WO2020229405A1 - Hydraulisches antriebssystem - Google Patents

Hydraulisches antriebssystem Download PDF

Info

Publication number
WO2020229405A1
WO2020229405A1 PCT/EP2020/063043 EP2020063043W WO2020229405A1 WO 2020229405 A1 WO2020229405 A1 WO 2020229405A1 EP 2020063043 W EP2020063043 W EP 2020063043W WO 2020229405 A1 WO2020229405 A1 WO 2020229405A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
feed line
drive system
individual units
valve
Prior art date
Application number
PCT/EP2020/063043
Other languages
English (en)
French (fr)
Inventor
Andreas Böhler
Original Assignee
Hydac Fluidtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Fluidtechnik Gmbh filed Critical Hydac Fluidtechnik Gmbh
Priority to EP20726736.0A priority Critical patent/EP3931450B1/de
Publication of WO2020229405A1 publication Critical patent/WO2020229405A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0807Manifolds
    • F15B13/0817Multiblock manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0878Assembly of modular units
    • F15B13/0882Assembly of modular units using identical modular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0878Assembly of modular units
    • F15B13/0885Assembly of modular units using valves combined with other components
    • F15B13/0892Valves combined with fluid components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/003Systems with different interchangeable components, e.g. using preassembled kits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/022Systems essentially incorporating special features for controlling the speed or actuating force of an output member in which a rapid approach stroke is followed by a slower, high-force working stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • F15B13/0803Modular units
    • F15B13/0832Modular valves
    • F15B13/0839Stacked plate type valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B2013/002Modular valves, i.e. consisting of an assembly of interchangeable components
    • F15B2013/006Modular components with multiple uses, e.g. kits for either normally-open or normally-closed valves, interchangeable or reprogrammable manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2658Control of multiple pressure sources by control of the prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/3051Cross-check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31535Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/615Filtering means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/775Combined control, e.g. control of speed and force for providing a high speed approach stroke with low force followed by a low speed working stroke with high force, e.g. for a hydraulic press

Definitions

  • the invention relates to a hydraulic drive system.
  • Hydraulic drive systems are used in technical systems provided with hydraulic systems, in which hydraulic actuation of actuators for control and / or work functions is provided. From the large number of areas of application, for example, use in mobile systems such as cranes or forklifts, or use in motor vehicle lifting platforms.
  • DE 10 2014 009 996 A1 shows a valve system in which, in the manner of a construction kit for the supply of consumers, such as hydraulic actuators, module-like blocks are connected to one another in a fluid-carrying manner, the hydraulic components such as valves, pressure compensators, orifice inserts and comparable other fluid-influencing valve components. From WO 2013/059033 A1 a hydraulic drive system is known with several hydraulic consumers in the form of hydraulic work cylinders and hydraulic motors.
  • Each hydraulic consumer is assigned a valve device which is designed as a 4/3 way proportional valve and regulates the hydraulic inlet and outlet to the respective hydraulic consumer.
  • On the input side is the respective Valve device with a closed designed, hydraulic supply circuit connected fluidly, which has a common feed line as a component, into which further valves with blocking function are connected, with individual hydraulic pumps from the closed circuit running guide remove working fluid and into the common feed line for supplying each connected consumer via the downstream valve device.
  • the valves or shut-off valves used in the feed line allow the individual hydraulic pumps used for supply to be decoupled from one another so that individual consumers can be separated from the closed supply circuit and thus shut down.
  • the well-known hydraulic drive system with closed circulation within the scope of the fluid supply is specially designed for a supply task, so that the associated supply circuit with the various hydraulic pumps and the valves must be specifically adapted for each application of a hydraulic supply.
  • the invention is based on the object of providing a hydraulic drive system for hydraulic consumers that can be adapted to the respective application in a simple and cost-effective manner.
  • a corresponding problem is achieved by a hydraulic drive system with the features of claim 1 in its entirety.
  • a hydraulic drive system consisting of at least 2 individual units, each of which has a hydraulic pump which can be actuated by means of a drive and which feeds pressurized fluid on the output side into a common feed line to which at least one valve device is connected to each individual unit, whereby, by means of a valve in the feed line, two adjacent individual units are separated from one another or connected to one another in a fluid-carrying manner. are connected, which are modularly designed in a row to form a longitudinal linkage with each other and each have a section of the feed line that are connected to each other at separable fluid connection points between the adjacently arranged individual units, which form the feed line.
  • a modular drive system is created, best starting from several individual units, which are preferably designed the same and which can be coupled with each other in a re-solving manner depending on the number of hydraulic consumers or the performance requirements within the drive system.
  • a longitudinal linkage with a large number of individual units required in terms of performance can be created, adapted to the supply task in almost any way, which has no equivalent in the prior art.
  • an individual drive unit of the drive system can also be used for a special supply task.
  • the invention further enables the fact that the hydraulic pump of each modular single unit feeds into the common feed line, a substantial downsizing of the respective drives and hydraulic pumps.
  • the nominal power of the three drives and pumps only need to correspond to one third of the maximum total power requirement of the individual units.
  • they also work in the energy-efficient working range for smaller volume flows required by the respective valve devices from the feed line.
  • the actuation of the valves connecting the individual units with the feed line enables rapid transitions of the actuation type of the actuators to be supplied, such as their operation in rapid or creep speed, by switching on or off.
  • one of the individual units can be provided for the operation of actuators with creep speed and be provided with a motor control for this purpose, which enables fine adjustment of small volume flows for creep speed drive, while the connection of further or al ler individual units covers high performance requirements.
  • Another advantage is that if several drive-pump units are present, redundancy is available in the event of a drive or pump failure. Overall, a single unit supply concept that is longitudinally linked to one another is created, which is particularly cost-effective to implement due to the repeatability of the modules.
  • a single unit consists at least of the hydraulic pump with its drive, the valve device with utility connections for a hydraulic consumer and a section of the feed line together with the associated valve and preferably an associated supply or storage tank.
  • the pressure side of the respective hydraulic pump sucking in from a tank can be safeguarded via a pressure relief valve towards the tank, with a common tank being provided for the individual units.
  • the individual units can be constructed identically with particular advantage.
  • the use of electric motors of the same type also simplifies drive control.
  • a drive controller can be provided for several motors.
  • an alternating current or direct current motor can be provided which is brushless or with brushes verses hen.
  • a frequency converter can advantageously be provided for regulation.
  • the respective valve can be a shut-off or switching valve, in particular in the form of an electromagnetically operated 2/2-way switching valve.
  • Directional valves can also be used to control higher volume flows with low flow losses.
  • each valve device is formed from at least one 4/3-way switching valve, which is connected on the inlet side to the feed line and a return and on the outlet side to mutually hydraulically releasable check valves, each of which leads to a useful connection.
  • the respective actuators for example lifting cylinders, are protected against a safety-endangering malfunction in the event of a possible pressure loss.
  • the fluid-leading connection of the individual units to one another via the feed line can particularly advantageously form a type of longitudinal linkage for the hydraulic pumps.
  • the respective hydraulic consumers such as actuators in the form of working cylinders or hydraulic motors, can be operated in rapid or creep speed or, if necessary, they provide high performance when all individual units are switched on.
  • the system according to the invention can thereby be used with advantage in working equipment, such as mobile equipment, with the formation of a modular system adapted to the respective application conditions, in which several actuators with different power requirements and with different working speeds, such as rapid or creep speed, are to be provided.
  • individual, mutually connectable function blocks in the form of individual modules are provided for realizing the longitudinal linkage, each of which accommodates a valve device and has the hydraulic pump on one side and its drive on the other.
  • a modular construction kit system can be implemented in a particularly advantageous manner with such function blocks.
  • the individual units of such a longitudinal linkage can also be operated separately from one another as individual modules.
  • Fig. 1 is a perspective oblique view of the embodiment of the hydraulic drive system according to the invention, seen hen on the side having electric motor drives;
  • FIG. 2 shows a perspective oblique view of the exemplary embodiment, seen on the side having hydraulic pumps;
  • FIG. 3 has three identically designed individual units 2 (FIG. 3), each of which forms an identically designed function block 3, 4 and 5.
  • These are each a cuboid with two opposite broad sides 6 and 8 with a square outline and with narrower, rectangular side surfaces 10, of which only one is numbered in FIGS. 1 and 2.
  • the functions are onsblocks 3, 4, 5 are screwed together so that they form a base plate with no step transitions.
  • the broad side 6 forms the drive side on which an electric motor 12 is mounted with a centrally located drive shaft, in the present example in the form of a brushless AC motor.
  • the opposite broad side 8 forms the pump side, on each of which a hydraulic pump 14 is attached, which is driven by the associated electric motor 12 by the respective function block 3,
  • the hydraulic pumps 14 are fixed displacement pumps with a speed-controlled delivery rate.
  • a switching valve 1 5, 16 or 1 7 is arranged on the broad side 8 of each function block 3, 4, 5, which are inserted into a feed line 18, which, see FIG. 3, as all functional blocks 3, 4 , 5 common conduit runs continuously between the side surfaces 10, with a fluid connection connecting the conduction sections of the feed line 1 8 being formed on the side surfaces 10 forming the contact surfaces, and with individual fluid connection points 20 adjacent to one another being the fluid connection within the framework of the Realize the entire feed line 1 8.
  • the respective section of the feed line 18, which, together with the adjacent sections of the further units 2 results in the total output 18, extends.
  • External connection points 20 can be closed with connection plugs (not shown) if they are not used.
  • the tank 22 with the ventilation filter 28 can be common to all individual units 2.
  • the output side of the hydraulic pumps 14 is protected by a pressure limiting valve 30 and a return line 32 to the tank 22.
  • the switching valves 15, 1 6 and 1 7 are each formed by a 2/2-way valve that is electromagnetically is operable and biased in the non-actuated state in the locking division.
  • the switching valves 15, 16, 1 7 are inserted into the Einspeiselei device 1 8 so that they connect the respectively connected section of the feed line 18 via the fluid connection 20 with the section of the feed line 1 8 of the following in the chain Connect or disconnect function blocks 3, 4, 5.
  • the switching valves 1 5, 1 6, 1 7 are blocked, the sections of the feed line 1 8 running in the function blocks 3, 4 and 5 can only be supplied by one hydraulic pump 14, namely the one in the relevant block 3, 4, 5 Hydraulic pump 14.
  • the switching valve 1 5 When the switching valve 1 5 is opened, the function blocks 3 and 4 are interconnected, ie the feed line 18 can be supplied in both line sections of function block 3 and function block 4 from the hydraulic pumps 14 of both blocks 3 and 4, while the feed line 18 in the function block 5 can still only be supplied by the hydraulic pump 14 located in this function block 5. If the switching valve 1 6 is opened, the hydraulic pump 14 of the function block 5 is also switched on, so that as long as switching valve 1 5 is also open, all three hydraulic pumps 14 of the feed line 18 are switched on. When the switching valve 15 is blocked, the hydraulic pumps 14 from the function blocks 4 and 5 remain connected to the section of the Einspeiselei device 1 8 running in them, as long as the switching valve 1 6 remains open.
  • the function blocks 3, 4 and 5 each have a valve device 34, by means of their useful connections A and B with the feed line 1 8 or with the return line 32 can be connected.
  • the valve devices 34 have a 4/3-way switching valve 36 which can be actuated electromagnetically and whose input-side connections are connected to the feed line 1 8 and the return line 32.
  • the output-side connections of the directional switching valve 36 one is via a hydraulically releasable return valve check valve 38 with the useful connection A and the other via a hydraulically releasable check valve 40 with the useful connection B in connection.
  • the check valves 38 and 40 which block in the direction of the directional switching valve 36, are connected to one another in such a way that they open due to the supply pressure present at one or the other output connection of the directional switching valve 36.
  • the non-return valves 38, 40 thereby form a safety circuit which, if there is no supply pressure, prevents a backflow from the consumers and thus a loss of function that may be dangerous to safety.
  • a modular system can be implemented in which, depending on the separation of functional blocks 3, 4, 5 from the feed line 18 or the connection to the feed line 18, respective consumers can be supplied and driven in different ways.
  • various actuators can be operated simultaneously in rapid or creep speed.
  • the entire delivery rate of the hydraulic pumps 14 is available by interconnecting all the individual units 2.
  • a single unit 2 provided for creep speed operation can advantageously be designed so that its output can be finely adjusted by means of frequency control of the electric motor 12, while further electric motors 12, for example together, can be operated with less complex control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Hydraulisches Antriebssystem, bestehend aus mindestens zwei Einzelaggregaten (2), die jeweils eine mittels eines Antriebs (12) betätigbare Hydropumpe (14) aufweisen, die ausgangsseitig in eine gemeinsame Einspeiseleitung (18) unter Druck stehendes Fluid einspeisen, an die, jedem Einzelaggregat (2) zugeordnet, mindestens eine Ventileinrichtung (34) angeschlossen ist, wobei mittels eines Ventiles (15, 16, 17) in der Einspeiseleitung (18) zwei benachbarte Einzelaggregate (2) voneinander getrennt oder fluidführend miteinander verbunden sind, die modulartig ausgebildet in Aneinanderreihung eine Längsverkettung miteinander bilden und jeweils einen Abschnitt der Einspeiseleitung (18) aufweisen, die an voneinander separierbaren Fluidanschlussstellen (20) zwischen den benachbart angeordneten Einzelaggregaten (2) miteinander verbunden, die Einspeiseleitung (18) bilden.

Description

Hydraulisches Antriebssystem
Die Erfindung betrifft ein hydraulisches Antriebssystem.
Hydraulische Antriebssysteme kommen bei mit Hydrauliksystemen verse henen technischen Anlagen zum Einsatz, bei denen eine hydraulische Betä- tigung von Aktoren für Steuer- und/oder Arbeitsfunktionen vorgesehen ist. Aus der Vielzahl der Anwendungsgebiete seien beispielsweise der Einsatz bei mobilen Anlagen, wie Kränen oder Staplern, oder auch der Einsatz bei Kraftfahrzeug-Hebebühnen genannt. Beispielhaft zeigt die DE 10 2014 009 996 A1 ein Ventil-System, bei dem in der Art eines Baukastens für die Ver- sorgung von Verbrauchern, wie hydraulischen Aktoren, modulartige Blöcke fluidführend miteinander verbunden sind, die hydraulische Komponenten, wie Ventile, Druckwaagen, Blendeneinsätze und vergleichbare andere Flu id beeinflussende Ventilkomponenten enthalten. Durch WO 2013/059033 A1 ist ein hydraulisches Antriebssystem bekannt mit mehreren hydraulischen Verbrauchern in Form von hydraulischen Ar beitszylindern und Hydromotoren. Jedem hydraulischen Verbraucher zuge ordnet ist eine Ventileinrichtung vorgesehen, die als 4/3-Wegeproportional- ventil ausgebildet ist und den hydraulischen Zu- sowie Ablauf zu dem je- weiligen hydraulischen Verbraucher regelt. Eingangsseitig ist die jeweilige Ventileinrichtung mit einem geschlossen ausgebildeten, hydraulischen Ver sorgungskreislauf fluidführend verbunden, der als Bestandteil eine gemein same Einspeiseleitung aufweist, in die weitere Ventile mit Sperrfunktion geschaltet sind, wobei einzelne Hydropumpen aus der geschlossenen Kreis laufführung Arbeitsfluid entnehmen und in die gemeinsame Einspeiselei tung zur Versorgung des jeweils angeschlossenen Verbrauchers über die insoweit nachgeschaltete Ventileinrichtung einspeisen. Durch die in die Einspeiseleitung eingesetzten Ventile respektive Sperrventile, lassen sich die einzelnen der Versorgung dienenden Hydropumpen voneinander entkop peln, so dass sich dergestalt einzelne Verbraucher vom geschlossenen Ver sorgungskreislauf trennen und damit stilllegen lassen. Das bekannte hydrau lische Antriebssystem mit geschlossener Kreislaufführung im Rahmen der Fluidversorgung ist speziell für eine Versorgungsaufgabe konzipiert, so dass für jeden Anwendungsfall einer hydraulischen Versorgung der zugeordnete Versorgungskreislauf mit den verschiedenen Hydropumpen und den Venti len jeweils dezidiert anzupassen ist.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein hydraulisches Antriebssystem für hydraulische Verbraucher bereitzustellen, das sich an den jeweiligen Anwendungsfall in einfacher und kostengünstiger Weise anpassen lässt. Eine dahingehende Aufgabe löst ein hydraulisches Antriebssystem mit den Merkmalen des Patentanspruches 1 in seiner Gesamtheit.
Demgemäß ist ein hydraulisches Antriebssystem vorgesehen, bestehend aus mindestens 2 Einzelaggregaten, die jeweils eine mittels eines Antriebs betä tigbare Hydropumpe aufweisen, die ausgangsseitig in eine gemeinsame Einspeiseleitung unter Druck stehendes Fluid einspeisen, an die, jedem Ein zelaggregat zugeordnet, mindestens eine Ventileinrichtung angeschlossen ist, wobei mittels eines Ventiles in der Einspeiseleitung zwei benachbarte Einzelaggregate voneinander getrennt oder fluidführend miteinander ver- bunden sind, die modulartig ausgebildet in Aneinanderreihung eine Längs verkettung miteinander bilden und jeweils einen Abschnitt der Einspeiselei tung aufweisen, die an voneinander separierbaren Fluidanschlussstellen zwischen den benachbart angeordneten Einzelaggregaten miteinander ver bunden, die Einspeiseleitung bilden.
Dergestalt ist ein modular aufgebautes Antriebssystem geschaffen, beste hend aus mehreren Einzelaggregaten, die vorzugsweise gleich ausgebildet sind und die je nach Anzahl der hydraulischen Verbraucher respektive nach den Leistungsanforderungen im Rahmen des Antriebssystems in wiederlös barer Weise miteinander koppelbar sind. Dergestalt lässt sich nahezu belie big an die Versorgungsaufgabe angepasst eine Längsverkettung mit einer Vielzahl von leistungsmäßig benötigten Einzelaggregaten schaffen, was so keine Entsprechung im Stand der Technik hat. In besonders vorteilhafter Weise, kann dabei auch ein einzelnes Antriebsaggregat des Antriebssystems für sich gesehen, für eine spezielle Versorgungsaufgabe Verwendung fin den.
Die Erfindung ermöglicht weiter, dadurch, dass die Hydropumpe jedes mo dularen Einze Aggregates in die gemeinsame Einspeiseleitung einspeist, ein weitgehendes Downsizing der jeweiligen Antriebe und Hydropumpen. Bei einem beispielsweise drei Einze Aggregate enthaltenden System muss die Nennleistung der drei Antriebe und Pumpen lediglich jeweils einem Drittel des maximalen Gesamt-Leistungsbedarfs der Einze Aggregate entsprechen. Neben der Kostenersparnis durch kleiner dimensionierte Antriebs- und Pumpeneinheiten, arbeiten diese auch bei kleineren, von den jeweiligen Ventileinrichtungen aus der Einspeiseleitung angeforderten Volumenströ men im energieeffizienten Arbeitsbereich. Die Betätigung der die Einzelag- gregate mit der Einspeiseleitung verbindenden Ventile ermöglicht durch das Zuschalten oder Abschalten schnelle Übergänge der Betätigungsart der zu versorgenden Aktoren, wie deren Betrieb im Eil- oder Schleichgang. Mit Vorteil kann beispielsweise eines der Einzelaggregate für den Betrieb von Aktoren mit Schleichgang vorgesehen sein und hierfür mit einer Motorsteu erung versehen sein, die ein feines Justieren kleiner Volumenströme für Schleichgangantrieb ermöglicht, während das Zuschalten weiterer oder al ler Einzelaggregate hohe Leistungsanforderungen abdeckt. Ein weiterer Vor teil besteht darin, dass bei Vorhandensein mehrerer Antriebs-Pumpen einheiten Redundanz für den Fall des Versagens eines Antriebs oder einer Pumpe zur Verfügung steht. Insgesamt ist ein miteinander längsverkettetes Einzelaggregat-Versorgungskonzept geschaffen, das aufgrund der Wieder holbarkeit der Module besonders kostengünstig in der Realisierung ist.
Bei bevorzugten Ausführungsbeispielen besteht ein Einzelaggregat zumin dest aus der Hydropumpe mit ihrem Antrieb, der Ventileinrichtung mit Nutzanschlüssen für einen hydraulischen Verbraucher und einem ab schnittsweisen Teil der Einspeiseleitung nebst zugehörigem Ventil sowie vorzugsweise einem zugehörigen Versorgungs- oder Vorratstank.
Mit Vorteil kann die Druckseite der aus einem Tank ansaugenden, jeweili gen Hydropumpe über ein Druckbegrenzungsventil zum Tank hin abgesi chert sein, wobei für die Einzelaggregate ein gemeinsamer Tank vorgesehen sein kann.
Die Einzelaggregate können mit besonderem Vorteil gleich aufgebaut sein. Der Einsatz von Elektromotoren des gleichen Typs vereinfacht auch die An triebssteuerung. Beispielsweise kann ein Antriebsregler für mehrere Moto ren vorgesehen sein.
Als Antrieb für die jeweilige Hydropumpe kann ein Wechselstrom- oder Gleichstrommotor vorgesehen sein, der bürstenlos oder mit Bürsten verse hen ist. Bei Wechselstrommotoren kann zur Regelung mit Vorteil ein Fre quenzumsetzer vorgesehen sein. Für das Zu- oder Abschalten der Einzelaggregate zu der Einspeiseleitung kann das jeweilige Ventil ein Sperr- oder Schaltventil sein, insbesondere in Form eines elektromagnetisch betätigbaren 2/2-Wegeschaltventils. Mit Wegeventilen sind auch höhere Volumenströme mit geringen Strömungs verlusten steuerbar.
Mit besonderem Vorteil kann die Anordnung so getroffen sein, dass jede Ventileinrichtung zumindest aus einem 4/3-Wegeschaltventil gebildet ist, das eingangsseitig an die Einspeiseleitung sowie an einen Rücklauf und ausgangsseitig an gegenseitig hydraulisch entsperrbare Rückschlagventile angeschlossen ist, die jeweils zu einem Nutzanschluss führen. Durch die hydraulisch entsperrbaren Rückschlagventile sind die jeweiligen Aktoren, beispielsweise Hubzylinder, bei einem möglichen Druckverlust gegen eine sicherheitsgefährdende Fehlfunktion abgesichert.
Mit besonderem Vorteil kann beim erfindungsgemäßen System die fluidfüh rende Verbindung der Einzelaggregate miteinander über die Einspeiselei tung eine Art Längsverkettung für die Hydropumpen bilden.
Durch die trennbare Längsverkettung der Einzelaggregate sind die jeweili gen hydraulischen Verbraucher, wie Aktoren in Form von Arbeitszylindern oder Hydromotoren, im Eil- oder Schleichgang betreibbar oder sie erbrin gen im Bedarfsfall bei Zuschalten aller Einzelaggregate hohe Leistungen.
Das erfindungsgemäße System lässt sich dadurch unter Ausbilden eines an die jeweiligen Einsatzgegebenheiten angepassten Baukastensystems mit Vorteil bei Arbeitsgerätschaften, wie mobilen Gerätschaften, einsetzen, bei denen mehrere Aktoren mit unterschiedlichem Leistungsbedarf und mit ver schiedenen Arbeitsgeschwindigkeiten, wie Eil- oder Schleichgang, zu ver sorgen sind. Mit Vorteil sind für die Realisierung der Längsverkettung einzelne, mitei nander verbindbare Funktionsblöcke in der Art von Einzelmodulen vorge sehen, die jeweils eine Ventil-einrichtung aufnehmen und auf einer Seite die Hydropumpe und auf der anderen Seite deren Antrieb aufweisen. Mit solchen Funktionsblöcken lässt sich in besonders vorteilhafter Weise ein modulares Baukastensystem realisieren. Auch lassen sich die Einze Aggrega te einer solchen Längsverkettung voneinander separiert auch als Einzelmo- dule für sich betreiben. Nachstehend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels im Einzelnen erläutert.
Es zeigen:
Fig. 1 eine perspektivische Schrägansicht des Ausführungsbeispiels des erfindungsgemäßen hydraulischen Antriebssystems, gese hen auf die elektromotorische Antriebe aufweisende Seite;
Fig. 2 eine perspektivische Schrägansicht des Ausführungsbeispiels, gesehen auf die Hydropumpen aufweisende Seite; und
Fig. 3 in Symboldarstellung die hydraulische Schaltung des Ausfüh rungsbeispiels.
Mit Bezug auf die beigefügte Zeichnung ist die Erfindung an einem Ausfüh rungsbeispiel erläutert, das drei gleich ausgebildete Einze Aggregate 2 (Fig. 3) aufweist, die jedes einen gleich ausgebildeten Funktionsblock 3, 4 und 5 bilden. Bei diesen handelt es sich jeweils um einen Quader mit zwei gegenüberliegenden Breitseiten 6 und 8 mit quadratischem Umriss und mit schmäleren, rechteckigen Seitenflächen 10, von denen in Fig. 1 und 2 nur eine beziffert ist. An aneinanderliegenden Seitenflächen 10 sind die Funkti- onsblöcke 3, 4, 5 miteinander verschraubt, so dass sie mit absatzlosen Übergängen zusammen eine Grundplatte bilden. Die Breitseite 6 bildet jeweils die Antriebsseite auf der mit zentral gelegener Antriebswelle jeweils ein Elektromotor 12 gelagert ist, beim vorliegenden Beispiel in Form eines bürstenlosen Wechselstromotors. Die gegenüberliegende Breitseite 8 bildet die Pumpenseite, auf der jeweils eine Hydropumpe 14 befestigt ist, die vom zugeordneten Elektromotor 12 mit durch den jeweiligen Funktionsblock 3,
4 und 5 hindurchgeführter Antriebswelle direkt angetrieben sind. Bei den Hydropumpen 14 handelt es sich um Konstantpumpen mit drehzahlgesteu erter Förderleistung. Neben den Hydropumpen 14 ist auf der Breitseite 8 jedes Funktionsblockes 3, 4, 5 ein Schaltventil 1 5, 16 bzw. 1 7 angeordnet, die in eine Einspeiseleitung 18 eingefügt sind, die, siehe Fig. 3, als sämtli chen Funktionsblöcken 3, 4, 5 gemeinsame Feitung durchgehend zwischen den Seitenflächen 10 verläuft, wobei an den die Anlageflächen bildenden Seitenflächen 10 eine die Feitungsabschnitte der Einspeiseleitung 1 8 ver bindende Fluidverbindung gebildet ist, und wobei einzelne, einander be nachbarte Fluidanschlussstellen 20 bei entsprechender Abdichtung die Flu idverbindung im Rahmen der Realisierung der Gesamt-Einspeiseleitung 1 8 hersteilen. Zwischen zwei Anschlussstellen 20 eines Einze Aggregates 2 erstreckt sich dabei der jeweilige Abschnitt der Einspeiseleitung 18, der mit den benachbart angeordneten Abschnitten der weiteren Aggregate 2 die Gesamtleistung 18 ergibt. Außenliegende Anschlussstellen 20 können bei Nichtbelegung mit Anschlussstopfen (nicht dargestellt) verschlossen sein.
Wie Fig. 3 zeigt, sind die Hydropumpen 14, die aus einem Tank 22 über ein Filter 24 ansaugen, mit ihrer Ausgangsseite über ein Rückschlagventil mit der Einspeiseleitung 1 8 verbunden. Der Tank 22 mit Belüftungsfilter 28 kann für sämtliche Einzelaggregate 2 gemeinsam sein. Die Ausgangsseite der Hydropumpen 14 ist über ein Druckbegrenzungsventil 30 und eine Rücklaufleitung 32 zum Tank 22 hin abgesichert. Die Schaltventile 15, 1 6 und 1 7 sind jedes durch ein 2/2-Wegeventil gebildet, das elektromagnetisch betätigbar und im nicht betätigten Zustand in die Sperrsteilung vorgespannt ist. Wie die Fig. 3 zeigt, sind die Schaltventile 15, 16, 1 7 in die Einspeiselei tung 1 8 so eingefügt, dass sie den jeweils angeschlossenen Abschnitt der Einspeiseleitung 18 über die Fluidverbindung 20 mit dem Abschnitt der Einspeiseleitung 1 8 des in der Verkettung nachfolgenden Funktionsblocks 3, 4, 5 verbinden oder trennen. Bei dieser Anordnung sind bei gesperrten Schaltventilen 1 5, 1 6, 1 7 die in den Funktionsblöcken 3, 4 und 5 verlau fenden Abschnitte der Einspeiseleitung 1 8 lediglich von einer Hydropumpe 14 versorgbar, nämlich der in dem betreffenden Block 3, 4, 5 befindlichen Hydropumpe 14. Bei Öffnen des Schaltventils 1 5 sind die Funktionsblöcke 3 und 4 zusammengeschaltet, d.h. die Einspeiseleitung 18 ist in beiden Lei tungsabschnitten von Funktionsblock 3 und Funktionsblock 4 von den Hyd- ropumpen 14 beider Blöcke 3 und 4 versorgbar, während die Einspeiselei tung 18 im Funktionsblock 5 weiterhin nur von der in diesem Funktions block 5 befindlichen Hydropumpe 14 versorgbar ist. Wird das Schaltventil 1 6 geöffnet, ist auch die Hydropumpe 14 des Funktionsblocks 5 zugeschal tet, so dass, solange Schaltventil 1 5 ebenfalls geöffnet ist, alle drei Hydro- pumpen 14 der Einspeiseleitung 18 zugeschaltet sind. Bei Sperren des Schaltventils 15 bleiben wiederum die Hydropumpen 14 aus den Funkti onsblöcken 4 und 5 dem in ihnen verlaufenden Abschnitt der Einspeiselei tung 1 8 zugeschaltet, solange das Schaltventil 1 6 geöffnet bleibt.
Für die Versorgung von Verbrauchern, wie nicht gezeigte Arbeitszylinder, Fahrantriebe oder Aktoren anderer Art durch die Einzelaggregate 2, weisen die Funktionsblöcke 3, 4 und 5 je eine Ventileinrichtung 34 auf, mittels deren Nutzanschlüsse A und B mit der Einspeiseleitung 1 8 oder mit der Rücklaufleitung 32 verbindbar sind. Die Ventileinrichtungen 34 weisen ein 4/3-Wegeschaltventil 36 auf, das elektromagnetisch betätigbar ist und des sen eingangsseitigen Anschlüsse mit der Einspeiseleitung 1 8 und der Rück laufleitung 32 verbunden sind. Von den ausgangsseitigen Anschlüssen des Wegeschaltventils 36 ist der eine über ein hydraulisch entsperrbares Rück- schlagventil 38 mit dem Nutzanschluss A und der andere über ein hydrau lisch entsperrbares Rückschlagventil 40 mit dem Nutzanschluss B in Ver bindung. Die Rückschlagventile 38 und 40, die in Richtung auf das Wege schaltventil 36 sperren, sind miteinander so verschaltet, dass sie durch an einem oder am anderen Ausgangsanschluss des Wegeschaltventils 36 an stehenden Versorgungsdruck öffnen. Die Rückschlagventils 38, 40 bilden dadurch eine Sicherheitsschaltung, die bei fehlendem Versorgungsdruck einen Rückstrom von den Verbrauchern und damit einen möglicherweise sicherheitsgefährdenden Funktionsverlust verhindert.
Mit der erfindungsgemäß vorgesehenen Längsverkettung der Einze Aggrega te 2 ist ein Baukastensystem realisierbar, bei dem, je nach Trennen von Funktionsblöcken 3, 4, 5 von der Einspeiseleitung 18 oder dem Zuschalten zur Einspeiseleitung 18 jeweilige Verbraucher in unterschiedlicher Weise versorg- und antreibbar sind. Beispielsweise sind verschiedene Aktoren gleichzeitig im Eil- oder Schleichgang betreibbar. In Fall einer hohen Leis tungsanforderung sämtlicher Aktoren steht durch Zusammenschalten aller Einze Aggregate 2 die gesamte Förderleistung der Hydropumpen 14 zur Ver fügung. Ein für Schleichgang-Betrieb vorgesehenes Einzelaggregat 2 kann mit Vorteil mittels Frequenzsteuerung des Elektromotors 12 in der Leistung feinjustierbar ausgelegt sein, während weitere Elektromotoren 12, bei spielsweise gemeinsam, mit weniger aufwendiger Steuerung betreibbar sind.

Claims

P a t e n t a n s p r ü c h e
1 . Hydraulisches Antriebssystem, bestehend aus mindestens zwei Einzel aggregaten (2), die jeweils eine mittels eines Antriebs (12) betätigbare Hydropumpe (14) aufweisen, die ausgangsseitig in eine gemeinsame Einspeiseleitung (18) unter Druck stehendes Fluid einspeisen, an die, je dem Einzelaggregat (2) zugeordnet, mindestens eine Ventileinrichtung (34) angeschlossen ist, wobei mittels eines Ventiles (15, 16, 1 7) in der Einspeiseleitung (1 8) zwei benachbarte Einzelaggregate (2) voneinander getrennt oder fluidführend miteinander verbunden sind, die modulartig ausgebildet in Aneinanderreihung eine Längsverkettung miteinander bilden und jeweils einen Abschnitt der Einspeiseleitung (18) aufweisen, die an voneinander separierbaren Fluidanschlussstellen (20) zwischen den benachbart angeordneten Einzelaggregaten (2) miteinander verbun den, die Einspeiseleitung (18) bilden.
2. Hydraulisches Antriebssystem nach Anspruch 1 , dadurch gekennzeich net, dass ein Einzelaggregat (2) zumindest besteht aus
- der Hydropumpe (14) mit ihrem Antrieb (12),
- der Ventileinrichtung (34) mit Nutzanschlüssen (A, B) für einen hydraulischen Verbraucher,
- einem Abschnitt der Einspeiseleitung (18), nebst
- zugehörigem Ventil (15, 16, 1 7), und vorzugsweise
- einem Vorratstank (22).
3. Hydraulisches Antriebssystem nach Anspruch 1 oder 2, dadurch ge kennzeichnet, dass alle Einzelaggregate (2) gleich aufgebaut sind.
4. Hydraulisches Antriebssystem nach einem der vorstehenden Ansprü che, dadurch gekennzeichnet, dass der Antrieb ein Wechselstrom- oder Gleichstrommotor (12) ist, der bürstenlos oder mit Bürsten versehen ist.
5. Hydraulisches Antriebssystem nach einem der vorstehenden Ansprü che, dadurch gekennzeichnet, dass das jeweilige Ventil ein Schaltven til, insbesondere ein elektromagnetisch betätigbares 2/2-Wegeschalt- ventil (15, 1 6, 1 7) ist.
6. Hydraulisches Antriebssystem nach einem der vorstehenden Ansprü che, dadurch gekennzeichnet, dass jede Ventileinrichtung (34) zumin dest aus einem 4/3-Wegeschaltventil (36) gebildet ist, das eingangsseitig an die Einspeiseleitung (18) sowie an einen Rücklauf (32) und aus gangsseitig an gegenseitig hydraulisch entsperrbare Rückschlagventile (38, 40) angeschlossen ist, die jeweils zu einem Nutzanschluss (A oder B) führen.
7. Hydraulisches Antriebssystem nach einem der vorstehenden Ansprü che, dadurch gekennzeichnet, dass die fluidführende Verbindung (20) der Einzelaggregate (2) miteinander über die Einspeiseleitung (18) eine Art Längsverkettung für die Hydropumpen (14) bildet.
8. Hydraulisches Antriebssystem nach einem der vorstehenden Ansprü che, dadurch gekennzeichnet, dass durch die trennbare Längsverket tung der Einzelaggregate (2) die jeweiligen hydraulischen Verbraucher, wie Aktoren in Form von Arbeitszylindern oder Hydromotoren, im Eil oder Schleichgang betreibbar sind oder im Bedarfsfall bei Zuschalten al- ler Einzelaggregate (2) hohe Leistungen erbringen.
9. Hydraulisches Antriebssystem nach einem der vorstehenden Ansprü che, dadurch gekennzeichnet, dass für die Realisierung der Längsver kettung einzelne, miteinander verbindbare Funktionsblöcke (3, 4, 5) vorgesehen sind, die jeweils eine Ventileinrichtung (34) aufnehmen und auf einer Seite die Hydropumpe (14) und auf der anderen Seite de ren Antrieb (12) aufweisen.
10. Hydraulisches Antriebssystem nach einem der vorstehenden Ansprü che, dadurch gekennzeichnet, dass die Einzelaggregate (2) einer Längs verkettung voneinander separiert auch als Einzelmodule für sich funkti onsfähig sind.
PCT/EP2020/063043 2019-05-11 2020-05-11 Hydraulisches antriebssystem WO2020229405A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20726736.0A EP3931450B1 (de) 2019-05-11 2020-05-11 Hydraulisches antriebssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019003342.6A DE102019003342A1 (de) 2019-05-11 2019-05-11 Hydraulisches Antriebssystem
DE102019003342.6 2019-05-11

Publications (1)

Publication Number Publication Date
WO2020229405A1 true WO2020229405A1 (de) 2020-11-19

Family

ID=70775330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/063043 WO2020229405A1 (de) 2019-05-11 2020-05-11 Hydraulisches antriebssystem

Country Status (3)

Country Link
EP (1) EP3931450B1 (de)
DE (1) DE102019003342A1 (de)
WO (1) WO2020229405A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233601A (zh) * 2021-12-17 2022-03-25 中国船舶重工集团公司第七一五研究所 一种应用多泵组冗余控制策略的节能液压系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2604609A (en) * 2021-03-08 2022-09-14 Bamford Excavators Ltd Hydraulic pump system
EP4438226A1 (de) * 2023-03-28 2024-10-02 SCM Group S.p.A. Verteilereinheit und zugehöriges bearbeitungszentrum

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600346A1 (de) * 2004-05-26 2005-11-30 Hitachi Ltd. Fluid-Drucksteuergerät
WO2013059033A1 (en) 2011-10-21 2013-04-25 Caterpillar Inc. Closed-loop system having multi-circuit flow sharing
US20140334955A1 (en) * 2013-05-09 2014-11-13 Hyundai Motor Company Oil supply system
DE102014009996A1 (de) 2014-07-05 2016-01-07 Hydac Fluidtechnik Gmbh Ventil-Baukastensystem
WO2017005338A1 (de) * 2015-07-08 2017-01-12 Hydac Fluidtechnik Gmbh Hydraulikaggregat

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108535A1 (de) * 2011-07-26 2013-01-31 Airbus Operations Gmbh Hydraulische Motor-Pumpen-Anordnung und Hydrauliksystem für ein Fahrzeug
DE102015225436A1 (de) * 2015-12-16 2017-06-22 Robert Bosch Gmbh Ventilblock, Zylinder, Kompaktachse und Kompaktachsen-Baukasten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1600346A1 (de) * 2004-05-26 2005-11-30 Hitachi Ltd. Fluid-Drucksteuergerät
WO2013059033A1 (en) 2011-10-21 2013-04-25 Caterpillar Inc. Closed-loop system having multi-circuit flow sharing
US20140334955A1 (en) * 2013-05-09 2014-11-13 Hyundai Motor Company Oil supply system
DE102014009996A1 (de) 2014-07-05 2016-01-07 Hydac Fluidtechnik Gmbh Ventil-Baukastensystem
WO2017005338A1 (de) * 2015-07-08 2017-01-12 Hydac Fluidtechnik Gmbh Hydraulikaggregat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233601A (zh) * 2021-12-17 2022-03-25 中国船舶重工集团公司第七一五研究所 一种应用多泵组冗余控制策略的节能液压系统
CN114233601B (zh) * 2021-12-17 2023-06-13 中国船舶重工集团公司第七一五研究所 一种应用多泵组冗余控制策略的节能液压系统

Also Published As

Publication number Publication date
DE102019003342A1 (de) 2020-11-12
EP3931450A1 (de) 2022-01-05
EP3931450C0 (de) 2023-08-02
EP3931450B1 (de) 2023-08-02

Similar Documents

Publication Publication Date Title
EP3931450B1 (de) Hydraulisches antriebssystem
DE102006060351B3 (de) Hydraulische Schaltungsanordnung mit Energierückgewinnung
EP1915538B1 (de) Schaltung zur ansteuerung eines doppeltwirkenden hydraulischen antriebszylinders
DE102006060334B4 (de) Hydraulische Ventilanordnung
EP1780420B1 (de) Hydraulische Druckversorgungseinheit und elektrohydraulische Arbeitseinheit
EP1577257B1 (de) Hydraulische Hubvorrichtung für batteriebetriebene Flurförderzeuge
EP2669527A2 (de) Hydraulischer Steuerblock und Hydrauliksystem
WO2011003506A1 (de) Elektrohydraulische steuerung
WO2015162229A1 (de) Steuerungssystem für eine hydraulische arbeitsmaschine
EP3058236B1 (de) Steuervorrichtung
WO2008058584A1 (de) Hydraulisches zweikreissystem und zusammenschaltventilanordnung
EP1628020A2 (de) Fluidschaltung und Flurförderzeug mit Fluidschaltung
EP2929217B1 (de) Vorrichtung zur steuerung des betriebs eines mittels eines hydromotors antreibbaren lüfters einer kühleinrichtung
EP2672124A2 (de) Hydrauliksystem und Druckbegrenzungsventil
EP3012463A1 (de) Hydraulikaggregat
DE2554365C2 (de) Ventileinrichtung zur Wegesteuerung des Arbeitsdruckmittels für einen doppeltwirkenden Servomotor
EP1161929B1 (de) Hydrauliksystem für einen mehrere hydraulische Verbraucher aufweisenden Tisch oder dgl., insbesondere Operationstisch
DE102007032415B3 (de) Hydraulische Ventilanordnung
EP1729014B1 (de) Steuerblock und Steuerblocksektion
DE102013002814A1 (de) Hydrauliksystem für eine Arbeitsvorrichtung
EP1253327B1 (de) Hydraulische Steuereinrichtung
WO2011038813A1 (de) Hochdruckverteilerblock einer kühl-schmierstoffversorgungseinrichtung
DE202004014030U1 (de) Elektrohydraulische Steuervorrichtung
EP1574720B1 (de) Elektrohydraulische Steuervorrichtung und Verfahren zu ihrer Abschaltung
WO2011038814A1 (de) Niederdruckverteilerblock einer kühl-schmierstoffversorgungseinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20726736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE