WO2020230283A1 - Rectifying device - Google Patents

Rectifying device Download PDF

Info

Publication number
WO2020230283A1
WO2020230283A1 PCT/JP2019/019216 JP2019019216W WO2020230283A1 WO 2020230283 A1 WO2020230283 A1 WO 2020230283A1 JP 2019019216 W JP2019019216 W JP 2019019216W WO 2020230283 A1 WO2020230283 A1 WO 2020230283A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
power supply
circuit
rectifier
grounding
Prior art date
Application number
PCT/JP2019/019216
Other languages
French (fr)
Japanese (ja)
Inventor
辰也 山中
延是 春名
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/019216 priority Critical patent/WO2020230283A1/en
Publication of WO2020230283A1 publication Critical patent/WO2020230283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This application relates to a rectifier.
  • Rectifiers such as inverters and converters are widely used in electric motors and other electric appliances and home appliances such as television receivers.
  • the rectifier device includes a rectifier circuit having a switching element, a control circuit for controlling the rectifier circuit, and a power supply circuit for supplying electric power to the control circuit.
  • electromagnetic noise invades the rectifier device configured in this way from the outside, it induces voltage fluctuations or current fluctuations of the power supplied from the power supply circuit to the control circuit, which causes malfunction of the control circuit. ..
  • the power supply wiring and the ground wiring are connected to the power supply circuit to which power is supplied from the outside, but common mode electromagnetic noise may enter the rectifier through these wirings.
  • electromagnetic noise that has entered the reference ground from the outside can be released to the ground potential via the frame ground.
  • This application has been made to solve the above-mentioned problems, and is a rectification capable of suppressing voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of power supplied from a power supply circuit to a control circuit.
  • the purpose is to provide the device.
  • the rectifying device of the present application includes a rectifying circuit, a control circuit that controls the rectifying circuit, a power supply circuit that supplies power to the control circuit, a power supply path that connects the power supply circuit and the control circuit, and a power supply path. It is equipped with a grounding path that runs in parallel, and the distance between the power supply path and the grounding path is set to a distance that allows electromagnetic coupling between the power supply path and the grounding path, and the grounding path is the grounding path. It is connected to the ground potential at a position closer to the power supply circuit than the center.
  • the distance between the power supply path and the ground path is set to a distance at which the power supply path and the ground path can be electromagnetically coupled, and the ground path is a power supply circuit rather than the center of the ground path. Since it is connected to the ground potential at a position close to, it is possible to suppress voltage fluctuations or current fluctuations caused by common mode electromagnetic noise of the power supplied from the power supply circuit to the control circuit.
  • FIG. It is a perspective view of the rectifying apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the rectifying apparatus which concerns on Embodiment 1.
  • FIG. It is a top view of the rectifier device which concerns on Embodiment 1.
  • FIG. It is a circuit diagram of the rectifier device which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the propagation path of the electromagnetic noise in Embodiment 1.
  • FIG. It is explanatory drawing which shows the propagation path of the electromagnetic noise in Embodiment 1.
  • FIG. It is a top view of the rectifier device which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the rectifying apparatus which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the rectifying apparatus which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the rectifying apparatus which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the rectifying apparatus which concerns on Embodiment 2.
  • FIG. It is a top view of the rectifier device which concerns on Embodiment 3.
  • FIG. It is a circuit diagram of the rectifier device which concerns on Embodiment 3.
  • FIG. It is a perspective view of the rectifying apparatus which concerns on Embodiment 4.
  • FIG. It is sectional drawing of the rectifying apparatus which concerns on Embodiment 4.
  • FIG. It is a top view of the power supply board of Embodiment 4.
  • FIG. 1 is a perspective view of the rectifying device according to the first embodiment.
  • the rectifying device of this embodiment is, for example, an inverter device.
  • the rectifier 1 includes a rectifier circuit 2 which is an inverter circuit, a control circuit 3 which controls the rectifier circuit 2, and a power supply circuit 4 which supplies electric power to the control circuit 3. ing. Power is supplied to the power supply circuit 4 from the external power supply wiring 6 via the power supply terminal block 5.
  • the rectifier circuit 2, the control circuit 3, the power supply circuit 4, and the power supply terminal block 5 are mounted on the electronic circuit board 7 of the single-layer board.
  • the rectifier circuit 2 is in close contact with the heat sink 8 on a surface opposite to the surface mounted on the electronic circuit board 7.
  • a ground wire 9 is electrically connected to the heat sink 8, and the heat sink 8 is set to a ground potential.
  • FIG. 2 is a cross-sectional view of the rectifier along the line AA shown in FIG.
  • a power supply path 11 for supplying power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11 are formed on the back surface of the electronic circuit board 7.
  • the power supply path 11 and the return path 12 form a power supply path 15.
  • grounding paths 13a and 13b running in parallel in the vicinity of the feeding path 11 and the return path 12 are formed, respectively.
  • the power supply path 11, the return path 12, and the ground paths 13a and 13b are formed of a wiring pattern formed on the back surface of the electronic circuit board 7.
  • a convex portion 8a is formed on the surface of the heat sink 8, and the convex portion 8a is provided with a screw hole.
  • the ground paths 13a and 13b are screwed to the convex portions 8a and are electrically connected to the heat sink 8 set to the ground potential.
  • FIG. 3 is a top view of the rectifier shown in FIG.
  • grounding paths 13a and 13b are formed so as to run in parallel near the outside of the feeding path 11 and the return path 12, respectively.
  • the distance between the power feeding path 11 and the grounding path 13a is set to a distance at which electromagnetic coupling is possible.
  • the distance between the return path 12 and the ground path 13b is set to a distance at which electromagnetic coupling is possible.
  • electromagnetic coupling means that two systems are connected by electromagnetic induction or electromagnetic force.
  • the grounding path 13a is connected to the heat sink 8 by a screw 14a at a position closer to the power supply circuit 4 than the center of the grounding path 13a.
  • the screw 14a is fastened to the convex portion 8a provided with the screw hole of the heat sink 8.
  • the ground path 13b is connected to the heat sink 8 with a screw 14b at a position closer to the power supply circuit 4 than the center of the ground path 13b. Therefore, the ground paths 13a and 13b are connected to the ground potential at a position closer to the power supply circuit 4 than the center.
  • FIG. 4 is a circuit diagram of the rectifier 1 of the present embodiment.
  • the rectifier 1 includes a rectifier circuit 2, a control circuit 3 that controls the rectifier circuit 2, a power supply circuit 4 that supplies power to the control circuit 3, and a power supply circuit 4.
  • the power supply path 11 and the return path 12 connecting the control circuit 3 and the grounding path 13a that runs parallel to the power supply path 11 and is electromagnetically coupled to the power supply path 11 and parallel to the return path 12 and electromagnetically coupled to the return path 12. It is provided with a grounding path 13b.
  • the ground path 13a is connected to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13a.
  • the ground path 13b is connected to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13b.
  • FIG. 5 is an explanatory diagram showing a propagation path of electromagnetic noise of a rectifier device not provided with ground paths 13a and 13b for comparison.
  • FIG. 6 is an explanatory diagram showing a propagation path of electromagnetic noise of the rectifier device provided with the grounding paths 13a and 13b of the present embodiment.
  • the propagation path of the electromagnetic noise when the common mode electromagnetic noise invades from the external electromagnetic noise source 21 is indicated by the broken line arrow 22.
  • the wiring pattern formed on the electronic circuit board 7 has a parasitic inductance component, the parasitic inductance component 23 of the feeding path 11 and the return path 12 is shown in FIGS. 5 and 6.
  • FIG. 5 shows a propagation path of electromagnetic noise when common mode electromagnetic noise invades the power supply circuit 4 in a rectifier device that does not have grounding paths 13a and 13b. Since the feeding path 11 and the return path 12 have a parasitic inductance component 23, a high-frequency noise current flows through the feeding path 11 and the return path 12, and a common mode voltage is induced. If the induced common mode voltage is supplied to the control circuit 3, it causes a malfunction. Further, the common mode magnetic flux 24 is generated by the high frequency noise current flowing through the feeding path 11 and the return path 12.
  • FIG. 6 shows the propagation path of the electromagnetic noise when the common mode electromagnetic noise invades the power supply circuit 4 in the rectifier device of the present embodiment provided with the ground paths 13a and 13b.
  • the feeding path 11 and the return path 12 have a parasitic inductance component 23.
  • the grounding paths 13a and 13b running in parallel near the outside of the feeding path 11 and the return path 12 also have the parasitic inductance component 25.
  • the power feeding path 11 and the grounding path 13a are electromagnetically coupled and the return path 12 and the grounding path 13b are electromagnetically coupled to each other, the feeding path 11 and the grounding path 13a and the return path 12 are respectively.
  • a parasitic capacitance component 26 exists between the ground and the ground path 13b.
  • the high-frequency noise current flowing through the feeding path 11 and the return path 12 flows through the grounding paths 13a and 13b via the parasitic capacitance component 26.
