WO2020228817A1 - Erk抑制剂及其应用 - Google Patents

Erk抑制剂及其应用 Download PDF

Info

Publication number
WO2020228817A1
WO2020228817A1 PCT/CN2020/090494 CN2020090494W WO2020228817A1 WO 2020228817 A1 WO2020228817 A1 WO 2020228817A1 CN 2020090494 W CN2020090494 W CN 2020090494W WO 2020228817 A1 WO2020228817 A1 WO 2020228817A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
add
compound
synthesis
pharmaceutically acceptable
Prior art date
Application number
PCT/CN2020/090494
Other languages
English (en)
French (fr)
Inventor
李翼
刘宁
于涛
吴成德
李婕
黎健
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202080027279.6A priority Critical patent/CN113784970B/zh
Publication of WO2020228817A1 publication Critical patent/WO2020228817A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the invention relates to a class of compounds as ERK inhibitors and their application in the preparation of drugs for treating ERK-related diseases. Specifically, it relates to the compound represented by formula (III), its isomers or pharmaceutically acceptable salts thereof.
  • Ras/Raf/MEK/ERK pathway is a classic mitogen activated protein kinase (MAPK) signal cascade pathway, which participates in the signals after activation of various growth factors, cytokines, mitogens and hormone receptors Transduction is one of the most important signal transduction pathways that control cell growth, differentiation and survival.
  • MAPK mitogen activated protein kinase
  • Extracellular regulated protein kinases are the main participants and key downstream nodes of the Ras/Raf/MEK/ERK pathway. They can be found in many human cancers. Excessive activation. As the terminal signal kinase of this pathway, ERK has not been found to have drug resistance mutations. Therefore, drugs targeting ERK kinase are expected to overcome the problem of drug resistance after treatment with upstream target inhibitors and become a more potential therapeutic strategy. But so far, the research on ERK inhibitors is still in the clinical stage, and no ERK inhibitor has been approved for marketing as a drug. In summary, there is an urgent need to develop safe and effective ERK inhibitor drugs to meet the needs of tumor treatment.
  • ERK Extracellular regulated protein kinases
  • the present invention provides a compound of formula (III), its isomers or pharmaceutically acceptable salts thereof,
  • n 0, 1 or 2;
  • T 1 , T 2 and T 3 are independently selected from N and CH;
  • D 1 and D 2 are each independently selected from -CH 2 -and -CH 2 -CH 2 -;
  • R 1 is selected from H and C 1-3 alkyl, wherein said C 1-3 alkyl optionally substituted with 1, 2 or 3 R a;
  • R 2 and R 3 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is optionally selected by 1, 2 or 3 R b substitutions;
  • R 4 is selected from H, F, Cl, Br, I, OH, CN and NH 2 ;
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and C 1-3 alkyl, wherein the C 1-3 The alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R 10 is selected from H, F, Cl, Br, I and CH 3 ;
  • R a , R b and R c are each independently selected from F, Cl, Br, I, OH, CN, and NH 2 .
  • the present invention also provides a compound of formula (I'), its isomers or pharmaceutically acceptable salts thereof,
  • n 0, 1 or 2;
  • T 1 , T 2 and T 3 are independently selected from N and CH;
  • D 1 and D 2 are each independently selected from -CH 2 -and -CH 2 -CH 2 -;
  • R 1 is selected from H and C 1-3 alkyl, wherein said C 1-3 alkyl optionally substituted with 1, 2 or 3 R a;
  • R 2 and R 3 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is optionally selected by 1, 2 or 3 R b substitutions;
  • R 4 is selected from H, F, Cl, Br, I, OH, CN and NH 2 ;
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and C 1-3 alkyl, wherein the C 1-3 The alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R a , R b and R c are each independently selected from F, Cl, Br, I, OH, CN, and NH 2 .
  • the present invention also provides a compound of formula (I), its isomers or pharmaceutically acceptable salts thereof,
  • T 1 , T 2 and T 3 are independently selected from N and CH;
  • D 1 and D 2 are each independently selected from -CH 2 -and -CH 2 -CH 2 -;
  • R 1 is selected from H and C 1-3 alkyl, wherein said C 1-3 alkyl optionally substituted with 1, 2 or 3 R a;
  • R 2 and R 3 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and C 1-3 alkyl, wherein the C 1-3 alkyl is optionally selected by 1, 2 or 3 R b substitutions;
  • R 4 is selected from F, Cl, Br, I, OH, CN and NH 2 ;
  • R 5 , R 6 , R 7 , R 8 and R 9 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and C 1-3 alkyl, wherein the C 1-3 The alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R a , R b and R c are each independently selected from F, Cl, Br, I, OH, CN, and NH 2 .
  • the above-mentioned compound is selected from
  • ring A, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined in the present invention.
  • the above-mentioned compound is selected from
  • ring A, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (II):
  • ring A, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are as defined in the present invention.
  • R 1 is selected from H and CH 3, wherein CH 3 is optionally substituted with 1, 2 or 3 R a, the other variables are as defined in the present invention.
  • R 1 is CH 3 , and other variables are as defined in the present invention.
  • R 2 and R 3 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and CH 3 , wherein the CH 3 is optionally selected by 1, 2 or 3 R b substitutions, other variables are as defined in the present invention.
  • R 2 and R 3 are independently selected from H, F, Cl, Br, I, OH, CN, NH 2 and CH 3 , and other variables are as defined in the present invention.
  • the above-mentioned R 5 , R 6 , R 7 , R 8 and R 9 are each independently selected from H, F, Cl, Br, I, OH, CN, NH 2 , CH 3 and -CH 2 -CH 3 , wherein the CH 3 and -CH 2 -CH 3 are optionally substituted with 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • the above-mentioned R 5 , R 6 , R 7 , R 8 and R 9 are independently selected from H, F, Cl, Br, I, OH, CN and NH 2 , and other variables are as described in the present invention. definition.
  • the aforementioned ring A is Other variables are as defined in the present invention.
  • the aforementioned ring A is Other variables are as defined in the present invention.
  • the aforementioned ring A is Other variables are as defined in the present invention.
  • the aforementioned ring A is Other variables are as defined in the present invention.
  • the above-mentioned compound is selected from
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined in the present invention.
  • the above-mentioned compound is selected from
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are as defined in the present invention.
  • the above-mentioned compound is selected from
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined in the present invention.
  • the above-mentioned compound is selected from
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are as defined in the present invention.
  • the present invention also provides the following compounds, their isomers or their pharmaceutically acceptable salts,
  • the above-mentioned compound, its isomers and pharmaceutically acceptable salts thereof are selected from
  • the present invention also provides the application of the above-mentioned compound, its isomers and pharmaceutically acceptable salts in the preparation of drugs for treating ERK-related diseases.
  • the above-mentioned ERK-related disease drugs are drugs for the treatment of colorectal cancer.
  • the compound of the present invention exhibits superior inhibitory activity against ERK2 kinase, and at the same time, exhibits superior inhibitory activity against HT29 cell proliferation; in addition, the compound of the present invention exhibits excellent oral exposure and bioavailability.
  • the compound of the present invention has a significant inhibitory effect on tumor growth, and the animal’s body weight has not significantly decreased, and there is no morbidity or death Phenomenon, excellent safety.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and acidic
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. Generally, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or an organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which a molecule has two or more chiral centers and the relationship between the molecules is not mirror images.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a solid center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dotted key Or use wavy lines Represents a straight solid line key And straight dashed key
  • the following formula (A) means that the compound exists as a single isomer of formula (A-1) or formula (A-2) or as two isomers of formula (A-1) and formula (A-2)
  • the following formula (B) means that the compound exists in the form of a single isomer of formula (B-1) or formula (B-2) or in the form of two of formula (B-1) and formula (B-2) A mixture of isomers exists.
  • the following formula (C) represents that the compound exists as a single isomer of formula (C-1) or formula (C-2) or as two isomers of formula (C-1) and formula (C-2) Exist as a mixture.
  • tautomer or “tautomeric form” means that at room temperature, the isomers of different functional groups are in dynamic equilibrium and can be transformed into each other quickly. If tautomers are possible (such as in solution), the chemical equilibrium of tautomers can be reached.
  • proton tautomers also called prototropic tautomers
  • proton migration such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence isomers include some recombination of bonding electrons to carry out mutual transformation.
  • keto-enol tautomerization is the tautomerism between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refer to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with a suitable optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which employs a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with heavy hydrogen. The bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon. Compared with undeuterated drugs, deuterated drugs have reduced toxic side effects and increased drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by substituents, and can include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the substituted compound is stable of.
  • oxygen it means that two hydrogen atoms are replaced. Oxygen substitution will not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituents When a substituent is vacant, it means that the substituent is absent. For example, when X in A-X is vacant, it means that the structure is actually A.
  • substituents do not indicate which atom is connected to the substituted group, such substituents can be bonded via any atom.
  • a pyridyl group can pass through any one of the pyridine ring as a substituent. The carbon atom is attached to the substituted group.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the direction opposite to the reading order from left to right Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dotted key Or wavy line Said.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy lines in indicate that the phenyl group is connected to other groups through the 1 and 2 carbon atoms.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include but are not limited to methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy) and the like.
  • halogen or halogen by itself or as part of another substituent means a fluorine, chlorine, bromine or iodine atom.
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , including any range from n to n+m, for example, C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; in the same way, from n to n +m means the number of atoms in the ring is n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, 9-membered
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (for example, a nucleophilic substitution reaction).
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups, such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy groups such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes but is not limited to "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethyloxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethyloxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups, such as trimethylsilyl (TMS) and tert-butyldimethyls
  • hydroxy protecting group refers to a protecting group suitable for preventing side reactions of the hydroxyl group.
  • Representative hydroxy protecting groups include but are not limited to: alkyl groups, such as methyl, ethyl, and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (P
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations: aq stands for water; psi stands for pound force per square inch.
  • Figure 1 Tumor growth curve of human colon cancer HT-29 xenograft tumor model animals after administration of solvent and test compound;
  • Figure 2 The body weight change rate (%) of human colon cancer HT-29 xenograft tumor model animals during administration.
  • reaction solution was quenched with saturated aqueous ammonium chloride (100mL) and ethyl acetate (100mL ⁇ 2) and dichloromethane (100mL) extraction, the organic phase was dried over anhydrous sodium sulfate, filtered and spin-dried to obtain a crude product.
  • the crude product is purified by column chromatography to obtain A-1.
  • B-1-1 (59.46g, 825.08mmol, 6.15mL, 2eq)
  • B-1-2 50g, 412.54mmol, 1.00eq
  • tetrahydrofuran 1000mL
  • titanium Tetraisopropyl acid tetraisopropyl ester (351.74g, 1.24mol, 365.26mL, 3.00eq) was reacted in an oil bath mixture at 80°C for 16 hours.
  • reaction solution was spun off the solvent first, and the remaining solution was diluted with dichloromethane (1000mL) and quenched by adding saturated ammonium chloride aqueous solution (200mL). A red solid would be produced. Filter on a Buchner funnel with Celite and collect. The filtrate is separated into the lower organic phase, dried with anhydrous sodium sulfate, filtered, and the filtrate is concentrated under reduced pressure with a water pump at 45°C to obtain a crude product. The crude product is purified by column chromatography to obtain B-1-3. 1 H NMR (400MHz, DMSO-d 6 ) ⁇ ppm 5.69-5.33 (m, 4H), 1.26-1.09 (m, 9H).
  • reaction solution is used with saturated aqueous ammonium chloride ( 100mL) quenched, the aqueous phase was adjusted to pH 3 with dilute aqueous hydrochloric acid solution, extracted with ethyl acetate (50mL x3), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure with a water pump at 45°C to obtain crude product B-1-5 .
  • reaction solution was quenched with water (500mL), added with 2N sodium hydroxide aqueous solution to adjust the pH to 9, extracted with dichloromethane (100mL x3), the organic phase was washed with saturated brine (500mL), dried with anhydrous sodium sulfate, and filtered , The filtrate was concentrated under reduced pressure with a water pump at 45°C to obtain a crude product.
  • the crude product is purified by column chromatography to obtain B-1-6.
  • B-1-6 (2g, 4.56mmol, 1eq) and tetrahydrofuran (20mL) were added to the reaction flask, and then tetrabutylammonium fluoride (1M, 4.56mL, 1eq) was added, and the mixture was reacted at 20°C for 16 hours. After the reaction was completed, the organic phase was spin-dried by a water pump at 45°C to obtain a crude product. The crude product was dissolved in 6 mL of acetonitrile and filtered to obtain B-1-7.
  • reaction solution was diluted with water (5mL), extracted with dichloromethane (10mL x3), the organic phase was washed with saturated brine (2mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated to dryness with a pump under reduced pressure at 45°C
  • the crude product is purified by thin layer chromatography on silica gel plates to obtain WX004.
  • reaction solution was slowly poured into saturated ammonium chloride solution (5mL) for quenching, extracted with ethyl acetate (1mL ⁇ 3), and the organic phases were combined, washed with saturated brine (5mL ⁇ 2), and dried over anhydrous sodium sulfate , Filter, and concentrate the filtrate under reduced pressure to obtain a crude product.
  • the crude product was separated and purified by column to obtain WX005-1.
  • reaction solution was diluted with water (4mL), extracted with ethyl acetate (5mL) 3 times, the organic phases were combined, washed with saturated brine (5mL), the organic phase was dried with anhydrous sodium sulfate, filtered, and the filtrate Concentrate under reduced pressure with a water pump.
  • the crude product was purified by thin layer chromatography on silica gel plates to obtain WX007-1.
  • WX007-1 100mg, 189.05 ⁇ mol, 1eq
  • WX007-2 140.70mg, 756.20 ⁇ mol, 154.27 ⁇ L, 4eq
  • tetramethylethylenediamine 28.56mg, 245.76 ⁇ mol, 37.09 ⁇ L
  • n-butyllithium 2.5M, 189.05 ⁇ L, 2.5eq
  • react at -78°C for 0.5 hours.
  • the reaction solution was quenched by adding 0.5 mL of methanol, and concentrated under reduced pressure to obtain WX007-3, which was directly used in the next reaction.
  • reaction solution was slowly poured into an Erlenmeyer flask filled with 40 mL of water, extracted with ethyl acetate (20 mL ⁇ 3), and the organic phases were combined, washed with saturated brine (20 mL ⁇ 3), and dried over anhydrous sodium sulfate , Filtered, and the filtrate was concentrated under reduced pressure at 45°C.
  • the crude product was purified by thin layer chromatography on silica gel plates to obtain WX009-1.
  • reaction solution was quenched with water (20mL), extracted with ethyl acetate (10mL ⁇ 3), the organic phase was washed with saturated brine (20mL), and the organic phase was dried with anhydrous sodium sulfate, filtered, and the filtrate was spin-dried at 45°C .
  • the crude product was purified by thin layer chromatography on a silica gel plate to obtain WX010-1.
  • Example 22 in Table 5 was synthesized.
  • reaction solution was diluted with ice water (100mL), quenched by adding 100mL saturated aqueous sodium sulfite solution, extracted with dichloromethane (100mL x3), the organic phase was washed with saturated brine (100mL), dried with anhydrous sodium sulfate, and filtered The filtrate was concentrated under reduced pressure with a water pump at 45°C. The crude product was separated and purified by column to obtain WX023-2.
  • WX023-5 (350mg, 2.19mmol, 1eq), lithium hydroxide (183.40mg, 4.37mmol, 2eq), water (3.5mL) and methanol (7mL) were added to the reaction flask, and the mixed solution was reacted at 20°C for 16 hours.
  • spin the organic solvent to dryness extract with ethyl acetate (5mL), separate the layers, adjust the pH of the aqueous phase to 3-4 with 2 moles of hydrochloric acid per liter, extract with ethyl acetate (5mL ⁇ 3), and use Wash with saturated brine (5 mL), dry with anhydrous sodium sulfate, and filter.
  • the filtrate is concentrated under reduced pressure with a water pump at 45°C to obtain WX023-6.
  • reaction solution was diluted with saturated aqueous ammonium chloride solution (10mL) and sodium bicarbonate (5mL), separated, the aqueous phase was adjusted to pH 3-4 with 2 moles of hydrochloric acid per liter, ethyl acetate (10mL ⁇ 3) After extraction, the organic phase was washed with saturated brine (10 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure with a water pump at 45° C. to obtain WX023-7.
  • reaction solution was diluted with water (50mL), extracted with dichloromethane (30mL ⁇ 3), the organic phase was washed with saturated brine (30mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure with a pump at 45°C .
  • the crude product was separated and purified by column to obtain WX023-8.
  • WX023-8 (220mg, 290.07 ⁇ mol, 40% purity, 1eq), tetrabutylammonium fluoride (1M, 290.07 ⁇ L, 1eq) and tetrahydrofuran (2.5mL) to the reaction flask.
  • the mixed solution reacted for 1 hour.
  • the reaction liquid was directly spin-dried to precipitate a large amount of solid.
  • reaction solution was diluted with saturated aqueous ammonium chloride solution (50 mL), extracted with ethyl acetate (20 mL x 3), the organic phase was washed with saturated brine (10 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was used at 45°C
  • the pump is concentrated under reduced pressure.
  • the crude product was purified by thin layer chromatography on silica gel plates. Get WX023-11.
  • the organic phase was washed with saturated brine (4 mL), dried over sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure with a water pump to obtain WX024-4.
  • reaction solution was diluted with water (5 mL), extracted with ethyl acetate (5 mL) three times, the organic phases were combined, and the organic phase was washed with saturated brine (5 mL), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate Concentrate under reduced pressure with a water pump.
  • the crude product was purified by thin layer chromatography on silica gel plates to obtain WX024-8.
  • reaction solution was diluted with water (10 mL), extracted with ethyl acetate (20 mL) three times, the organic phases were combined, and the organic phase was washed with saturated brine (30 mL ⁇ 3), the organic phase was dried over anhydrous sodium sulfate, and filtered The filtrate was concentrated under reduced pressure with a water pump.
  • the crude product was separated and purified by thin layer chromatography on silica gel plates.
  • the ability of the compound to inhibit ERK2 kinase activity is measured.
  • test compound was dissolved in 100% DMSO to prepare a mother liquor of a specific concentration. Use the Integra Viaflo Assist smart pipette to serially dilute the compound in the DMSO solution.
  • the calculation method of ERK2 kinase activity is the ratio of the remaining kinase activity in the test sample to the kinase activity of the control group (DMSO treatment). Using Prism (GraphPad Software) were fitted curve 50 calculated value IC.
  • the compound of the present invention exhibits better inhibitory activity against ERK2 enzyme.
  • the ability of the compound to inhibit the proliferation of HT29 tumor cells is measured.
  • test compound was dissolved in 100% DMSO to prepare a 10 mM mother liquor.
  • the compound of the present invention exhibits excellent inhibitory activity against HT29 cell proliferation.
  • mice Eight healthy adult female BALB/c mice were selected, four were the intravenous injection group, and four were the oral group.
  • the compound to be tested is mixed with an appropriate amount of intravenous group solvent (5% DMSO+20% HP- ⁇ -CD), vortexed and sonicated to prepare a clear solution of 0.5 mg/mL, filtered by a microporous membrane for use; the oral group solvent is 5% DMSO+20% HP- ⁇ -CD, after mixing the test compound with the solvent, vortex and sonicate to prepare a 0.3 mg/mL solution.
  • intravenous administration of 1 mg/kg or 3 mg/kg orally administered to mice whole blood was collected for a certain period of time to prepare plasma.
  • the drug concentration was analyzed by LC-MS/MS method, and the drug was calculated by Phoenix WinNonlin software (Pharsight, USA) Generation parameters.
  • C max is the maximum concentration
  • F% is the oral bioavailability
  • DNAUC AUC PO /Dose
  • AUC PO is the oral exposure
  • Dose is the drug dose
  • Vd ss is the volume of distribution
  • Cl is the clearance rate
  • T 1/2 Is the half-life
  • ND means not detected.
  • the compound of the present invention exhibits excellent oral exposure and bioavailability.
  • a nude mouse model of subcutaneous xenograft tumor of human colon cancer HT-29 cells was used to evaluate the anti-tumor effect of WX006.
  • Cage made of polycarbonate, with a volume of 300mm ⁇ 180mm ⁇ 150mm, the bedding is corncob, and it is replaced twice a week;
  • Experimental animals can eat freely during the entire experimental period (irradiation sterilization, dry granular food);
  • Drinking water laboratory animals can drink sterilized water freely
  • the animal information card of each cage should indicate the number of animals in the cage, gender, strain, date of receipt, dosing plan, experiment number,
  • Animal identification laboratory animals are identified by ear tags.
  • human colon cancer HT-29 cells (ATCC, article number: HTB-38) are cultured in monolayer in vitro, and the culture conditions are McCoy's5a medium plus 10% fetal bovine serum, 100U/mL penicillin and 100 ⁇ g /mL streptomycin, 37 °C 5% CO2 incubator culture. Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and inoculated;
  • HT-29 cells were subcutaneously inoculated on the right back of each mouse. When the average tumor volume reached 129 mm 3 , the animals were randomly divided into two groups, and the start Administration. See Table 10 for experimental grouping and dosing schedule;
  • TGI (%) The anti-tumor efficacy of the compound is evaluated by TGI (%) or relative tumor growth rate T/C (%).
  • T/C% Relative tumor growth rate
  • the statistical analysis is based on the data of RTV at the end of the experiment using SPSS software. The comparison between two groups is analyzed by T test, and the comparison between three or more groups is analyzed by one-way ANOVA. If the variance is uniform (the F value is not significantly different), the analysis should be performed by Tukey's method. If the variance is not uniform ( There is a significant difference in the F value), and the Games-Howell method is used for testing. p ⁇ 0.05 considered a significant difference.
  • WX006 when administered to the 26th day, WX006 has a significant effect of inhibiting tumor growth, its T/C is 45.2%, TGI is 61.9%, and its p value is ⁇ 0.001 compared with the solvent control group;

