WO2020230234A1 - 制御システムおよびモータ制御装置 - Google Patents

制御システムおよびモータ制御装置 Download PDF

Info

Publication number
WO2020230234A1
WO2020230234A1 PCT/JP2019/018941 JP2019018941W WO2020230234A1 WO 2020230234 A1 WO2020230234 A1 WO 2020230234A1 JP 2019018941 W JP2019018941 W JP 2019018941W WO 2020230234 A1 WO2020230234 A1 WO 2020230234A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
frequency
control system
work
notch filter
Prior art date
Application number
PCT/JP2019/018941
Other languages
English (en)
French (fr)
Inventor
伸悟 川内
宗洋 村田
悟 井口
啓志 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980096173.9A priority Critical patent/CN113795796A/zh
Priority to PCT/JP2019/018941 priority patent/WO2020230234A1/ja
Priority to JP2019555713A priority patent/JP6639758B1/ja
Publication of WO2020230234A1 publication Critical patent/WO2020230234A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Definitions

  • the present invention relates to a control system and a motor control device that control industrial machinery such as machine tools.
  • Control devices that control the operation of industrial machinery such as machine tools generally employ a feedback control method.
  • the control device can stably follow the target value sent from the host controller and also respond to the influence of disturbance.
  • Patent Document 1 the physical quantity detected by the detecting means is acquired from the detecting means for detecting the physical quantity such as the position and current of the mechanical unit to be controlled, and the acquired physical quantity is obtained.
  • a control device that estimates the vibration frequency based on the above is disclosed.
  • the control device of Patent Document 1 suppresses vibration by setting the estimated vibration frequency in the notch filter as a cutoff frequency.
  • Some machine tools perform operations to hold objects to be held such as workpieces and tools.
  • the natural frequency may change as the state of the object to be held, for example, the state held by the work changes.
  • the method described in Patent Document 1 cannot detect the holding state of the work which is the holding object. Therefore, in the method described in Patent Document 1, the frequency range to be attenuated in the notch filter cannot be set to an appropriate value, and mechanical resonance may not be suppressed.
  • the present invention has been made in view of the above, and obtains a control system capable of suppressing mechanical resonance of a controlled object even when the natural frequency changes depending on the state of the object to be held.
  • the purpose is.
  • the control system includes a command generator that generates a command for controlling a machine tool capable of holding a holding object by feedback control, and a command. Is equipped with a notch filter that performs filtering processing.
  • the control system further includes a frequency determining unit that determines the cutoff frequency of the notch filter according to the information on the retained object, which is information indicating the characteristics and state of the retained object, and sets the determined cutoff frequency in the notch filter. ..
  • the control system according to the present invention has the effect of suppressing mechanical resonance of the controlled object even when the natural frequency changes according to the state of the object to be held.
  • the figure which shows the structural example of the filter generation part of Embodiment 1. A flowchart showing an example of the operation in the filter generation unit of the first embodiment.
  • FIG. 1 is a diagram showing a configuration example of a control system according to the first embodiment of the present invention.
  • the control system 20 of the present embodiment includes a motor control device 1 and a host controller 2 that controls the motor control device 1.
  • the control system 20 controls the machine tool 30.
  • the machine tool 30 to be controlled by the control system 20 is a machine tool that performs cutting, but the control target of the control system 20 is not limited to the machine tool that performs cutting. Any industrial machine that can perform the operation of holding the work 6 that is the object of cutting may be used.
  • the machine tool 30 includes a motor 3, a speed reducer 8, a chuck device 5, and a cutting tool 7.
  • the machine tool 30 can hold the work 6. Specifically, the machine tool 30 fixes the work 6 by the chuck device 5.
  • the chuck device 5 fixes the work 6 when it receives a chuck signal indicating that the work 6 is held from the host controller 2.
  • the motor 3 is controlled by the motor control device 1.
  • the rotational motion of the motor 3 is transmitted to the chuck device 5 via the speed reducer 8.
  • the work 6 rotates together with the chuck device 5.
  • the work 6 is machined by the cutting tool 7 while rotating.
  • the position of the motor 3, that is, the rotational position of the motor 3 is detected by the detector 4.
  • the position of the motor 3 detected by the detector 4 is input to the motor control device 1.
  • the host controller 2 generates commands, control signals, control information, etc. for controlling the machining of the machine tool 30. Specifically, the host controller 2 generates a position command, which is a command regarding the position of the motor 3, and outputs the position command to the motor control device 1. The host controller 2 generates commands, control signals, control information, and the like for controlling the machining of the machine tool 30 according to, for example, a machining program. The motor control device 1 generates a current for controlling the motor 3 based on the position command received from the host controller 2 and the position input from the detector 4, and outputs the current to the motor 3.
  • the host controller 2 generates a control signal indicating whether the chuck device 5 fixes or releases the work 6, and outputs the control signal to the chuck device 5.
  • the control signal indicating whether to fix or release the work 6 is a chuck signal output while the work 6 is fixed.
  • the chuck device 5 performs an operation of fixing the work 6 while receiving the chuck signal from the host controller 2, and performs an operation of releasing the work 6 when the chuck signal is not received.
  • the control signal indicating whether to fix or release the work 6 is not limited to this example, and may be a signal output at the start and end of the work 6, or the work 6 may be output depending on the voltage value of the signal or the like. It may indicate fixation and opening.
  • the host controller 2 controls whether or not the chuck device 5 fixes the work 6. Therefore, the host controller 2 is aware of the holding state of the work 6.
  • the holding state is, for example, whether or not the work 6 is fixed to the chuck device 5, that is, to the machine tool 30.
  • This holding state is specified by, for example, a machining program.
  • the host controller 2 can determine the holding state of the work 6 based on the machining program.
  • the holding state may be input by the operator of the machine tool 30.
  • the operator inputs the holding state of the work 6 by using an input means (not shown) of the host controller 2.
  • the motor control device 1 may include input means, and the operator may input the holding state of the work 6 to the motor control device 1.
  • information about the work 6 is input as a machining condition.
  • the host controller 2 controls the machining of the machine tool 30 based on the machining conditions.
  • the information about the work 6 is, for example, at least one of the size, material, shape, and length of the diameter of the work 6.
  • the work characteristic information is not limited to these, and information related to the natural frequency of the work 6. Anything may be included, and items other than these may be included.
  • the host controller 2 outputs the state information indicating the holding state of the work 6 and the work characteristic information which is the information related to the work 6 described above as the work information to the motor control device 1.
  • the work characteristic information may also be determined based on the machining program, or may be input by the operator.
  • the state information is information indicating the holding state of the work 6, and is, for example, 1-bit information that takes a value of 1 when the work 6 is fixed and a value of 0 when the work 6 is released.
  • specific examples of state information are not limited to this.
  • the state information is not limited to the holding information, and may be any information indicating the state of the holding object of the machine tool 30, such as the work 6 and the tool. For example, information indicating whether or not the object to be held is rotating, whether or not the object to be held is moving, whether or not the object to be held is being processed, and the like can be used.
  • the host controller 2 can obtain such information from the machining program, for example.
  • the work characteristic information includes, for example, information indicating the size, material, shape, and length of the diameter of the work 6.
  • the motor control device 1 includes a position control unit 11, a speed control unit 12, a filter generation unit 13, a current control unit 14, and a speed conversion unit 15.
  • the position control unit 11 calculates a speed command based on the position command received from the host controller 2 and the position input from the detector 4, and outputs the speed command to the speed control unit 12.
  • the speed command is calculated based on the difference between the position command and the position input from the detector 4.
  • the speed conversion unit 15 calculates the speed by differentiating the position input from the detector 4, and outputs the calculated speed to the speed control unit 12.