  • the propagation path of the electromagnetic noise that has flowed into the ground paths 13a and 13b is indicated by the dotted arrow 27. Since the ground paths 13a and 13b are connected to the ground potential at a position closer to the power supply circuit 4 than the center thereof, the noise current flowing into the ground paths 13a and 13b is the noise flowing through the power supply path 11 and the return path 12. It flows in the direction opposite to the current.
  • a magnetic flux 28 is generated by a high-frequency noise current flowing through the ground paths 13a and 13b.
  • the magnetic flux 28 and the common mode magnetic flux 24 cancel each other out. Therefore, it is possible to suppress the impedance generated by the noise current in the common mode in the feeding path 11 and the return path 12.
  • the high-frequency noise current that has entered the power supply path 11 and the return path 12 flows to the heat sink 8 set to the ground potential via the ground paths 13a and 13b with low impedance. As a result, the induction of the common mode voltage in the feeding path 11 and the return path 12 can be suppressed, and the malfunction of the control circuit 3 can be prevented.
  • the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit is grounded with low impedance via the ground paths 13a and 13b. It flows to the heat sink 8 set to the electric potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
  • the ground paths 13a and 13b are connected to the ground potential only at a position closer to the power supply circuit 4 than the center thereof, but the ground path is grounded at another position in addition to the connection position. It may be connected to a potential.
  • an inverter device having an inverter circuit as a rectifier is shown, a converter device having a converter circuit may be used.
  • FIG. 7 is a top view of the rectifying device according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the rectifying device along the line AA shown in FIG.
  • a multilayer board is used for the electronic circuit board 7, and a ground path is formed in the wiring layer inside the multilayer board.
  • Other configurations are the same as those in the first embodiment.
  • the electronic circuit board 7 is a multilayer board, and includes an insulating dielectric layer 29 and an internal wiring layer sandwiched between the dielectric layers 29.
  • a power supply path 11 for supplying electric power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11 are formed on the back surface of the electronic circuit board 7.
  • the power supply path 11 and the return path 12 form a power supply path 15.
  • grounding paths 13a and 13b running in parallel in the vicinity of the feeding path 11 and the return path 12 are formed, respectively.
  • the distance between the power feeding path 11 and the grounding path 13a is set to a distance at which electromagnetic coupling is possible via the dielectric layer 29.
  • the distance between the return path 12 and the ground path 13b is set to a distance at which electromagnetic coupling is possible via the dielectric layer 29.
  • the grounding path 13a is connected to the heat sink 8 set to the grounding potential at a position closer to the power supply circuit 4 than the center of the grounding path 13a.
  • the ground path 13b is connected to the heat sink 8 set to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13b.
  • the feeding path 11 and the grounding path 13a, and the return path 12 and the grounding path 13b are arranged via the dielectric layer 29, so that the dielectric layer 29 is sandwiched. Can form a parasitic capacitance component.
  • the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground paths 13a and 13b with low impedance. It flows through the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
  • FIG. 9 is a cross-sectional view of another rectifying device according to the present embodiment.
  • the rectifier device shown in FIG. 9 has the grounding paths 13a and 13b as one grounding path 13.
  • one grounding path 13 that runs in parallel in the vicinity of the feeding path 11 and the return path 12 is formed.
  • the distance between the power supply path 11 and the return path 12 and the ground path 13 is set to a distance at which electromagnetic coupling is possible via the dielectric layer 29.
  • the ground path 13 is connected to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13.
  • the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground path 13 with low impedance, as in the first embodiment. It flows to the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
  • the power supply path and the return path are formed on the back surface of the electronic circuit board, but when a multilayer board is used for the electronic circuit board, the power supply path and the return path are formed as a ground path. It may be formed in an internal wiring layer different from the wiring layer. At this time, it is preferable that the wiring layer in which the feeding path and the return path are formed and the wiring layer in which the grounding path is formed are adjacent wiring layers sandwiched between one dielectric layer. Further, the power supply path and the return path do not necessarily have to be formed in the same wiring layer, and may be formed in the upper and lower wiring layers sandwiching the wiring layer in which the grounding path is formed. Further, even when a multilayer board is used as the electronic circuit board, the power supply path, the return path, and the ground path may be formed in the same layer.
  • FIG. 10 is a top view of the rectifying device according to the third embodiment.
  • FIG. 11 is a circuit diagram of the rectifier device of the present embodiment.
  • the rectifier device of the present embodiment has the same basic configuration as the rectifier device of the first embodiment, but between the power supply path 11 and the ground path 13a, and between the return path 12 and the ground path 13b. The difference is that the capacitors 30 are connected to each.
  • the power supply path 11, the return path 12, the ground path 13a, and the ground path 13b are formed on the back surface of the electronic circuit board 7, but the capacitor 30 is mounted on the front surface of the board.
  • the capacitance of the capacitor 30 is preferably set to a value at which the impedance becomes low in the frequency band of the electromagnetic noise in the common mode.
  • a plurality of capacitors 30 may be arranged.
  • the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground paths 13a and 13b with low impedance. It flows through the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
  • the capacitor 30 is connected between the power supply path 11 and the ground path 13a and between the return path 12 and the ground path 13b, respectively, the power supply path 11 and the return path 12 do not go through the power supply circuit.
  • the high-frequency noise current that has entered from the outside can be released to the ground path 13a and the ground path 13b by the capacitor 30.
  • voltage fluctuations or current fluctuations caused by high-frequency noise invading from the outside of the power supplied from the power supply circuit 4 to the control circuit 3 can be further suppressed.
  • FIG. 12 is a perspective view of the rectifying device according to the fourth embodiment.
  • the electronic circuit board is composed of two boards, a power supply board and a control board.
  • the power supply board 7a and the control board 7b are arranged so as to overlap each other.
  • a power supply circuit 4 and a power supply terminal block 5 are mounted on the power supply board 7a.
  • a rectifier circuit 2 and a control circuit 3 are mounted on the control board 7b.
  • the rectifier circuit 2 is in close contact with the heat sink 8 on a surface opposite to the surface mounted on the control board 7b.
  • a ground wire 9 is electrically connected to the heat sink 8, and the heat sink 8 is set to a ground potential.
  • the power supply board 7a and the control board 7b are formed with a power supply path 11 for supplying power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11.
  • the power supply path 11 and the return path 12 form a power supply path 15.
  • the power supply board 7a and the control board 7b are formed with grounding paths 13a and 13b running in parallel in the vicinity of the power feeding path 11 and the return path 12, respectively.
  • the power supply path 11, return path 12, ground path 13a and 13b formed on the power supply board 7a and the power supply path 11, return path 12, ground path 13a and 13b formed on the control board 7b are connected to the inter-board connector 40. Each is connected.
  • the grounding path 13a formed on the power supply board 7a is electrically connected to the convex portion 8a of the heat sink 8 via the screw 41 and the metal spacer 42 at a position closer to the power supply circuit 4 than the center of the grounding path 13a.
  • the grounding path 13b is electrically connected to the convex portion 8a of the heat sink 8 via the screw 41 and the metal spacer 42 at a position closer to the power supply circuit 4 than the center of the grounding path 13b.
  • FIG. 13 is a cross-sectional view of the rectifier along the line AA shown in FIG.
  • a power supply path 11 for supplying power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11 are formed on the surface of the power supply board 7a.
  • a grounding path 13a and a grounding path 13b running in parallel in the vicinity of the power feeding path 11 and the return path 12 are formed, respectively.
  • a power feeding path 11, a return path 12, a grounding path 13a, and a grounding path 13b are formed on the back surface of the control board 7b.
  • FIG. 14 is a top view of the power supply board 7a.
  • FIG. 15 is a top view of the control board 7b.
  • the distance between the power supply path 11 and the ground path 13a formed on the power supply board 7a and the control board 7b, respectively, is set to a distance at which electromagnetic coupling is possible.
  • the distance between the return path 12 and the ground path 13b formed on the power supply board 7a and the control board 7b, respectively, is set to a distance at which electromagnetic coupling is possible.
  • the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground paths 13a and 13b with low impedance. It flows through the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
  • the rectifier of the present embodiment since the electronic circuit board is composed of two boards, a power supply board and a control board, the occupied area is reduced. Further, in the rectifier device of the present embodiment, since the power supply board and the control board are fixed by metal spacers, the structure is stable against vibration and the like.
  • the ground path formed on the power supply board is connected to the ground potential only at a position closer to the power supply circuit than the center of the ground path, but in addition to the connection position, other ground paths are connected. In position, the ground path may be connected to the ground potential.

