
- FIG. 9 is a schematic perspective view showing a cooling piece 3B of a second modification of the casting apparatus 1 according to the embodiment of the present invention.
- a lateral groove 3Bb is formed on the side surface of the cooling piece 3B to form a cooling flow path 30B communicating with a cooling circuit (not shown) by fitting the cooling piece 3B into the cooling piece insertion hole 2a. May be formed.
- the lateral groove 3Bb extends from both ends of the groove 3Ba formed on the tip surface 3Bc of the cooling piece 3B to the front of the seal portion installation portion 3Bd formed on the lower end of the side surface of the cooling piece 3B, respectively. It is drawn into the cooling piece 3B.
- a seal material O1 made of an O-ring, a gasket, a liquid packing, or the like is provided on the seal portion installation portion 3Bd.
- the cooling piece 3B has the lateral groove 3Bb forming the cooling flow path 30B formed on the side surface thereof, so that the lengths of the groove 3Ba and the lateral groove 3Bb formed on the surface of the cooling piece 3B are lengthened.
- the cooling area of the cooling flow path 30B can be increased. Therefore, even when the cavity 20 extends to the side of the cooling piece 3B, it can be efficiently cooled by the coolant flowing through the lateral groove 3Bb.
- FIG. 10 is a schematic perspective view showing a cooling piece 3C of a third modification of the casting apparatus 1 according to the embodiment of the present invention.
- the lateral groove 3Cb formed on the side surface of the cooling piece 3C is concave in a side view formed between the outward path and return path grooves 3Ca formed on the tip surface 3Cc of the cooling piece 3C. It may be a U-turn groove having a shape.
- the coolant flows from the groove 3Ca on the tip surface 3Cc of the cooling piece 3C to the lateral groove 3Cb on the side surface, and then flows again into the groove 3Ca on the tip surface 3Cc side, so that the cooling area of the cooling flow path 30C is widened. be able to. Therefore, the side surface of the convex portion 2c of the mold 2 can be efficiently cooled.
- FIG. 11 is a schematic perspective view showing a cooling piece 3D of a fourth modification of the casting apparatus 1 according to the embodiment of the present invention.
- the lateral grooves 3Db and 3De formed on the side surface of the cooling piece 3D are viewed from the side surface formed between the outward path and the return path grooves 3Da formed on the tip surface 3Dc of the cooling piece 3D.
- the concave horizontal groove 3Db for the U-turn groove and the lateral groove 3De for the outward path and the return path formed on the opposite side surface of the U-turn groove may be used.
- the U-turn groove means a groove formed so as to be folded back.
- the length of the cooling flow path 30D is increased by the horizontal groove 3Db and the horizontal groove 3De, so that the area to be cooled can be increased. Therefore, the side surface of the convex portion 2c of the mold 2 can be efficiently cooled.
- FIG. 12A and 12B are views showing a cooling piece 3E of a fifth modification of the casting apparatus 1 according to the embodiment of the present invention.
- FIG. 12A is an enlarged schematic perspective view of a main part
- FIG. 12B is an enlarged schematic sectional view of a main part. is there.
- the grooves 3a, 3Aa, 3Ba, 3Ca, and 3Da are recessed in the tip surfaces 3c, 3Ac, 3Bc, 3Cc, and 3Dc of the cooling pieces 3, 3A to 3D.
- the grooves 3a, 3Aa to 3Da may not be provided.
- a gap S space is formed between the tip surface 3Ec of the cooling piece 3E and the inner bottom surface of the cooling piece insertion hole 2a, and the gap S is used as a cooling flow path. It may be a part of 30E.
- the cooling piece 3E may have a simple shape as long as the tip surface 3Ec has a discharge port 3Ek and an inlet port 3Em which are the opening ends of the supply path 3Eh and the outflow path 3Ei. Further, since it is not necessary to form a groove for forming the cooling flow path 30E on the inner bottom surface of the cooling piece insertion hole 2a facing the tip surface 3Ec of the cooling piece 3E, if it is formed in a simple hole shape. Good.
- the slide core 27 described in the above embodiment may be a part of the mold 2, and may be a movable core (slide core) movable to the cavity 20, a fixed mold 22 or a movable mold 21. It may be a horizontal type arranged on the side of.
- cooling piece insertion holes 2a formed in the movable insert 23, the slide core 27, etc. without recessing the grooves 3a, 3Aa to 3Da in the tip surfaces 3c, 3Ac to 3Dc of the cooling pieces 3, 3A to 3D.
- a groove may be formed on the inner wall surface (inner bottom surface), and the groove may be a part of the cooling channels 30, 30A to 30D.
- cooling pieces 3, 3A to 3E a substantially square pillar shape has been described as an example, but the present invention is not limited to this.
- the cooling pieces 3, 3A to 3E may have, for example, a substantially cylindrical shape or a substantially polygonal column shape.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
The present invention addresses the problem of providing a casting device capable of further efficiently cooling a cavity. This casting device (1) casts a cast product (4) by pouring a melt into a cavity (20) formed in a mold (2). The mold (2) has: a cooling piece insertion hole (2a) which is recessed toward the cavity (20) and provided in a surface other than the surface in which the cavity (20) is formed; and a cooling piece (3, 31-34) inserted into the cooling piece insertion hole (2a). The cooling piece (3, 31-34) fits into the cooling piece insertion hole (2a) to form a cooling flow passage (30) between the cooling piece (3, 31-34) and an inner wall surface (2b) of the cooling piece insertion hole (2a), the cooling flow passage (30) causing a cooling medium (5) to flow therethrough.
Description
本発明は、鋳造装置に関する。
The present invention relates to a casting apparatus.
一般に、鋳造装置は、金型の固定型と可動型との間に形成されたキャビティ内に溶湯を注湯して冷却することによって、目的の形状の鋳造品を形成している(例えば、特許文献1参照)。
Generally, a casting apparatus forms a cast product having a desired shape by pouring molten metal into a cavity formed between a fixed mold and a movable mold of a mold and cooling the molten metal (for example, a patent). Reference 1).
特許文献1の記載されたダイカスト金型は、固定型(30)のキャビティ(凹部31)の近傍に、冷却水を循環させるための貫通孔(42)を有する固定板(41)を配置して、冷却水で磁石(40)及び凹部(31)を冷却している。特許文献1に記載のダイカスト金型の貫通孔(42)の冷却水でキャビティ(凹部31)を効率よく冷却するためには、貫通孔(42)をキャビティ(凹部31)の近傍に配置することが望まれる。
In the die casting mold described in Patent Document 1, a fixing plate (41) having a through hole (42) for circulating cooling water is arranged in the vicinity of the cavity (recess 31) of the fixed mold (30). , The magnet (40) and the recess (31) are cooled with cooling water. In order to efficiently cool the cavity (recess 31) with the cooling water of the through hole (42) of the die casting mold described in Patent Document 1, the through hole (42) should be arranged in the vicinity of the cavity (recess 31). Is desired.
特許文献1に記載のダイカスト金型では、冷却水の循環路を形成する貫通孔(42)が凹部(31)から離間した位置に形成されているため、キャビティ(凹部31)を効率よく冷却することができないという問題点があった。
In the die casting mold described in Patent Document 1, since the through hole (42) forming the cooling water circulation path is formed at a position separated from the recess (31), the cavity (recess 31) is efficiently cooled. There was a problem that it could not be done.
図13は、従来の鋳造装置のキャビティ冷却構造を示す要部概略断面図である。
その問題点を解消して、キャビティ200(鋳造品400)を効率よく冷却するためには、例えば、図13に二点鎖線で示す冷却流路300のように、冷却流路300をキャビティ200の近傍に配置することが望ましい。 FIG. 13 is a schematic cross-sectional view of a main part showing a cavity cooling structure of a conventional casting apparatus.
In order to solve the problem and efficiently cool the cavity 200 (cast product 400), for example, as in thecooling flow path 300 shown by the alternate long and short dash line in FIG. 13, the cooling flow path 300 is set in the cavity 200. It is desirable to place it in the vicinity.
その問題点を解消して、キャビティ200(鋳造品400)を効率よく冷却するためには、例えば、図13に二点鎖線で示す冷却流路300のように、冷却流路300をキャビティ200の近傍に配置することが望ましい。 FIG. 13 is a schematic cross-sectional view of a main part showing a cavity cooling structure of a conventional casting apparatus.
In order to solve the problem and efficiently cool the cavity 200 (cast product 400), for example, as in the
しかし、図13に示す鋳造装置100では、冷却流路300の両端部が鋳造品400に当接して配置されていることで、冷却流路300の両端に開口310が形成されるため、開口310から冷却水が漏れるという問題点があった。
However, in the casting apparatus 100 shown in FIG. 13, since both ends of the cooling flow path 300 are arranged in contact with the cast product 400, openings 310 are formed at both ends of the cooling flow path 300, so that the opening 310 There was a problem that the cooling water leaked from.
この問題点を解消すべく、従来の鋳造装置100は、キャビティ200(鋳造品400)から離間した位置に冷却流路500を形成している。このため、冷却流路500による従来の鋳造装置100の冷却構造は、冷却効率が悪く、さらに、効率よくキャビティ200(鋳造品400)を冷却することが望まれていた。
In order to solve this problem, the conventional casting apparatus 100 forms a cooling flow path 500 at a position separated from the cavity 200 (cast product 400). Therefore, the cooling structure of the conventional casting apparatus 100 by the cooling flow path 500 has poor cooling efficiency, and it has been desired to efficiently cool the cavity 200 (cast product 400).
そこで、本発明は、前記問題点を解消すべく発明されたものであり、さらにキャビティを効率よく冷却することができる鋳造装置を提供することを課題とする。
Therefore, the present invention has been invented in order to solve the above-mentioned problems, and an object of the present invention is to provide a casting apparatus capable of efficiently cooling the cavity.
前記課題を解決するために、本発明は、金型に形成されたキャビティ内に溶湯を注湯して鋳造品を鋳造する鋳造装置であって、前記金型は、前記キャビティが形成された面と異なる面に前記キャビティに向かって凹設された冷却駒挿入穴と、前記冷却駒挿入穴に挿入される冷却駒と、を有し、前記冷却駒は、前記冷却駒挿入穴に嵌め込むことによって、当該冷却駒と前記冷却駒挿入穴の内壁面との間に、冷却媒体を流動させる冷却流路を形成すること、を特徴とする。
In order to solve the above problems, the present invention is a casting apparatus for casting a cast product by pouring molten metal into a cavity formed in a mold, and the mold has a surface on which the cavity is formed. It has a cooling piece insertion hole recessed toward the cavity and a cooling piece inserted into the cooling piece insertion hole on a surface different from the above, and the cooling piece is fitted into the cooling piece insertion hole. It is characterized in that a cooling flow path for flowing a cooling medium is formed between the cooling piece and the inner wall surface of the cooling piece insertion hole.
本発明は、さらにキャビティを効率よく冷却することができる鋳造装置を提供することができる。
The present invention can further provide a casting apparatus capable of efficiently cooling the cavity.
図1~図7を参照して、本発明の実施形態に係る鋳造装置1を説明する。
図1は、本発明の実施形態に係る鋳造装置1を示す図で、冷却駒3等を省略した概略断面図である。
なお、本発明の実施形態では、図1に示す後側(キャビティ面20aの背面側)に配置した可動型21が前後方向(表側方向及び裏側方向)に移動する場合を例に挙げて説明すると共に、便宜上、図1の図面の上下左右方向を上下前後方向として説明する。 Thecasting apparatus 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 7.
FIG. 1 is a diagram showing acasting apparatus 1 according to an embodiment of the present invention, and is a schematic cross-sectional view in which a cooling piece 3 and the like are omitted.
In the embodiment of the present invention, a case where themovable mold 21 arranged on the rear side (back side of the cavity surface 20a) shown in FIG. 1 moves in the front-rear direction (front side direction and back side direction) will be described as an example. In addition, for convenience, the vertical and horizontal directions of the drawing of FIG. 1 will be described as the vertical and front-back directions.
図1は、本発明の実施形態に係る鋳造装置1を示す図で、冷却駒3等を省略した概略断面図である。
なお、本発明の実施形態では、図1に示す後側(キャビティ面20aの背面側)に配置した可動型21が前後方向(表側方向及び裏側方向)に移動する場合を例に挙げて説明すると共に、便宜上、図1の図面の上下左右方向を上下前後方向として説明する。 The
FIG. 1 is a diagram showing a
In the embodiment of the present invention, a case where the
<鋳造装置>
図1に示すように、鋳造装置1は、例えば、金型2の可動型21の可動入子23と、固定型22の固定入子24と、の間に形成されたキャビティ20内にアルミ等の溶湯を注湯して冷却することで、鋳造品4を鋳造する装置である。鋳造装置1において、金型2は、少なくとも、可動入子23を有する可動型21と、固定入子24を有する固定型22と、を有していればよく、形状、構造等は特に限定されない。 <Casting equipment>
As shown in FIG. 1, thecasting apparatus 1 includes, for example, aluminum or the like in a cavity 20 formed between the movable insert 23 of the movable mold 21 of the mold 2 and the fixed insert 24 of the fixed mold 22. This is an apparatus for casting the cast product 4 by pouring the molten metal of No. 1 and cooling it. In the casting apparatus 1, the mold 2 may have at least a movable mold 21 having a movable insert 23 and a fixed mold 22 having a fixed insert 24, and the shape, structure, etc. are not particularly limited. ..
図1に示すように、鋳造装置1は、例えば、金型2の可動型21の可動入子23と、固定型22の固定入子24と、の間に形成されたキャビティ20内にアルミ等の溶湯を注湯して冷却することで、鋳造品4を鋳造する装置である。鋳造装置1において、金型2は、少なくとも、可動入子23を有する可動型21と、固定入子24を有する固定型22と、を有していればよく、形状、構造等は特に限定されない。 <Casting equipment>
As shown in FIG. 1, the
以下、鋳造装置1の一例として、金型2と、複数の押出ピン8と、押出ピン8を作動させる押出機構61を有するダイカストマシン6と、を主に備えた鋳造装置1を例に挙げて説明する。
なお、鋳造装置1は、可動型21が横方向に動く横型の装置でもよく、また、可動型21が上下方向に動く縦型の装置であってもよい。以下、その一例として、横型タイプのガイカストから成る鋳造装置1を例に挙げて説明する。 Hereinafter, as an example of thecasting apparatus 1, a casting apparatus 1 mainly provided with a mold 2, a plurality of extrusion pins 8, and a die casting machine 6 having an extrusion mechanism 61 for operating the extrusion pins 8 will be cited as an example. explain.
Thecasting device 1 may be a horizontal device in which the movable type 21 moves in the horizontal direction, or may be a vertical device in which the movable type 21 moves in the vertical direction. Hereinafter, as an example thereof, a casting apparatus 1 made of a horizontal type die casting will be described as an example.
なお、鋳造装置1は、可動型21が横方向に動く横型の装置でもよく、また、可動型21が上下方向に動く縦型の装置であってもよい。以下、その一例として、横型タイプのガイカストから成る鋳造装置1を例に挙げて説明する。 Hereinafter, as an example of the
The
<金型>
図2は、本発明の実施形態に係る鋳造装置1の冷却駒3を示す概略斜視図である。次に、図1及び図2を主に参照して金型2を説明する。
図1に示すように、金型2は、前側に配置される固定型22と、固定型22の後側に対向配置されて前後方向に進退可能な可動型21と、を主に備えた鋳造用金型から成る。図2に示すように、金型2(可動型21)は、キャビティ20が形成された面と異なる面にキャビティ20に向かって凹設された冷却駒挿入穴2a(図3参照)と、冷却駒挿入穴2aに挿入される冷却駒3,31,32,33,34と、を有している。金型2内のキャビティ20には、鋳造時に、保持炉からアルミニウム合金、マグネシウム合金、亜鉛合金等の溶湯が供給される。なお、金型2に配置される冷却駒3は、可動型21、固定型22の内のいずれかに設けられてあればよく、鋳造品4の形状等に応じて適宜な位置に適宜な数を設置すればよい。
以下、可動型21の可動入子23と、スライド中子27と、にそれぞれ冷却駒3を設置した場合を例に挙げて説明する。 <Mold>
FIG. 2 is a schematic perspective view showing acooling piece 3 of the casting apparatus 1 according to the embodiment of the present invention. Next, the mold 2 will be described with reference mainly to FIGS. 1 and 2.
As shown in FIG. 1, themold 2 is mainly composed of a fixed mold 22 arranged on the front side and a movable mold 21 arranged on the rear side of the fixed mold 22 and capable of advancing and retreating in the front-rear direction. Consists of molds. As shown in FIG. 2, the mold 2 (movable mold 21) has a cooling piece insertion hole 2a (see FIG. 3) recessed toward the cavity 20 on a surface different from the surface on which the cavity 20 is formed, and cooling. It has cooling pieces 3, 31, 32, 33, 34, which are inserted into the piece insertion holes 2a. A molten metal such as an aluminum alloy, a magnesium alloy, or a zinc alloy is supplied from the holding furnace to the cavity 20 in the mold 2 at the time of casting. The cooling pieces 3 arranged in the mold 2 may be provided in either the movable mold 21 or the fixed mold 22, and an appropriate number may be provided at an appropriate position according to the shape of the cast product 4 or the like. Should be installed.
Hereinafter, a case where thecooling pieces 3 are installed in the movable insert 23 and the slide core 27 of the movable type 21 will be described as an example.
図2は、本発明の実施形態に係る鋳造装置1の冷却駒3を示す概略斜視図である。次に、図1及び図2を主に参照して金型2を説明する。
図1に示すように、金型2は、前側に配置される固定型22と、固定型22の後側に対向配置されて前後方向に進退可能な可動型21と、を主に備えた鋳造用金型から成る。図2に示すように、金型2(可動型21)は、キャビティ20が形成された面と異なる面にキャビティ20に向かって凹設された冷却駒挿入穴2a(図3参照)と、冷却駒挿入穴2aに挿入される冷却駒3,31,32,33,34と、を有している。金型2内のキャビティ20には、鋳造時に、保持炉からアルミニウム合金、マグネシウム合金、亜鉛合金等の溶湯が供給される。なお、金型2に配置される冷却駒3は、可動型21、固定型22の内のいずれかに設けられてあればよく、鋳造品4の形状等に応じて適宜な位置に適宜な数を設置すればよい。
以下、可動型21の可動入子23と、スライド中子27と、にそれぞれ冷却駒3を設置した場合を例に挙げて説明する。 <Mold>
FIG. 2 is a schematic perspective view showing a
As shown in FIG. 1, the
Hereinafter, a case where the
<可動型>
図1に示すように、可動型21は、固定型22に対してダイカストマシン6の進退機構(図示省略)によって前進及び後退可能な後側金型から成る。可動型21は、可動主型25のキャビティ20側に配置された可動入子23と、可動入子23を後側から覆うように配置された可動主型25と、可動主型25の後面側に固定されたダイベース29と、冷却駒3(図2参照)と、を備えて構成されている。可動型21には、鋳造品4の後側部分を形成するための可動型側のキャビティ20が形成されている。 <Movable type>
As shown in FIG. 1, themovable mold 21 is composed of a rear mold that can move forward and backward with respect to the fixed mold 22 by an advancing / retreating mechanism (not shown) of the die casting machine 6. The movable type 21 includes a movable insert 23 arranged on the cavity 20 side of the movable main type 25, a movable main type 25 arranged so as to cover the movable insert 23 from the rear side, and a rear surface side of the movable main type 25. It is configured to include a die base 29 fixed to the surface and a cooling piece 3 (see FIG. 2). The movable mold 21 is formed with a cavity 20 on the movable mold side for forming a rear portion of the cast product 4.
図1に示すように、可動型21は、固定型22に対してダイカストマシン6の進退機構(図示省略)によって前進及び後退可能な後側金型から成る。可動型21は、可動主型25のキャビティ20側に配置された可動入子23と、可動入子23を後側から覆うように配置された可動主型25と、可動主型25の後面側に固定されたダイベース29と、冷却駒3(図2参照)と、を備えて構成されている。可動型21には、鋳造品4の後側部分を形成するための可動型側のキャビティ20が形成されている。 <Movable type>
As shown in FIG. 1, the
<固定型>
図1に示すように、固定型22は、固定ダイプレート(図示省略)の後面に固定された前側金型から成る。固定型22は、可動入子23の前側に対向配置された固定入子24と、可動主型25の前側に対向配置された固定主型26と、固定入子24の外側から前方向に向けて配置された鋳込入ブッシュ28と、を備えて構成されている。固定型22には、鋳造品4の前側部分を形成するための固定型側のキャビティ20が形成されている。 <Fixed type>
As shown in FIG. 1, the fixedmold 22 includes a front mold fixed to the rear surface of a fixed die plate (not shown). The fixed mold 22 has a fixed insert 24 arranged to face the front side of the movable insert 23, a fixed main mold 26 arranged to face the front side of the movable main mold 25, and the fixed insert 24 facing forward from the outside. It is configured to include a cast-in bush 28 arranged so as to be provided. The fixed mold 22 is formed with a cavity 20 on the fixed mold side for forming the front side portion of the cast product 4.
図1に示すように、固定型22は、固定ダイプレート(図示省略)の後面に固定された前側金型から成る。固定型22は、可動入子23の前側に対向配置された固定入子24と、可動主型25の前側に対向配置された固定主型26と、固定入子24の外側から前方向に向けて配置された鋳込入ブッシュ28と、を備えて構成されている。固定型22には、鋳造品4の前側部分を形成するための固定型側のキャビティ20が形成されている。 <Fixed type>
As shown in FIG. 1, the fixed
<可動入子>
可動入子23は、キャビティ20の一部(例えば、後面)を形成する可動型構成部品である。図2に示すように、可動入子23の後面には、金型冷却用の冷却水を供給する複数(例えば、6個)の冷却駒34を取り付けるための冷却駒設置穴(図示省略)が後面から前方向(キャビティ20の方向)に形成されている。 <Movable nesting>
Themovable nest 23 is a movable component that forms a part (for example, a rear surface) of the cavity 20. As shown in FIG. 2, on the rear surface of the movable insert 23, there are cooling piece installation holes (not shown) for mounting a plurality of (for example, 6) cooling pieces 34 for supplying cooling water for cooling the mold. It is formed in the front direction (direction of the cavity 20) from the rear surface.
可動入子23は、キャビティ20の一部(例えば、後面)を形成する可動型構成部品である。図2に示すように、可動入子23の後面には、金型冷却用の冷却水を供給する複数(例えば、6個)の冷却駒34を取り付けるための冷却駒設置穴(図示省略)が後面から前方向(キャビティ20の方向)に形成されている。 <Movable nesting>
The
<スライド中子>
スライド中子27は、キャビティ20の一部(例えば、側面)を形成する可動型構成部品である。スライド中子27は、移動装置(図示省略)等によって、可動入子23の上下左右に形成された凹部23a内に進退可能に配置される。なお、図2では、可動入子23の上側に設置されるスライド中子27のみを図示して、下側、左側及び右側に設置されるスライド中子27は、上側のスライド中子27と略同一であるため、省略している。そのスライド中子27の上面(側面)には、金型冷却用の冷却水を供給する複数(例えば、3個)の冷却駒3,31,32,33をそれぞれ取り付けるための冷却駒挿入穴2a(図3参照)が上面からキャビティ20の方向に形成されている。 <Slide core>
Theslide core 27 is a movable component that forms a part (for example, a side surface) of the cavity 20. The slide core 27 is arranged in a recess 23a formed on the top, bottom, left, and right of the movable insert 23 so as to be able to move forward and backward by a moving device (not shown) or the like. In FIG. 2, only the slide core 27 installed on the upper side of the movable insert 23 is shown, and the slide core 27 installed on the lower side, the left side, and the right side is abbreviated as the upper slide core 27. Since they are the same, they are omitted. On the upper surface (side surface) of the slide core 27, cooling piece insertion holes 2a for attaching a plurality of (for example, three) cooling pieces 3, 31, 32, 33 for supplying cooling water for cooling the mold, respectively. (See FIG. 3) is formed in the direction of the cavity 20 from the upper surface.
スライド中子27は、キャビティ20の一部(例えば、側面)を形成する可動型構成部品である。スライド中子27は、移動装置(図示省略)等によって、可動入子23の上下左右に形成された凹部23a内に進退可能に配置される。なお、図2では、可動入子23の上側に設置されるスライド中子27のみを図示して、下側、左側及び右側に設置されるスライド中子27は、上側のスライド中子27と略同一であるため、省略している。そのスライド中子27の上面(側面)には、金型冷却用の冷却水を供給する複数(例えば、3個)の冷却駒3,31,32,33をそれぞれ取り付けるための冷却駒挿入穴2a(図3参照)が上面からキャビティ20の方向に形成されている。 <Slide core>
The
次に、図3を用いて、冷却駒挿入穴2aとキャビティ20と冷却駒3とについて説明する。
図3は、冷却駒3の設置状態を模式的に示す要部拡大概略断面図である。
図3に示すように、冷却駒挿入穴2aは、ぞれぞれの形状の冷却駒31,32,33(図4参照)が挿入される挿入穴である。冷却駒挿入穴2aのキャビティ20側の内壁面2bは、金型2の凸部2cの内部(内側)まで形成されて、キャビティ20の近傍に形成されている。冷却駒挿入穴2aのキャビティ20側の内壁面2bは、冷却駒3を冷却駒挿入穴2aに嵌め込むことで、冷却駒3の先端面3cが当接されて、先端面3cに形成された溝3aが対向配置されている。 Next, the coolingpiece insertion hole 2a, the cavity 20, and the cooling piece 3 will be described with reference to FIG.
FIG. 3 is an enlarged schematic cross-sectional view of a main part schematically showing an installed state of thecooling piece 3.
As shown in FIG. 3, the coolingpiece insertion hole 2a is an insertion hole into which cooling pieces 31, 32, 33 (see FIG. 4) having different shapes are inserted. The inner wall surface 2b on the cavity 20 side of the cooling piece insertion hole 2a is formed up to the inside (inside) of the convex portion 2c of the mold 2 and is formed in the vicinity of the cavity 20. The inner wall surface 2b on the cavity 20 side of the cooling piece insertion hole 2a was formed on the tip surface 3c by fitting the cooling piece 3 into the cooling piece insertion hole 2a so that the tip surface 3c of the cooling piece 3 was brought into contact with the cooling piece 3. The grooves 3a are arranged so as to face each other.
図3は、冷却駒3の設置状態を模式的に示す要部拡大概略断面図である。
図3に示すように、冷却駒挿入穴2aは、ぞれぞれの形状の冷却駒31,32,33(図4参照)が挿入される挿入穴である。冷却駒挿入穴2aのキャビティ20側の内壁面2bは、金型2の凸部2cの内部(内側)まで形成されて、キャビティ20の近傍に形成されている。冷却駒挿入穴2aのキャビティ20側の内壁面2bは、冷却駒3を冷却駒挿入穴2aに嵌め込むことで、冷却駒3の先端面3cが当接されて、先端面3cに形成された溝3aが対向配置されている。 Next, the cooling
FIG. 3 is an enlarged schematic cross-sectional view of a main part schematically showing an installed state of the
As shown in FIG. 3, the cooling
<キャビティ>
図3に示すように、キャビティ20は、溶湯が注湯されて冷却されることで、鋳造品4を形成する空間である。キャビティ20は、固定型22と、可動型21と、スライド中子27と、によって形成されている。キャビティ20を形成する金型2(例えば、スライド中子27)には、キャビティ20方向に突出した凸部2cが形成されている。 <Cavity>
As shown in FIG. 3, thecavity 20 is a space in which the molten metal is poured and cooled to form the casting product 4. The cavity 20 is formed by a fixed mold 22, a movable mold 21, and a slide core 27. The mold 2 (for example, the slide core 27) forming the cavity 20 is formed with a convex portion 2c protruding in the direction of the cavity 20.
図3に示すように、キャビティ20は、溶湯が注湯されて冷却されることで、鋳造品4を形成する空間である。キャビティ20は、固定型22と、可動型21と、スライド中子27と、によって形成されている。キャビティ20を形成する金型2(例えば、スライド中子27)には、キャビティ20方向に突出した凸部2cが形成されている。 <Cavity>
As shown in FIG. 3, the
<冷却駒>
図3に示すように、冷却駒3は、金型2の内部に冷却流路30を設けるための流路形成用挿入体である。図2に示すように、冷却駒3は、後側の可動入子23に配置された複数の冷却駒34と、前後左右のスライド中子27にそれぞれ配置された複数の冷却駒31,32,33と、を備えて構成されている。冷却駒3の側面は、緩やかなテーパ面、若しくは、ストレートで形成されている。 <Cooling piece>
As shown in FIG. 3, thecooling piece 3 is a flow path forming insert for providing a cooling flow path 30 inside the mold 2. As shown in FIG. 2, the cooling pieces 3 include a plurality of cooling pieces 34 arranged in the movable insert 23 on the rear side, and a plurality of cooling pieces 31, 32, respectively arranged in the front, rear, left and right slide cores 27. 33 and is configured. The side surface of the cooling piece 3 is formed of a gently tapered surface or a straight surface.
図3に示すように、冷却駒3は、金型2の内部に冷却流路30を設けるための流路形成用挿入体である。図2に示すように、冷却駒3は、後側の可動入子23に配置された複数の冷却駒34と、前後左右のスライド中子27にそれぞれ配置された複数の冷却駒31,32,33と、を備えて構成されている。冷却駒3の側面は、緩やかなテーパ面、若しくは、ストレートで形成されている。 <Cooling piece>
As shown in FIG. 3, the
各冷却駒3には、図3に示すように、キャビティ20内に注湯された溶湯を冷却するための冷却回路の一部を形成する冷却流路30が形成されている。各冷却駒3は、後端面に形成された流入口3f及び流出口3gと、流入口3fから先端面3cに延びる供給路3hと、先端面3cに形成された溝3aと、溝3aの他端(右端部)から流出口3gに延びる流出路3iと、で冷却流路30を形成している。各冷却駒3の基端側の外周部及び段差部は、先端部寄りの部分よりも拡径して形成されて、冷却液が外部に漏れるのを防止するOリング、ガスケット、液体パッキン等のシール材O1を設置するための環状溝3jが形成されている。
As shown in FIG. 3, each cooling piece 3 is formed with a cooling flow path 30 that forms a part of a cooling circuit for cooling the molten metal poured into the cavity 20. Each cooling piece 3 includes an inflow port 3f and an outflow port 3g formed on the rear end surface, a supply path 3h extending from the inflow port 3f to the tip surface 3c, a groove 3a formed on the tip surface 3c, and the groove 3a. A cooling flow path 30 is formed by an outflow path 3i extending from an end (right end) to an outflow port 3g. The outer peripheral portion and the stepped portion on the base end side of each cooling piece 3 are formed to have a larger diameter than the portion closer to the tip portion, and are formed of an O-ring, a gasket, a liquid packing, etc. that prevent the cooling liquid from leaking to the outside. An annular groove 3j for installing the sealing material O1 is formed.
冷却駒3の溝3aは、金型2の冷却駒挿入穴2aに嵌め込むことによって、この溝3aと冷却駒挿入穴2aの内壁面2bとで、冷却媒体5を流動させる中空状の冷却流路30の一部を形成する流路形成用凹溝である。
The groove 3a of the cooling piece 3 is fitted into the cooling piece insertion hole 2a of the mold 2 so that the cooling medium 5 flows between the groove 3a and the inner wall surface 2b of the cooling piece insertion hole 2a. It is a groove for forming a flow path that forms a part of the road 30.
図4は、スライド中子27に配置した冷却駒3を示す概略斜視図である。図5は、スライド中子27に配置した冷却駒3を示す概略横断面図である。図6は、スライド中子27に配置した冷却駒3を示す概略縦断面図である。図7は、冷却駒3の先端部を示す断面を有する拡大斜視図である。
FIG. 4 is a schematic perspective view showing a cooling piece 3 arranged on the slide core 27. FIG. 5 is a schematic cross-sectional view showing the cooling piece 3 arranged on the slide core 27. FIG. 6 is a schematic vertical sectional view showing a cooling piece 3 arranged on the slide core 27. FIG. 7 is an enlarged perspective view having a cross section showing the tip end portion of the cooling piece 3.
図4及び図5に示すように、冷却駒3,31~34は、キャビティ20の形状、大きさ、冷却駒3にかかる荷重等に応じて適宜な個数、幅、厚さ、形状に形成されている。
以下、金型2の上側のスライド中子27に配置される冷却駒31~33を主に説明する。 As shown in FIGS. 4 and 5, the cooling pieces 3, 31 to 34 are formed in an appropriate number, width, thickness, and shape according to the shape and size of the cavity 20, the load applied to the cooling piece 3, and the like. ing.
Hereinafter, the coolingpieces 31 to 33 arranged on the slide core 27 on the upper side of the mold 2 will be mainly described.
以下、金型2の上側のスライド中子27に配置される冷却駒31~33を主に説明する。 As shown in FIGS. 4 and 5, the cooling
Hereinafter, the cooling
スライド中子27には、キャビティ20の上下左右方向の幅に応じて3つの冷却駒31~33が配置されている。冷却駒31~33は、キャビティ20の前後方向の長さに応じて、平面視して略薄板状に形成されている。冷却駒31~33の先端面3cは、キャビティ20の周壁の形状に応じて、キャビティ面20aに沿って略平行に形成されている。
Three cooling pieces 31 to 33 are arranged on the slide core 27 according to the width of the cavity 20 in the vertical and horizontal directions. The cooling pieces 31 to 33 are formed in a substantially thin plate shape in a plan view according to the length of the cavity 20 in the front-rear direction. The tip surfaces 3c of the cooling pieces 31 to 33 are formed substantially parallel to the cavity surface 20a according to the shape of the peripheral wall of the cavity 20.
図4及び図5に示すように、冷却駒31の先端面3cは、キャビティ面20aの形状に合わせて、正面視して平らに形成されている。冷却駒32の先端面3cは、キャビティ面20aの形状に合わせて、正面視して略三角形に形成されている。図4~図6に示すように、冷却駒33の先端面3cは、キャビティ面20aの形状に合わせて、正面視して段差形状に形成されている。
As shown in FIGS. 4 and 5, the tip surface 3c of the cooling piece 31 is formed flat when viewed from the front in accordance with the shape of the cavity surface 20a. The tip surface 3c of the cooling piece 32 is formed in a substantially triangular shape when viewed from the front in accordance with the shape of the cavity surface 20a. As shown in FIGS. 4 to 6, the tip surface 3c of the cooling piece 33 is formed in a stepped shape when viewed from the front in accordance with the shape of the cavity surface 20a.
それらの冷却駒31~33の先端面3cには、図7に示すように、冷却流路30を形成するための溝3aが凹設されている。溝3aは、先端面3cの左端部から右端部に亘って形成された断面視してU字溝あるいは凹状溝から成る。その溝3aは、冷却駒31~33の先端面3cに沿って略均一の深さに形成されている。
As shown in FIG. 7, a groove 3a for forming the cooling flow path 30 is recessed in the tip surfaces 3c of the cooling pieces 31 to 33. The groove 3a is formed of a U-shaped groove or a concave groove in cross section formed from the left end portion to the right end portion of the tip surface 3c. The groove 3a is formed to a substantially uniform depth along the tip surfaces 3c of the cooling pieces 31 to 33.
冷却駒31~33の溝3aの左右端部には、流入口3f及び流出口3gに向けて冷却駒3を貫通するように供給路3h及び流出路3iが形成されている。冷却駒31~33は、金属、樹脂、ゴム等によって形成されている。なお、冷却駒31~33は、樹脂で形成する場合は容易に樹脂成形して製造することが可能である。
Supply passages 3h and outflow passages 3i are formed at the left and right ends of the grooves 3a of the cooling pieces 31 to 33 so as to penetrate the cooling pieces 3 toward the inflow port 3f and the outflow port 3g. The cooling pieces 31 to 33 are made of metal, resin, rubber, or the like. When the cooling pieces 31 to 33 are made of resin, they can be easily manufactured by resin molding.
<冷却流路>
図3及び図5に示すように、冷却駒3の先端部において、冷却流路30は、冷却流路30の一部を凸部2cの内部に形成するために、冷却駒3の先端面3cの溝3aと、先端面3cに対向配置された冷却駒挿入穴2aの内壁面2bと、で形成されている。各冷却駒3に形成された供給路3h及び流出路3iは、独立した冷却回路または共有の冷却回路に接続されて、冷却水等の冷却媒体5が供給される。 <Cooling flow path>
As shown in FIGS. 3 and 5, at the tip of thecooling piece 3, the cooling flow path 30 forms a part of the cooling flow path 30 inside the convex portion 2c, so that the tip surface 3c of the cooling piece 3 is formed. The groove 3a and the inner wall surface 2b of the cooling piece insertion hole 2a arranged to face the tip surface 3c are formed. The supply passage 3h and the outflow passage 3i formed in each cooling piece 3 are connected to an independent cooling circuit or a shared cooling circuit, and a cooling medium 5 such as cooling water is supplied.
図3及び図5に示すように、冷却駒3の先端部において、冷却流路30は、冷却流路30の一部を凸部2cの内部に形成するために、冷却駒3の先端面3cの溝3aと、先端面3cに対向配置された冷却駒挿入穴2aの内壁面2bと、で形成されている。各冷却駒3に形成された供給路3h及び流出路3iは、独立した冷却回路または共有の冷却回路に接続されて、冷却水等の冷却媒体5が供給される。 <Cooling flow path>
As shown in FIGS. 3 and 5, at the tip of the
≪作用≫
次に、図1~図7を参照して本発明の実施形態に係る鋳造装置1の作用を鋳造工程順に説明する。 ≪Action≫
Next, the operation of thecasting apparatus 1 according to the embodiment of the present invention will be described in the order of the casting process with reference to FIGS. 1 to 7.
次に、図1~図7を参照して本発明の実施形態に係る鋳造装置1の作用を鋳造工程順に説明する。 ≪Action≫
Next, the operation of the
まず、図2に示すように、可動入子23の後面に冷却駒34を取り付ける。次に、可動入子23の上下左右の凹部23aに、冷却駒31~33を取り付けたスライド中子27を配置する。続いて、固定型22の後面に可動型21を移動させてセットして型閉めする。これにより、金型2内にキャビティ20が形成される。
First, as shown in FIG. 2, a cooling piece 34 is attached to the rear surface of the movable nest 23. Next, the slide core 27 to which the cooling pieces 31 to 33 are attached is arranged in the recesses 23a on the top, bottom, left, and right of the movable insert 23. Subsequently, the movable mold 21 is moved and set on the rear surface of the fixed mold 22 to close the mold. As a result, the cavity 20 is formed in the mold 2.
次に、金型2を予熱した後、保持炉(図示省略)内の溶湯を金型2内に供給して、キャビティ20内に溶湯を充満するように送り込む。金型2内に溶湯が供給されると、金型2は、溶湯の熱が伝わって加熱される。
Next, after preheating the mold 2, the molten metal in the holding furnace (not shown) is supplied into the mold 2 and sent so as to fill the cavity 20 with the molten metal. When the molten metal is supplied into the mold 2, the heat of the molten metal is transferred to the mold 2 to heat the mold 2.
続いて、鋳造品4を鋳造する際に、溶湯及び金型2の温度を所望温度になるように、冷却回路の冷却媒体5を各冷却駒3の冷却流路30に供給して循環させる。図3に示すように、各冷却駒3の冷却流路30は、キャビティ20の凸部2cの内部(内側)まで形成されているため、キャビティ20の近傍に冷却媒体5を送って、溶湯を容易に最適な温度まで低下させることができる。
Subsequently, when casting the cast product 4, the cooling medium 5 of the cooling circuit is supplied to the cooling flow path 30 of each cooling piece 3 and circulated so that the temperature of the molten metal and the mold 2 becomes a desired temperature. As shown in FIG. 3, since the cooling flow path 30 of each cooling piece 3 is formed up to the inside (inside) of the convex portion 2c of the cavity 20, the cooling medium 5 is sent to the vicinity of the cavity 20 to melt the molten metal. It can be easily lowered to the optimum temperature.
次に、金型2内の溶湯が冷却されて鋳造品4が形成されている温度になったら、可動型21をダイカストマシン6の進退装置(図示省略)によって後退させて、固定型22から分離させる。続いて、移動装置によって鋳造品4を金型2から取り出す。これにより、鋳造装置1による鋳造品4の鋳造が完了する。
Next, when the molten metal in the mold 2 is cooled to the temperature at which the casting 4 is formed, the movable mold 21 is retracted by the die casting machine 6 advancing / retreating device (not shown) and separated from the fixed mold 22. Let me. Subsequently, the cast product 4 is taken out from the mold 2 by the moving device. As a result, the casting of the cast product 4 by the casting device 1 is completed.
このように、本発明は、図3に示すように、金型2に形成されたキャビティ20内に溶湯を注湯して鋳造品4を鋳造する鋳造装置1であって、金型2は、キャビティ20が形成された面と異なる面にキャビティ20に向かって凹設された冷却駒挿入穴2aと、冷却駒挿入穴2aに挿入される冷却駒3,31~34と、を有し、冷却駒3,31~34は、冷却駒挿入穴2aに嵌め込むことによって、冷却駒3,31~34と冷却駒挿入穴2aの内壁面2bとの間に、冷却媒体5を流動させる冷却流路30を形成する。
As described above, as shown in FIG. 3, the present invention is a casting apparatus 1 in which molten metal is poured into the cavity 20 formed in the mold 2 to cast the casting product 4, and the mold 2 is a casting apparatus 1. It has a cooling piece insertion hole 2a recessed toward the cavity 20 on a surface different from the surface on which the cavity 20 is formed, and cooling pieces 3, 31 to 34 inserted into the cooling piece insertion hole 2a for cooling. The pieces 3, 31 to 34 are fitted into the cooling piece insertion holes 2a to allow the cooling medium 5 to flow between the cooling pieces 3, 31 to 34 and the inner wall surface 2b of the cooling piece insertion holes 2a. Form 30.
これにより、本発明に係る鋳造装置1は、冷却駒3を冷却駒挿入穴2aに嵌め込むことで、キャビティ20の近傍の冷却駒3と、冷却駒挿入穴2aの内壁面2bとの間に、容易に冷却流路30を形成することができる。冷却駒3は、金型2に嵌め込むことで、二次元的あるいは三次元的な冷却流路30を形成することができるため、金型2に取り付ける冷却駒3や、スライド中子27に冷却流路30を形成することができる。また、冷却駒3が挿入される冷却駒挿入穴2aは、キャビティ20が形成された面と異なる面にキャビティ20に向かって凹設されているので、キャビティ20を効率よく冷却することができる。
As a result, in the casting apparatus 1 according to the present invention, by fitting the cooling piece 3 into the cooling piece insertion hole 2a, the cooling piece 3 in the vicinity of the cavity 20 and the inner wall surface 2b of the cooling piece insertion hole 2a are separated from each other. , The cooling flow path 30 can be easily formed. Since the cooling piece 3 can form a two-dimensional or three-dimensional cooling flow path 30 by fitting it into the mold 2, the cooling piece 3 attached to the mold 2 and the slide core 27 are cooled. The flow path 30 can be formed. Further, since the cooling piece insertion hole 2a into which the cooling piece 3 is inserted is recessed toward the cavity 20 on a surface different from the surface on which the cavity 20 is formed, the cavity 20 can be efficiently cooled.
また、図3に示すように、冷却駒3,31~34の先端面3cには、冷却流路30を形成する溝3aが凹設されている。
これにより、冷却駒3,31~34は、先端面3cに冷却流路形成用の溝3aが凹設されていることで、溝3aに対向する冷却駒挿入穴2aがフラットの面であっても、冷却駒挿入穴2aに嵌め込んだ際に、容易に冷却流路30を形成することができる。このため、溝3aに対向する冷却駒挿入穴2aの面の形状を簡素化することができる。 Further, as shown in FIG. 3, agroove 3a forming a cooling flow path 30 is recessed in the tip surfaces 3c of the cooling pieces 3, 31 to 34.
As a result, the cooling pieces 3, 31 to 34 have a groove 3a for forming a cooling flow path recessed in the tip surface 3c, so that the cooling piece insertion hole 2a facing the groove 3a is a flat surface. Also, the cooling flow path 30 can be easily formed when the cooling piece is fitted into the cooling piece insertion hole 2a. Therefore, the shape of the surface of the cooling piece insertion hole 2a facing the groove 3a can be simplified.
これにより、冷却駒3,31~34は、先端面3cに冷却流路形成用の溝3aが凹設されていることで、溝3aに対向する冷却駒挿入穴2aがフラットの面であっても、冷却駒挿入穴2aに嵌め込んだ際に、容易に冷却流路30を形成することができる。このため、溝3aに対向する冷却駒挿入穴2aの面の形状を簡素化することができる。 Further, as shown in FIG. 3, a
As a result, the cooling
また、図3に示すように、冷却駒3,31~34は、金属、樹脂、あるいは、ゴムによって形成されている。
これにより、冷却駒3,31~34は、金属、樹脂、あるいは、ゴムによって形成されていることで、中空状の冷却流路30や、先端面3cに溝3aを有するものや、複雑な形状のものであっても、容易に一製品で形成することが可能である。なお、冷却駒3,31~34を樹脂製にした場合は、金型製造費用及び冷却駒製造費用のコスト削減と、金型製作時間の短縮と、金型2の軽量化を図ることができる。 Further, as shown in FIG. 3, the cooling pieces 3, 31 to 34 are formed of metal, resin, or rubber.
As a result, the cooling pieces 3, 31 to 34 are made of metal, resin, or rubber, and thus have a hollow cooling flow path 30, a groove 3a on the tip surface 3c, or a complicated shape. Even if it is a thing, it can be easily formed by one product. When the cooling pieces 3, 31 to 34 are made of resin, it is possible to reduce the mold manufacturing cost and the cooling piece manufacturing cost, shorten the mold manufacturing time, and reduce the weight of the mold 2. ..
これにより、冷却駒3,31~34は、金属、樹脂、あるいは、ゴムによって形成されていることで、中空状の冷却流路30や、先端面3cに溝3aを有するものや、複雑な形状のものであっても、容易に一製品で形成することが可能である。なお、冷却駒3,31~34を樹脂製にした場合は、金型製造費用及び冷却駒製造費用のコスト削減と、金型製作時間の短縮と、金型2の軽量化を図ることができる。 Further, as shown in FIG. 3, the cooling
As a result, the cooling
また、樹脂製にした場合の冷却駒3,31~34は、断熱効果があるため、冷却したい箇所に冷却駒3,31~34の冷却流路30を通過した冷却媒体5を当てて局部的に冷却することができる。このため、冷却したくない箇所(例えば、製品部から遠い箇所)は、冷却媒体5が触れないように冷却駒3,31~34を金型2に設置することができるので、冷却されないようにすることができる。なお、冷却駒3,31~34の供給路3h及び流出路3iは、冷却駒3,31~34に樹脂製のパイプをインサート成形することによって形成してもよい。
Further, since the cooling pieces 3, 31 to 34 made of resin have a heat insulating effect, the cooling medium 5 that has passed through the cooling flow path 30 of the cooling pieces 3, 31 to 34 is applied to a portion to be cooled locally. Can be cooled to. Therefore, cooling pieces 3, 31 to 34 can be installed in the mold 2 so that the cooling medium 5 does not touch the parts that are not desired to be cooled (for example, the parts far from the product part), so that the parts are not cooled. can do. The supply passages 3h and the outflow passages 3i of the cooling pieces 3, 31 to 34 may be formed by insert molding a resin pipe into the cooling pieces 3, 31 to 34.
また、図3に示すように、キャビティ20には、凸部2cが形成され、冷却流路30は、凸部2cの内部に形成されている。
これにより、冷却流路30は、キャビティ20の凸部2cの内部に形成されていることで、キャビティ20の近い凸部2c内の位置に冷却流路30を配置することができるため、キャビティ20を効率よく冷却することができる。 Further, as shown in FIG. 3, aconvex portion 2c is formed in the cavity 20, and the cooling flow path 30 is formed inside the convex portion 2c.
As a result, since thecooling flow path 30 is formed inside the convex portion 2c of the cavity 20, the cooling flow path 30 can be arranged at a position in the convex portion 2c near the cavity 20, so that the cavity 20 can be arranged. Can be cooled efficiently.
これにより、冷却流路30は、キャビティ20の凸部2cの内部に形成されていることで、キャビティ20の近い凸部2c内の位置に冷却流路30を配置することができるため、キャビティ20を効率よく冷却することができる。 Further, as shown in FIG. 3, a
As a result, since the
また、図4及び図5に示すように、溝3aは、冷却駒3,31~34の先端面3c、あるいは、当該冷却駒3,31~34の先端面3cに対向する冷却駒挿入穴2aに形成されている。
これにより、溝3aは、冷却駒3,31~34の先端面3c、あるいは、当該冷却駒3,31~34の先端面3cに対向する冷却駒挿入穴2aに形成されていることで、キャビティ面20aの形状に合わせてキャビティ面20aの近傍位置に冷却流路30を形成することができるため、効率よく溶湯を冷却することができる。 Further, as shown in FIGS. 4 and 5, thegroove 3a has a cooling piece insertion hole 2a facing the tip surface 3c of the cooling pieces 3, 31 to 34 or the tip surface 3c of the cooling pieces 3, 31 to 34. Is formed in.
As a result, thegroove 3a is formed in the tip surface 3c of the cooling pieces 3, 31 to 34 or the cooling piece insertion hole 2a facing the tip surface 3c of the cooling pieces 3, 31 to 34, whereby the cavity is formed. Since the cooling flow path 30 can be formed in the vicinity of the cavity surface 20a according to the shape of the surface 20a, the molten metal can be cooled efficiently.
これにより、溝3aは、冷却駒3,31~34の先端面3c、あるいは、当該冷却駒3,31~34の先端面3cに対向する冷却駒挿入穴2aに形成されていることで、キャビティ面20aの形状に合わせてキャビティ面20aの近傍位置に冷却流路30を形成することができるため、効率よく溶湯を冷却することができる。 Further, as shown in FIGS. 4 and 5, the
As a result, the
[第1変形例]
なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造及び変更が可能であり、本発明はこれら改造及び変更された発明にも及ぶことは勿論である。なお、既に説明した構成は同じ符号を付してその説明を省略する。
図8は、本発明の実施形態に係る鋳造装置1の第1変形例の冷却駒3Aを示す概略斜視図である。 [First modification]
The present invention is not limited to the above-described embodiment, and various modifications and modifications can be made within the scope of the technical idea thereof, and the present invention may extend to these modified and modified inventions. Of course. The configurations already described are designated by the same reference numerals and the description thereof will be omitted.
FIG. 8 is a schematic perspective view showing acooling piece 3A of a first modification of the casting apparatus 1 according to the embodiment of the present invention.
なお、本発明は、前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の改造及び変更が可能であり、本発明はこれら改造及び変更された発明にも及ぶことは勿論である。なお、既に説明した構成は同じ符号を付してその説明を省略する。
図8は、本発明の実施形態に係る鋳造装置1の第1変形例の冷却駒3Aを示す概略斜視図である。 [First modification]
The present invention is not limited to the above-described embodiment, and various modifications and modifications can be made within the scope of the technical idea thereof, and the present invention may extend to these modified and modified inventions. Of course. The configurations already described are designated by the same reference numerals and the description thereof will be omitted.
FIG. 8 is a schematic perspective view showing a
例えば、前記実施形態では、図2に示すように、冷却駒3の一例として、先端面3cにストレート形状の溝3aを形成したものを例に挙げて説明したが、これに限定されるものではない。
For example, in the above-described embodiment, as shown in FIG. 2, as an example of the cooling piece 3, a straight groove 3a formed on the tip surface 3c has been described as an example, but the present invention is not limited to this. Absent.
また、図8に示すように、冷却駒3Aの先端面3Acの溝3Aaは、ジグザグ形状、蛇行形状、あるいは、ランダムに曲げた形状に形成されていてもよい。
これにより、溝3Aaは、ジグザグ形状、蛇行形状、あるいは、ランダムに曲げた形状に形成されていることで、溝3Aaの長さが長く形成されて、冷却面積を広くすることができる。このため、溝3Aaによって形成された冷却流路30Aの冷却能力を向上させることができる。 Further, as shown in FIG. 8, the groove 3Aa of the tip surface 3Ac of thecooling piece 3A may be formed in a zigzag shape, a meandering shape, or a randomly bent shape.
As a result, the groove 3Aa is formed in a zigzag shape, a meandering shape, or a randomly bent shape, so that the length of the groove 3Aa is formed to be long, and the cooling area can be widened. Therefore, the cooling capacity of thecooling flow path 30A formed by the groove 3Aa can be improved.
これにより、溝3Aaは、ジグザグ形状、蛇行形状、あるいは、ランダムに曲げた形状に形成されていることで、溝3Aaの長さが長く形成されて、冷却面積を広くすることができる。このため、溝3Aaによって形成された冷却流路30Aの冷却能力を向上させることができる。 Further, as shown in FIG. 8, the groove 3Aa of the tip surface 3Ac of the
As a result, the groove 3Aa is formed in a zigzag shape, a meandering shape, or a randomly bent shape, so that the length of the groove 3Aa is formed to be long, and the cooling area can be widened. Therefore, the cooling capacity of the
[第2変形例]
図9は、本発明の実施形態に係る鋳造装置1の第2変形例の冷却駒3Bを示す概略斜視図である。 [Second modification]
FIG. 9 is a schematic perspective view showing acooling piece 3B of a second modification of the casting apparatus 1 according to the embodiment of the present invention.
図9は、本発明の実施形態に係る鋳造装置1の第2変形例の冷却駒3Bを示す概略斜視図である。 [Second modification]
FIG. 9 is a schematic perspective view showing a
また、図9に示すように、冷却駒3Bの側面には、冷却駒3Bを冷却駒挿入穴2aに嵌め込むことによって、冷却回路(図示省略)に連通する冷却流路30Bを形成する横溝3Bbが形成されていてもよい。
Further, as shown in FIG. 9, a lateral groove 3Bb is formed on the side surface of the cooling piece 3B to form a cooling flow path 30B communicating with a cooling circuit (not shown) by fitting the cooling piece 3B into the cooling piece insertion hole 2a. May be formed.
この場合、横溝3Bbは、冷却駒3Bの先端面3Bcに形成された溝3Baの両端部からそれぞれ冷却駒3Bの側面の下端部に形成されたシール部設置部3Bdの手前まで延設されて、冷却駒3B内に引き込まれている。なお、シール部設置部3Bdには、Oリング、ガスケット、液体パッキン等から成るシール材O1が設けられる。
In this case, the lateral groove 3Bb extends from both ends of the groove 3Ba formed on the tip surface 3Bc of the cooling piece 3B to the front of the seal portion installation portion 3Bd formed on the lower end of the side surface of the cooling piece 3B, respectively. It is drawn into the cooling piece 3B. A seal material O1 made of an O-ring, a gasket, a liquid packing, or the like is provided on the seal portion installation portion 3Bd.
これにより、冷却駒3Bは、側面に、冷却流路30Bを形成する横溝3Bbが形成されていることで、冷却駒3Bの表面に形成された溝3Ba及び横溝3Bbの長さを長くして、冷却流路30Bの冷却面積を広くすることができる。このため、キャビティ20が冷却駒3Bの側方まで延びている場合であっても、横溝3Bbを流れる冷却液によって効率よく冷却することができる。
As a result, the cooling piece 3B has the lateral groove 3Bb forming the cooling flow path 30B formed on the side surface thereof, so that the lengths of the groove 3Ba and the lateral groove 3Bb formed on the surface of the cooling piece 3B are lengthened. The cooling area of the cooling flow path 30B can be increased. Therefore, even when the cavity 20 extends to the side of the cooling piece 3B, it can be efficiently cooled by the coolant flowing through the lateral groove 3Bb.
[第3変形例]
図10は、本発明の実施形態に係る鋳造装置1の第3変形例の冷却駒3Cを示す概略斜視図である。 [Third variant]
FIG. 10 is a schematic perspective view showing acooling piece 3C of a third modification of the casting apparatus 1 according to the embodiment of the present invention.
図10は、本発明の実施形態に係る鋳造装置1の第3変形例の冷却駒3Cを示す概略斜視図である。 [Third variant]
FIG. 10 is a schematic perspective view showing a
また、図10に示すように、冷却駒3Cの側面に形成される横溝3Cbは、冷却駒3Cの先端面3Ccに形成された往路及び復路の溝3Caの間に形成された側面視して凹形状のUターン溝であってもよい。
Further, as shown in FIG. 10, the lateral groove 3Cb formed on the side surface of the cooling piece 3C is concave in a side view formed between the outward path and return path grooves 3Ca formed on the tip surface 3Cc of the cooling piece 3C. It may be a U-turn groove having a shape.
これにより、冷却液は、冷却駒3Cの先端面3Ccの溝3Caから側面の横溝3Cbに流れた後、再び、先端面3Cc側の溝3Caに流れるので、冷却流路30Cの冷却面積を広くすることができる。このため、金型2の凸部2cの側面を効率よく冷却することができる。
As a result, the coolant flows from the groove 3Ca on the tip surface 3Cc of the cooling piece 3C to the lateral groove 3Cb on the side surface, and then flows again into the groove 3Ca on the tip surface 3Cc side, so that the cooling area of the cooling flow path 30C is widened. be able to. Therefore, the side surface of the convex portion 2c of the mold 2 can be efficiently cooled.
[第4変形例]
図11は、本発明の実施形態に係る鋳造装置1の第4変形例の冷却駒3Dを示す概略斜視図である。 [Fourth variant]
FIG. 11 is a schematic perspective view showing acooling piece 3D of a fourth modification of the casting apparatus 1 according to the embodiment of the present invention.
図11は、本発明の実施形態に係る鋳造装置1の第4変形例の冷却駒3Dを示す概略斜視図である。 [Fourth variant]
FIG. 11 is a schematic perspective view showing a
また、図11に示すように、冷却駒3Dの側面に形成される横溝3Db,3Deは、冷却駒3Dの先端面3Dcに形成された往路及び復路の溝3Daの間に形成された側面視して凹形状のUターン溝用の横溝3Dbと、Uターン溝(横溝3Db)の反対側の側面に形成した往路用及び復路用の横溝3Deと、であってもよい。
ここで、Uターン溝とは、折り返すように形成された溝をいう。 Further, as shown in FIG. 11, the lateral grooves 3Db and 3De formed on the side surface of thecooling piece 3D are viewed from the side surface formed between the outward path and the return path grooves 3Da formed on the tip surface 3Dc of the cooling piece 3D. The concave horizontal groove 3Db for the U-turn groove and the lateral groove 3De for the outward path and the return path formed on the opposite side surface of the U-turn groove (horizontal groove 3Db) may be used.
Here, the U-turn groove means a groove formed so as to be folded back.
ここで、Uターン溝とは、折り返すように形成された溝をいう。 Further, as shown in FIG. 11, the lateral grooves 3Db and 3De formed on the side surface of the
Here, the U-turn groove means a groove formed so as to be folded back.
これにより、冷却液が流れる冷却駒3Dの冷却流路30Dは、横溝3Dbと横溝3Deとによって冷却流路30Dの長さが長くなるので、冷却する面積を増加させることができる。このため、金型2の凸部2cの側面を効率よく冷却することができる。
As a result, in the cooling flow path 30D of the cooling piece 3D through which the coolant flows, the length of the cooling flow path 30D is increased by the horizontal groove 3Db and the horizontal groove 3De, so that the area to be cooled can be increased. Therefore, the side surface of the convex portion 2c of the mold 2 can be efficiently cooled.
[第5変形例]
図12は、本発明の実施形態に係る鋳造装置1の第5変形例の冷却駒3Eを示す図で、(a)は要部拡大概略斜視図、(b)は要部拡大概略断面図である。 [Fifth variant]
12A and 12B are views showing acooling piece 3E of a fifth modification of the casting apparatus 1 according to the embodiment of the present invention. FIG. 12A is an enlarged schematic perspective view of a main part, and FIG. 12B is an enlarged schematic sectional view of a main part. is there.
図12は、本発明の実施形態に係る鋳造装置1の第5変形例の冷却駒3Eを示す図で、(a)は要部拡大概略斜視図、(b)は要部拡大概略断面図である。 [Fifth variant]
12A and 12B are views showing a
また、実施形態及び第1~第4変形例では、冷却駒3,3A~3Dの先端面3c,3Ac,3Bc,3Cc,3Dcに溝3a,3Aa,3Ba,3Ca,3Daを凹設することで冷却流路30,30A~30Dの一部を形成することを説明したが、溝3a,3Aa~3Daはなくてもよい。その場合は、図12に示すように、冷却駒3Eの先端面3Ecと、冷却駒挿入穴2aの内底面との間に、隙間S(空間)を形成して、その隙間Sを冷却流路30Eの一部とすればよい。
Further, in the embodiment and the first to fourth modifications, the grooves 3a, 3Aa, 3Ba, 3Ca, and 3Da are recessed in the tip surfaces 3c, 3Ac, 3Bc, 3Cc, and 3Dc of the cooling pieces 3, 3A to 3D. Although it has been explained that a part of the cooling channels 30, 30A to 30D is formed, the grooves 3a, 3Aa to 3Da may not be provided. In that case, as shown in FIG. 12, a gap S (space) is formed between the tip surface 3Ec of the cooling piece 3E and the inner bottom surface of the cooling piece insertion hole 2a, and the gap S is used as a cooling flow path. It may be a part of 30E.
このため、冷却駒3Eは、先端面3Ecに、供給路3Eh及び流出路3Eiの開口端と成る吐出口3Ek及び入込口3Emがあればよく、簡素な形状にすることができる。また、冷却駒3Eの先端面3Ecの対向する冷却駒挿入穴2aの内底面には、冷却流路30Eを形成するための溝を形成する必要がないため、シンプルな穴の形状に形成すればよい。
Therefore, the cooling piece 3E may have a simple shape as long as the tip surface 3Ec has a discharge port 3Ek and an inlet port 3Em which are the opening ends of the supply path 3Eh and the outflow path 3Ei. Further, since it is not necessary to form a groove for forming the cooling flow path 30E on the inner bottom surface of the cooling piece insertion hole 2a facing the tip surface 3Ec of the cooling piece 3E, if it is formed in a simple hole shape. Good.
[その他の変形例]
前記実施形態で説明したスライド中子27は、金型2の一部を構成するものであればよく、キャビティ20に移動可能な可動中子(スライド中子)や、固定型22または可動型21の側方に配置される横型であってもよい。 [Other variants]
Theslide core 27 described in the above embodiment may be a part of the mold 2, and may be a movable core (slide core) movable to the cavity 20, a fixed mold 22 or a movable mold 21. It may be a horizontal type arranged on the side of.
前記実施形態で説明したスライド中子27は、金型2の一部を構成するものであればよく、キャビティ20に移動可能な可動中子(スライド中子)や、固定型22または可動型21の側方に配置される横型であってもよい。 [Other variants]
The
また、冷却駒3,3A~3Dの先端面3c,3Ac~3Dcに溝3a,3Aa~3Daを凹設せずに、可動入子23やスライド中子27等に形成した冷却駒挿入穴2aの内壁面(内底面)に溝を形成して、その溝を冷却流路30,30A~30Dの一部としてもよい。
Further, the cooling piece insertion holes 2a formed in the movable insert 23, the slide core 27, etc. without recessing the grooves 3a, 3Aa to 3Da in the tip surfaces 3c, 3Ac to 3Dc of the cooling pieces 3, 3A to 3D. A groove may be formed on the inner wall surface (inner bottom surface), and the groove may be a part of the cooling channels 30, 30A to 30D.
また、実施形態及び第1~第5変形例では、冷却駒3,3A~3Eの一例として略四角柱形状のものを例に挙げて説明したが、これに限定されない。冷却駒3,3A~3Eは、例えば、略円柱形状や、略多角柱形状のものであってもよい。
Further, in the embodiment and the first to fifth modified examples, as an example of the cooling pieces 3, 3A to 3E, a substantially square pillar shape has been described as an example, but the present invention is not limited to this. The cooling pieces 3, 3A to 3E may have, for example, a substantially cylindrical shape or a substantially polygonal column shape.
1 鋳造装置
2 金型
2a 冷却駒挿入穴
2b 内壁面
2c 凸部
3,3A,3B,3C,3D,3E,31,32,33,34 冷却駒
3a,3Aa,3Ba,3Ca,3Da 溝
3b,3d,3Bb,3Cb,3Db,3De 横溝
3c,3Ac,3Bc,3Cc,3Dc,30Ec 先端面
4 鋳造品
20 キャビティ
21 可動型
22 固定型
23 可動入子
27 スライド中子
30,30A,30B,30C,30D,30E 冷却流路 1Casting equipment 2 Mold 2a Cooling piece insertion hole 2b Inner wall surface 2c Convex part 3,3A, 3B, 3C, 3D, 3E, 31, 32, 33, 34 Cooling piece 3a, 3Aa, 3Ba, 3Ca, 3Da Groove 3b, 3d, 3Bb, 3Cb, 3Db, 3De Horizontal groove 3c, 3Ac, 3Bc, 3Cc, 3Dc, 30Ec Tip surface 4 Casting product 20 Cavity 21 Movable type 22 Fixed type 23 Movable insert 27 Slide core 30, 30A, 30B, 30C, 30D, 30E Cooling channel
2 金型
2a 冷却駒挿入穴
2b 内壁面
2c 凸部
3,3A,3B,3C,3D,3E,31,32,33,34 冷却駒
3a,3Aa,3Ba,3Ca,3Da 溝
3b,3d,3Bb,3Cb,3Db,3De 横溝
3c,3Ac,3Bc,3Cc,3Dc,30Ec 先端面
4 鋳造品
20 キャビティ
21 可動型
22 固定型
23 可動入子
27 スライド中子
30,30A,30B,30C,30D,30E 冷却流路 1
Claims (7)
- 金型に形成されたキャビティ内に溶湯を注湯して鋳造品を鋳造する鋳造装置であって、
前記金型は、前記キャビティが形成された面と異なる面に前記キャビティに向かって凹設された冷却駒挿入穴と、
前記冷却駒挿入穴に挿入される冷却駒と、を有し、
前記冷却駒は、前記冷却駒挿入穴に嵌め込むことによって、当該冷却駒と前記冷却駒挿入穴の内壁面との間に、冷却媒体を流動させる冷却流路を形成すること、
を特徴とする鋳造装置。 A casting device that casts a casting by pouring molten metal into a cavity formed in a mold.
The mold has a cooling piece insertion hole recessed toward the cavity on a surface different from the surface on which the cavity is formed.
It has a cooling piece inserted into the cooling piece insertion hole, and has
By fitting the cooling piece into the cooling piece insertion hole, a cooling flow path for flowing a cooling medium is formed between the cooling piece and the inner wall surface of the cooling piece insertion hole.
A casting machine characterized by. - 前記冷却駒の先端面には、前記冷却流路を形成する溝が凹設されていること、
を特徴とする請求項1に記載の鋳造装置。 A groove forming the cooling flow path is recessed on the tip surface of the cooling piece.
The casting apparatus according to claim 1. - 前記冷却駒は、金属、樹脂、あるいは、ゴムによって形成されていること、
を特徴とする請求項1または請求項2に記載の鋳造装置。 The cooling piece shall be made of metal, resin, or rubber.
The casting apparatus according to claim 1 or 2. - 前記キャビティには、凸部が形成され、
前記冷却流路は、前記凸部の内部に形成されていること、
を特徴とする請求項1または請求項2に記載の鋳造装置。 A convex portion is formed in the cavity.
The cooling flow path is formed inside the convex portion.
The casting apparatus according to claim 1 or 2. - 前記溝は、前記冷却駒の先端面、あるいは、当該冷却駒の先端面に対向する前記冷却駒挿入穴に形成されていること、
を特徴とする請求項2に記載の鋳造装置。 The groove is formed in the tip surface of the cooling piece or the cooling piece insertion hole facing the tip surface of the cooling piece.
2. The casting apparatus according to claim 2. - 前記冷却駒の側面には、前記冷却駒を前記冷却駒挿入穴に嵌め込むことによって、冷却回路に連通する前記冷却流路を形成する横溝が形成されていること、
を特徴とする請求項1ないし請求項5のいずれか1項に記載の鋳造装置。 A horizontal groove is formed on the side surface of the cooling piece to form the cooling flow path communicating with the cooling circuit by fitting the cooling piece into the cooling piece insertion hole.
The casting apparatus according to any one of claims 1 to 5, wherein the casting apparatus is characterized. - 前記溝は、ジグザグ形状、蛇行形状、あるいは、ランダムに曲げた形状に形成されていること、
を特徴とする請求項2または請求項5に記載の鋳造装置。 The groove is formed in a zigzag shape, a meandering shape, or a randomly bent shape.
The casting apparatus according to claim 2 or 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019092921A JP2020185599A (en) | 2019-05-16 | 2019-05-16 | Casting device |
JP2019-092921 | 2019-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020230902A1 true WO2020230902A1 (en) | 2020-11-19 |
Family
ID=73222315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019638 WO2020230902A1 (en) | 2019-05-16 | 2020-05-18 | Casting device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020185599A (en) |
WO (1) | WO2020230902A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114799117A (en) * | 2022-04-29 | 2022-07-29 | 广汽本田汽车有限公司 | Cooling mold core and die-casting mold thereof |
CN117920971A (en) * | 2024-03-19 | 2024-04-26 | 宁波赛维达技术股份有限公司 | Cooling mechanism for integrated die-casting die of new energy automobile and die-casting die |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102587823B1 (en) * | 2021-03-30 | 2023-10-10 | 한밭대학교 산학협력단 | Stability analysis method of organic semiconductor using electrochemical spectroscopy and system therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0733433U (en) * | 1993-11-08 | 1995-06-20 | 日立金属株式会社 | Mold cassette type cooling block |
JP2000167655A (en) * | 1998-12-08 | 2000-06-20 | Honda Motor Co Ltd | Method for cooling metallic mold and device therefor |
WO2006030503A1 (en) * | 2004-09-15 | 2006-03-23 | Asahi Co., Ltd | Mold, method of manufacturing mold, block for forming heat exchange flow passage, and molded product |
JP2008264809A (en) * | 2007-04-18 | 2008-11-06 | Kowa Dennetsu Keiki:Kk | Insert for internally cooled die |
JP2009028774A (en) * | 2007-07-30 | 2009-02-12 | Kowa Dennetsu Keiki:Kk | Cooling water leak-preventive apparatus in internal forced cooling die insert |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6353558B2 (en) * | 2014-03-07 | 2018-07-04 | シロー インダストリーズ インコーポレイテッド | High performance tool cooling system |
-
2019
- 2019-05-16 JP JP2019092921A patent/JP2020185599A/en active Pending
-
2020
- 2020-05-18 WO PCT/JP2020/019638 patent/WO2020230902A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0733433U (en) * | 1993-11-08 | 1995-06-20 | 日立金属株式会社 | Mold cassette type cooling block |
JP2000167655A (en) * | 1998-12-08 | 2000-06-20 | Honda Motor Co Ltd | Method for cooling metallic mold and device therefor |
WO2006030503A1 (en) * | 2004-09-15 | 2006-03-23 | Asahi Co., Ltd | Mold, method of manufacturing mold, block for forming heat exchange flow passage, and molded product |
JP2008264809A (en) * | 2007-04-18 | 2008-11-06 | Kowa Dennetsu Keiki:Kk | Insert for internally cooled die |
JP2009028774A (en) * | 2007-07-30 | 2009-02-12 | Kowa Dennetsu Keiki:Kk | Cooling water leak-preventive apparatus in internal forced cooling die insert |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114799117A (en) * | 2022-04-29 | 2022-07-29 | 广汽本田汽车有限公司 | Cooling mold core and die-casting mold thereof |
CN114799117B (en) * | 2022-04-29 | 2024-04-16 | 广汽本田汽车有限公司 | Cooling core and die casting die thereof |
CN117920971A (en) * | 2024-03-19 | 2024-04-26 | 宁波赛维达技术股份有限公司 | Cooling mechanism for integrated die-casting die of new energy automobile and die-casting die |
Also Published As
Publication number | Publication date |
---|---|
JP2020185599A (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020230902A1 (en) | Casting device | |
US10688555B2 (en) | Method and casting mould for the manufacture of cast parts, in particular cylinder blocks and cylinder heads, with a functional feeder connection | |
JP5960106B2 (en) | Mold used for caliper casting apparatus, caliper casting apparatus, and caliper manufacturing method | |
JP2010075939A (en) | Die-casting die | |
JP5708640B2 (en) | Mold and mold manufacturing method | |
JP2017094668A (en) | Molding mold | |
WO2018139566A1 (en) | Moulding die | |
JP2008137022A (en) | Die flow divider and cooling mechanism therefor | |
KR101704967B1 (en) | Structure of die-Casting mold for fanless heat sink | |
JP2008188620A (en) | Casting method and mold | |
JPH11226716A (en) | Metallic mold for casting | |
JP2020049540A (en) | Chill vent and mold device | |
JP2010099732A (en) | Cooler | |
JP5172131B2 (en) | Injection mold, injection mold manufacturing method and molding method | |
KR100838788B1 (en) | Mold assembly | |
JP2002224809A (en) | Metallic mold for casting | |
JP4847105B2 (en) | Injection mold | |
JP2019098384A (en) | Die cast sleeve | |
JP5117077B2 (en) | Temperature control type | |
JP6558396B2 (en) | Mold apparatus and molding apparatus provided with the mold apparatus | |
JP2006239721A (en) | Chill vent insert | |
JP2010089390A (en) | Molding die | |
JP3646662B2 (en) | Mold for casting | |
JP5076778B2 (en) | Vacuum die casting mold and vacuum die casting method | |
JP2013123900A (en) | Injection molding mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20806023 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20806023 Country of ref document: EP Kind code of ref document: A1 |