  • the speed control unit 12 calculates a current command based on the speed command and the speed input from the speed conversion unit 15, and outputs the current command to the filter generation unit 13. Specifically, the speed control unit 12 calculates the current command based on the difference between the speed command and the speed input from the speed conversion unit 15. That is, the speed control unit 12 is a command generation unit that generates a command for controlling the machine tool 30 by feedback control. In the present embodiment, an example in which the filtering process is performed by the filter generation unit 13 described later with respect to the current command for controlling the motor 3 will be described. However, the target of the filtering process in the present embodiment is the machine tool 30. If it is a command to control, it is not limited to a current command.
  • the filter generation unit 13 performs a filtering process on the current command, and outputs the current command after the filtering process to the current control unit 14.
  • the filtering process in the filter generation unit 13 is a filtering process that attenuates a component of a cutoff frequency that is a specific frequency, that is, blocks a component of the cutoff frequency. Mechanical resonance can be suppressed by setting the cutoff frequency cut off by the filter generation unit 13 to the frequency at which resonance occurs in the machine tool 30.
  • the natural frequency depends on the holding state of the work 6. Therefore, if the cutoff frequency to be removed by the filter generation unit 13 is determined without reflecting the holding state of the work 6, resonance may not be suppressed depending on the holding state of the work 6.
  • the filter generation unit 13 determines the frequency component to be removed by the filtering process based on the work information received from the host controller 2. Thereby, in the present embodiment, the cutoff frequency can be determined by reflecting the holding state of the work 6 and the like. Therefore, mechanical resonance can be suppressed even when the natural frequency changes depending on the holding state of the work 6. The details of the filter generation unit 13 will be described later.
  • the current control unit 14 controls the current output to the motor 3 based on the current command output from the filter generation unit 13.
  • the motor 3 rotates according to the current output from the current control unit 14.
  • the motor control device 1 can control the motor 3 to a position according to the position command received from the host controller 2.
  • the work 6 can be controlled to a desired position via the speed reducer 8 and the chuck device 5.
  • FIG. 2 is a diagram showing a configuration example of the filter generation unit 13 of the present embodiment.
  • the filter generation unit 13 includes a storage unit 131, a frequency estimation unit 132, a frequency determination unit 133, and a notch filter 134.
  • the storage unit 131 stores the work information received from the host controller 2.
  • the work information is information indicating the characteristics and state of the work, and is composed of, for example, state information and work characteristic information.
  • the frequency determination unit 133 determines the cutoff frequency of the notch filter 134 according to the holding state of the work 6, and sets the determined cutoff frequency in the notch filter 134. Further, the frequency determination unit 133 determines the attenuation amount of the notch filter 134 according to the holding state, and sets the determined attenuation amount in the notch filter 134. Specifically, the frequency determination unit 133 performs the following operations. The frequency determination unit 133 determines whether the work information has changed, that is, whether the latest work information, which is the work information received from the host controller 2, is the same as the work information received last time. If the work information has not changed, that is, if the latest work information is the same as the previously received work information, no particular operation is performed.
  • the frequency determination unit 133 stores the work information received from the host controller 2. This work information will be used as the previous work information the next time the work information is received from the host controller 2.
  • the frequency determination unit 133 may store the work information received last time in the storage unit 131 instead of storing it by itself. In this case, the work information received last time is stored in the storage unit 131 separately from the filter setting information described later.
  • the frequency determination unit 133 determines whether or not the same work information as the latest work information is stored in the storage unit 131. Specifically, the frequency determination unit 133 confirms whether the work information in the filter setting information stored in the storage unit 131 is the same as the latest work information.
  • the filter setting information is information in which the work information is associated with the corresponding cutoff frequency and attenuation amount, and is stored in the storage unit 131 in a table format, for example. As will be described later, when the work information changes, the frequency estimation unit 132 adds a new entry to the storage unit 131 for the filter setting information.
  • the frequency determination unit 133 When the same work information as the latest work information is stored in the storage unit 131, the frequency determination unit 133 reads the cutoff frequency and attenuation corresponding to the work information from the storage unit 131, and reads the cutoff frequency and attenuation. The amount is set in the notch filter 134. When the same work information as the latest work information is not stored in the storage unit 131, the frequency determination unit 133 sets the cutoff frequency and the attenuation amount calculated by the frequency estimation unit 132 in the notch filter 134. Note that FIG. 2 shows a switching state in which either the storage unit 131 or the frequency estimation unit 132 is selected in order to show that the frequency determination unit 133 has a function of executing the selection operation. This does not mean that the frequency determination unit 133 is a switch.
  • the frequency estimation unit 132 estimates the frequency of vibration generated in the machine tool 30, and calculates the cutoff frequency based on the estimated frequency. Specifically, when the latest work information is newly stored in the storage unit 131, the frequency estimation unit 132 may or may not include the same work information as the latest work information in the filter setting information of the storage unit 131. To judge. When the filter setting information does not include the same work information as the latest work information, the frequency estimation unit 132 estimates the frequency and magnitude of the vibration generated in the machine tool 30 based on the current command, and this Based on the estimation result, the cutoff frequency and the amount of attenuation to be set in the notch filter 134 are calculated.
  • the frequency estimation unit 132 outputs the calculated cutoff frequency and attenuation to the frequency determination unit 133, and then stores the latest work information in association with the calculated cutoff frequency and attenuation as a new entry in the filter setting information. It is stored in the unit 131. All the latest work information is temporarily stored in the storage unit 131, but if it is the same as the information already stored as the filter setting information, it may be deleted from the storage unit 131. Further, the frequency estimation unit 132 outputs the cutoff frequency and the attenuation amount to be set in the notch filter 134 to the frequency determination unit 133.
  • the method by which the frequency estimation unit 132 estimates the frequency and magnitude of the vibration is not limited to the method of estimating based on the current command, and may be a method of estimating based on the detection result by the detector 4. , There are no particular restrictions.
  • the notch filter 134 is a filter whose cutoff frequency and attenuation amount can be changed.
  • the notch filter 134 performs filtering processing on the current command according to the cutoff frequency and the amount of attenuation set by the frequency determining unit 133.
  • FIG. 3 is a flowchart showing an example of the operation in the filter generation unit 13 of the first embodiment.
  • the frequency determination unit 133 determines whether or not the work information has changed (step S1). When the work information changes (step S1 Yes), the frequency determination unit 133 determines whether or not the work information is known (step S2). Specifically, the frequency determination unit 133 determines that the work information is known when the filter setting information stored in the storage unit 131 includes the same work information as the latest work information.
  • the frequency determination unit 133 reads out the corresponding cutoff frequency and attenuation from the storage unit 131 (step S3). Specifically, the frequency determination unit 133 refers to the filter setting information and reads out the cutoff frequency and the attenuation amount corresponding to the same work information as the latest work information. Next, the frequency determination unit 133 sets the cutoff frequency and the attenuation amount in the notch filter 134 (step S4), and ends the process. When step S4 is carried out via step S3, the cutoff frequency and the amount of attenuation read from the storage unit 131 are set in the notch filter 134.
  • step S1 the frequency determination unit 133 does not change the setting of the notch filter 134 and ends the process.
  • the frequency determination unit 133 acquires the cutoff frequency and the attenuation amount based on the estimation result from the frequency estimation unit 132 (step S5), and proceeds to the process of step S4.
  • this estimation result is the result of the frequency estimation unit 132 estimating the vibration state based on the current command or the like.
  • step S4 is carried out via step S5, the cutoff frequency and the amount of attenuation calculated by the frequency estimation unit 132 based on the estimation result are set in the notch filter 134.
  • the frequency determination unit 133 has either the cutoff frequency included in the filter setting information or the cutoff frequency calculated by the frequency estimation unit 132 based on the filter setting information and the latest holding state. One is selected and the selected cutoff frequency is set in the notch filter 134.
  • the motor control device 1 of the present embodiment can suppress the mechanical resonance of the controlled object even when the natural frequency changes according to the holding state of the work 6.
  • the current control unit 14 supplies a current to the motor 3 so as to follow a current command by including a converter circuit that converts AC power into DC power or an inverter circuit that converts DC power into desired AC power.
  • the position control unit 11, the speed control unit 12, the filter generation unit 13, and the speed conversion unit 15 are realized by a processing circuit.
  • the processing circuit may be a circuit including a processor or dedicated hardware.
  • the processing circuit is a circuit including a processor
  • the processing circuit is, for example, a processing circuit having the configuration shown in FIG.
  • FIG. 4 is a diagram showing a configuration example of the processing circuit of the present embodiment.
  • the processing circuit 100 shown in FIG. 4 includes a processor 101 and a memory 102.
  • the processor 101 reads and executes the program stored in the memory 102. By doing so, these are realized. That is, when the position control unit 11, the speed control unit 12, the filter generation unit 13, and the speed conversion unit 15 are realized by the processing circuit 100 shown in FIG. 4, these functions are realized by using a program which is software. To.
  • the memory 102 is also used as a work area of the processor 101.
  • the processor 101 is a CPU (Central Processing Unit) or the like.
  • the memory 102 corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, a magnetic disk, or the like.
  • the processing circuits are, for example, FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit). ..
  • the position control unit 11, the speed control unit 12, the filter generation unit 13, and the speed conversion unit 15 may be realized by combining a processing circuit including a processor and dedicated hardware.
  • the position control unit 11, the speed control unit 12, the filter generation unit 13, and the speed conversion unit 15 may be realized by a plurality of processing circuits.
  • the work information includes both the state information indicating the holding state of the work 6 and the work characteristic information.
  • the work information only the state information indicating the holding state of the work 6 or only the work characteristic information may be used.
  • the filter setting information includes the work information, the cutoff frequency, and the attenuation amount
  • the work information and the frequency may be used as the filter setting information.
  • the frequency estimation unit 132 does not need to calculate the attenuation amount, and the attenuation amount may be fixed, for example, or may be determined according to the frequency.
  • the cutoff frequency and the attenuation amount of the notch filter 134 are determined based on the work information. Similarly, the cutoff frequency and the attenuation amount of the notch filter 134 are determined according to the holding state of the tool. May be good. In a machine tool that cuts by rotating a tool, the machine tool holds the tool. In this case, the tool rotates when the motor control device 2 controls the motor 3 according to a command from the host controller 2 as in the work 6 described above. In this case, when the cutoff frequency and the damping amount of the notch filter 134 are determined according to the information indicating the holding state of the tool, the state information becomes the information indicating the holding state of the tool, and the size of the tool is replaced with the work characteristic information.
  • the tool characteristic information which is information related to the natural frequency of the tool such as the type and type, is used, and the tool information composed of the holding information and the tool characteristic information is used instead of the work information.
  • the host controller 2 outputs tool information indicating the holding state of the tool to the motor control device 1, and the motor control device 1 determines the cutoff frequency and the attenuation amount of the notch filter 134 according to the tool information as well as the work information. To do. In this case as well, the basic operation is the same as in the case of the cutoff frequency and the attenuation amount of the notch filter 134 based on the work information.
  • the tool and the work 6 are both examples of the holding object of the machine tool, and the present invention can be similarly applied when the machine tool can hold the holding object.
  • both the tool information and the work information are information indicating the characteristics and state of the object to be held.
  • the retained object information is information including characteristic information of the retained object, which is information related to the natural frequency of the retained object, and state information indicating the retained state of the retained object. is there.
  • the state information is, for example, information indicating whether or not the holding object is fixed to the machine tool.
  • the holding object characteristic information is, for example, the work characteristic information and the tool characteristic information described above.
  • the motor controller 1 includes the storage unit 131, the frequency estimation unit 132, and the frequency determination unit 133 of the filter generation unit 13, but the storage unit 131, the frequency estimation unit 132, and the frequency determination unit are provided.
  • the host controller 2 may include the unit 133. In this case, instead of receiving the work information from the host controller 2, the motor control device 1 receives information indicating the cutoff frequency and the attenuation amount set in the notch filter 134, and based on the received information, determines the cutoff frequency and the attenuation amount. Set to the notch filter 134.
  • FIG. 5 is a diagram showing a configuration example of the control system according to the second embodiment of the present invention.
  • the control system 20a of the present embodiment includes a motor control device 1-1, 1-2, which is a control device according to the present invention, and a host controller 2 that controls the motor control devices 1-1, 1-2.
  • the control system 20a controls the machine tool 30a.
  • the machine tool 30a to be controlled by the control system 20a is a machine tool that performs cutting, but the control target of the control system 20a is not limited to the machine tool that performs cutting. Any industrial machine that can hold the work 6 from both sides may be used.
  • the parts different from those of the first embodiment will be mainly described, and the description overlapping with the first embodiment will be omitted.
  • the motor control devices 1-1 and 1-2 each have the same configuration as the motor control device 1 of the first embodiment.
  • the machine tool 30a includes motors 3-1, 3-2 similar to the motor 3 of the first embodiment, reduction gears 8-1, 8-2 similar to the speed reducer 8 of the first embodiment, and the first embodiment.
  • a chuck device 5-1 and 5-2 similar to the chuck device 5 and a cutting tool 7 similar to the first embodiment are provided.
  • the machine tool 30a fixes the work 6 at both ends by chuck devices 5-1 and 5-2.
  • the rotary motion of the motor 3-1 is transmitted to the chuck device 5-1 via the speed reducer 8-1, and the rotary motion of the motor 3-2 is transmitted to the chuck device 5-2 via the speed reducer 8-2. Will be done.
  • the rotational position of the motor 3-1 is detected by the detector 4-1 and the rotational position of the motor 3-2 is detected by the detector 4-2.
  • the host controller 2 outputs position commands and work information corresponding to the motor control devices 1-1 and 1-2 to the motor control devices 1-1 and 1-2, respectively. Although not shown, the host controller 2 outputs a chuck signal to the chuck devices 5-1 and 5-2, respectively, as in the first embodiment.
  • the motor control device 1-1 controls the motor according to the first embodiment based on the position command and work information received from the host controller 2 and the position detection result of the motor 3-1 received from the detector 4-1. The same operation as that of the device 1 is performed.
  • the motor control device 1-2 controls the motor according to the first embodiment based on the position command and work information received from the host controller 2 and the position detection result of the motor 3-2 received from the detector 4-2. The same operation as that of the device 1 is performed.
  • the work information is the same as that of the first embodiment, but the chuck distance, which is the distance between the chuck devices 5-1 and 5-2, may be added to the work information.
  • the upper controller 2 and the motor control devices 1-1 and 1-2 similar to those in the first embodiment are used. By using it, the same effect as that of the first embodiment can be obtained.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1,1-1,1-2 motor control device 2 upper controller, 3,3-1,3-2 motor, 4,4-1,4-2 detector, 5,5-1,5-2 chuck Equipment, 6 workpieces, 7 cutting tools, 8 reducers, 11 position control units, 12 speed control units, 13 filter generation units, 14 current control units, 15 speed conversion units, 131 storage units, 132 frequency estimation units, 133 frequency determination Part, 134 notch filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

フィードバック制御により、ワークを保持可能な工作機械を制御するための電流指令を生成する速度制御部と、電流指令にフィルタリング処理を行うノッチフィルタ(134)と、ノッチフィルタ(134)の遮断周波数、ワークの特性および状態を示すワーク情報に応じて決定し、決定した遮断周波数をノッチフィルタ(134)に設定する周波数決定部(133)と、を備える。

Description

制御システムおよびモータ制御装置
 本発明は、工作機械をはじめとした産業用機械装置を制御する制御システムおよびモータ制御装置に関する。
 工作機械をはじめとした産業用機械装置の動作を制御する制御装置は、一般に、フィードバック制御手法を採用している。制御装置は、フィードバック制御手法を採用することにより、上位コントローラから送られてくる目標値に安定に追従するとともに外乱の影響にも対応できる。
 ところが、フィードバック制御手法を用いても、制御対象の剛性、質量等に依存する機械共振が発生する場合がある。機械共振が発生した際にフィードバックゲインが大きな値に設定されていると、機械共振が増大し制御系が発振してしまうことがある。このような現象を抑制するために、従来、特定の周波数成分だけを減衰させるフィルタであるノッチフィルタを、制御ループ内に設ける手法が用いられていた。しかし、減衰させるすなわち遮断する特定の周波数である遮断周波数を、ノッチフィルタに設定するためには、遮断すべき周波数を事前に実測により求めることになり、専用の計測器が必要になる。また、制御対象の位置が変化すると共振周波数も変化してしまうため、事前に遮断周波数を決定する方法では、上記現象を十分に抑制できない場合がある。
 上記のような問題点に対応するため、特許文献1では、制御対象の機構部の位置、電流等の物理量を検出する検出手段から、該検出手段により検出された物理量を取得し、取得した物理量に基づいて振動周波数を推定する制御装置が開示されている。特許文献1の制御装置は、推定した振動周波数を、遮断周波数としてノッチフィルタに設定することによって振動を抑制する。
特開2004-237398号公報
 工作機械のなかには、ワーク、工具などの保持対象物を保持する動作を行うものがある。このような工作機械では、制御対象の機構部の物理量が同じであっても、保持対象物の状態、例えば工作物による保持状態が変化することに伴い固有振動数も変化することがある。このような場合、特許文献1に記載の方法では、保持対象物であるワークの保持状態を検出することができない。このため、特許文献1に記載の方法では、ノッチフィルタにおいて減衰させる周波数域を適切な値に設定できず、機械共振を抑制できない可能性がある。
 本発明は、上記に鑑みてなされたものであって、保持対象物の状態に応じて固有振動数が変化する場合であっても、制御対象の機械共振を抑制することができる制御システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる制御システムは、フィードバック制御により、保持対象物を保持可能な工作機械を制御するための指令を生成する指令生成部と、指令にフィルタリング処理を行うノッチフィルタとを備える。制御システムは、さらに、ノッチフィルタの遮断周波数、保持対象物の特性および状態を示す情報である保持対象物情報に応じて決定し、決定した遮断周波数をノッチフィルタに設定する周波数決定部、を備える。
 本発明にかかる制御システムは、保持対象物の状態に応じて固有振動数が変化する場合であっても、制御対象の機械共振を抑制することができるという効果を奏する。
実施の形態1にかかる制御システムの構成例を示す図 実施の形態1のフィルタ生成部の構成例を示す図 実施の形態1のフィルタ生成部における動作の一例を示すフローチャート 実施の形態1の処理回路の構成例を示す図 実施の形態2にかかる制御システムの構成例を示す図
 以下に、本発明の実施の形態にかかる制御システムおよびモータ制御装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる制御システムの構成例を示す図である。本実施の形態の制御システム20は、モータ制御装置1と、モータ制御装置1を制御する上位コントローラ2とを備える。制御システム20は、工作機械30を制御する。本実施の形態では、制御システム20の制御対象である工作機械30は、切削加工を行う工作機械であるとするが、制御システム20の制御対象は、切削加工を行う工作機械に限定されず、切削加工の加工対象であるワーク6を保持する動作を行うことが可能な産業用機械であればよい。
 図1では、工作機械30は、モータ3、減速機8、チャック装置5および切削工具7を備える。工作機械30は、ワーク6を保持可能である。具体的には、工作機械30は、チャック装置5により、ワーク6を固定する。チャック装置5は、上位コントローラ2から、ワーク6を保持することを示すチャック信号を受信した場合に、ワーク6を固定する。モータ3は、モータ制御装置1により制御される。モータ3の回転運動は減速機8を介してチャック装置5に伝達される。これにより、ワーク6はチャック装置5とともに回転する。ワーク6は回転しながら切削工具7により加工される。また、モータ3の位置、すなわちモータ3の回転位置は、検出器4により検出される。検出器4により検出されたモータ3の位置は、モータ制御装置1へ入力される。
 上位コントローラ2は、工作機械30の加工を制御するための指令、制御信号、制御情報等を生成する。詳細には、上位コントローラ2は、モータ3の位置に関する指令である位置指令を生成し、モータ制御装置1へ出力する。上位コントローラ2は、例えば、加工プログラムに従って、工作機械30の加工を制御するための指令、制御信号、制御情報等を生成する。モータ制御装置1は、上位コントローラ2から受け取った位置指令と、検出器4から入力された位置とに基づいて、モータ3を制御するための電流を生成して、モータ3へ出力する。
 また、上位コントローラ2は、チャック装置5がワーク6を固定するか開放するかを示す制御信号を生成して、チャック装置5へ出力する。ここでは、ワーク6を固定するか開放するかを示す制御信号は、ワーク6を固定している間出力されるチャック信号であるとする。チャック装置5は、チャック信号を上位コントローラ2から受け取っている間はワーク6を固定する動作を実施し、チャック信号を受け取っていないときには、ワーク6を開放する動作を実施する。なお、ワーク6を固定するか開放するかを示す制御信号は、この例に限らず、ワーク6の開始と終了時に出力される信号であってもよいし、信号の電圧値等によりワーク6の固定と開放を示すものであってもよい。
 上位コントローラ2は、上述したように、チャック装置5がワーク6を固定しているか否かを制御している。このため、上位コントローラ2は、ワーク6の保持状態を把握している。保持状態は、例えば、ワーク6が、チャック装置5にすなわち工作機械30に固定されているか否かである。この保持状態は、例えば加工プログラムによって指定されている。上位コントローラ2は、加工プログラムに基づいてワーク6の保持状態を判別することができる。また、保持状態は、工作機械30の操作者により入力可能であってもよい。例えば、操作者は上位コントローラ2の図示しない入力手段を用いてワーク6の保持状態を入力する。または、モータ制御装置1が入力手段を備え、操作者がモータ制御装置1にワーク6の保持状態を入力するようにしてもよい。また、一般に、工作機械30を用いて加工が行われる際には、加工条件として、ワーク6に関する情報が入力される。上位コントローラ2は、加工条件に基づいて、工作機械30の加工を制御する。ワーク6に関する情報は、例えば、ワーク6の径の大きさ、材質、形状、長さのうち少なくとも1つである。以下では、ワーク特性情報として、ワーク6の径の大きさ、材質、形状、長さを含む例を説明するが、ワーク特性情報はこれらに限定されず、ワーク6の固有振動数に関連する情報であればよく、これら以外の項目を含んでいてもよい。上位コントローラ2は、ワーク6の保持状態を示す状態情報と上述したワーク6に関する情報であるワーク特性情報とをワーク情報として、モータ制御装置1に出力する。ワーク特性情報についても、加工プログラムに基づいて判別されてもよいし、操作者により入力可能であってもよい。
 状態情報は、ワーク6の保持状態を示す情報であり、例えば、ワーク6を固定しているときに1の値をとりワーク6を開放しているときに0の値をとる1ビットの情報であるが、状態情報の具体例はこれに限定されない。状態情報は、保持情報に限定されずワーク6、工具といった、工作機械30の保持対象物の状態を示す情報であればよい。例えば、保持対象物が回転中か否か、保持対象物が移動中か否か、保持対象物が加工中か否かなどを示す情報を用いることができる。上位コントローラ2は、例えば、これらの情報を、加工プログラムから得ることができる。状態情報としてワーク6の保持情報を用いる場合、ワーク6の保持状態として、固定、開放以外の状態がある場合には、3段階以上でワークの保持状態を表してもよい。ワーク特性情報は、例えば、ワーク6の径の大きさ、材質、形状、長さを示す情報を含む。
 次に、モータ制御装置1の構成を説明する。図1に示すように、モータ制御装置1は、位置制御部11、速度制御部12、フィルタ生成部13、電流制御部14および速度変換部15を備える。位置制御部11は、上位コントローラ2から受け取った位置指令と検出器4から入力された位置とに基づいて速度指令を算出し、速度指令を速度制御部12へ出力する。詳細には、位置指令と検出器4から入力された位置との差に基づいて速度指令を算出する。速度変換部15は、検出器4から入力された位置を微分することにより速度を算出し、算出した速度を速度制御部12へ出力する。
 速度制御部12は、速度指令と速度変換部15から入力された速度とに基づいて電流指令を算出し、電流指令をフィルタ生成部13へ出力する。詳細には、速度制御部12は、速度指令と速度変換部15から入力された速度との差に基づいて電流指令を算出する。すなわち、速度制御部12は、フィードバック制御により、工作機械30を制御するための指令を生成する指令生成部である。本実施の形態では、後述するフィルタ生成部13によりフィルタリング処理をモータ3を制御するための電流指令に対して行う例を説明するが、本実施の形態のフィルタリング処理の対象は、工作機械30を制御する指令であれば、よく電流指令に限定されない。
 フィルタ生成部13は、電流指令にフィルタリング処理を行い、フィルタリング処理後の電流指令を電流制御部14へ出力する。フィルタ生成部13におけるフィルタリング処理は、特定の周波数である遮断周波数の成分を減衰させる、すなわち遮断周波数の成分を遮断するフィルタリング処理である。フィルタ生成部13が遮断する遮断周波数を、工作機械30で共振の発生する周波数とすることで、機械共振を抑制することができる。一方、固有振動数は、ワーク6の保持状態等に依存する。このため、ワーク6の保持状態を反映せずに、フィルタ生成部13が除去する遮断周波数を決定すると、ワーク6の保持状態によっては、共振が抑制できないことがある。本実施の形態では、フィルタ生成部13は、上位コントローラ2から受け取ったワーク情報に基づいてフィルタリング処理で除去する周波数成分を決定する。これにより、本実施の形態では、ワーク6の保持状態等を反映して、遮断周波数を決定することができる。このため、ワーク6の保持状態に依存して固有振動数が変化する場合であっても、機械共振を抑制することができる。フィルタ生成部13の詳細については後述する。
 電流制御部14は、フィルタ生成部13から出力された電流指令に基づいてモータ3へ出力する電流を制御する。モータ3は、電流制御部14から出力された電流に応じて回転運動を行う。以上の動作により、モータ制御装置1は、上位コントローラ2から受け取った位置指令に従った位置にモータ3を制御することができる。モータ3が位置指令に従った位置に制御されることにより、減速機8およびチャック装置5を介してワーク6を所望の位置に制御することができる。
 次に、フィルタ生成部13の詳細について説明する。図2は、本実施の形態のフィルタ生成部13の構成例を示す図である。フィルタ生成部13は、記憶部131、周波数推定部132、周波数決定部133およびノッチフィルタ134を備える。記憶部131は、上位コントローラ2から受け取ったワーク情報を記憶する。ワーク情報は、上述したとおり、ワークの特性および状態を示す情報であり、例えば、状態情報とワーク特性情報とで構成される。
 周波数決定部133は、ノッチフィルタ134の遮断周波数を、ワーク6の保持状態に応じて決定し、決定した遮断周波数をノッチフィルタ134に設定する。さらに、周波数決定部133は、ノッチフィルタ134の減衰量を保持状態に応じて決定し、決定した減衰量をノッチフィルタ134へ設定する。周波数決定部133は、具体的には以下に示す動作を行う。周波数決定部133は、ワーク情報が変化したか、すなわち、上位コントローラ2から受け取ったワーク情報である最新のワーク情報が前回受け取ったワーク情報と同一であるかを判断する。ワーク情報が変化していない場合、すなわち最新のワーク情報が前回受け取ったワーク情報と同一である場合には特に動作はしない。周波数決定部133は、上位コントローラ2から受け取ったワーク情報を記憶する。このワーク情報は、次回上位コントローラ2からワーク情報を受け取ったときに、前回のワーク情報として用いられる。なお、周波数決定部133は、前回受け取ったワーク情報を自身が記憶しておく替わりに、記憶部131に記憶させてもよい。この場合、前回受け取ったワーク情報は、後述するフィルタ設定情報とは別に記憶部131に記憶される。
 周波数決定部133は、ワーク情報が変化した場合、最新のワーク情報と同一のワーク情報が記憶部131に記憶されているか否かを判断する。詳細には、周波数決定部133は、記憶部131に記憶されているフィルタ設定情報内のワーク情報に最新のワーク情報と同一のものがあるかを確認する。フィルタ設定情報は、ワーク情報と対応する遮断周波数および減衰量とが対応付けられている情報であり、例えばテーブル形式で記憶部131に格納される。フィルタ設定情報は、後述するように、ワーク情報が変化した場合に、周波数推定部132により記憶部131に新たなエントリが追加される。周波数決定部133は、最新のワーク情報と同一のワーク情報が記憶部131に記憶されている場合、該ワーク情報に対応する遮断周波数および減衰量を記憶部131から読み出し、読み出した遮断周波数および減衰量をノッチフィルタ134に設定する。周波数決定部133は、最新のワーク情報と同一のワーク情報が記憶部131に記憶されていない場合、周波数推定部132により算出された遮断周波数および減衰量をノッチフィルタ134に設定する。なお、図2では、周波数決定部133が選択の動作を実施する機能を有することを示すために、記憶部131と周波数推定部132のどちらかを選択する切替えの様子が図示されているが、これは周波数決定部133がスイッチであることを意味するものではない。
 周波数推定部132は、工作機械30に生じる振動の周波数を推定し、推定した周波数に基づいて遮断周波数を算出する。詳細には、周波数推定部132は、最新のワーク情報が記憶部131に新たに記憶されると、記憶部131のフィルタ設定情報に最新のワーク情報と同一のワーク情報を含むものがあるか否かを判断する。周波数推定部132は、フィルタ設定情報に最新のワーク情報と同一のワーク情報を含むものがない場合、電流指令に基づいて、工作機械30に生じている振動の周波数と大きさを推定し、この推定結果に基づいて、ノッチフィルタ134に設定すべき遮断周波数および減衰量を算出する。周波数推定部132は、算出した遮断周波数および減衰量を周波数決定部133へ出力し、その後、最新のワーク情報と算出した遮断周波数および減衰量とを対応付けてフィルタ設定情報の新たなエントリとして記憶部131に格納する。なお、最新のワーク情報は、一時的に全て記憶部131に格納されるが、フィルタ設定情報として既に記憶されているものと同一の場合には、記憶部131から消去されてもよい。また、周波数推定部132は、ノッチフィルタ134に設定すべき遮断周波数および減衰量を周波数決定部133へ出力する。なお、周波数推定部132が振動の周波数と大きさを推定する方法は、電流指令に基づいて推定する方法に限定されず、検出器4による検出結果に基づいて推定する方法等であってもよく、特に制約はない。
 ノッチフィルタ134は、遮断周波数および減衰量を変更可能なフィルタである。ノッチフィルタ134は、周波数決定部133によって設定された遮断周波数および減衰量にしたがって、電流指令にフィルタリング処理を実施する。
 図3は、実施の形態1のフィルタ生成部13における動作の一例を示すフローチャートである。まず、周波数決定部133は、ワーク情報が変化したか否かを判断する(ステップS1)。ワーク情報が変化した場合(ステップS1 Yes)、周波数決定部133は、ワーク情報が既知であるか否かを判断する(ステップS2)。具体的には、周波数決定部133は、記憶部131に記憶されているフィルタ設定情報に、最新のワーク情報と同一のワーク情報を含むものがある場合にワーク情報が既知であると判断する。
 ワーク情報が既知である場合には(ステップS2 Yes)、周波数決定部133は、記憶部131から対応する遮断周波数および減衰量を読み出す(ステップS3)。具体的には、周波数決定部133は、フィルタ設定情報を参照して、最新のワーク情報と同一のワーク情報に対応する遮断周波数および減衰量を読み出す。次に、周波数決定部133は、遮断周波数および減衰量をノッチフィルタ134に設定し(ステップS4)、処理を終了する。ステップS3を経由してステップS4が実施される場合には、記憶部131から読み出された遮断周波数および減衰量が、ノッチフィルタ134に設定される。
 一方、ステップS1でNoと判断した場合、周波数決定部133は、ノッチフィルタ134の設定は変更せず、処理を終了する。ステップS2でNoと判断した場合、周波数決定部133は、周波数推定部132から、推定結果に基づく遮断周波数および減衰量を取得し(ステップS5)、ステップS4の処理へ進む。この推定結果は、上述したように、周波数推定部132が電流指令等に基づいて振動の状態を推定した結果である。ステップS5を経由してステップS4が実施される場合には、周波数推定部132によって推定結果に基づいて算出された遮断周波数および減衰量が、ノッチフィルタ134に設定される。以上のように、周波数決定部133は、フィルタ設定情報と最新の保持状態とに基づいて、フィルタ設定情報に含まれる遮断周波数と、周波数推定部132により算出された遮断周波数とのうちのいずれか一方を選択し、選択した遮断周波数をノッチフィルタ134に設定する。
 以上の処理により、ノッチフィルタ134には、ワーク6の保持状態を示す情報を含むワーク情報に基づいた遮断周波数および減衰量が設定される。これにより、本実施の形態のモータ制御装置1は、ワーク6の保持状態に応じて固有振動数が変化する場合であっても、制御対象の機械共振を抑制することができる。
 ここで、モータ制御装置1のハードウェア構成について説明する。モータ制御装置1の各部は回路により実現される。電流制御部14は、交流電力を直流電力に変換するコンバータ回路、または直流電力を所望の交流電力に変換するインバータ回路を備えることにより電流指令に追従するようにモータ3へ電流を供給する。位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15は、処理回路により実現される。処理回路は、プロセッサを備える回路であってもよいし、専用ハードウェアであってもよい。
 処理回路がプロセッサを備える回路である場合、処理回路は例えば図4に示した構成の処理回路である。図4は、本実施の形態の処理回路の構成例を示す図である。図4に示す処理回路100は、プロセッサ101およびメモリ102を備える。位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15が図4に示した処理回路100によって実現される場合、プロセッサ101が、メモリ102に格納されたプログラムを読み出して実行することにより、これらが実現される。すなわち、位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15が図4に示した処理回路100によって実現される場合、これらの機能は、ソフトウェアであるプログラムを用いて実現される。メモリ102はプロセッサ101の作業領域としても使用される。プロセッサ101は、CPU(Central Processing Unit)等である。メモリ102は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー等の不揮発性または揮発性の半導体メモリ、磁気ディスク等が該当する。
 位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15が専用ハードウェアである場合、処理回路は、例えば、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)である。なお、位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15は、プロセッサを備える処理回路および専用ハードウェアを組み合わせて実現されてもよい。位置制御部11、速度制御部12、フィルタ生成部13および速度変換部15は、複数の処理回路により実現されてもよい。
 なお、以上の説明では、ワーク情報は、ワーク6の保持状態を示す状態情報とワーク特性情報の両方を含む例を説明した。しかしながら、ワーク情報として、ワーク6の保持状態を示す状態情報のみまたはワーク特性情報のみを用いてもよい。
 また、以上の説明では、フィルタ設定情報は、ワーク情報と遮断周波数および減衰量とを含む例を説明した。しかしながら、ワーク情報と周波数とをフィルタ設定情報としてもよい。この場合、周波数推定部132は、減衰量を算出する必要はなく、減衰量は例えば固定でもよく周波数に応じて定めておいてもよい。
 また、以上の説明では、ワーク情報に基づいて、ノッチフィルタ134の遮断周波数および減衰量を決定したが、同様に、工具の保持状態に応じてノッチフィルタ134の遮断周波数および減衰量を決定してもよい。工具の回転による切削を行う工作機械では、工作機械は工具を保持することになる。この場合、上述したワーク6と同様に上位コントローラ2からの指令にしたがってモータ制御装置2がモータ3を制御することにより工具が回転する。この場合、工具の保持状態を示す情報に応じてノッチフィルタ134の遮断周波数および減衰量を決定する場合には、状態情報は工具の保持状態を示す情報となり、ワーク特性情報の替わりに具の大きさ、種類など、工具の固有振動数に関連する情報である工具特性情報を用い、ワーク情報の替わりに保持情報と工具特性情報で構成される工具情報を用いることになる。上位コントローラ2は、工具の保持状態などを示す工具情報をモータ制御装置1へ出力し、モータ制御装置1は、ワーク情報と同様に工具情報に応じてノッチフィルタ134の遮断周波数および減衰量を決定する。この場合も基本的な動作は、ワーク情報に基づいて、ノッチフィルタ134の遮断周波数および減衰量する場合と同様である。工具、ワーク6はいずれも工作機械の保持対象物の一例であり、本発明は、工作機械が保持対象物を保持可能な場合に同様に適用できる。すなわち、工具情報およびワーク情報は、いずれも、保持対象物の特性および状態を示す情報である。保持対象物情報は、保持対象物の特性情報であって保持対象物の固有振動数に関連する情報である保持対象物特性情報と、保持対象物の保持状態を示す状態情報とを含む情報である。状態情報は、例えば、保持対象物が前記工作機械に固定されているか否かを示す情報である。保持対象物特性情報は、例えば、上述したワーク特性情報、工具特性情報である。
 また、図1に示した構成例では、フィルタ生成部13の記憶部131、周波数推定部132および周波数決定部133をモータ制御装置1が備えたが、記憶部131、周波数推定部132および周波数決定部133を上位コントローラ2が備えてもよい。この場合、モータ制御装置1は、上位コントローラ2からワーク情報を受け取る替わりに、ノッチフィルタ134に設定する遮断周波数および減衰量を示す情報を受けとり、受け取った情報に基づいて、遮断周波数および減衰量をノッチフィルタ134に設定する。
実施の形態2.
 図5は、本発明の実施の形態2にかかる制御システムの構成例を示す図である。本実施の形態の制御システム20aは、本発明にかかる制御装置であるモータ制御装置1-1,1-2と、モータ制御装置1-1,1-2を制御する上位コントローラ2とを備える。制御システム20aは、工作機械30aを制御する。本実施の形態では、制御システム20aの制御対象である工作機械30aは、切削加工を行う工作機械であるとするが、制御システム20aの制御対象は、切削加工を行う工作機械に限定されず、ワーク6を両側から保持する動作を行うことが可能な産業用機械であればよい。以下、実施の形態1と異なる部分を主に説明し、実施の形態1と重複する説明を省略する。
 モータ制御装置1-1,1-2は、それぞれ実施の形態1のモータ制御装置1と同様の構成を有する。工作機械30aは、実施の形態1のモータ3と同様のモータ3-1,3-2、実施の形態1の減速機8と同様の減速機8-1,8-2、実施の形態1のチャック装置5と同様のチャック装置5-1,5-2、および実施の形態1と同様の切削工具7を備える。工作機械30aは、チャック装置5-1,5-2により、ワーク6を両端で固定する。モータ3-1の回転運動は、減速機8-1を介してチャック装置5-1に伝達され、モータ3-2の回転運動は、減速機8-2を介してチャック装置5-2に伝達される。モータ3-1の回転位置は、検出器4-1により検出され、モータ3-2の回転位置は、検出器4-2により検出される。
 上位コントローラ2は、モータ制御装置1-1,1-2にそれぞれ対応する位置指令とワーク情報を、モータ制御装置1-1,1-2へ出力する。また、上位コントローラ2は、図示は省略しているが、実施の形態1と同様に、チャック装置5-1,5-2へそれぞれチャック信号を出力する。
 モータ制御装置1-1は、上位コントローラ2から受け取った位置指令およびワーク情報と、検出器4-1から受け取ったモータ3-1の位置の検出結果とに基づいて、実施の形態1のモータ制御装置1と同様の動作を行う。モータ制御装置1-2は、上位コントローラ2から受け取った位置指令およびワーク情報と、検出器4-2から受け取ったモータ3-2の位置の検出結果とに基づいて、実施の形態1のモータ制御装置1と同様の動作を行う。なお、ワーク情報は、実施の形態1と同様であるが、チャック装置5-1,5-2間の距離であるチャック距離を、ワーク情報に追加してもよい。
 以上のように、チャック装置5-1,5-2により、ワーク6が両端で保持される場合にも、実施の形態1と同様の上位コントローラ2およびモータ制御装置1-1,1-2を用いることで、実施の形態1と同様の効果を奏することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1-1,1-2 モータ制御装置、2 上位コントローラ、3,3-1,3-2 モータ、4,4-1,4-2 検出器、5,5-1,5-2 チャック装置、6 ワーク、7 切削工具、8 減速機、11 位置制御部、12 速度制御部、13 フィルタ生成部、14 電流制御部、15 速度変換部、131 記憶部、132 周波数推定部、133 周波数決定部、134 ノッチフィルタ。

Claims (15)

  1.  フィードバック制御により、保持対象物を保持可能な工作機械を制御するための指令を生成する指令生成部と、
     前記指令にフィルタリング処理を行うノッチフィルタと、
     前記ノッチフィルタの遮断周波数を、前記保持対象物の特性および状態を示す保持対象物情報に応じて決定し、決定した前記遮断周波数を前記ノッチフィルタに設定する周波数決定部と、
     を備えることを特徴とする制御システム。
  2.  前記保持対象物情報は、前記保持対象物の特性を示す情報である保持対象物特性情報と前記工作機械の前記保持対象物の保持状態を示す状態情報とを含む情報であることを特徴とする請求項1に記載の制御システム。
  3.  前記保持対象物特性情報は、前記保持対象物の固有振動数に関連する情報であることを特徴とする請求項2に記載の制御システム。
  4.  前記状態情報は、前記保持対象物が前記工作機械に固定されているか否かを示す情報であることを特徴とする請求項2または3に記載の制御システム。
  5.  前記保持対象物情報は加工プログラムに基づいて判別されることを特徴とする請求項1から4のいずれか1つに記載の制御システム。
  6.  前記保持対象物情報は、操作者により入力可能であることを特徴とする請求項1から4のいずれか1つに記載の制御システム。
  7.  前記保持対象物情報と、前記保持対象物情報に対応する遮断周波数とをフィルタ設定情報として記憶する記憶部、
     を備え、
     前記周波数決定部は、前記フィルタ設定情報と最新の前記保持対象物情報とに基づいて、前記遮断周波数を決定することを特徴とする請求項1から6のいずれか1つに記載の制御システム。
  8.  前記工作機械に生じる振動の周波数を推定し、推定した周波数に基づいて遮断周波数を算出する周波数推定部、
     を備え、
     前記周波数決定部は、前記フィルタ設定情報と最新の前記保持対象物情報とに基づいて、前記フィルタ設定情報に含まれる前記遮断周波数と、前記周波数推定部により算出された前記遮断周波数とのうちのいずれか一方を選択し、選択した前記遮断周波数を前記ノッチフィルタに設定することを特徴とする請求項7に記載の制御システム。
  9.  前記周波数決定部は、さらに、前記ノッチフィルタの減衰量を前記保持対象物情報に応じて決定し、決定した前記減衰量を前記ノッチフィルタへ設定することを特徴とする請求項1から8のいずれか1つに記載の制御システム。
  10.  前記保持対象物はワークであり、
     前記保持対象物特性情報は、ワークの径の大きさ、材質、形状および長さのうちの少なくとも1つを含むことを特徴とする請求項2に記載の制御システム。
  11.  前記保持対象物は工具であり、
     前記保持対象物特性情報は、工具の大きさおよび種類のうちの少なくとも1つを含むことを特徴とする請求項2に記載の制御システム。
  12.  前記工作機械のモータを制御するモータ制御装置を備え、
     前記モータ制御装置が、
     前記指令生成部、前記ノッチフィルタおよび前記周波数決定部を備えることを特徴とする請求項1に記載の制御システム。
  13.  前記工作機械が備える2つのチャック装置により前記保持対象物であるワークの2つ端部がそれぞれ保持されることが可能であり、
     前記制御システムは、
     前記2つのチャック装置にそれぞれ対応する2つのモータのそれぞれを制御する2つの前記モータ制御装置を備えることを特徴とする請求項12に記載の制御システム。
  14.  前記工作機械のモータを制御するモータ制御装置と、前記モータ制御装置に前記モータに対する位置指令を出力する上位コントローラと、を備え、
     前記モータ制御装置が、
     前記ノッチフィルタを備え、
     前記上位コントローラが、
     前記指令生成部および前記周波数決定部を備えることを特徴とする請求項1に記載の制御システム。
  15.  フィードバック制御により、保持対象物を保持可能な工作機械におけるモータを制御するための指令を生成する指令生成部と、
     前記指令にフィルタリング処理を行うノッチフィルタと、
     前記ノッチフィルタの遮断周波数を、前記保持対象物の特性および状態を示す保持対象物情報に応じて決定し、決定した前記遮断周波数を前記ノッチフィルタに設定する周波数決定部と、
     を備えることを特徴とするモータ制御装置。
PCT/JP2019/018941 2019-05-13 2019-05-13 制御システムおよびモータ制御装置 WO2020230234A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980096173.9A CN113795796A (zh) 2019-05-13 2019-05-13 控制系统及电动机控制装置
PCT/JP2019/018941 WO2020230234A1 (ja) 2019-05-13 2019-05-13 制御システムおよびモータ制御装置
JP2019555713A JP6639758B1 (ja) 2019-05-13 2019-05-13 制御システムおよびモータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018941 WO2020230234A1 (ja) 2019-05-13 2019-05-13 制御システムおよびモータ制御装置

Publications (1)

Publication Number Publication Date
WO2020230234A1 true WO2020230234A1 (ja) 2020-11-19

Family

ID=69320892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018941 WO2020230234A1 (ja) 2019-05-13 2019-05-13 制御システムおよびモータ制御装置

Country Status (3)

Country Link
JP (1) JP6639758B1 (ja)
CN (1) CN113795796A (ja)
WO (1) WO2020230234A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209906B1 (ja) * 2022-06-20 2023-01-20 三菱電機株式会社 制御システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245740A (ja) * 1991-12-27 1993-09-24 Nakamuratome Seimitsu Kogyo Kk 旋盤の主軸台の軸力制御装置および運転制御方法
JP2001293637A (ja) * 2000-04-12 2001-10-23 Matsushita Electric Ind Co Ltd 磁気軸受装置
JP2007280190A (ja) * 2006-04-10 2007-10-25 Murata Mach Ltd 設定状態表示機能付き工作機械
JP2012137327A (ja) * 2010-12-24 2012-07-19 Okuma Corp 振動検出装置及び振動検出方法
JP2018118362A (ja) * 2017-01-27 2018-08-02 東芝機械株式会社 工作機械および振動抑制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238273B2 (ja) * 2007-07-02 2009-03-18 ファナック株式会社 制御装置
JP5469949B2 (ja) * 2009-07-30 2014-04-16 住友重機械工業株式会社 電動機械の制御装置
JP6312517B2 (ja) * 2014-05-07 2018-04-18 山洋電気株式会社 モータ制御装置
US10116024B2 (en) * 2016-05-11 2018-10-30 King Abdulaziz City For Science And Technology Microstrip notch filter with two-pronged fork-shaped embedded resonator
EP3315387B1 (en) * 2016-05-12 2019-12-25 NSK Ltd. Electric power steering apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245740A (ja) * 1991-12-27 1993-09-24 Nakamuratome Seimitsu Kogyo Kk 旋盤の主軸台の軸力制御装置および運転制御方法
JP2001293637A (ja) * 2000-04-12 2001-10-23 Matsushita Electric Ind Co Ltd 磁気軸受装置
JP2007280190A (ja) * 2006-04-10 2007-10-25 Murata Mach Ltd 設定状態表示機能付き工作機械
JP2012137327A (ja) * 2010-12-24 2012-07-19 Okuma Corp 振動検出装置及び振動検出方法
JP2018118362A (ja) * 2017-01-27 2018-08-02 東芝機械株式会社 工作機械および振動抑制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209906B1 (ja) * 2022-06-20 2023-01-20 三菱電機株式会社 制御システム
WO2023248303A1 (ja) * 2022-06-20 2023-12-28 三菱電機株式会社 制御システム

Also Published As

Publication number Publication date
JPWO2020230234A1 (ja) 2021-05-20
CN113795796A (zh) 2021-12-14
JP6639758B1 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
JP4720744B2 (ja) サーボ制御装置
JP4565034B2 (ja) イナーシャ推定を行う制御装置及び制御システム
JP5669986B1 (ja) 数値制御装置および数値制御方法
TWI430067B (zh) 定位控制裝置
JP5902753B2 (ja) 切上げ・切込み運動または円運動挿入機能を有する数値制御装置
JP5507409B2 (ja) 工作機械のモニタ方法及びモニタ装置、工作機械
JP2012213830A (ja) 工作機械及びその加工制御装置
JP5809709B2 (ja) 切削加工装置及びそれを用いた加工方法
JP2009015448A (ja) 制御装置
JP5823082B1 (ja) 数値制御装置
JP2016052692A (ja) 数値制御装置
JP6893792B2 (ja) 工作機械および振動抑制方法
JP5226484B2 (ja) びびり振動抑制方法
JP6412071B2 (ja) モータ制御装置、モータ制御方法及びモータ制御用プログラム
WO2020230234A1 (ja) 制御システムおよびモータ制御装置
JP5631779B2 (ja) 工作機械の振動抑制方法及び装置
JP2016190276A (ja) 数値制御装置と制御方法
JP2018078747A (ja) 工作機械におけるサーボモータ制御装置のパラメータ調整システム
JP5660850B2 (ja) 振動表示装置
CN115243813B (zh) 控制系统、电动机控制装置及机器学习装置
JP5587707B2 (ja) 振動抑制装置
JP7035875B2 (ja) 数値制御装置、数値制御方法、及び数値制御プログラム
JP5767931B2 (ja) 工作機械の振動抑制方法および振動抑制装置
WO2023248303A1 (ja) 制御システム
CN111185801A (zh) 数值控制装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019555713

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928837

Country of ref document: EP

Kind code of ref document: A1