Abstract

The objective of the present invention is to provide a rectifying device capable of suppressing voltage variations or current variations that result from common mode electromagnetic noise in electric power supplied from an electric power supply circuit to a control circuit. A rectifying device (1) is provided with a rectifier circuit (2), a control circuit (3) for controlling the rectifier circuit, an electric power supply circuit (4) for supplying electric power to the control circuit, an electric power supply path (15) joining the electric power supply circuit and the control circuit, and a grounding path (13) running in parallel with the electric power supply path, wherein a gap between the electric power supply path and the grounding path is set to a distance allowing electromagnetic coupling between the electric power supply path and the grounding path, and the grounding path is connected to a ground potential in a position closer to the electric power supply circuit than the center of the grounding path.

Description

整流装置Rectifier
 本願は、整流装置に関する。 This application relates to a rectifier.
 モータなどの電動機、テレビ受像機など家電機器などにおいて、インバータ、コンバータなどの整流装置が幅広く用いられている。整流装置は、スイッチング素子を有する整流回路と、この整流回路を制御する制御回路と、この制御回路に電力を供給する電力供給回路とを備えている。このように構成された整流装置に外部から電磁ノイズが侵入した場合、電力供給回路から制御回路に供給される電力の電圧変動あるいは電流変動を誘起して、制御回路の誤動作の原因となっていた。 Rectifiers such as inverters and converters are widely used in electric motors and other electric appliances and home appliances such as television receivers. The rectifier device includes a rectifier circuit having a switching element, a control circuit for controlling the rectifier circuit, and a power supply circuit for supplying electric power to the control circuit. When electromagnetic noise invades the rectifier device configured in this way from the outside, it induces voltage fluctuations or current fluctuations of the power supplied from the power supply circuit to the control circuit, which causes malfunction of the control circuit. ..
 この問題に対処する従来の整流装置として、制御基板に電力供給回路の基準電位となる基準グラウンドと、接地電位となるフレームグラウンドとを配置し、基準グラウンドとフレームグラウンドとをコンデンサで接続したインバータ装置が開示されていた(例えば、特許文献1参照)。 As a conventional rectifier to deal with this problem, an inverter device in which a reference ground serving as a reference potential of a power supply circuit and a frame ground serving as a ground potential are arranged on a control board, and the reference ground and the frame ground are connected by a capacitor. Was disclosed (see, for example, Patent Document 1).
特開2011-139551号公報Japanese Unexamined Patent Publication No. 2011-139551
 外部から電力が供給される電力供給回路には電源配線とアース配線とが接続されているが、これらの配線を介して整流装置にコモンモードの電磁ノイズが侵入する場合がある。従来の整流装置においては、基準グラウンドに外部から侵入した電磁ノイズをフレームグラウンドを経由して接地電位に逃がすことができる。しかしながら、電源配線を介して侵入するコモンモードの電磁ノイズに対してはそのノイズを逃がす経路がない。そのため、従来の整流装置においては、電力供給回路から制御回路に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができないという問題あった。 The power supply wiring and the ground wiring are connected to the power supply circuit to which power is supplied from the outside, but common mode electromagnetic noise may enter the rectifier through these wirings. In the conventional rectifier, electromagnetic noise that has entered the reference ground from the outside can be released to the ground potential via the frame ground. However, there is no way to escape the common mode electromagnetic noise that enters through the power supply wiring. Therefore, in the conventional rectifier, there is a problem that the voltage fluctuation or the current fluctuation caused by the common mode electromagnetic noise of the power supplied from the power supply circuit to the control circuit cannot be suppressed.
 本願は、上述のような課題を解決するためになされたもので、電力供給回路から制御回路に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができる整流装置を提供することを目的とする。 This application has been made to solve the above-mentioned problems, and is a rectification capable of suppressing voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of power supplied from a power supply circuit to a control circuit. The purpose is to provide the device.
 本願の整流装置は、整流回路と、この整流回路を制御する制御回路と、この制御回路に電力を供給する電力供給回路と、電力供給回路と制御回路とをつなぐ電力供給経路と、電力供給経路に並走する接地経路とを備えており、電力供給経路と接地経路との間隔は、電力供給経路と接地経路とが電磁結合が可能な距離に設定されており、接地経路は、接地経路の中央よりも電力供給回路に近い位置で接地電位に接続されている。 The rectifying device of the present application includes a rectifying circuit, a control circuit that controls the rectifying circuit, a power supply circuit that supplies power to the control circuit, a power supply path that connects the power supply circuit and the control circuit, and a power supply path. It is equipped with a grounding path that runs in parallel, and the distance between the power supply path and the grounding path is set to a distance that allows electromagnetic coupling between the power supply path and the grounding path, and the grounding path is the grounding path. It is connected to the ground potential at a position closer to the power supply circuit than the center.
 本願の整流装置は、電力供給経路と接地経路との間隔が、電力供給経路と接地経路とが電磁結合が可能な距離に設定されており、接地経路は、接地経路の中央よりも電力供給回路に近い位置で接地電位に接続されているので、電力供給回路から制御回路に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができる。 In the rectifier of the present application, the distance between the power supply path and the ground path is set to a distance at which the power supply path and the ground path can be electromagnetically coupled, and the ground path is a power supply circuit rather than the center of the ground path. Since it is connected to the ground potential at a position close to, it is possible to suppress voltage fluctuations or current fluctuations caused by common mode electromagnetic noise of the power supplied from the power supply circuit to the control circuit.
実施の形態1に係る整流装置の斜視図である。It is a perspective view of the rectifying apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る整流装置の断面図である。It is sectional drawing of the rectifying apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る整流装置の上面図である。It is a top view of the rectifier device which concerns on Embodiment 1. FIG. 実施の形態1に係る整流装置の回路図である。It is a circuit diagram of the rectifier device which concerns on Embodiment 1. FIG. 実施の形態1における電磁ノイズの伝搬経路を示す説明図である。It is explanatory drawing which shows the propagation path of the electromagnetic noise in Embodiment 1. FIG. 実施の形態1における電磁ノイズの伝搬経路を示す説明図である。It is explanatory drawing which shows the propagation path of the electromagnetic noise in Embodiment 1. FIG. 実施の形態2に係る整流装置の上面図である。It is a top view of the rectifier device which concerns on Embodiment 2. FIG. 実施の形態2に係る整流装置の断面図である。It is sectional drawing of the rectifying apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る整流装置の断面図である。It is sectional drawing of the rectifying apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る整流装置の上面図である。It is a top view of the rectifier device which concerns on Embodiment 3. FIG. 実施の形態3に係る整流装置の回路図である。It is a circuit diagram of the rectifier device which concerns on Embodiment 3. 実施の形態4に係る整流装置の斜視図である。It is a perspective view of the rectifying apparatus which concerns on Embodiment 4. FIG. 実施の形態4に係る整流装置の断面図である。It is sectional drawing of the rectifying apparatus which concerns on Embodiment 4. FIG. 実施の形態4の電源基板の上面図である。It is a top view of the power supply board of Embodiment 4. 実施の形態4の制御基板の上面図である。It is a top view of the control board of Embodiment 4.
 以下、本願を実施するための実施の形態に係る整流装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。 Hereinafter, the rectifying device according to the embodiment for carrying out the present application will be described in detail with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、実施の形態1に係る整流装置の斜視図である。本実施の形態の整流装置は、例えばインバータ装置である。図1に示すように、この整流装置1は、インバータ回路である整流回路2と、この整流回路2を制御する制御回路3と、この制御回路3に電力を供給する電力供給回路4とを備えている。電力供給回路4には、電源端子台5を経由して外部の電源配線6から電力が供給される。整流回路2、制御回路3、電力供給回路4および電源端子台5は、単層基板の電子回路基板7に実装されている。整流回路2は、電子回路基板7に実装された面と反対側の面でヒートシンク8に密着されている。ヒートシンク8には、接地配線9が電気的に接続されており、ヒートシンク8は、接地電位に設定される。
Embodiment 1.
FIG. 1 is a perspective view of the rectifying device according to the first embodiment. The rectifying device of this embodiment is, for example, an inverter device. As shown in FIG. 1, the rectifier 1 includes a rectifier circuit 2 which is an inverter circuit, a control circuit 3 which controls the rectifier circuit 2, and a power supply circuit 4 which supplies electric power to the control circuit 3. ing. Power is supplied to the power supply circuit 4 from the external power supply wiring 6 via the power supply terminal block 5. The rectifier circuit 2, the control circuit 3, the power supply circuit 4, and the power supply terminal block 5 are mounted on the electronic circuit board 7 of the single-layer board. The rectifier circuit 2 is in close contact with the heat sink 8 on a surface opposite to the surface mounted on the electronic circuit board 7. A ground wire 9 is electrically connected to the heat sink 8, and the heat sink 8 is set to a ground potential.