Abstract

一类作为ERK抑制剂的化合物,及其在制备治疗ERK相关疾病的药物中的应用。具体涉及式(Ⅲ)所示化合物、其异构体或其药学上可接受的盐。

Description

ERK抑制剂及其应用
本申请主张如下优先权:
CN201910404679.3,申请日:2019.05.15;
CN201910761813.5,申请日:2019.08.16;
CN201911248182.3,申请日:2019.12.06;
CN202010309793.0,申请日:2020.04.17。
技术领域
本发明涉及一类作为ERK抑制剂的化合物,及其在制备治疗ERK相关疾病的药物中的应用。具体涉及式(Ⅲ)所示化合物、其异构体或其药学上可接受的盐。
背景技术
Ras/Raf/MEK/ERK通路是一条经典的有丝分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)信号级联通路,参与各种生长因子、细胞因子、丝裂原以及激素受体活化后的信号转导,是控制细胞生长、分化和存活最重要的信号转导途径之一。
研究表明,突变或扩增引起的Ras/Raf/MEK/ERK通路异常活化是多种癌症发生的决定因素。在人类肿瘤中,RAS突变发生率约为22%,BRAF突变发生率约为7%,MEK突变发生率约为1%,因此,该通路上的关键节点蛋白已成为癌症治疗的重要靶点(Cancer Discov.2019,9,329-341)。目前,已有多个BRAF抑制剂和MEK1/2抑制剂,以及它们的联用方案,被美国FDA批准用于黑色素瘤、BRAFV600E突变型非小细胞肺癌等癌症的治疗。然而,使用这些上游节点的BRAF和MEK抑制剂后,由于突变或通路重新激活,会快速导致耐药性问题,极大地限制了它们的临床应用。
细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK),特别是ERK1和ERK2激酶,是Ras/Raf/MEK/ERK通路的主要参与者和下游关键节点,在许多人类的癌症中都可发现它们的过度激活。ERK作为该通路的末端信号激酶,目前尚未发现有耐药突变,因此,靶向ERK激酶的药物有望克服上游靶点抑制剂治疗后产生的耐药性问题,成为更具潜力的治疗策略。但迄今为止,关于ERK抑制剂的研究仍处于临床阶段,还没有ERK抑制剂作为药物批准上市。综上所述,迫切需要研发出安全、有效的ERK抑制剂药物满足肿瘤治疗的需要。
发明内容
本发明提供了式(Ⅲ)化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2020090494-appb-000001
其中,
n为0、1或2;
环A为
Figure PCTCN2020090494-appb-000002
T 1、T 2和T 3分别独立地选自N和CH;
D 1和D 2分别独立地选自-CH 2-和-CH 2-CH 2-;
R 1选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a取代;
R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b取代;
R 4选自H、F、Cl、Br、I、OH、CN和NH 2
R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代;
R 10选自H、F、Cl、Br、I和CH 3
R a、R b和R c分别独立地选自F、Cl、Br、I、OH、CN和NH 2
本发明还提供了式(Ⅰ’)化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2020090494-appb-000003
其中,
n为0、1或2;
环A为
Figure PCTCN2020090494-appb-000004
T 1、T 2和T 3分别独立地选自N和CH;
D 1和D 2分别独立地选自-CH 2-和-CH 2-CH 2-;
R 1选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a取代;
R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b取代;
R 4选自H、F、Cl、Br、I、OH、CN和NH 2
R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代;
R a、R b和R c分别独立地选自F、Cl、Br、I、OH、CN和NH 2
本发明还提供了式(Ⅰ)化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2020090494-appb-000005
其中,
环A为
Figure PCTCN2020090494-appb-000006
T 1、T 2和T 3分别独立地选自N和CH;
D 1和D 2分别独立地选自-CH 2-和-CH 2-CH 2-;
R 1选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a取代;
R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b取代;
R 4选自F、Cl、Br、I、OH、CN和NH 2
R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代;
R a、R b和R c分别独立地选自F、Cl、Br、I、OH、CN和NH 2
本发明的一些方案中,上述化合物选自
Figure PCTCN2020090494-appb-000007
其中,环A、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9和R 10如本发明所定义。
本发明的一些方案中,上述化合物选自
Figure PCTCN2020090494-appb-000008
其中,环A、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9和R 10如本发明所定义。
本发明的一些方案中,上述化合物化合物具有式(Ⅱ)所示结构:
Figure PCTCN2020090494-appb-000009
其中,环A、R 2、R 3、R 4、R 5、R 6、R 7、R 8和R 9如本发明所定义。
本发明的一些方案中,上述R 1选自H和CH 3,其中所述CH 3任选被1、2或3个R a取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 1为CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和CH 3,其中所述CH 3任选被1、2或3个R b取代,其他变量如本发明所定义。
本发明的一些方案中,上述R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和CH 3,其他变量如本发明所定义。
本发明的一些方案中,上述R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3和-CH 2-CH 3,其中所述CH 3和-CH 2-CH 3任选被1、2或3个R c取代,其他变量如本发明所定义。本发明的一些方案中,上述R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN和NH 2,其他变量如本发明所定义。
本发明的一些方案中,上述环A为
Figure PCTCN2020090494-appb-000010
其他变量如本发明所定义。
本发明的一些方案中,上述环A为
Figure PCTCN2020090494-appb-000011
其他变量如本发明所定义。
本发明的一些方案中,上述环A为
Figure PCTCN2020090494-appb-000012
其他变量如本发明所定义。
本发明的一些方案中,上述环A为
Figure PCTCN2020090494-appb-000013
其他变量如本发明所定义。
本发明的一些方案中,上述化合物选自
Figure PCTCN2020090494-appb-000014
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9和R 10如本发明所定义。
本发明的一些方案中,上述化合物选自
Figure PCTCN2020090494-appb-000015
其中,
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8和R 9如本发明所定义。
本发明的一些方案中,上述化合物选自
Figure PCTCN2020090494-appb-000016
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9和R 10如本发明所定义。
本发明的一些方案中,上述化合物选自
Figure PCTCN2020090494-appb-000017
其中,
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8和R 9如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明还提供了下述化合物、其异构体或其药学上可接受的盐,
Figure PCTCN2020090494-appb-000018
Figure PCTCN2020090494-appb-000019
Figure PCTCN2020090494-appb-000020
Figure PCTCN2020090494-appb-000021
本发明的一些方案中,上述化合物、其异构体及其药学上可接受的盐,其选自
Figure PCTCN2020090494-appb-000022
Figure PCTCN2020090494-appb-000023
本发明还提供了上述化合物、其异构体及其药学上可接受的盐在制备治疗ERK相关疾病的药物中的应用。
本发明的一些方案中,上述ERK相关疾病药物是用于治疗结直肠癌的药物。
技术效果
本发明化合物表现出较优的对ERK2激酶的抑制活性,同时,表现出较优的对HT29细胞增殖抑制活性;另外,本发明化合物展现了优良的口服暴露量和生物利用度。本发明化合物在人结肠癌HT-29细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效研究中,具有明显的抑制肿瘤生长的作用,动物的体重未有明显下降,无发病或死亡现象,安全性优良。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2020090494-appb-000024
和楔形虚线键
Figure PCTCN2020090494-appb-000025
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2020090494-appb-000026
和直形虚线键
Figure PCTCN2020090494-appb-000027
表示立体中心的相对构型,用波浪线
Figure PCTCN2020090494-appb-000028
表示楔形实线键
Figure PCTCN2020090494-appb-000029
或楔形虚线键
Figure PCTCN2020090494-appb-000030
或用波浪线
Figure PCTCN2020090494-appb-000031
表示直形实线键
Figure PCTCN2020090494-appb-000032
和直形虚线键
Figure PCTCN2020090494-appb-000033
除非另有说明,当化合物中存在双键结构,如碳碳双键、碳氮双键和氮氮双键,且双键上的各个原子均连接有两个不同的取代基时(包含氮原子的双键中,氮原子上的一对孤对电子视为其连接的一个取代基),如果该化合物中双键上的原子与其取代基之间用波浪线
Figure PCTCN2020090494-appb-000034
连接,则表示该化合物的(Z)型异构体、(E)型异构体或两种异构体的混合物。例如下式(A)表示该化合物以式(A-1)或式(A-2)的单一异构体形式存在或以式(A-1)和式(A-2)两种异构体的混合物形式存在;下式(B)表示该化合物以式(B-1)或式(B-2)的单一异构体形式存在或以式(B-1)和式(B-2)两种异构体的混合物形式存在。下式(C)表示该化合物以式(C-1)或式(C-2)的单一异构体形式存在或以式(C-1)和式(C-2)两种异构体的混合物形式存在。
Figure PCTCN2020090494-appb-000035
除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差 值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2020090494-appb-000036
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2020090494-appb-000037
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2020090494-appb-000038
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2020090494-appb-000039
直形虚线键
Figure PCTCN2020090494-appb-000040
或波浪线
Figure PCTCN2020090494-appb-000041
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2020090494-appb-000042
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2020090494-appb-000043
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;psi代表磅力/平方英寸。
附图说明:
图1:人结肠癌HT-29异种移植瘤模型动物在分别给予溶剂和受试化合物后的肿瘤生长曲线;
图2:人结肠癌HT-29异种移植瘤模型动物在给药过程中的体重变化率(%)。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
参考例1:片段A-1
Figure PCTCN2020090494-appb-000044
步骤1:化合物A-1-2的合成。
在预先干燥过的单口瓶中加入乙酸钠(4.64g,56.60mmol,5eq)、单过硫酸氢钾(13.92g,22.64mmol,2eq) 和水(47mL)的溶液,降温至0℃,滴加A-1-1(4.7g,11.32mmol,1eq)、溶剂四氢呋喃(47mL)和甲醇(47mL)的溶液,并在0℃搅拌1小时。29℃油浴搅拌15小时。反应结束后将该反应液倒入水(200mL)中,水相用乙酸乙酯萃取三次(50mL×3)。合并有机相,有机相依次用饱和食盐水洗涤(200mL),无水硫酸钠干燥,过滤收集滤液,减压浓缩得到残余物。残余物通过快速柱层析分离,纯化得到A-1-2。 1H NMR(400MHz,CDCl 3)δppm 8.67(d,J=4.9Hz,1H),7.64(d,J=4.9Hz,1H),3.37(s,3H),1.63-1.53(m,6H),1.39-1.30(m,6H),1.26-1.12(m,6H),0.90(t,J=7.3Hz,9H)。
步骤2:化合物A-1的合成。
向反应瓶中加入A-1-2(3.9g,8.72mmol,1eq)、A-1-3(1.02g,10.46mmol,1.2eq)和四氢呋喃(117mL),抽换氮气后-35℃滴加入六甲基二硅基胺基锂(1M,18.31mL,2.1eq),-35℃下混合液反应10分钟,反应结束后将反应液用饱和氯化铵水溶液(100mL)淬灭,乙酸乙酯(100mL×2)和二氯甲烷(100mL)萃取,有机相用无水硫酸钠干燥,过滤旋干得粗品。粗品用柱层析纯化得到A-1。 1H NMR(400MHz,CDCl 3)δppm 8.17(d,J=4.85Hz,1H),7.46(d,J=1.76Hz,1H),6.91(d,J=4.63Hz,1H),6.60(s,1H),6.32(d,J=1.98Hz,1H),3.79(s,3H),1.52-1.61(m,6H),1.28-1.40(m,6H),1.03-1.20(m,6H),0.89(t,J=7.28Hz,9H)。
参照参考例1中步骤1~2的合成方法,合成表1中的片段A-2。
表1
Figure PCTCN2020090494-appb-000045
参考例3:片段A-3
Figure PCTCN2020090494-appb-000046
合成路线:
Figure PCTCN2020090494-appb-000047
步骤1:化合物A-3的合成
在预先干燥的反应瓶中加入A-1-2(0.4g,894.41μmol,1eq),A-3-1(261.50mg,3.58mmol,4eq),叔丁醇(6mL)和二异丙基乙胺(722.48mg,5.59mmol,973.69μL,6.25eq),置于70℃油浴中反应12小时。升温到80℃,补加A-3-1(392.25mg,5.37mmol,6eq),继续反应12小时。反应完毕后反应液加水(2mL)稀释,然后加DCM(10mL×3)萃取,收集有机相,用饱和食盐水(10mL×1)洗涤,无水硫酸钠干燥,过滤,收集滤液真空泵浓缩得到产物粗品。粗产品通过薄层层析硅胶板纯化得到A-3。 1H NMR(400MHz,CDCl 3)δppm 8.01-8.10(d,1H),6.69-6.78(d,1H),5.42(br d,J=6.13Hz,1H),5.12(m,J=6.68Hz,1H),4.95-5.03(m,2H),4.60(m,J=6.38Hz,2H),1.51-1.61(m,6H),1.29-1.37(m,6H),1.02-1.18(m,6H),0.90(t,J=7.32Hz,9H)。
参考例4:片段A-4
Figure PCTCN2020090494-appb-000048
步骤1:化合物A-4-2的合成。
向反应瓶中加入A-4-1(1g,5.73mmol,1eq)、四氢呋喃(10mL)和甲醇(10mL),降温至0℃,加入乙酸钠(939.40mg,11.45mmol,2eq),单过硫酸氢钾(7.04g,11.45mmol,2eq)和水(10mL),0℃搅拌1小时,30℃下混合液反应15小时。原料消耗完毕后反应液用水(2mL)稀释,二氯甲烷(5mL×3)萃取,有机相用饱和食盐水(2mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩干得粗品。粗品用柱层析纯化得到A-4-2。 1H NMR(400MHz,DMSO-d 6)δppm 9.01(s,J=0.61Hz,1H),3.41(s,3H),2.42(d,J=0.61Hz,3H)。
步骤2:化合物A-4的合成。
向三口瓶中加入A-4-2(1g,4.84mmol,1eq)、A-1-3(563.96mg,5.81mmol,1.2eq)和四氢呋喃(30mL),抽换氮气后降温至-30℃,随后滴加双三甲基硅基胺基锂(1M,10.16mL,2.1eq),-30℃下反应1小时。反应完毕后反应液用水(50mL)稀释,乙酸乙酯(50mL x3)萃取,有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩干得粗品。粗品用柱层析纯化得到A-4。 1H NMR(400MHz,DMSO-d 6)δppm 9.62(s,1H),8.36(s,1H),7.33(d,J=1.83Hz,1H),6.19(d,J=1.83Hz,1H),3.64(s,3H),2.16(s,3H)。
参照参考例4中步骤1~2的合成方法,合成表2中片段A-5。
表2
Figure PCTCN2020090494-appb-000049
参考例6:片段B-1
Figure PCTCN2020090494-appb-000050
合成路线:
Figure PCTCN2020090494-appb-000051
步骤1:化合物B-1-3的合成
氮气保护20℃向单口瓶中加入B-1-1(59.46g,825.08mmol,6.15mL,2eq)、B-1-2(50g,412.54mmol,1.00eq)和四氢呋喃(1000mL),最后加入钛酸四异丙基酯(351.74g,1.24mol,365.26mL,3.00eq),80℃油浴混合液反应16小时。反应完毕后,反应液先旋走溶剂,残余液用二氯甲烷(1000mL)稀释,加饱和氯化铵水溶液(200mL)淬灭,会有红色固体产生,布氏漏斗垫上硅藻土过滤,收集滤液,分液要下层有机相,用无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩干得粗品。粗品用柱层析纯化得到B-1-3。 1H NMR(400MHz,DMSO-d 6)δppm 5.69-5.33(m,4H),1.26-1.09(m,9H)。
步骤2:化合物B-1-5的合成
在预先干燥过的反应瓶中加入B-1-4(15g,117.05mmol,1eq)和四氢呋喃(300mL),降温至-70℃,滴加正丁基锂(2.5M,112.37mL,2.4eq),30分钟后滴加B-1-3(18.46g,105.35mmol,0.9eq)和四氢呋喃(100mL)的溶液,-70℃并搅拌1小时,反应完毕后,反应液用饱和氯化铵水溶液(100mL)淬灭,水相用稀盐酸水溶液调pH至3,乙酸乙酯(50mL x3)萃取,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩干得粗品B-1-5。
步骤3:化合物B-1-6的合成
向反应瓶中加入B-1-5(35g,115.36mmol,1eq)、二氯甲烷(1000mL)和2-(7-氧化苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸盐(43.86g,115.36mmol,1eq),抽换氮气后加入二异丙基乙胺(44.73g,346.08mmol,60.28mL,3eq),20℃下混合液反应14小时。反应完毕后反应液用水(500mL)淬灭,加入2N氢氧化钠水溶液调pH至9,二氯甲烷(100mL x3)萃取,有机相用饱和食盐水(500mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩干得粗品。粗品用柱层析纯化得到B-1-6。 1H NMR(400MHz,DMSO-d 6)δppm 7.84(d,J=5.1Hz,1H),7.25(d,J=4.9Hz,1H),5.37(d,J=7.1Hz,1H),5.24(d,J=6.8Hz,1H),4.88(d,J=7.1Hz,1H),4.77(d,J=7.1Hz,1H),1.40(s,9H)。
步骤4:化合物B-1-7的合成
向反应瓶中加入B-1-6(2g,4.56mmol,1eq)和四氢呋喃(20mL),然后加入四丁基氟化铵(1M,4.56mL,1eq),20℃下混合液反应16小时。反应完毕后,45℃水泵将有机相旋干得到粗品。粗品溶于6mL乙腈,过滤得到B-1-7。 1H NMR(400MHz,DMSO-d 6)δppm 9.13(s,1H),7.73(dd,J=0.7,4.9Hz,1H),7.14(d,J=4.9Hz,1H),4.96(d,J=6.8Hz,2H),4.78(d,J=7.1Hz,2H)。
步骤5:化合物B-1-8的合成
向反应瓶中加入B-1-7(700mg,3.86mmol,1eq)和N’N-二甲基甲酰胺(10.5mL),抽换氮气后分批加入N-溴代丁二酰亚胺(687.53mg,3.86mmol,1eq),60℃反应6小时。反应完毕后将反应液过滤得到B-1-8。 1H NMR(400MHz,DMSO-d 6)δppm 9.30(s,1H),7.38(s,1H),4.91(d,J=7.0Hz,2H),4.80(d,J=7.0Hz,2H)。
步骤6:B-1的合成
向反应瓶中加入B-1-8(50mg,192.23μmol,1eq)和四氢呋喃(1.5mL),抽换氮气后0℃分批加入钠氢,自然升温至15℃反应4小时,然后加入C-1和四氢呋喃(0.5mL)的溶液,缓慢升温至65℃反应16h。加甲醇(2mL)淬灭,旋干得粗品。粗品用制备薄层色谱板纯化得到B-1。 1H NMR(400MHz,DMSO-d 6)δppm 7.59(s,1H),7.48-7.42(m,2H),7.40-7.33(m,2H),5.83(tdd,J=5.2,10.5,17.3Hz,1H),5.42(dd,J=5.4,9.2Hz,1H),5.23-5.04(m,3H),4.85(d,J=7.1Hz,1H),4.82-4.75(m,2H),4.45(t,J=9.5Hz,1H),4.06-3.91(m,3H)。
参考例7:片段C-1
Figure PCTCN2020090494-appb-000052
合成路线:
Figure PCTCN2020090494-appb-000053
步骤1:化合物C-1-3的合成
向三口瓶中加入四丁基溴化铵(4.67g,14.48mmol,0.1eq)、碳酸钾(30.03g,217.25mmol,1.5eq)、C-1-2(35.04g,289.67mmol,2eq)、乙腈(450mL)和N’N-二甲基甲酰胺(50mL),抽换氮气后加入C-1-1(25g,144.84mmol,1eq)和二丁基二氯化锡(4.40g,14.48mmol,0.1eq),80℃下混合液反应4小时。反应结束后,反应液用水(500mL)稀释,二氯甲烷(100mL x3)萃取,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩干得粗品,粗品用柱层析纯化得到C-1-3。 1H NMR(400MHz,DMSO-d 6)δppm 7.40(s,1H),7.29-7.37(m,3H),5.78-5.91(m,1H),5.52(d,J=4.65Hz,1H),5.21(br dd,J=17.24,1.71Hz,1H),5.12(br d,J=10.39Hz,1H),4.72(q,J=5.14Hz,1H),3.96(br d,J=5.01Hz,2H),3.40-3.48(m,2H)。
步骤2:化合物C-1的合成
向三口瓶中加入C-1-3(4g,18.81mmol,1eq)、三乙胺(5.71g,56.42mmol,7.85mL,3eq)和二氯甲烷(40mL),抽换氮气后在0℃下缓慢滴加甲磺酰氯(3.23g,28.21mmol,2.18mL,1.5eq),15℃下混合液反应0.5小时。反应完毕后,反应液直接旋干。粗品用石油醚和乙酸乙酯混合溶液柱层析纯化得到C-1。 1H NMR(400MHz,DMSO-d 6)δppm 7.53(s,1H),7.40-7.47(m,3H),5.76-5.92(m,2H),5.25(dd,J=17.20,1.76Hz,1H),5.15(dd,J=10.58,1.54Hz,1H),3.93-4.08(m,2H),3.78(dd,J=11.36,7.61Hz,1H),3.67(dd, J=11.36,3.64Hz,1H),3.15(s,3H)。
实施例1:WX001
Figure PCTCN2020090494-appb-000054
合成路线
Figure PCTCN2020090494-appb-000055
步骤1:WX001-1的合成
向投库瓶中加入B-1(180mg,395.81μmol,1eq)、乙酸钠(129.87mg,1.58mmol,4eq)、乙酸(1.35mL)和水(0.15mL),抽换氮气后降温至5℃,加入氯化钯(154.42mg,870.78μmol,2.2eq),27℃油浴下混合液反应5小时。反应完毕后反应液垫硅藻土过滤,滤液旋干得黑色油状物。使用制备薄层色谱纯化得到WX001-1。 1H NMR(400MHz,DMSO-d 6)δppm 7.64-7.52(s,1H),7.47-7.28(m,4H),5.27-5.23(m,1H),5.23-5.12(m,2H),4.88-4.79(m,2H),4.77-4.71(m,1H),4.54-4.38(m,1H),4.02-3.82(m,1H)。
步骤2:WX001的合成
向反应瓶中加入WX001-1(80mg,192.91μmol,1eq)、A-1(107.47mg,231.49μmol,1.2eq)、四三苯基膦钯(44.58mg,38.58μmol,0.2eq)和甲苯(1mL),抽换氮气后,125℃下混合液反应2小时,反应完毕后过滤除去催化剂,滤液在45℃用水泵减压浓缩干得粗品,粗品用制备薄层色谱纯化得到WX001。
参照实施例1中步骤1~2的合成方法,用片段A-2替代A-1合成下表3中的实施例2。
表3
Figure PCTCN2020090494-appb-000056
Figure PCTCN2020090494-appb-000057
实施例3:WX003
Figure PCTCN2020090494-appb-000058
合成路线
Figure PCTCN2020090494-appb-000059
WX003的合成
在预先干燥的反应瓶中加入WX001-1(68.51mg,165.21μmol,1eq),A-3(80mg,181.73μmol,1.1eq)和甲苯(2mL),然后氮气保护下升温到125℃,加入四三苯基膦钯(38.18mg,33.04μmol,0.2eq),在该温度下反应16小时。反应完毕后,将反应体系真空浓缩,得到产物粗品。粗产品通过薄层层析硅胶板纯化得到WX003。
实施例4:WX004
Figure PCTCN2020090494-appb-000060
合成路线
Figure PCTCN2020090494-appb-000061
步骤1:WX004-1的合成
向反应瓶中加入WX001-1(60mg,144.68μmol,1eq)、双联频哪醇硼酸酯(73.48mg,289.37μmol,2eq)、乙酸钾(42.60mg,434.05μmol,3eq)和二氧六环(1.5mL),抽换氮气后加入二苯基膦二茂铁二氯化钯(10.59mg,14.47μmol,0.1eq),70℃下混合液反应1.5小时。反应完毕得到粗品WX004-1直接用于下一步。
步骤2:WX004的合成
向反应瓶中加入WX004-1(20mg,52.68μmol,1eq)、A-4(11.78mg,52.68μmol,1eq)、乙酸钾(15.51mg,158.05μmol,3eq)、水(0.75mL)和二氧六环(1.5mL),抽换氮气后加入二苯基膦二茂铁二氯化钯(3.85mg,5.27μmol,0.1eq),70℃下混合液反应12小时。反应完毕后反应液用水(5mL)稀释,二氯甲烷(10mL x3)萃取,有机相用饱和食盐水(2mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩干得粗品,粗品通过薄层层析硅胶板纯化得到WX004。
实施例5:WX005
Figure PCTCN2020090494-appb-000062
合成路线
Figure PCTCN2020090494-appb-000063
步骤1:WX005-1的合成
在预先干燥的反应瓶中加入B-1-8(700mg,2.69mmol,1eq),N’N-二甲基甲酰胺(14mL),置换氮气后,0℃加入钠氢(161.46mg,4.04mmol,60%纯度,1.5eq),反应0.5小时,然后加入D-1(663.58mg,3.23mmol,422.66μL,1.2eq),缓慢升温至25℃反应2小时。反应完毕,将反应液缓慢倒入饱和氯化铵溶液(5mL)淬灭,乙酸乙酯(1mL×3)萃取,合并有机相,用饱和食盐水洗涤(5mL×2),无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品。粗品通过柱分离纯化得到WX005-1。 1H NMR(400MHz,DMSO-d 6)δ=ppm 7.50(s,1H),7.32-7.39(m,3H),7.25(m,1H),4.94(s,2H),4.87(d,J=7.50Hz,2H),4.74(d,J=7.50Hz,2H)。
步骤2:WX005的合成
向反应瓶中加入WX005-1(100mg,259.96μmol,1eq),A-1(144.82mg,311.95μmol,1.2eq),甲苯(3mL),抽换氮气,加热到125℃,然后慢慢加入四三苯基膦钯(60.08mg,51.99μmol,0.2eq)。125℃反应45小时。反应完毕,将反应液浓缩得到粗品。粗品先通过薄层层析硅胶板纯化得到WX005。
实施例6:WX006
Figure PCTCN2020090494-appb-000064
合成路线:
Figure PCTCN2020090494-appb-000065
步骤1:WX006-1的合成
向干燥的反应瓶中加入WX005-1(150mg,389.94μmol,1eq),四氢呋喃(2mL),抽换氮气,降温至0℃后加入异丙基格氏试剂氯化锂复合物(1.3M,449.93μL,1.5eq),0℃反应0.5小时。然后降温到-30℃,加入硼酸三异丙基酯(293.35mg,1.56mmol,358.61μL,4eq),然后将温度升到0℃反应1小时,反应完毕,向反应液中加0.5mL甲醇,减压浓缩得到粗品WX006-1,直接用于下一步。
步骤2:WX006-2的合成
向干燥的反应瓶中加入WX006-1(136mg,389.02μmol,1eq)和E-1(92.77mg,311.22μmol,0.8eq),二氧六环与水的混合物(5:1,2mL),乙酸钾(114.54mg,1.17mmol,3eq),抽换氮气,然后加入二苯基膦二茂铁二氯化钯(28.46mg,38.90μmol,0.1eq),加热到70℃反应3小时。反应完毕,反应液直接浓缩。粗产品通过薄层层析硅胶板纯化得到WX006-2。 1H NMR(400MHz,CHCl 3-d)δppm 8.65(s,1H),7.77(s,1H),7.16(d,J=1.13Hz,3H),7.14(s,1H),4.88(s,2H),4.85(d,J=7.50Hz,2H),4.76(d,J=7.50Hz,2H),3.29(s,3H),2.57(s,3H)。
步骤3:WX006的合成
向干燥的反应瓶中加入WX006-2(32mg,67.23μmol,1eq),A-1-3(7.84mg,80.68μmol,1.2eq),四氢呋喃(1mL),抽换氮气,-30℃加入六甲基二硅基胺基锂(1M,141.19μL,2.1eq),-30℃反应2小时。反应完毕,向反应液中加0.5mL甲醇,减压浓缩得到固体粗品。粗产品通过薄层层析硅胶板分离纯化得到WX006。
实施例7:WX007
Figure PCTCN2020090494-appb-000066
合成路线
Figure PCTCN2020090494-appb-000067
步骤1:WX007-1的合成
向干燥的反应瓶中加入WX001-1(600mg,1.45mmol,1eq),二甲基甲酰胺(6mL)和咪唑(295.49mg,4.34mmol,3eq),抽换氮气,25℃一次性加入叔丁基二甲基氯硅烷(436.13mg,2.89mmol,354.58μL,2eq),25℃反应0.5小时。反应完毕后,反应液用水(4mL)稀释,用乙酸乙酯(5mL)萃取3次,合并有机相,用饱 和食盐水(5mL)洗涤有机相,有机相用无水硫酸钠干燥,过滤,滤液用水泵减压浓缩。粗产品通过薄层层析硅胶板纯化得到WX007-1。 1H NMR(400MHz,DMSO-d 6)δ=7.62(s,1H),7.46(s,2H),7.41-7.33(m,2H),5.32(br dd,J=5.7,9.1Hz,1H),5.25(br d,J=6.9Hz,1H),4.83(br dd,J=7.3,10.7Hz,2H),4.79-4.73(m,1H),4.61(br t,J=9.6Hz,1H),4.14(br dd,J=5.6,9.5Hz,1H),0.75(s,9H),0.00(s,3H),-0.08(s,3H).步骤2:WX007-3的合成
向干燥的反应瓶中加入WX007-1(100mg,189.05μmol,1eq),WX007-2(140.70mg,756.20μmol,154.27μL,4eq),四甲基乙二胺(28.56mg,245.76μmol,37.09μL,1.3eq),四氢呋喃(2mL),抽换氮气,-78℃然后加入正丁基锂(2.5M,189.05μL,2.5eq),-78℃反应0.5小时。反应完毕后,将反应液加0.5mL甲醇淬灭,减压浓缩得到WX007-3,直接用于下一步反应。
步骤3:WX007-4的合成
向干燥的反应瓶中加入WX007-3(93mg,188.30μmol,1eq),A-5(45.96mg,188.30μmol,1eq),乙酸钾(55.44mg,564.91μmol,3eq),二氧六环(3mL)和水(0.6mL),抽换氮气,然后加入二苯基膦二茂铁二氯化钯(13.78mg,18.83μmol,0.1eq),加热到70℃反应3小时。反应完毕后,反应液浓缩。粗产品通过薄层层析硅胶板纯化得到WX007-4。
步骤4:WX007的合成
向干燥的反应瓶中加入WX007-4(50mg,76.02μmol,1eq),二氯甲烷(1mL),三氟乙酸(54.82mg,760.24μmol,61.60μL,10eq),25℃反应0.5小时。反应完毕后,反应液用水(2mL)稀释,用二氯甲烷(2mL)萃取3次,合并有机相,用饱和食盐水(2mL)洗涤有机相,有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到粗品,通过薄层层析硅胶板纯化得到WX007。
实施例8:WX008
Figure PCTCN2020090494-appb-000068
合成路线
Figure PCTCN2020090494-appb-000069
步骤1:WX007-3的合成
向干燥的反应瓶中加入WX007-1(200mg,378.10μmol,1eq),WX007-2(281.39mg,1.51mmol,308.54μL,4eq),四甲基乙二胺(57.12mg,491.53μmol,74.18μL,1.3eq),四氢呋喃(2mL),抽换氮气,-78℃然后加入正丁基锂(2.5M,453.72μL,3eq),-78℃反应0.5小时。反应完毕后,向反应液中加入甲醇淬灭,减压浓缩,得到粗品WX007-3,直接用于下一步。
步骤2:WX008-2的合成
向干燥的反应瓶中加入WX007-3(186mg,376.61μmol,1eq),WX008-1(62.88mg,376.61μmol,1eq),乙酸钾(110.88mg,1.13mmol,3eq),二氧六环(1mL),水(0.2mL),抽换氮气,然后加入二苯基膦二茂铁二氯化钯(27.56mg,37.66μmol,0.1eq),加热到70℃反应3小时。反应完毕后,将反应液直接浓缩。粗产品通过薄层层析硅胶板纯化,得到WX008-2。
步骤3:WX008-3的合成
向干燥的反应瓶中加入WX008-2(80mg,137.79μmol,1eq),A-1-3(16.06mg,165.35μmol,1.2eq),碳酸铯(89.79mg,275.59μmol,2eq),2-甲基四氢呋喃:水为1:1的溶剂(2mL),2-二环己膦基-2'-(N,N-二甲胺)-联苯(10.85mg,27.56μmol,0.2eq),抽换氮气,然后加入三二亚苄基丙酮二钯(12.62mg,13.78μmol,0.1eq),抽换氮气,加热到72℃反应14小时。反应完毕后,反应液直接减压浓缩得到粗品,通过薄层层析硅胶板纯化,得到WX008-3。
步骤4:WX008的合成
向干燥的反应瓶中加入WX008-3(50mg,77.98μmol,1eq),二氯甲烷(2mL)和三氟乙酸(88.91mg,779.75μmol,57.73μL,10eq),25℃反应0.5小时。反应完毕后,向反应液中加入1mL饱和碳酸氢钠水溶液,分离有机相和水相,有机相干燥,过滤,滤液减压浓缩得到粗品。粗产品通过薄层层析硅胶板纯化得到WX008。
实施例9:WX009
Figure PCTCN2020090494-appb-000070
合成路线
Figure PCTCN2020090494-appb-000071
步骤1:WX009-1的合成
向干燥的反应瓶中加入B-1-8(150mg,576.68μmol,1eq)和N’N-二甲基甲酰胺(3mL),抽换氮气,0℃加入钠氢(34.60mg,865.03μmol,60%纯度,1.5eq),在0℃下反应0.5小时,然后再加入D-2(143.26mg,692.02umol,88.43μL,1.2eq),反应液慢慢升到25℃继续反应2小时。反应完毕,将反应液缓慢倒进装有40mL水的锥形瓶中,用乙酸乙酯(20mL×3)萃取,合并有机相,并用饱和食盐水(20mL×3)洗涤,无水硫酸钠干燥,过滤,滤液在45℃下减压浓缩。粗产品通过薄层层析硅胶板纯化得到WX009-1。 1H NMR(400MHz,DMSO-d 6)δppm 7.50(s,1H),7.38(br s,2H),7.19-7.13(m,1H),4.91(s,2H),4.87(d,J=7.3Hz,2H),4.73(d,J=7.3Hz,2H)。
步骤2:WX009的合成
向反应瓶中加入WX009-1(40mg,103.57μmol,1eq),A-1(57.70mg,124.28μmol,1.2eq),甲苯(2mL),抽换氮气,加热到125℃,然后慢慢加入四三苯基膦钯(23.94mg,20.71μmol,0.2eq)。125℃反应48小时。反应完毕,反应液在45℃下减压浓缩,粗产品通过薄层层析硅胶板纯化得到WX009。
实施例10:WX010
Figure PCTCN2020090494-appb-000072
合成路线
Figure PCTCN2020090494-appb-000073
步骤1:WX010-1的合成
向投库瓶中加入B-1-8(100mg,384.46μmol,1eq)和N’N-二甲基甲酰胺(2mL),抽换,降温至0℃后向反应瓶中分多次加入钠氢(23.07mg,576.68μmol,60%纯度,1.5eq),在0℃搅拌0.5小时后加入D-3(87.21mg,461.35umol,56.63uL,1.2eq)。逐渐升温至25℃反应0.5小时。反应完毕后,反应液用水(20mL)淬灭,乙酸乙酯(10mL×3)萃取,饱和食盐水(20mL)洗涤有机相,并用无水硫酸钠干燥有机相,过滤,滤液在45℃旋干。粗品使用通过薄层层析硅胶板纯化得到WX010-1。 1H NMR(400MHz,DMSO-d 6)δppm 7.51(s,1H),7.35-7.42(m,1H),7.07-7.16(m,3H),4.95(s,2H),4.87(d,J=7.50Hz,2H),4.73(d,J=7.50Hz,2H)。
步骤2:WX010的合成
向投库瓶中加入WX010-1(89mg,241.70μmol,1eq)、A-1(134.65mg,290.04μmol,1.2eq)和甲苯(2mL),抽换氮气后,加入四三苯基膦钯(55.86mg,48.34μmol,0.2eq),在125℃反应24小时。反应完毕后,反应液直接旋干。粗品使用通过薄层层析硅胶板纯化得到WX010。
实施例11:WX011
Figure PCTCN2020090494-appb-000074
合成路线
Figure PCTCN2020090494-appb-000075
步骤1:WX006-1的合成
向干燥的反应瓶中加入WX005-1(50mg,129.98μmol,1eq),四氢呋喃(4mL),硼酸三异丙基硼酯(195.56mg,1.04mmol,239.08μL,8eq),抽换氮气,然后降温到-78℃,加入异丙基氯化镁-氯化锂络合物(1.3M,499.92μL,5eq),反应0.5小时,然后将温度升到25℃反应1小时。反应完毕后,反应液用0.5mL甲醇淬灭,并用水泵在45℃下减压浓缩得到WX006-1,直接用于下一步。
步骤2:WX011-1的合成
向干燥的反应瓶中加入WX006-1(45mg,128.72μmol,1eq)和WX008-1(21.49mg,128.72μmol,1eq),二氧六环:水=5:1(6mL),乙酸钾(75.80mg,772.32μmol,6eq),抽换氮气,然后加入二苯基膦二茂铁二氯化钯(18.84mg,25.74μmol,0.2eq),加热到70℃反应15小时。反应完毕后,将反应液减压浓缩。粗品通过薄层层析硅胶板纯化得到WX011-1。 1H NMR(400MHz,DMSO-d 6)δppm 9.03(d,J=2.8Hz,1H),8.01(d,J=1.5Hz,1H),7.43-7.30(m,4H),5.01(s,2H),4.96-4.93(m,2H),4.85(d,J=7.4Hz,2H).
步骤3:WX011的合成
向干燥的反应瓶中加入WX011-1(28.91mg,66.26μmol,1eq),A-1-3(7.72mg,79.51μmol,1.2eq),碳酸铯(43.18mg,132.52μmol,2eq),2-甲基四氢呋喃:水=9:1(2mL),2-二环己膦基-2’-(N,N-二甲胺)-联苯(5.22mg,13.25μmol,0.2eq),抽换氮气,然后加入三二亚苄基丙酮二钯(6.07mg,6.63μmol,0.1eq),抽换氮气,加热到72℃反应14小时。反应完毕后,反应液减压浓缩。粗品通过薄层层析硅胶板纯化,再使用高效液相制备色谱法纯化得到WX011。
实施例12:WX012
Figure PCTCN2020090494-appb-000076
合成路线
Figure PCTCN2020090494-appb-000077
步骤1:WX012-2的合成
向干燥的反应瓶中加入WX006-1(181mg,517.74μmol,1eq)和WX012-1(142.45mg,776.61μmol,1.5eq),二氧六环:水=5:1(8mL),三乙胺(209.56mg,2.07mmol,288.25μL,4eq),抽换氮气,然后加入二苯基膦二茂铁二氯化钯(75.77mg,103.55μmol,0.2eq),加热到70℃反应20小时。反应完毕后,反应液用水泵在45℃下减压浓缩。粗品通过薄层层析硅胶板纯化得到WX012-2。 1H NMR(400MHz,DMSO-d 6)δppm 9.08(s,1H),8.41(s,1H),7.47-7.33(m,4H),5.06(s,2H),5.00(br d,J=7.3Hz,2H),4.89(d,J=7.3Hz,2H)。
步骤2:WX012的合成
向干燥的反应瓶中加入WX012-2(40mg,88.35μmol,1eq),A-1-3(12.87mg,132.53μmol,1.5eq),碳酸铯(86.36mg,265.05μmol,3eq),叔丁醇(2mL),抽换氮气,然后加入[(2-二-环己基膦基-3,6-二甲氧基-2′,4′,6′-三异丙基-1,1′-联苯基)-2-(2′-氨基-1,1′-联苯基)]甲磺酸钯(II)(8.01mg,8.84μmol,0.1eq)抽换氮气,加热到105℃,反应16小时。反应完毕后,将反应液减压浓缩。粗品通过薄层层析硅胶板纯化得到WX012。
实施例13:WX013
Figure PCTCN2020090494-appb-000078
合成路线
Figure PCTCN2020090494-appb-000079
步骤1:WX013-1的合成
向干燥的反应瓶中加入WX009-1(177mg,458.30μmol,1eq),四氢呋喃(2mL),抽换氮气,0℃然后加入异丙基氯化镁-氯化锂络合物(1.3M,528.81μL,1.5eq),0℃反应0.5小时。然后降温到-30℃,加入硼酸三异丙基硼酯(344.77mg,1.83mmol,421.48μL,4eq),然后将温度升到25℃反应14小时。反应完毕后,向反应液中加1mL甲醇,减压浓缩得到WX013-1。
步骤2:WX013-2的合成
向干燥的反应瓶中加入WX013-1(160mg,455.67μmol,1eq)和E-1(135.84mg,455.67μmol,1eq),二氧六环:水=5:1(2mL),乙酸钾(134.16mg,1.37mmol,3eq),抽换氮气,然后加入二苯基膦二茂铁二氯化钯(33.34mg,45.57μmol,0.1eq),加热到70℃反应3小时。反应完毕后,将反应液直接浓缩,粗品通过薄层层析硅胶板纯化,得到WX013-2。
步骤3:WX013的合成
向干燥的反应瓶中加入WX013-2(70mg,146.60μmol,1eq),A-1-3(18.51mg,190.57μmol,1.3eq),四氢呋喃(1mL)抽换氮气,-30℃加入六甲基二硅基胺基锂(1M,307.85μL,2.1eq),-30℃反应2小时。反应完毕后,加甲醇淬灭,将反应液减压浓缩。粗产品通过薄层层析硅胶板纯化得到WX013。
实施例14:WX014
Figure PCTCN2020090494-appb-000080
合成路线
Figure PCTCN2020090494-appb-000081
步骤1:WX014的合成
向反应瓶中加入WX013-2(60mg,125.65μmol,1eq)、WX014-1(32.84mg,376.95μmol,3eq,HCl)、三乙胺(63.57mg,628.25μmol,87.45μL,5eq)和二甲基亚砜(0.5mL),100℃下混合液反应20小时。反应完毕后,反应液用水(5mL)稀释,乙酸乙酯(5mL×3)萃取,有机相用饱和食盐水洗涤,并用无水硫酸钠干燥,过滤,滤液在45℃旋干。粗品通过薄层层析硅胶板纯化得到WX014。
参照实施例14中步骤1的合成方法,合成表4中的各实施例。
表4
Figure PCTCN2020090494-appb-000082
实施例19:WX019
Figure PCTCN2020090494-appb-000083
合成路线
Figure PCTCN2020090494-appb-000084
步骤1:WX018-2的合成
向反应瓶中加入WX005-1(200mg,519.92μmol,1eq),A-1-2(255.77mg,571.91μmol,1.1eq),甲苯(5mL),抽换氮气,加热到125℃,然后慢慢加入四三苯基膦钯(120.16mg,103.98μmol,0.2eq)。125℃反应48小时。反应完毕后,将反应液减压浓缩。粗产品通过薄层层析硅胶板纯化得到WX019-1。
步骤2:WX019的合成
在预先干燥的反应瓶中加入WX019-1(70mg,151.53μmol,1eq),WX018-1(30.65mg,303.07μmol,2eq),之后用二甲基亚砜(2mL)溶解,100℃搅拌反应16小时。反应完毕后,向反应液中加入10mL水,有固体析出,过滤,收集固体,滤液用乙酸乙酯萃取,合并浓缩。粗品通过薄层层析硅胶板纯化得到WX019。
实施例20:WX020
Figure PCTCN2020090494-appb-000085
合成路线
Figure PCTCN2020090494-appb-000086
WX020的合成
在预先干燥的反应瓶中加入WX019-1(40mg,86.59μmol,1eq),A-3-1(12.66mg,173.18μmol,2eq),之后用二甲基亚砜(1mL)溶解,100℃搅拌反应2小时。反应完毕后,向反应液中加入10mL水,有固体析出,过滤,收集固体,滤液用乙酸乙酯萃取,合并浓缩。粗品通过薄层层析硅胶板纯化得到WX020。
实施例21:WX021
Figure PCTCN2020090494-appb-000087
合成路线
Figure PCTCN2020090494-appb-000088
WX021的合成
向干燥的反应瓶中加入WX006-2(80mg,168.08μmol,1eq),WX018-1(34.00mg,336.16μmol,2eq),二甲基亚砜(1mL)抽换氮气,100℃反应16小时。反应完毕后,将反应液通过薄层层析硅胶板纯化得到WX021。
参照实施例21中的合成方法,合成表5中的实施例22。
表5
Figure PCTCN2020090494-appb-000089
Figure PCTCN2020090494-appb-000090
实施例23:WX023
Figure PCTCN2020090494-appb-000091
合成路线
Figure PCTCN2020090494-appb-000092
步骤1:WX023-2的合成
向反应瓶中加入WX023-1(6g,37.46mmol,1eq)和氯仿(120mL),抽换氮气后加入三溴化铁(1.11g,3.75mmol,0.1eq)和三氯化铝(24.98g,187.31mmol,10.24mL,5eq),随后加入液溴(8.98g,56.19mmol,2.90mL,1.5eq)的氯仿(12mL)溶液,30℃下混合液反应20小时。反应完毕后,反应液倒入冰水(100mL)稀释,加入100mL饱和亚硫酸钠水溶液淬灭,二氯甲烷(100mL x3)萃取,有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩。粗品通过柱分离纯化得到WX023-2。
步骤2:WX023-3的合成
向反应瓶中加入WX023-2(5.2g,21.75mmol,1eq)、氢氧化锂(1.83g,43.50mmol,2eq)、水(17mL)和甲 醇(50mL),抽换氮气后,20℃下混合液反应16小时。反应完毕后,反应液用水(30mL)稀释,加入2摩尔每升盐酸调节pH至3-4,乙酸乙酯(50mL x3)萃取,有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩得到WX023-3。 1H NMR(DMSO-d 6,400MHz):δ(ppm)13.70(br s,1H),8.11(d,J=4.3Hz,1H)。
步骤3:WX023-4的合成
向反应瓶中加入WX023-3(1g,4.44mmol,1eq)和二甲亚砜(20mL),抽换氮气后加入乙酸(26.69mg,444.37μmol,25.41μL,0.1eq)和碳酸银(61.27mg,222.19μmol,10.08μL,0.05eq),120℃下混合液反应2小时。反应完毕后,反应液用水(200mL)稀释,甲叔醚(50mL×3)萃取,有机相用饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得WX023-4。
步骤4:WX023-5的合成
向反应瓶中加入WX023-4(0.7g,3.87mmol,1eq)、三乙胺(978.22mg,9.67mmol,1.35mL,2.5eq)、N’N-二甲基甲酰胺(30mL)和甲醇(15mL),抽换氮气后加入二苯基膦二茂铁二氯化钯(315.78mg,386.68μmol,0.1eq),抽换三次一氧化碳,在80℃、50psi的一氧化碳(3.87mmol,1eq)环境下混合液反应20小时。反应完毕后,反应液用水(300mL)稀释,乙酸乙酯(100mL x3)萃取,有机相用饱和食盐水(100mL x 2)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩。粗品通过柱分离纯化得到WX023-5。 1H NMR(DMSO-d 6,400MHz):δ(ppm)8.33(t,J=3.7Hz,1H),7.35(dd,J=3.7,1.8Hz,1H),3.79(s,3H)。
步骤5:WX023-6的合成
向反应瓶中加入WX023-5(350mg,2.19mmol,1eq)、氢氧化锂(183.40mg,4.37mmol,2eq)、水(3.5mL)和甲醇(7mL),20℃下混合液反应16小时。反应完毕后,将有机溶剂旋干,乙酸乙酯(5mL)萃取,分液,水相用2摩尔每升的盐酸调节pH至3-4,乙酸乙酯(5mL×3)萃取,有机相用饱和食盐水(5mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩得到WX023-6。
步骤6:WX023-7的合成
向反应瓶中加入WX023-6(310mg,2.12mmol,1eq)和四氢呋喃(10mL),抽换氮气后降温至-78℃,缓慢滴入正丁基锂(2.5M,2.04mL,2.4eq),-78℃搅拌0.5小时,缓慢滴入B-1-3(557.62mg,3.18mmol,1.5eq)的四氢呋喃(2mL)溶液,-78℃下混合液反应1小时。反应完毕后,反应液用饱和氯化铵水溶液(10mL)和碳酸氢钠(5mL)稀释,分液,水相用2摩尔每升盐酸调节pH至3-4,乙酸乙酯(10mL×3)萃取,有机相用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩得到WX023-7。
步骤7:WX023-8的合成
向反应瓶中加入WX023-7(680mg,2.12mmol,1eq)和二氯甲烷(20mL),抽换氮气后加入2-(7-氮杂苯 并三氮唑)-N,N,N’,N’-四甲基脲六氟磷酸酯(804.50mg,2.12mmol,1eq)和二异丙基乙胺(820.35mg,6.35mmol,1.11mL,3eq),27℃下混合液反应20小时。反应完毕后,反应液用水(50mL)稀释,二氯甲烷(30mL×3)萃取,有机相用饱和食盐水(30mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩。粗品通过柱分离纯化得到WX023-8。
步骤8:WX023-9的合成
向反应瓶中加入WX023-8(220mg,290.07μmol,40%纯度,1eq)、四丁基氟化铵(1M,290.07μL,1eq)和四氢呋喃(2.5mL),抽换氮气后,20℃下混合液反应1小时。反应完毕后,反应液直接旋干,析出大量固体。粗品加入0.5mL乙腈,搅拌后过滤,得到WX023-9。 1H NMR(DMSO-d 6,400MHz):δ(ppm)9.27(s,1H),7.39(s,1H),4.92(d,J=7.1Hz,2H),4.77(d,J=7.1Hz,2H)。
步骤9:WX023-10的合成
向反应瓶中加入WX023-9(110mg,552.20μmol,1eq)和N’N-二甲基甲酰胺(10mL),抽换氮气后加入N-溴代丁二酰亚胺(108.11mg,607.42μmol,1.1eq),60℃下混合液反应2小时。反应完毕后,反应液用饱和亚硫酸钠水溶液(100mL)稀释,乙酸乙酯(30mL×3)萃取,有机相用饱和食盐水(50mLx2)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩。粗品通过薄层层析硅胶板纯化得到WX023-10。
步骤10:WX023-11的合成
向反应瓶中加入WX023-10(80mg,287.67μmol,1eq)和N’N-二甲基甲酰胺(6mL),抽换氮气后降温至0℃,分批加入钠氢(14.96mg,373.97μmol,60%纯度,1.3eq),搅拌0.5小时,随后加入D-1(70.93mg,345.20μmol,45.18μL,1.2eq)的N’N-二甲基甲酰胺(1mL)溶液,0℃下混合液反应1小时。反应完毕后,反应液用饱和氯化铵水溶液(50mL)稀释,乙酸乙酯(20mL x3)萃取,有机相用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液在45℃用水泵减压浓缩。粗品通过薄层层析硅胶板纯化。得到WX023-11。 1H NMR(DMSO-d 6,400MHz):δ(ppm)7.42(s,1H),7.32-7.40(m,2H),7.26-7.30(m,1H),4.94(s,2H),4.85(d,J=7.2Hz,2H),4.73(d,J=7.5Hz,2H)。
步骤11:WX023的合成
向反应瓶中加入WX023-11(75mg,186.26μmol,1eq)、A-1(86.47mg,186.26μmol,1eq)和甲苯(2mL),抽换氮气后加入四三苯基膦钯(43.05mg,37.25μmol,0.2eq),125℃下混合液反应24小时。反应完毕后,反应液直接旋干。粗品通过薄层层析硅胶板纯化得到WX023。
实施例24:WX024
Figure PCTCN2020090494-appb-000093
合成路线:
Figure PCTCN2020090494-appb-000094
步骤1:WX024-2的合成
向干燥的反应瓶中加入WX024-1(500mg,2.82mmol,46.17μL,1eq)、甲醇(6mL)、N’N-二甲基甲酰胺(12.5mL)、二苯基膦二茂铁(187.86mg,338.86μmol,0.12eq)、乙酸钯(63.40mg,282.39μmol,0.1eq)和三乙胺(714.36mg,7.06mmol,982.62μL,2.5eq)。通入一氧化碳(79.07mg,2.82mmol,63.25μL,1eq)气体50psi,80℃反应16小时。反应完毕后,反应液用乙酸乙酯(20mL)稀释,过滤,滤液分别用10%的柠檬酸(20mL)、饱和碳酸氢钠20mL,水20mL,饱和食盐水(20mL)洗涤有机相,有机相用无水硫酸钠干燥,过滤,滤液用水泵减压浓缩。粗品通过柱分离纯化得到WX024-2。 1H NMR(CDCl 3,400MHz):δ(ppm)8.09(d,J=3.4Hz,1H),6.88-7.00(m,1H),3.86(s,3H),2.47(s,3H)。
步骤2:WX024-3的合成
向干燥的反应瓶中加入WX024-2(390mg,2.50mmol,1eq),甲醇(6mL),水(3mL),氢氧化钠(299.59mg,7.49mmol,3eq),25℃反应16小时。反应完毕后,将反应液直接减压浓缩,将甲醇旋出,水相用3 摩尔每升的盐酸调节pH=3,有固体析出,过滤,收集固体得到WX024-3。
步骤3:WX024-4的合成
向干燥的反应瓶中加入WX024-3(80mg,562.68μmol,1eq),四氢呋喃(2mL),氮气保护,-78℃加入正丁基锂(2.5M,540.18μL,2.4eq),搅拌0.5小时,然后加入B-1-3(147.91mg,844.02μmol,1.5eq)的四氢呋喃(1mL),-78℃反应1小时。反应液倒入饱和氯化铵水溶液(2mL)中,先用乙酸乙酯1mL,然后再用2摩尔每升的盐酸溶液调节pH=3~4,用乙酸乙酯(2mL)萃取3次,合并有机相,有机相用饱和食盐水(4mL)洗涤有,用硫酸钠干燥,过滤,滤液用水泵减压浓缩得到WX024-4。
步骤4:WX024-5的合成
向干燥的反应瓶中加入WX024-4(178mg,560.77μmol,1eq),二氯甲烷(3mL),抽换氮气,0℃加入2-(7-氮杂苯并三氮唑)-N,N,N’,N’-四甲基脲六氟磷酸酯(319.83mg,841.15μmol,1.5eq),二异丙基乙胺(217.42mg,1.68mmol,293.03μL,3eq),25℃反应16小时。反应完毕后,反应液用水(2mL)稀释,用二氯甲烷(2mL)萃取3次,合并有机相,用饱和食盐水(10mL)洗涤有机相,有机相用无水硫酸钠干燥,过滤,滤液用水泵减压浓缩,粗品通过薄层层析硅胶板纯化得到WX024-5。
步骤5:WX024-6的合成
向干燥的反应瓶中加入WX024-5(100mg,333.99μmol,1eq),四丁基氟化铵(1M,333.99μL,1eq),四氢呋喃(2mL)抽换氮气,25℃反应16小时。反应完毕后,将反应液直接减压浓缩。粗产品通过薄层层析硅胶板纯化得到WX024-6。 1H NMR(DMSO-d 6,400MHz):δ(ppm)9.03(s,1H),7.28(s,1H),4.94(d,J=6.6Hz,2H),4.74(d,J=6.6Hz,2H),2.25(s,3H).
步骤6:WX024-7的合成
向干燥的反应瓶中加入WX024-6(40mg,204.88μmol,1eq),N’N-二甲基甲酰胺(1mL),N-溴代丁二酰亚胺(43.76mg,245.85μmol,1.2eq),抽换氮气,加热到60℃,反应16小时。反应完毕后,反应液用水(10mL)稀释,用乙酸乙酯(10mL)萃取3次,合并有机相,用饱和食盐水(10mL)洗涤有机相,有机相用无水硫酸钠干燥,过滤,滤液用水泵减压浓缩。粗产品通过薄层层析硅胶板纯化得到WX024-7。 1H NMR(DMSO-d 6,400MHz):δ(ppm)9.27(s,1H),4.91(d,J=6.6Hz,2H),4.76(d,J=7.0Hz,2H),2.24(s,3H).
步骤7:WX024-8的合成
向干燥的反应瓶中加入WX024-7(80mg,291.83μmol,1eq),N’N-二甲基甲酰胺(10mL),抽换氮气,0℃加入钠氢(17.51mg,437.74μmol,60%纯度,1.5eq),在0℃下反应0.5小时,然后再加入D-1(71.96mg,350.19μmol,45.83μL,1.2eq),反应液慢慢升到25℃,继续反应1小时。反应完毕后,反应液用水(5mL)稀释,用乙酸乙酯(5mL)萃取3次,合并有机相,用饱和食盐水(5mL)洗涤有机相,有机相用无水硫酸钠干燥,过滤,滤液用水泵减压浓缩。粗产品通过薄层层析硅胶板纯化得到WX024-8。 1H NMR(DMSO-d 6,400MHz):δ(ppm)7.39(d,J=7.5Hz,1H),7.32-7.39(m,2H),7.24-7.29(m,1H),4.93(s,2H), 4.87(d,J=7.5Hz,2H),4.70(d,J=7.5Hz,2H),2.27(s,3H)。
步骤8:WX024的合成
向反应瓶中加入WX024-8(92mg,230.75μmol,1eq),A-1(107.12mg,230.75μmol,1eq),甲苯(2mL),抽换氮气,加热到125℃,然后慢慢加入四三苯基膦钯(53.33mg,46.15μmol,0.2eq)。125℃反应48小时。反应完毕后,将反应液浓缩。粗产品通过薄层层析硅胶板纯化得到WX024。
实施例25:WX025
Figure PCTCN2020090494-appb-000095
合成路线
Figure PCTCN2020090494-appb-000096
步骤1:WX025-1的合成
向干燥的反应瓶中加入WX024-7(150mg,547.18μmol,1eq),N,N-二甲基甲酰胺(2mL),无色清夜,抽换氮气,0℃加入钠氢(32.83mg,820.77umol,60%纯度,1.5eq),在0℃下反应0.5小时,然后再加入D-3(124.12mg,656.61μmol,80.60μL,1.2eq),反应液慢慢升到20℃,继续反应1小时。反应完毕后,反应液用水(10mL)稀释,用乙酸乙酯(20mL)萃取3次,合并有机相,用饱和食盐水(30mL×3)洗涤有机相,有机相用无水硫酸钠干燥,过滤,滤液用水泵减压浓缩。粗品通过薄层层析硅胶板分离纯化WX025-1。 1H NMR(CDCl 3 400MHz):δ(ppm)7.28-7.35(m,1H),7.16(d,J=7.6Hz,1H),7.08(d,J=9.6Hz,1H),6.95-7.02(m,1H),4.96(s,2H),4.91(d,J=7.3Hz,2H),4.78(d,J=7.3Hz,2H),2.38(s,3H).
步骤2:WX025的合成
在预先干燥的单口烧瓶中加入WX025-1(80mg,209.29μmol,1eq)和A-1(97.16mg,209.29μmol,1eq),再加甲苯(4mL),置换氮气,升温至125℃,然后缓慢加入四三苯基膦钯(48.37mg,41.86μmol,0.2eq),再置换氮气,125℃反应48小时。反应完毕后,减压浓缩干得粗品。粗品通过制备薄层层析硅胶板分离纯化得到WX025。
各实施例的氢谱和质谱数据如表6所示。
表6
Figure PCTCN2020090494-appb-000097
Figure PCTCN2020090494-appb-000098
Figure PCTCN2020090494-appb-000099
Figure PCTCN2020090494-appb-000100
Figure PCTCN2020090494-appb-000101
Figure PCTCN2020090494-appb-000102
实验例一、体外酶活性测试:
1.实验目的:
测量化合物抑制ERK2激酶活性的能力。
2.实验缓冲液:
20mM Hepes(4-羟乙基哌嗪乙磺酸)缓冲液(pH 7.5),10mM MgCl 2,1mM乙二醇双(2-氨基乙基醚)四乙酸(EGTA),0.02%Brij35(十二烷基聚乙二醇醚),0.02mg/mL牛血清白蛋白(BSA),0.1mM Na 3VO 4,2mM二硫苏糖醇(DTT),1%DMSO。
3.化合物处理:
将测试化合物溶于100%DMSO中,配制成特定浓度的母液。利用Integra Viaflo Assist智能移液器将化合物连续稀释在DMSO溶液中。
4.实验方法
1)在新制备的反应缓冲液中配置底物MBP;
2)将ERK2激酶加入到上述MBP溶液中并轻轻混合;
3)运用超声技术(Echo550;纳升范围)将溶于100%DMSO中的化合物加入到激酶反应体系中,在室温下孵育20分钟;
4)将 33P-ATP(特定浓度10μCi/μL)加入到反应体系中,此时开始发生反应;
5)在室温下孵育2小时;
6)通过过滤--结合方法检测放射性的量;
7)ERK2激酶活性计算方式为测试样品中剩余激酶活性占对照组(二甲基亚砜处理)激酶活性的比值。使用Prism(GraphPad软件)进行曲线拟合并计算IC 50值。
5.实验结果见表7:
表7体外酶活性测试结果
Figure PCTCN2020090494-appb-000103
Figure PCTCN2020090494-appb-000104
结论:本发明化合物表现出较优的对ERK2酶抑制活性。
实验例二、体外细胞增殖抑制实验:
1.实验目的:
测量化合物抑制HT29肿瘤细胞增值的能力。
2.化合物处理:
将测试化合物溶于100%DMSO中,配制成10mM的母液。
3.实验步骤与方法:
1)开启生物安全柜紫外灯,倒计时30分钟;
2)37度水浴锅中,预热RPMI1640培养基和胰酶;
3)紫外照射完毕,开启生物安全柜,将预热培养基,胰酶,磷酸缓冲盐溶液(PBS)等用酒精擦拭并放入生物安全柜中;
4)将HT29细胞从培养箱中取出,在生物安全柜中去除旧培养基,加入10毫升PBS,轻轻摇晃,并去除PBS;
5)加入预热0.25%胰酶1.5毫升,水平晃动培养瓶,使其均匀覆盖到底部的细胞,置培养箱中2分钟;
6)用完全培养基终止细胞消化,并吹打至均匀的细胞悬液计数;
7)根据细胞计数结果,调整细胞悬液密度为1500细胞每孔,50微升每孔进行种板;
8)将化合物母液连续稀释在DMSO溶液中,并使用Tecan将化合物加入细胞板中;
9)将加过化合物的细胞板和CellTiterGlo放到室温平衡,后加CellTiterGlo 25微升至每孔,震荡1-2分钟,静置10分钟后检测信号值,并用XL-Fit分析数据,计算各化合物的IC 50
4.实验结果见表8:
表8体外细胞活性测试结果
Figure PCTCN2020090494-appb-000105
Figure PCTCN2020090494-appb-000106
结论:本发明化合物表现出较优的对HT29细胞增殖抑制活性。
实验例三、体内DMPK研究:
小鼠体内DMPK研究
1.实验目的:
以雌性BALB/c小鼠为受试动物,单次给药后测定化合物血药浓度并评估药代动力学行为。
2.实验操作:
选择健康成年雌性BALB/c小鼠8只,4只为静注组,4只为口服组。待测化合物与适量静注组溶媒(5%DMSO+20%HP-β-CD)混合,涡旋并超声,制备得到0.5mg/mL澄清溶液,微孔滤膜过滤后备用;口服组溶媒为5%DMSO+20%HP-β-CD,待测化合物与溶媒混合后,涡旋并超声,制备得到0.3mg/mL溶液。小鼠1mg/kg静脉给药或3mg/kg口服给药后,收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
注HP-β-CD:羟丙基-β-环糊精。
3.实验结果见表9:
表9化合物PK测试结果
Figure PCTCN2020090494-appb-000107
Figure PCTCN2020090494-appb-000108
备注:C max为最大浓度;F%为口服生物利用度;DNAUC=AUC PO/Dose,AUC PO为口服暴露量,Dose为药物剂量;Vd ss为分布容积;Cl为清除率;T 1/2为半衰期;ND指未检测。
结论:本发明化合物展现了优良的口服暴露量和生物利用度。
实验例四、人结肠癌HT-29细胞皮下异种移植肿瘤BALB/c裸小鼠模型的体内药效学研究
1.实验目的:
使用人结肠癌HT-29细胞皮下异种移植肿瘤裸小鼠模型,评价WX006的抗肿瘤作用。
2.实验动物:
种属:小鼠
品系:BALB/c裸小鼠
周龄:6-8周龄
性别:雌性
体重:18-22克
供应商:上海灵畅生物科技有限公司
动物合格证号:20180003007379
3.饲养环境:
动物在SPF级动物房以IVC(独立送风系统,恒温恒湿)笼具饲养(每笼3只),温度:20-26℃,
湿度:40-70%;
笼具:以聚碳酸酯制成,体积300mm×180mm×150mm,垫料为玉米芯,每周更换两次;
食物:实验动物在整个实验阶段中可自由进食(照射灭菌,干颗粒状食物);
饮水:实验动物可自由饮用灭菌水;
笼具标识:每笼动物信息卡应注明笼内动物数目,性别,品系,接收日期,给药方案,实验编号,
组别以及实验开始日期;
动物标识:实验动物以耳标进行标识。
4.实验内容:
1)实验细胞及培养:人结肠癌HT-29细胞(ATCC,货号:HTB-38)体外单层培养,培养条件为McCoy's5a培养基中加10%胎牛血清,100U/mL青霉素和100μg/mL链霉素,37℃5%CO2孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,接种;
2)肿瘤组织接种及分组:0.1mL(5×10 6个)HT-29细胞皮下接种于每只小鼠的右后背,肿瘤平均体积达到129mm 3时,将动物随机分为两组,开始给药。实验分组和给药方案见表10;
表10实验动物分组及给药方案
Figure PCTCN2020090494-appb-000109
3)实验动物日常观察:本实验方案的拟定及任何修改均通过了实验动物管理与使用委员会(IACUC)的评估核准。实验动物的使用及福利遵照国际实验动物评估和认可委员会(AAALAC)的规定执行。每天监测动物的健康状况及死亡情况,例行检查包括观察肿瘤生长和药物治疗对动物日常行为表现的影响如行为活动,摄食摄水量(仅目测),体重变化(每周测量两次体重),外观体征或其它不正常情况。基于各组动物数量记录了组内动物死亡数和副作用。
4)肿瘤测量和实验指标:
a)每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径;
b)化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)的计算:TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
c)相对肿瘤增殖率T/C(%):计算公式如下:T/C%=TRTV/CRTV×100%(TRTV:治疗组RTV;CRTV:溶剂对照组RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时测量所得平均肿瘤体积,V t为某一次测量时的平均肿瘤体积,TRTV与CRTV取同一天数据。
5)统计分析:统计分析基于试验结束时RTV的数据运用SPSS软件进行分析。两组间比较用T test进行分析,三组或多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s 法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
5.实验结果:
a)如图1所示,给药至第26天时,WX006具有明显的抑制肿瘤生长作用,它的T/C为45.2%,TGI为61.9%,与溶剂对照组相比p值<0.001;
b)实验动物的体重作为间接测定药物毒性的参考指标。如图2所示,给药至第26天时,溶剂对照组和WX006组所有动物的体重均未有明显下降,无发病或死亡现象。

Claims (17)

  1. 式(Ⅲ)化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2020090494-appb-100001
    其中,
    n为0、1或2;
    环A为
    Figure PCTCN2020090494-appb-100002
    T 1、T 2和T 3分别独立地选自N和CH;
    D 1和D 2分别独立地选自-CH 2-和-CH 2-CH 2-;
    R 1选自H和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R a取代;
    R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R b取代;
    R 4选自H、F、Cl、Br、I、OH、CN和NH 2
    R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和C 1-3烷基,其中所述C 1-3烷基任选被1、2或3个R c取代;
    R 10选自H、F、Cl、Br、I和CH 3
    R a、R b和R c分别独立地选自F、Cl、Br、I、OH、CN和NH 2
  2. 根据权利要求1所述的化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2020090494-appb-100003
    其中,环A、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9和R 10如权利要求1所定义。
  3. 根据权利要求1所述的化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2020090494-appb-100004
    其中,环A、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9和R 10如权利要求1所定义。
  4. 根据权利要求1、2或3所述的化合物、其异构体或其药学上可接受的盐,其中,R 1选自H和CH 3,其中所述CH 3任选被1、2或3个R a取代。
  5. 根据权利要求4所述的化合物、其异构体或其药学上可接受的盐,其中,R 1为CH 3
  6. 根据权利要求1、2或3所述的化合物、其异构体或其药学上可接受的盐,其中,R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和CH 3,其中所述CH 3任选被1、2或3个R b取代。
  7. 根据权利要求6所述的化合物、其异构体或其药学上可接受的盐,其中,R 2和R 3分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2和CH 3
  8. 根据权利要求1、2或3所述的化合物、其异构体或其药学上可接受的盐,其中,R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN、NH 2、CH 3和-CH 2-CH 3,其中所述CH 3和-CH 2-CH 3任选被1、2或3个R c取代。
  9. 根据权利要求8所述的化合物、其异构体或其药学上可接受的盐,其中,R 5、R 6、R 7、R 8和R 9分别独立地选自H、F、Cl、Br、I、OH、CN和NH 2
  10. 根据权利要求1、2或3所述的化合物、其异构体或其药学上可接受的盐,其中,环A为
    Figure PCTCN2020090494-appb-100005
    Figure PCTCN2020090494-appb-100006
  11. 根据权利要求10所述的化合物、其异构体或其药学上可接受的盐,其中,环A为
    Figure PCTCN2020090494-appb-100007
    Figure PCTCN2020090494-appb-100008
  12. 根据权利要求1~9任意一项所述的化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2020090494-appb-100009
    其中,
    R 1如权利要求1、4或5所定义;
    R 2和R 3如权利要求1、6或7所定义;
    R 4如权利要求1所定义;
    R 5、R 6、R 7、R 8和R 9如权利要求1、8或9所定义;
    R 10如权利要求1所定义。
  13. 根据权利要求12所述的化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2020090494-appb-100010
    其中,
    R 1如权利要求1、4或5所定义;
    R 2和R 3如权利要求1、6或7所定义;
    R 4如权利要求1所定义;
    R 5、R 6、R 7、R 8和R 9如权利要求1、8或9所定义;
    R 10如权利要求1所定义。
  14. 下述化合物、其异构体或其药学上可接受的盐,
    Figure PCTCN2020090494-appb-100011
    Figure PCTCN2020090494-appb-100012
    Figure PCTCN2020090494-appb-100013
  15. 根据权利要求14所述的化合物、其异构体或其药学上可接受的盐,其选自
    Figure PCTCN2020090494-appb-100014
    Figure PCTCN2020090494-appb-100015
  16. 根据权利要求1~15任意一项所述化合物、其异构体或其药学上可接受的盐在制备治疗ERK相关疾病的药物中的应用。
  17. 根据权利要求16所述的应用,其特征在于,所述ERK相关疾病药物是用于治疗结直肠癌的药物。
PCT/CN2020/090494 2019-05-15 2020-05-15 Erk抑制剂及其应用 WO2020228817A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080027279.6A CN113784970B (zh) 2019-05-15 2020-05-15 Erk抑制剂及其应用

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910404679.3 2019-05-15
CN201910404679 2019-05-15
CN201910761813.5 2019-08-16
CN201910761813 2019-08-16
CN201911248182 2019-12-06
CN201911248182.3 2019-12-06
CN202010309793.0 2020-04-17
CN202010309793 2020-04-17

Publications (1)

Publication Number Publication Date
WO2020228817A1 true WO2020228817A1 (zh) 2020-11-19

Family

ID=73289819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090494 WO2020228817A1 (zh) 2019-05-15 2020-05-15 Erk抑制剂及其应用

Country Status (2)

Country Link
CN (1) CN113784970B (zh)
WO (1) WO2020228817A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021110168A1 (zh) * 2019-12-06 2021-06-10 南京明德新药研发有限公司 作为erk抑制剂的螺环类化合物及其应用
WO2022100586A1 (zh) * 2020-11-11 2022-05-19 南京明德新药研发有限公司 一种含氧杂环丁烷的螺环类化合物的晶型、制备方法及其应用
WO2022253186A1 (zh) * 2021-06-02 2022-12-08 南京明德新药研发有限公司 一种二甲基取代的噻唑并吡咯酮类化合物的晶型及其制备方法
WO2023274256A1 (zh) * 2021-06-28 2023-01-05 南京明德新药研发有限公司 噻唑并内酰胺并螺杂环类化合物及其应用
WO2023274088A1 (zh) * 2021-06-28 2023-01-05 南京明德新药研发有限公司 二甲基取代的噻唑并内酰胺类化合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153947A2 (en) * 2007-06-07 2008-12-18 Amgen Inc. Heterocyclic compounds as raf kinase modulators
CN103189369A (zh) * 2010-09-01 2013-07-03 吉利德康涅狄格有限公司 吡啶酮/吡嗪酮、其制备方法及使用方法
CN103201277A (zh) * 2010-09-01 2013-07-10 吉利德康涅狄格有限公司 哒嗪酮、其制备方法及使用方法
WO2013130976A1 (en) * 2012-03-01 2013-09-06 Array Biopharma Inc. Serine/threonine kinase inhibitors
CN107074874A (zh) * 2014-12-22 2017-08-18 伊莱利利公司 Erk抑制剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153947A2 (en) * 2007-06-07 2008-12-18 Amgen Inc. Heterocyclic compounds as raf kinase modulators
CN103189369A (zh) * 2010-09-01 2013-07-03 吉利德康涅狄格有限公司 吡啶酮/吡嗪酮、其制备方法及使用方法
CN103201277A (zh) * 2010-09-01 2013-07-10 吉利德康涅狄格有限公司 哒嗪酮、其制备方法及使用方法
WO2013130976A1 (en) * 2012-03-01 2013-09-06 Array Biopharma Inc. Serine/threonine kinase inhibitors
CN107074874A (zh) * 2014-12-22 2017-08-18 伊莱利利公司 Erk抑制剂

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021110168A1 (zh) * 2019-12-06 2021-06-10 南京明德新药研发有限公司 作为erk抑制剂的螺环类化合物及其应用
AU2020394767B2 (en) * 2019-12-06 2023-05-25 D3 Bio (Wuxi) Co., Ltd. Spiro compound serving as ERK inhibitor, and application thereof
JP7326622B2 (ja) 2019-12-06 2023-08-15 メッドシャイン ディスカバリー インコーポレイテッド Erk阻害剤としてのスピロ系化合物およびその使用
WO2022100586A1 (zh) * 2020-11-11 2022-05-19 南京明德新药研发有限公司 一种含氧杂环丁烷的螺环类化合物的晶型、制备方法及其应用
WO2022253186A1 (zh) * 2021-06-02 2022-12-08 南京明德新药研发有限公司 一种二甲基取代的噻唑并吡咯酮类化合物的晶型及其制备方法
WO2023274256A1 (zh) * 2021-06-28 2023-01-05 南京明德新药研发有限公司 噻唑并内酰胺并螺杂环类化合物及其应用
WO2023274088A1 (zh) * 2021-06-28 2023-01-05 南京明德新药研发有限公司 二甲基取代的噻唑并内酰胺类化合物及其应用

Also Published As

Publication number Publication date
CN113784970B (zh) 2022-11-29
CN113784970A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2020228817A1 (zh) Erk抑制剂及其应用
WO2021110169A1 (zh) 作为erk抑制剂的噻唑并内酰胺类化合物及其应用
WO2021259331A1 (zh) 八元含n杂环类化合物
WO2021110168A1 (zh) 作为erk抑制剂的螺环类化合物及其应用
CN111788205B (zh) 吡唑并嘧啶衍生物及其用途
WO2020259626A1 (zh) 作为irak4抑制剂的咪唑并吡啶类化合物
WO2022063308A1 (zh) 一类1,7-萘啶类化合物及其应用
WO2021098703A1 (zh) 作为高选择性ros1抑制剂的化合物及其应用
CN114008046B (zh) 作为cdk9抑制剂的氮杂吲哚连吡唑类化合物
WO2021238999A1 (zh) 氟代吡咯并吡啶类化合物及其应用
WO2020259620A1 (zh) 作为ccr2/ccr5拮抗剂的杂环烷基类化合物
WO2020063965A1 (zh) 作为选择性Trk抑制剂的吡唑并嘧啶衍生物
CN113439080B (zh) 作为pd-l1免疫调节剂的乙烯基吡啶甲酰胺基化合物
CN112752749B (zh) 作为pd-l1免疫调节剂的氟乙烯基苯甲酰胺基化合物
WO2021219088A1 (zh) 嘧啶三并环类化合物及其应用
WO2021004533A1 (zh) 作为irak4和btk多靶点抑制剂的噁唑类化合物
WO2023274088A1 (zh) 二甲基取代的噻唑并内酰胺类化合物及其应用
WO2023274256A1 (zh) 噻唑并内酰胺并螺杂环类化合物及其应用
RU2805569C1 (ru) Тиазололактамные соединения в качестве ингибиторов ERK и их применение
WO2021098734A1 (zh) 作为atm抑制剂的有取代的喹啉吡咯酮类合物及其应用
CN114957259A (zh) 氰基取代的芳香双环类化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805962

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20805962

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20805962

Country of ref document: EP

Kind code of ref document: A1