 図2は、図1に示すA-A線に沿う整流装置の断面図である。図2に示すように、電子回路基板7の裏面には、電力供給回路4から制御回路3へ電力を供給する給電経路11とこの給電経路11に対して基準電位となるリターン経路12とが形成されている。給電経路11とリターン経路12とで電力供給経路15を構成している。さらに、電子回路基板7の裏面には、給電経路11およびリターン経路12に近接して並走する接地経路13aおよび13bがそれぞれ形成されている。これらの給電経路11、リターン経路12および接地経路13a、13bは、電子回路基板7の裏面に形成された配線パターンで構成されている。ヒートシンク8の表面には凸部8aが形成されており、この凸部8aにはネジ穴が設けられている。接地経路13a、13bは、凸部8aにネジ止めされており、接地電位に設定されたヒートシンク8と電気的に接続されている。 FIG. 2 is a cross-sectional view of the rectifier along the line AA shown in FIG. As shown in FIG. 2, on the back surface of the electronic circuit board 7, a power supply path 11 for supplying power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11 are formed. Has been done. The power supply path 11 and the return path 12 form a power supply path 15. Further, on the back surface of the electronic circuit board 7, grounding paths 13a and 13b running in parallel in the vicinity of the feeding path 11 and the return path 12 are formed, respectively. The power supply path 11, the return path 12, and the ground paths 13a and 13b are formed of a wiring pattern formed on the back surface of the electronic circuit board 7. A convex portion 8a is formed on the surface of the heat sink 8, and the convex portion 8a is provided with a screw hole. The ground paths 13a and 13b are screwed to the convex portions 8a and are electrically connected to the heat sink 8 set to the ground potential.
 図3は、図1に示す整流装置の上面図である。図3に示すように、給電経路11とリターン経路12との外側に近接して並走する接地経路13a、13bがそれぞれ形成されている。このとき、給電経路11と接地経路13aとの間隔は、電磁結合が可能な距離に設定されている。同様に、リターン経路12と接地経路13bとの間隔は、電磁結合が可能な距離に設定されている。ここで、電磁結合とは、2つの系が電磁誘導または電磁気力によって結ばれていることを意味する。また、接地経路13aは、接地経路13aの中央よりも電力供給回路4に近い位置においてネジ14aでヒートシンク8に接続されている。ネジ14aは、ヒートシンク8のネジ穴が設けられた凸部8aに締結されている。同様に、接地経路13bは、接地経路13bの中央よりも電力供給回路4に近い位置においてネジ14bでヒートシンク8に接続されている。したがって、接地経路13a、13bは、中央よりも電力供給回路4に近い位置において接地電位に接続されている。 FIG. 3 is a top view of the rectifier shown in FIG. As shown in FIG. 3, grounding paths 13a and 13b are formed so as to run in parallel near the outside of the feeding path 11 and the return path 12, respectively. At this time, the distance between the power feeding path 11 and the grounding path 13a is set to a distance at which electromagnetic coupling is possible. Similarly, the distance between the return path 12 and the ground path 13b is set to a distance at which electromagnetic coupling is possible. Here, electromagnetic coupling means that two systems are connected by electromagnetic induction or electromagnetic force. Further, the grounding path 13a is connected to the heat sink 8 by a screw 14a at a position closer to the power supply circuit 4 than the center of the grounding path 13a. The screw 14a is fastened to the convex portion 8a provided with the screw hole of the heat sink 8. Similarly, the ground path 13b is connected to the heat sink 8 with a screw 14b at a position closer to the power supply circuit 4 than the center of the ground path 13b. Therefore, the ground paths 13a and 13b are connected to the ground potential at a position closer to the power supply circuit 4 than the center.
 図4は、本実施の形態の整流装置1の回路図である。図4に示すように、この整流装置1は、整流回路2と、この整流回路2を制御する制御回路3と、この制御回路3に電力を供給する電力供給回路4と、電力供給回路4と制御回路3とをつなぐ給電経路11およびリターン経路12と、給電経路11に並走し、給電経路11と電磁結合した接地経路13aと、リターン経路12に並走し、リターン経路12と電磁結合した接地経路13bとを備えている。また、接地経路13aは、接地経路13aの中央よりも電力供給回路4に近い位置で接地電位に接続されている。同様に、接地経路13bは、接地経路13bの中央よりも電力供給回路4に近い位置で接地電位に接続されている。 FIG. 4 is a circuit diagram of the rectifier 1 of the present embodiment. As shown in FIG. 4, the rectifier 1 includes a rectifier circuit 2, a control circuit 3 that controls the rectifier circuit 2, a power supply circuit 4 that supplies power to the control circuit 3, and a power supply circuit 4. The power supply path 11 and the return path 12 connecting the control circuit 3 and the grounding path 13a that runs parallel to the power supply path 11 and is electromagnetically coupled to the power supply path 11 and parallel to the return path 12 and electromagnetically coupled to the return path 12. It is provided with a grounding path 13b. Further, the ground path 13a is connected to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13a. Similarly, the ground path 13b is connected to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13b.
 つぎに、本実施の形態の整流装置1の動作について説明する。図5は、比較のための接地経路13a、13bを備えていない整流装置の電磁ノイズの伝搬経路を示す説明図である。図6は、本実施の形態の接地経路13a、13bを備えた整流装置の電磁ノイズの伝搬経路を示す説明図である。図5および図6において、外部の電磁ノイズ源21からコモンモードの電磁ノイズが侵入した場合の電磁ノイズの伝搬経路を破線矢印22で示している。また、電子回路基板7に形成された配線パターンは、寄生インダクタンス成分をもつため、図5および図6において、給電経路11およびリターン経路12がもつ寄生インダクタンス成分23を示している。 Next, the operation of the rectifying device 1 of the present embodiment will be described. FIG. 5 is an explanatory diagram showing a propagation path of electromagnetic noise of a rectifier device not provided with ground paths 13a and 13b for comparison. FIG. 6 is an explanatory diagram showing a propagation path of electromagnetic noise of the rectifier device provided with the grounding paths 13a and 13b of the present embodiment. In FIGS. 5 and 6, the propagation path of the electromagnetic noise when the common mode electromagnetic noise invades from the external electromagnetic noise source 21 is indicated by the broken line arrow 22. Further, since the wiring pattern formed on the electronic circuit board 7 has a parasitic inductance component, the parasitic inductance component 23 of the feeding path 11 and the return path 12 is shown in FIGS. 5 and 6.
 図5は、接地経路13a、13bを備えていない整流装置において、コモンモードの電磁ノイズが電力供給回路4に侵入した場合の電磁ノイズの伝搬経路を示している。給電経路11およびリターン経路12は寄生インダクタンス成分23をもつため、給電経路11およびリターン経路12に高周波のノイズ電流が流れることで、コモンモード電圧が誘起される。誘起されたコモンモード電圧が制御回路3に供給されると誤動作の要因となる。また、給電経路11およびリターン経路12に高周波のノイズ電流が流れることで、コモンモード磁束24が発生する。 FIG. 5 shows a propagation path of electromagnetic noise when common mode electromagnetic noise invades the power supply circuit 4 in a rectifier device that does not have grounding paths 13a and 13b. Since the feeding path 11 and the return path 12 have a parasitic inductance component 23, a high-frequency noise current flows through the feeding path 11 and the return path 12, and a common mode voltage is induced. If the induced common mode voltage is supplied to the control circuit 3, it causes a malfunction. Further, the common mode magnetic flux 24 is generated by the high frequency noise current flowing through the feeding path 11 and the return path 12.
 図6は、接地経路13a、13bを備えた本実施の形態の整流装置において、コモンモードの電磁ノイズが電力供給回路4に侵入した場合の電磁ノイズの伝搬経路を示している。給電経路11およびリターン経路12は寄生インダクタンス成分23をもつ。同様に、給電経路11およびリターン経路12の外側に近接して並走する接地経路13a、13bも寄生インダクタンス成分25をもつ。さらに、給電経路11と接地経路13aとは電磁結合しており、リターン経路12と接地経路13bとはそれぞれ電磁結合していることから、給電経路11と接地経路13aとの間、およびリターン経路12と接地経路13bとの間には、寄生キャパシタンス成分26が存在する。 FIG. 6 shows the propagation path of the electromagnetic noise when the common mode electromagnetic noise invades the power supply circuit 4 in the rectifier device of the present embodiment provided with the ground paths 13a and 13b. The feeding path 11 and the return path 12 have a parasitic inductance component 23. Similarly, the grounding paths 13a and 13b running in parallel near the outside of the feeding path 11 and the return path 12 also have the parasitic inductance component 25. Further, since the power feeding path 11 and the grounding path 13a are electromagnetically coupled and the return path 12 and the grounding path 13b are electromagnetically coupled to each other, the feeding path 11 and the grounding path 13a and the return path 12 are respectively. A parasitic capacitance component 26 exists between the ground and the ground path 13b.
 図6に示すように、本実施の形態の整流装置においては、給電経路11およびリターン経路12に流れる高周波のノイズ電流は、寄生キャパシタンス成分26を経由して接地経路13a、13bに流れる。接地経路13a、13bに流れ込んだ電磁ノイズの伝搬経路を点線矢印27で示している。接地経路13a、13bは、その中央よりも電力供給回路4に近い位置で接地電位に接続されているので、接地経路13a、13bに流れ込んだノイズ電流は、給電経路11およびリターン経路12を流れるノイズ電流と反対側の方向に流れる。接地経路13a、13bに高周波のノイズ電流が流れることで、磁束28が発生する。この磁束28の磁力線の方向と、給電経路11およびリターン経路12で発生するコモンモード磁束24の磁力線の方向とは反対となるため、磁束28とコモンモード磁束24とは互いに打ち消しあう。そのため、給電経路11およびリターン経路12にコモンモードのノイズ電流で発生するインピーダンスを抑制することができる。給電経路11およびリターン経路12に侵入した高周波のノイズ電流は、低インピーダンスで接地経路13a、13bを経由して接地電位に設定されたヒートシンク8に流れる。その結果、給電経路11およびリターン経路12におけるコモンモード電圧の誘起を抑制し、制御回路3の誤動作を防止することができる。 As shown in FIG. 6, in the rectifier device of the present embodiment, the high-frequency noise current flowing through the feeding path 11 and the return path 12 flows through the grounding paths 13a and 13b via the parasitic capacitance component 26. The propagation path of the electromagnetic noise that has flowed into the ground paths 13a and 13b is indicated by the dotted arrow 27. Since the ground paths 13a and 13b are connected to the ground potential at a position closer to the power supply circuit 4 than the center thereof, the noise current flowing into the ground paths 13a and 13b is the noise flowing through the power supply path 11 and the return path 12. It flows in the direction opposite to the current. A magnetic flux 28 is generated by a high-frequency noise current flowing through the ground paths 13a and 13b. Since the direction of the magnetic flux lines of the magnetic flux 28 is opposite to the direction of the magnetic flux lines of the common mode magnetic flux 24 generated in the feeding path 11 and the return path 12, the magnetic flux 28 and the common mode magnetic flux 24 cancel each other out. Therefore, it is possible to suppress the impedance generated by the noise current in the common mode in the feeding path 11 and the return path 12. The high-frequency noise current that has entered the power supply path 11 and the return path 12 flows to the heat sink 8 set to the ground potential via the ground paths 13a and 13b with low impedance. As a result, the induction of the common mode voltage in the feeding path 11 and the return path 12 can be suppressed, and the malfunction of the control circuit 3 can be prevented.
 上述のように、本実施の形態の整流装置においては、電力供給回路を介して給電経路11およびリターン経路12に侵入した高周波のノイズ電流は、低インピーダンスで接地経路13a、13bを経由して接地電位に設定されたヒートシンク8に流れる。そのため、電力供給回路4から制御回路3に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができる。 As described above, in the rectifier device of the present embodiment, the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit is grounded with low impedance via the ground paths 13a and 13b. It flows to the heat sink 8 set to the electric potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
 なお、本実施の形態において、接地経路13a、13bはその中央よりも電力供給回路4に近い位置のみで接地電位に接続されていたが、その接続位置に加えて他の位置で接地経路を接地電位に接続してもよい。また、整流装置してインバータ回路を備えたインバータ装置の例を示したが、コンバータ回路を備えたコンバータ装置であってもよい。 In the present embodiment, the ground paths 13a and 13b are connected to the ground potential only at a position closer to the power supply circuit 4 than the center thereof, but the ground path is grounded at another position in addition to the connection position. It may be connected to a potential. Further, although an example of an inverter device having an inverter circuit as a rectifier is shown, a converter device having a converter circuit may be used.
実施の形態2.
 図7は、実施の形態2に係る整流装置の上面図である。図8は、図7に示すA-A線に沿う整流装置の断面図である。本実施の形態の整流装置は、電子回路基板7に多層基板を用いて、接地経路を多層基板の内部の配線層に形成したものである。それ以外の構成は、実施の形態1と同様である。
Embodiment 2.
FIG. 7 is a top view of the rectifying device according to the second embodiment. FIG. 8 is a cross-sectional view of the rectifying device along the line AA shown in FIG. In the rectifier of the present embodiment, a multilayer board is used for the electronic circuit board 7, and a ground path is formed in the wiring layer inside the multilayer board. Other configurations are the same as those in the first embodiment.
 図8に示すように、電子回路基板7は多層基板であり、絶縁性の誘電体層29とこの誘電体層29に挟まれた内部の配線層を備えている。電子回路基板7の裏面には、電力供給回路4から制御回路3へ電力を供給する給電経路11とこの給電経路11に対して基準電位となるリターン経路12とが形成されている。給電経路11とリターン経路12とで電力供給経路15を構成している。さらに、電子回路基板7の内部の配線層には、給電経路11およびリターン経路12に近接して並走する接地経路13aおよび13bがそれぞれ形成されている。給電経路11と接地経路13aとの間隔は、誘電体層29を介して電磁結合が可能な距離に設定されている。同様に、リターン経路12と接地経路13bとの間隔は、誘電体層29を介して電磁結合が可能な距離に設定されている。また、図7に示すように、接地経路13aは、接地経路13aの中央よりも電力供給回路4に近い位置で接地電位に設定されたヒートシンク8に接続されている。同様に、接地経路13bは、接地経路13bの中央よりも電力供給回路4に近い位置で接地電位に設定されたヒートシンク8に接続されている。 As shown in FIG. 8, the electronic circuit board 7 is a multilayer board, and includes an insulating dielectric layer 29 and an internal wiring layer sandwiched between the dielectric layers 29. On the back surface of the electronic circuit board 7, a power supply path 11 for supplying electric power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11 are formed. The power supply path 11 and the return path 12 form a power supply path 15. Further, in the wiring layer inside the electronic circuit board 7, grounding paths 13a and 13b running in parallel in the vicinity of the feeding path 11 and the return path 12 are formed, respectively. The distance between the power feeding path 11 and the grounding path 13a is set to a distance at which electromagnetic coupling is possible via the dielectric layer 29. Similarly, the distance between the return path 12 and the ground path 13b is set to a distance at which electromagnetic coupling is possible via the dielectric layer 29. Further, as shown in FIG. 7, the grounding path 13a is connected to the heat sink 8 set to the grounding potential at a position closer to the power supply circuit 4 than the center of the grounding path 13a. Similarly, the ground path 13b is connected to the heat sink 8 set to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13b.
 電子回路基板7に多層基板を用いることで、給電経路11と接地経路13a、およびリターン経路12と接地経路13bとが誘電体層29を介して配置されているので、この誘電体層29を挟んで寄生キャパシタンス成分を形成することができる。 By using a multilayer board for the electronic circuit board 7, the feeding path 11 and the grounding path 13a, and the return path 12 and the grounding path 13b are arranged via the dielectric layer 29, so that the dielectric layer 29 is sandwiched. Can form a parasitic capacitance component.
 このように構成された整流装置においては、実施の形態1と同様に、電力供給回路を介して給電経路11およびリターン経路12に侵入した高周波のノイズ電流は、低インピーダンスで接地経路13a、13bを経由して接地電位に設定されたヒートシンク8に流れる。そのため、電力供給回路4から制御回路3に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができる。 In the rectifier device configured in this way, as in the first embodiment, the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground paths 13a and 13b with low impedance. It flows through the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
 なお、多層基板において、誘電体層29の厚さが薄い方が寄生キャパシタンス成分の静電容量が大きくなる。したがって、誘電体層29の薄い多層基板を用いることで寄生キャパシタンス成分の静電容量を大きくできるため、より低インピーダンスで電磁ノイズをヒートシンク8に逃がすことができる。 In the multilayer board, the thinner the dielectric layer 29, the larger the capacitance of the parasitic capacitance component. Therefore, by using a multilayer substrate having a thin dielectric layer 29, the capacitance of the parasitic capacitance component can be increased, so that electromagnetic noise can be released to the heat sink 8 with a lower impedance.
 図9は、本実施の形態の別の整流装置の断面図である。図9に示す整流装置は、図8に示す整流装置において、接地経路13aおよび13bをひとつの接地経路13としたものである。電子回路基板7の内部の配線層には、給電経路11およびリターン経路12に近接して並走するひとつの接地経路13が形成されている。給電経路11およびリターン経路12と接地経路13との間隔は、誘電体層29を介して電磁結合が可能な間隔に設定されている。また、接地経路13は、接地経路13の中央よりも電力供給回路4に近い位置で接地電位に接続されている。 FIG. 9 is a cross-sectional view of another rectifying device according to the present embodiment. In the rectifier device shown in FIG. 8, the rectifier device shown in FIG. 9 has the grounding paths 13a and 13b as one grounding path 13. In the wiring layer inside the electronic circuit board 7, one grounding path 13 that runs in parallel in the vicinity of the feeding path 11 and the return path 12 is formed. The distance between the power supply path 11 and the return path 12 and the ground path 13 is set to a distance at which electromagnetic coupling is possible via the dielectric layer 29. Further, the ground path 13 is connected to the ground potential at a position closer to the power supply circuit 4 than the center of the ground path 13.
 このように構成された整流装置においても、実施の形態1と同様に、電力供給回路を介して給電経路11およびリターン経路12に侵入した高周波のノイズ電流は、低インピーダンスで接地経路13を経由して接地電位に設定されたヒートシンク8に流れる。そのため、電力供給回路4から制御回路3に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができる。 Even in the rectifier device configured in this way, the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground path 13 with low impedance, as in the first embodiment. It flows to the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
 なお、本実施の形態において、給電経路およびリターン経路を電子回路基板の裏面に形成しているが、電子回路基板に多層基板を用いた場合は、給電経路およびリターン経路を接地経路の形成された配線層と異なる内部の配線層に形成してもよい。このとき、給電経路およびリターン経路が形成された配線層と接地経路が形成された配線層とは1層の誘電体層で挟まれた隣接する配線層であることが好ましい。また、給電経路とリターン経路とは必ずしも同じ配線層に形成されている必要はなく、接地経路が形成された配線層を挟んだ上下の配線層にそれぞれ形成されていてもよい。さらに、電子回路基板に多層基板を用いた場合であっても、給電経路、リターン経路および接地経路を同じ層に形成してもよい。 In the present embodiment, the power supply path and the return path are formed on the back surface of the electronic circuit board, but when a multilayer board is used for the electronic circuit board, the power supply path and the return path are formed as a ground path. It may be formed in an internal wiring layer different from the wiring layer. At this time, it is preferable that the wiring layer in which the feeding path and the return path are formed and the wiring layer in which the grounding path is formed are adjacent wiring layers sandwiched between one dielectric layer. Further, the power supply path and the return path do not necessarily have to be formed in the same wiring layer, and may be formed in the upper and lower wiring layers sandwiching the wiring layer in which the grounding path is formed. Further, even when a multilayer board is used as the electronic circuit board, the power supply path, the return path, and the ground path may be formed in the same layer.
実施の形態3.
 図10は、実施の形態3に係る整流装置の上面図である。図11は、本実施の形態の整流装置の回路図である。本実施の形態の整流装置は、実施の形態1の整流装置と基本的な構成は同じであるが、給電経路11と接地経路13aとの間、およびリターン経路12と接地経路13bとの間にそれぞれコンデンサ30が接続されている点が異なる。給電経路11、リターン経路12、接地経路13aおよび接地経路13bは、電子回路基板7の裏面に形成されているが、コンデンサ30は、基板の表面に実装されている。コンデンサ30の静電容量は、コモンモードの電磁ノイズの周波数帯域で低インピーダンスとなる値に設定することが好ましい。なお、コンデンサ30は複数個配置してもよい。
Embodiment 3.
FIG. 10 is a top view of the rectifying device according to the third embodiment. FIG. 11 is a circuit diagram of the rectifier device of the present embodiment. The rectifier device of the present embodiment has the same basic configuration as the rectifier device of the first embodiment, but between the power supply path 11 and the ground path 13a, and between the return path 12 and the ground path 13b. The difference is that the capacitors 30 are connected to each. The power supply path 11, the return path 12, the ground path 13a, and the ground path 13b are formed on the back surface of the electronic circuit board 7, but the capacitor 30 is mounted on the front surface of the board. The capacitance of the capacitor 30 is preferably set to a value at which the impedance becomes low in the frequency band of the electromagnetic noise in the common mode. A plurality of capacitors 30 may be arranged.
 このように構成された整流装置においては、実施の形態1と同様に、電力供給回路を介して給電経路11およびリターン経路12に侵入した高周波のノイズ電流は、低インピーダンスで接地経路13a、13bを経由して接地電位に設定されたヒートシンク8に流れる。そのため、電力供給回路4から制御回路3に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができる。 In the rectifier device configured in this way, as in the first embodiment, the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground paths 13a and 13b with low impedance. It flows through the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
 また、給電経路11と接地経路13aとの間、およびリターン経路12と接地経路13bとの間にそれぞれコンデンサ30が接続されているので、電力供給回路を介さずに給電経路11およびリターン経路12に外部から侵入した高周波のノイズ電流をコンデンサ30で接地経路13aおよび接地経路13bに逃がすことができる。その結果、電力供給回路4から制御回路3に供給される電力の外部から侵入した高周波のノイズに起因する電圧変動あるいは電流変動をさらに抑制することができる。 Further, since the capacitor 30 is connected between the power supply path 11 and the ground path 13a and between the return path 12 and the ground path 13b, respectively, the power supply path 11 and the return path 12 do not go through the power supply circuit. The high-frequency noise current that has entered from the outside can be released to the ground path 13a and the ground path 13b by the capacitor 30. As a result, voltage fluctuations or current fluctuations caused by high-frequency noise invading from the outside of the power supplied from the power supply circuit 4 to the control circuit 3 can be further suppressed.
実施の形態4.
 図12は、実施の形態4に係る整流装置の斜視図である。本実施の形態の整流装置は、電子回路基板を電源基板と制御基板との2枚の基板で構成したものである。
 図12に示すように、本実施の形態の整流装置1は、電源基板7aと制御基板7bとが重ねて配置されている。電源基板7aには、電力供給回路4と電源端子台5とが実装されている。制御基板7bには、整流回路2と制御回路3とが実装されている。整流回路2は、制御基板7bに実装された面と反対の面でヒートシンク8に密着されている。ヒートシンク8には、接地配線9が電気的に接続されており、ヒートシンク8は、接地電位に設定される。
Embodiment 4.
FIG. 12 is a perspective view of the rectifying device according to the fourth embodiment. In the rectifying device of the present embodiment, the electronic circuit board is composed of two boards, a power supply board and a control board.
As shown in FIG. 12, in the rectifying device 1 of the present embodiment, the power supply board 7a and the control board 7b are arranged so as to overlap each other. A power supply circuit 4 and a power supply terminal block 5 are mounted on the power supply board 7a. A rectifier circuit 2 and a control circuit 3 are mounted on the control board 7b. The rectifier circuit 2 is in close contact with the heat sink 8 on a surface opposite to the surface mounted on the control board 7b. A ground wire 9 is electrically connected to the heat sink 8, and the heat sink 8 is set to a ground potential.
 電源基板7aおよび制御基板7bには、電力供給回路4から制御回路3へ電力を供給する給電経路11とこの給電経路11に対して基準電位となるリターン経路12とが形成されている。給電経路11とリターン経路12とで電力供給経路15を構成している。さらに、電源基板7aおよび制御基板7bには、給電経路11およびリターン経路12に近接して並走する接地経路13aおよび13bがそれぞれ形成されている。電源基板7aに形成された給電経路11、リターン経路12、接地経路13aおよび13bと、制御基板7bに形成された給電経路11、リターン経路12、接地経路13aおよび13bとは、基板間コネクタ40でそれぞれ接続されている。 The power supply board 7a and the control board 7b are formed with a power supply path 11 for supplying power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11. The power supply path 11 and the return path 12 form a power supply path 15. Further, the power supply board 7a and the control board 7b are formed with grounding paths 13a and 13b running in parallel in the vicinity of the power feeding path 11 and the return path 12, respectively. The power supply path 11, return path 12, ground path 13a and 13b formed on the power supply board 7a and the power supply path 11, return path 12, ground path 13a and 13b formed on the control board 7b are connected to the inter-board connector 40. Each is connected.
 電源基板7aに形成された接地経路13aは、接地経路13aの中央よりも電力供給回路4に近い位置でネジ41と金属スペーサ42とを介して、ヒートシンク8の凸部8aと電気的に接続されている。同様に、接地経路13bは、接地経路13bの中央よりも電力供給回路4に近い位置でネジ41と金属スペーサ42とを介して、ヒートシンク8の凸部8aと電気的に接続されている。 The grounding path 13a formed on the power supply board 7a is electrically connected to the convex portion 8a of the heat sink 8 via the screw 41 and the metal spacer 42 at a position closer to the power supply circuit 4 than the center of the grounding path 13a. ing. Similarly, the grounding path 13b is electrically connected to the convex portion 8a of the heat sink 8 via the screw 41 and the metal spacer 42 at a position closer to the power supply circuit 4 than the center of the grounding path 13b.
 図13は、図12に示すA-A線に沿う整流装置の断面図である。図13に示すように、電源基板7aの表面には、電力供給回路4から制御回路3へ電力を供給する給電経路11とこの給電経路11に対して基準電位となるリターン経路12とが形成されている。また、電源基板7aの表面には、給電経路11およびリターン経路12に近接して並走する接地経路13aおよび接地経路13bがそれぞれ形成されている。さらに、制御基板7bの裏面には、給電経路11、リターン経路12、接地経路13aおよび接地経路13bが形成されている。 FIG. 13 is a cross-sectional view of the rectifier along the line AA shown in FIG. As shown in FIG. 13, on the surface of the power supply board 7a, a power supply path 11 for supplying power from the power supply circuit 4 to the control circuit 3 and a return path 12 serving as a reference potential for the power supply path 11 are formed. ing. Further, on the surface of the power supply board 7a, a grounding path 13a and a grounding path 13b running in parallel in the vicinity of the power feeding path 11 and the return path 12 are formed, respectively. Further, a power feeding path 11, a return path 12, a grounding path 13a, and a grounding path 13b are formed on the back surface of the control board 7b.
 図14は、電源基板7aの上面図である。また、図15は、制御基板7bの上面図である。電源基板7aおよび制御基板7bにそれぞれ形成された給電経路11と接地経路13aとの間隔は、電磁結合が可能な距離に設定されている。同様に、電源基板7aおよび制御基板7bにそれぞれ形成されたリターン経路12と接地経路13bとの間隔は、電磁結合が可能な距離に設定されている。 FIG. 14 is a top view of the power supply board 7a. Further, FIG. 15 is a top view of the control board 7b. The distance between the power supply path 11 and the ground path 13a formed on the power supply board 7a and the control board 7b, respectively, is set to a distance at which electromagnetic coupling is possible. Similarly, the distance between the return path 12 and the ground path 13b formed on the power supply board 7a and the control board 7b, respectively, is set to a distance at which electromagnetic coupling is possible.
 このように構成された整流装置においては、実施の形態1と同様に、電力供給回路を介して給電経路11およびリターン経路12に侵入した高周波のノイズ電流は、低インピーダンスで接地経路13a、13bを経由して接地電位に設定されたヒートシンク8に流れる。そのため、電力供給回路4から制御回路3に供給される電力のコモンモードの電磁ノイズに起因する電圧変動あるいは電流変動を抑制することができる。 In the rectifier device configured in this way, as in the first embodiment, the high-frequency noise current that has entered the power supply path 11 and the return path 12 via the power supply circuit passes through the ground paths 13a and 13b with low impedance. It flows through the heat sink 8 set to the ground potential. Therefore, it is possible to suppress voltage fluctuations or current fluctuations caused by common-mode electromagnetic noise of the power supplied from the power supply circuit 4 to the control circuit 3.
 また、本実施の形態の整流装置は、電子回路基板を電源基板と制御基板との2枚の基板で構成しているので、専有面積が小さくなる。さらに、本実施の形態の整流装置は、電源基板と制御基板とを金属スペーサで固定しているので、振動などに対して安定した構造となる。 Further, in the rectifier of the present embodiment, since the electronic circuit board is composed of two boards, a power supply board and a control board, the occupied area is reduced. Further, in the rectifier device of the present embodiment, since the power supply board and the control board are fixed by metal spacers, the structure is stable against vibration and the like.
 なお、本実施の形態においては、電源基板に形成された接地経路を、接地経路の中央よりも電力供給回路に近い位置のみで接地電位に接続しているが、その接続位置に加えて他の位置でも接地経路を接地電位に接続してもよい。 In the present embodiment, the ground path formed on the power supply board is connected to the ground potential only at a position closer to the power supply circuit than the center of the ground path, but in addition to the connection position, other ground paths are connected. In position, the ground path may be connected to the ground potential.
 本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although various exemplary embodiments are described in the present application, the various features, embodiments, and functions described in one or more embodiments are limited to the application of the particular embodiment. Rather, it can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1 整流装置、 2 整流回路、 3 制御回路、 4 電力供給回路、 5 電源端子台、 6 電源配線、 7 電子回路基板、 7a 電源基板、 7b 制御基板、 8 ヒートシンク、8a 凸部、 9 接地配線、 11 給電経路、 12 リターン経路、 13、13a、13b 接地経路、 14a、14b ネジ、 15 電力供給経路、 21 電磁ノイズ源、 23、25 寄生インダクタンス成分、 24 コモンモード磁束、 26 寄生キャパシタンス成分、 28 磁束、 29 誘電体層、 30 コンデンサ、 40 基板間コネクタ、 41 ネジ、 42 金属スペーサ。 1 rectifier, 2 rectifier circuit, 3 control circuit, 4 power supply circuit, 5 power terminal block, 6 power wiring, 7 electronic circuit board, 7a power board, 7b control board, 8 heat sink, 8a convex part, 9 ground wiring, 11 power supply path, 12 return path, 13, 13a, 13b ground path, 14a, 14b screw, 15 power supply path, 21 electromagnetic noise source, 23, 25 parasitic inductance component, 24 common mode magnetic flux, 26 parasitic capacitance component, 28 magnetic flux. , 29 dielectric layer, 30 capacitors, 40 board-to-board connectors, 41 screws, 42 metal spacers.

Claims (5)

  1.  整流回路と、
     この整流回路を制御する制御回路と、
     この制御回路に電力を供給する電力供給回路と、
     前記電力供給回路と前記制御回路とをつなぐ電力供給経路と、
     前記電力供給経路に並走する接地経路と
    を備えた整流装置であって、
    前記電力供給経路と前記接地経路との間隔は、前記電力供給経路と前記接地経路とが電磁結合が可能な距離に設定されており、
     前記接地経路は、前記接地経路の中央よりも前記電力供給回路に近い位置で接地電位に接続されている
    ことを特徴とする整流装置。
    Rectifier circuit and
    The control circuit that controls this rectifier circuit and
    The power supply circuit that supplies power to this control circuit and
    A power supply path connecting the power supply circuit and the control circuit,
    A rectifier having a grounding path running in parallel with the power supply path.
    The distance between the power supply path and the grounding path is set to a distance at which the power supply path and the grounding path can be electromagnetically coupled.
    A rectifier device characterized in that the grounding path is connected to a grounding potential at a position closer to the power supply circuit than the center of the grounding path.
  2.  前記整流装置は、多層基板を備え、
     前記電力供給経路は前記多層基板の1つの層に形成されており、前記接地経路は前記多層基板の他の層に形成されている
    ことを特徴とする請求項1に記載の整流装置。
    The rectifier comprises a multilayer substrate and
    The rectifier according to claim 1, wherein the power supply path is formed in one layer of the multilayer board, and the grounding path is formed in another layer of the multilayer board.
  3.  前記整流装置は、単層基板または多層基板を備え、
     前記電力供給経路および前記接地経路は前記単層基板または前記多層基板の同じ層に形成されている
    ことを特徴とする請求項1に記載の整流装置。
    The rectifier comprises a single layer substrate or a multilayer substrate.
    The rectifying device according to claim 1, wherein the power supply path and the grounding path are formed in the same layer of the single-layer substrate or the multilayer substrate.
  4.  前記電力供給経路と前記接地経路との間にコンデンサが接続されている
    ことを特徴とする請求項1から3のいずれか1項に記載の整流装置。
    The rectifier according to any one of claims 1 to 3, wherein a capacitor is connected between the power supply path and the ground path.
  5.  前記整流装置は、前記整流回路および前記制御回路を実装した制御基板と、前記電力供給回路を実装した電源基板とを備え、
     前記制御基板と前記電源基板とは重ねて配置されており、
     前記電力供給経路および前記接地経路は、前記制御基板および前記電源基板の両方に形成されており、
     前記電源基板に形成された前記接地経路が、前記接地経路の中央よりも前記電力供給回路に近い位置で接地電位に接続されている
    ことを特徴とする請求項1に記載の整流装置。
    The rectifier device includes a control board on which the rectifier circuit and the control circuit are mounted, and a power supply board on which the power supply circuit is mounted.
    The control board and the power supply board are arranged so as to overlap each other.
    The power supply path and the grounding path are formed on both the control board and the power supply board.
    The rectifier according to claim 1, wherein the grounding path formed on the power supply board is connected to the grounding potential at a position closer to the power supply circuit than the center of the grounding path.
PCT/JP2019/019216 2019-05-15 2019-05-15 Rectifying device WO2020230283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019216 WO2020230283A1 (en) 2019-05-15 2019-05-15 Rectifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019216 WO2020230283A1 (en) 2019-05-15 2019-05-15 Rectifying device

Publications (1)

Publication Number Publication Date
WO2020230283A1 true WO2020230283A1 (en) 2020-11-19

Family

ID=73289141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019216 WO2020230283A1 (en) 2019-05-15 2019-05-15 Rectifying device

Country Status (1)

Country Link
WO (1) WO2020230283A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322156A (en) * 1996-06-10 1998-12-04 Fuji Electric Co Ltd Noise filter for power inverter
JP2005278399A (en) * 2005-05-26 2005-10-06 Yokogawa Electric Corp Distribution constant structure
JP2011066822A (en) * 2009-09-18 2011-03-31 Fujitsu Ltd Filter and amplifier circuit
JP2017204724A (en) * 2016-05-11 2017-11-16 国立大学法人大阪大学 electric circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322156A (en) * 1996-06-10 1998-12-04 Fuji Electric Co Ltd Noise filter for power inverter
JP2005278399A (en) * 2005-05-26 2005-10-06 Yokogawa Electric Corp Distribution constant structure
JP2011066822A (en) * 2009-09-18 2011-03-31 Fujitsu Ltd Filter and amplifier circuit
JP2017204724A (en) * 2016-05-11 2017-11-16 国立大学法人大阪大学 electric circuit

Similar Documents

Publication Publication Date Title
CN107431470B (en) Substrate-type noise filter and electronic device
US8199522B2 (en) Printed circuit board
JP2012129443A (en) Printed circuit board
JP4558407B2 (en) Switching power supply
JP6066822B2 (en) Ground structure, control device, and control system
JP6873217B1 (en) Power converter
US20190140551A1 (en) Rectification module
JP4983906B2 (en) Electronic component built-in module
WO2020230283A1 (en) Rectifying device
JP2015185848A (en) Multilayer circuit board for induction heating assembly, and induction heating assembly including the same
JP2017011876A (en) Switching power source and isolator
JP2017034115A (en) Printed circuit board
JP6326803B2 (en) Coil substrate, winding component and power supply device
KR102318871B1 (en) Magnetic coupling device and flat panel display device including the same
US9253872B2 (en) Inductor assembly and circuit assembly
JPH11298097A (en) Printed wiring board
JP2006310435A (en) Multilayer printed board
WO2020217321A1 (en) Electric device
EP3731605A1 (en) Electric circuit arrangement for a power converter
JP4209904B2 (en) Multilayer board
JP7357710B2 (en) power converter
JP6399969B2 (en) Printed board
US11611278B2 (en) Power conversion circuit module
JP6439319B6 (en) Winding part and winding parts
JP6980059B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP