WO2020228802A1 - 一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法 - Google Patents

一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法 Download PDF

Info

Publication number
WO2020228802A1
WO2020228802A1 PCT/CN2020/090394 CN2020090394W WO2020228802A1 WO 2020228802 A1 WO2020228802 A1 WO 2020228802A1 CN 2020090394 W CN2020090394 W CN 2020090394W WO 2020228802 A1 WO2020228802 A1 WO 2020228802A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
corn
starch
protein
sprayed
Prior art date
Application number
PCT/CN2020/090394
Other languages
English (en)
French (fr)
Inventor
曹轶
梁永忠
张羽
郝建明
Original Assignee
诺维信公司
曹轶
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺维信公司, 曹轶 filed Critical 诺维信公司
Priority to EP20805799.2A priority Critical patent/EP3971217B1/en
Priority to US17/611,495 priority patent/US20220205006A1/en
Priority to ES20805799T priority patent/ES2975532T3/es
Priority to CN202080034955.2A priority patent/CN113811550B/zh
Publication of WO2020228802A1 publication Critical patent/WO2020228802A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/04Extraction or purification
    • C08B30/042Extraction or purification from cereals or grains
    • C08B30/044Extraction or purification from cereals or grains from corn or maize
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H99/00Subject matter not provided for in other groups of this subclass, e.g. flours, kernels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2482Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01055Alpha-N-arabinofuranosidase (3.2.1.55)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the invention relates to a method for comprehensive utilization of by-products in a corn wet milling process, in particular to a method for improving the yield of sprayed corn husks in a corn wet milling process.
  • Corn kernels contain starch, germ, fiber, protein, and other substances that can be separated to make useful products.
  • the wet milling method for wet milling corn kernels includes the following steps: first, the kernels are soaked with sulfurous acid for about 30 minutes to about 48 hours to start breaking the starch and protein bonds.
  • the next step of the method involves Coarse grinding to break the kernel skin and separate the germ from the remaining kernels.
  • the remaining slurry is composed of fiber, starch and protein, which are finely ground and screened to separate the fiber from starch and protein.
  • the starch is separated from the remaining slurry in a hydrocyclone.
  • the starch can be converted into syrup or Alcohol, or dried and sold as corn starch, or modified by chemical or physical methods to produce modified corn starch. Fiber can be squeezed and dried for animal feed.
  • the dipping solution of corn kernels with sulfurous acid is corn steep liquor, which is rich in soluble protein, auxin and some precursor substances, tastes slightly salty, and is a commonly used organic nitrogen source for microorganism growth.
  • corn steep liquor which is rich in soluble protein, auxin and some precursor substances, tastes slightly salty, and is a commonly used organic nitrogen source for microorganism growth.
  • the sprayed corn husk on the corn fiber has a small amount of spray due to factors such as too dark color. .
  • the production of corn starch has grown rapidly, especially in the production areas where corn starch factories are concentrated. The outlet of corn syrup has become a problem. Corn starch production companies have large stocks of corn syrup and can even be abandoned, which has brought serious environmental pressures. , Is a problem that corn starch production enterprises urgently need to solve.
  • the inventor of the present application found that by adding an enzyme preparation during the separation process of fiber from starch and protein in the corn wet milling process, the residual content of starch and/or protein in the by-product corn fiber residue is reduced, thereby reducing fiber residue
  • the reducing sugar content in the product can control the color of the finished sprayed corn husk.
  • the fiber residue after the enzyme preparation can have a lower water content and a looser and more fluffy fiber residue structure.
  • the method can significantly increase the yield of the by-product sprayed corn husk in the corn wet milling process, that is, significantly increase the spray volume of the concentrated corn steep liquor on the fiber corn husk It can alleviate the problem of large inventory of by-product corn syrup in the process of corn starch production, and improve the product value of the by-product corn syrup in the production of corn starch.
  • the present invention relates to a method for increasing the yield of sprayed corn husks in a corn wet milling process, which includes the following steps:
  • an enzyme preparation is added.
  • the process of separating the fiber from starch and protein includes a fiber washing step, and the fiber washing is performed in the presence of an enzyme preparation.
  • the enzyme preparation contains cellulase and/or hemicellulase, for example, cellulase, xylanase and/or arabinofuranosidase.
  • the cellulase is expressed by Trichoderma reesei, preferably, the The xylanase is a GH10 xylanase, preferably, the arabinofuranosidase is GH62 arabinofuranosidase.
  • the invention relates to a method for increasing the yield of sprayed corn husks in a corn wet milling process, which comprises the following steps:
  • an enzyme preparation is added.
  • the corn is, for example, dent corn, durum corn, barley corn, striated corn, sweet corn, waxy corn and the like.
  • the wet milling process can vary significantly depending on the specific milling equipment used.
  • the corn wet milling process includes the following four steps: dipping and separating germ, washing fiber and drying, separating starch and protein, and washing starch.
  • the purpose of dipping is to soften the corn kernel, weaken the connection between the various components in the corn kernel, destroy the protein network in the embryonic cell, remove most of the soluble matter, and separate the starch and non-starch parts in the corn kernel to make the The operation of the process is easy to perform.
  • the dipping process is mainly the softening process of corn and the diffusion process of soluble substances in corn, accompanied by the natural fermentation and action process of lactic acid bacteria.
  • the immersion of corn kernels is performed countercurrently in an aqueous sulfurous acid solution.
  • a semi-continuous process is adopted, with 8 to 12 soaking tanks.
  • the corn kernels remain static in the tank, and the soaking liquid is circulated in the tank while being transported into the first-stage tank with a pump, always maintaining new sulfurous acid
  • the solution is in contact with the corn kernels with the longest soaking time (the soaking is about to end), and the corn kernels newly put into the tank are in contact with the soaking solution that is about to be discharged, thereby maintaining the best soaking effect.
  • the immersion temperature is (50 ⁇ 2)°C
  • the mass concentration of sulfurous acid during immersion is 0.12% to 0.25%
  • the immersion time is 24-72h, such as 36-60h.
  • the soaking liquid that has been immersed that is, the thin corn steep liquor, which contains dry matter with a mass concentration of 6%-9%, is sent to the evaporation process.
  • the thin corn steep liquor which contains dry matter with a mass concentration of 6%-9%
  • it is concentrated to a concentration with a dry matter concentration of about 40%. Corn steep liquor.
  • the corn kernel absorbs water, thereby increasing its moisture content from 15% to 45% and more than double the size.
  • 0.12% sulfur dioxide (SO 2 ) and/or NaHSO 3 are added to the water to prevent bacteria from growing in a warm environment.
  • SO 2 sulfur dioxide
  • NaHSO 3 NaHSO 3
  • the germ is separated by a cyclone, and the corn endosperm slurry is then ground by needle mill to make most of the starch And protein particles are freed, and then with the aid of the screening and washing process, the crude starch milk containing starch and protein is separated from the fiber, and the crude starch milk with the fiber removed is obtained.
  • the starch milk and the gluten it is passed through the disc Centrifuge separates starch milk and insoluble protein.
  • the starch milk obtained by centrifugation is washed by a twelve-stage cyclone to remove residual gluten and solubles. It is the finished starch milk.
  • the finished starch milk is mechanically dehydrated by the centrifuge. After drying, cooling and sieving, commercial dry starch is obtained.
  • the gluten obtained by centrifugation is concentrated, dehydrated and dried to obtain commercial protein powder products.
  • the process of separating the fiber from starch and protein contains a fiber washing step, and fine milling and screening are performed during the fiber washing process to separate the fiber from starch and protein.
  • a fiber washing step and fine milling and screening are performed during the fiber washing process to separate the fiber from starch and protein.
  • multiple countercurrent washing methods are used.
  • the fiber residue adopts a six-stage or seven-stage countercurrent washing method, that is, six/seven washings and six/seven screenings.
  • the sieving of the fiber residues is performed with a curved sieve.
  • the curved screen is a curved screen surface with many slender screen slits.
  • the separated materials are introduced into the upper part of the curved screen surface along the tangent line, and the materials move downward along the screen surface. It is at right angles to the screen seam.
  • the starch milk is scraped into the sieve and falls down, separated from the fiber residue, and the starch milk is discharged from the lower collection pipeline.
  • the on-screen material slides down to the lower part of the screen surface under the action of gravity and is discharged.
  • the thin slurry after the germs are separated by the secondary cyclone separator is passed through a pressure curved sieve, and the under-sieve is coarse starch milk.
  • the starch milk is combined with the coarse starch slurry separated after fine grinding and enters the starch separation process. ;
  • the sieve enters the needle mill for fine grinding to maximize the release of the starch associated with the fiber.
  • the finely ground slurry enters the fiber washing tank; the finely ground slurry enters the fiber washing tank, where it is washed
  • the fiber washing water is pumped to the first-stage pressure curved sieve together, the coarse starch milk is separated under the sieve, and the sieve is washed countercurrently through the 7-stage pressure curved sieve.
  • the washing process water is added before the last-stage sieve and passes through the sieve.
  • the noodles, with the washed free starch move forward step by step, merge with the finely ground slurry, and enter the first-stage pressure curved sieve together to separate the coarse starch milk and combine with the coarse starch sieved before fine grinding
  • the milk merges and enters the starch separation process; the fiber on the sieve surface is discharged from the final curved sieve surface, and then dehydrated by the screw extruder to send the fiber feed process.
  • the fiber washing step in the process of separating the fiber from starch and protein is carried out in the presence of an enzyme preparation.
  • the process of separating the fiber from starch and protein includes a fiber washing step. After the fiber is washed and before the fiber is dehydrated, an enzyme preparation may be added. After the fiber is washed, the wet fiber residue is subjected to enzymatic treatment to further reduce the starch and/or protein residue content in the by-product fiber residue, which can better form a lower water content and a looser, more Fluffy fiber residue structure.
  • the enzyme preparation contains cellulase and/or hemicellulase, for example, cellulase, xylanase and/or arabinofuranosidase.
  • the enzyme preparation contains cellulase, xylanase and arabinofuranosidase, preferably contains cellulase expressed by Trichoderma reesei, and GH10 xylanase and GH62 arabinofuranosidase.
  • Cellulase means one or more (eg, several) enzymes that hydrolyze cellulosic material.
  • Two basic methods for measuring cellulolytic enzyme activity include: (1) measuring total cellulolytic enzyme activity, and (2) measuring individual cellulolytic enzyme activity (endoglucanase, cellobiohydrolase) , And ⁇ -glucosidase), as described in Zhang et al., 2006, Biotechnology Advances 24:452-481.
  • Insoluble substrates including Whatman No. 1 filter paper, microcrystalline cellulose, bacterial cellulose, algal cellulose, cotton, pretreated lignocellulose, etc., can be used to measure total cellulolytic enzyme activity.
  • the cellulase is expressed in organisms with a cellulase background, such as Trichoderma reesei.
  • a cellulase background such as Trichoderma reesei.
  • An organism with a cellulase background should be understood as an organism that naturally expresses one or more cellulolytic enzymes.
  • xylanase means 1,4- ⁇ -D-xylan-xylohydrolase (EC3.2.1.8), which catalyzes the 1,4- ⁇ -D-xyloside in xylan Endohydrolysis of the bond.
  • Xylanase activity can be 0.01% at 37°C X-100 and 200mM sodium phosphate (pH 6) were determined using 0.2% AZCL-arabinoxylan as a substrate.
  • One unit of xylanase activity is defined as the production of 1.0 micromol of azure per minute from 0.2% AZCL-arabinoxylan as a substrate in 200 mM sodium phosphate (pH 6) at 37°C, pH 6 protein.
  • GH10 xylanase means that the xylanase is classified as a member of glycoside hydrolase family 10 in the database of carbohydrate active enzymes (CAZymes) available on http://www.cazy.org/.
  • the xylanase and the mature polypeptide of SEQ ID NO:1 have at least 80%, such as at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity.
  • the mature polypeptide of SEQ ID NO:1 is amino acids 20 to 319 of SEQ ID NO:1, and amino acids 1 to 19 of SEQ ID NO:1 are signal peptide sequences.
  • arabinogalactan means an ⁇ -L-arabinofuranoside arabinofuranohydrolase (EC 3.2.1.55), which catalyzes the terminal non-reducing ⁇ -L-arabinofuranoside among ⁇ -L-arabinosides Hydrolysis of residues.
  • the enzyme is effective for ⁇ -L-arabinofuranoside, ⁇ -L-arabinan and arabinosyl wood containing (1,3)-and/or (1,2)-and/or (1,5)-bond Glycan and arabinogalactan work.
  • ⁇ -L-arabinofuranosidase is also called arabinosidase, ⁇ -arabinosidase, ⁇ -L-arabinosidase, ⁇ -arabinofuranosidase, polysaccharide ⁇ -L-arabinofuranosidase, ⁇ -L- Arabinofuranoside hydrolase, L-arabinosidase or ⁇ -L-arabinase. It is possible to use 5 mg of medium viscosity wheat arabinoxylan per ml of 100 mM sodium acetate (pH 5) (Megazyme International Ireland, Ltd.), Bray, Co.
  • GH62 arabinofuranosidase refers to the arabinofuranosidase is classified as a member of glycoside hydrolase family 62 in the database of carbohydrate active enzymes (CAZymes).
  • the arabinofuranosidase and the mature polypeptide of SEQ ID NO: 2 have at least 80%, such as at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% sequence identity.
  • the mature polypeptide of SEQ ID NO: 2 is amino acids 27 to 332 of SEQ ID NO: 2, and amino acids 1 to 26 of SEQ ID NO: 2 are signal peptide sequences.
  • sequence identity The degree of association between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity”.
  • EMBOSS The European Molecular Biology Open Software Suite [European Molecular Biology Open Software Suite], Rice et al., 2000, Trends Genet. [Genetics Trends] 16:276- 277) Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. [Molecular Biology Journal] 48:443-453) implemented in the Needle program (preferably version 3.0.0 or later)
  • Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. [Molecular Biology Journal] 48:443-453) implemented in the Needle program (preferably version 3.0.0 or later)
  • the degree of sequence identity between two amino acid sequences using version 6.1.0.
  • the optional parameters used are a gap opening penalty of 10, a gap extension penalty of 0.5, and an EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
  • the output of "longest identity" marked by Needle is used as the percentage identity, and is calculated as follows: (same residue x 100)/(alignment length-total number of gaps in the alignment ).
  • the cellulase, arabinofuranosidase or xylanase of the present invention can be obtained from microorganisms of any genus.
  • the term "obtained from” as used herein in connection with a given source shall mean that the polypeptide encoded by a polynucleotide is derived from that source or has been inserted with a polynucleotide from that source Produced by the strain.
  • the polypeptide obtained from a given source is secreted outside the cell.
  • the arabinofuranosidase of the present invention is obtained from Aspergillus niger.
  • the xylanase of the present invention is obtained from Aspergillus niger.
  • the reaction time of the enzyme preparation on the fiber containing starch and protein is at least 10 minutes, for example, at least 15 minutes or At least 30 minutes, preferably at least 45 minutes.
  • the residual content of the starch content (based on fiber dry basis) in the fiber residue is reduced by at least 2% by weight compared with the process without enzyme treatment, for example, At least 3%, or at least 4%, preferably at least 5%.
  • the residual content of the protein content (based on the dry fiber basis) in the fiber residue is reduced by at least 0.5% by weight compared with the process without enzyme treatment, for example, At least 1% reduction, preferably at least 1.5% reduction.
  • the residual content of the water content in the fiber residue is reduced by at least 2% compared to the process without enzyme treatment, and by weight, for example, by at least 5%, preferably At least 6%.
  • the fiber residue after the treatment with the enzyme preparation can have a looser and bulkier structure.
  • the fiber residue and the concentrated corn steep liquor are generally dried using a tube bundle drying device, and the drying temperature is preferably 80-100°C.
  • the tube bundle dryer is a contact (indirect) dryer, and its structure is a fixed shell with a driveable heating tube bundle with a shovel.
  • the transmission system drives the tube bundle device to rotate.
  • the steam enters the tube through the rotary joint and transfers heat into the condensed water to be discharged; the moisture in the material is heated outside the tube and becomes steam and is discharged by the dehumidifying fan.
  • the material is lifted by the driving shovel in the tube bundle and falls evenly on the outer surface of the heating tube , And pushed from the inlet end to the outlet by the shovel, the material is dried.
  • the process control parameters of the fiber drying process steam pressure 0.4-0.6 MPa, moisture content after drying ⁇ 12%, steam temperature 150-210°C, fiber tube bundle exhaust temperature 80-98°C.
  • step c) at least part of the fiber residue is dried or mixed with part of the dried fiber residue.
  • the sprayed corn husks can be mixed with the concentrated corn steep liquor again to further adsorb the concentrated corn steep liquor to further adsorb
  • the concentrated corn steep liquor is dried to produce sprayed corn husks with higher corn syrup spray volume.
  • At least part of the fiber residue is entered into the tube bundle dryer for preliminary drying, and the fiber residue after the preliminary drying is sent to the mixer (or in the screw conveyor) via a screw conveyor, and After the concentrated corn steep liquor is mixed, it enters the next-stage tube bundle dryer for further drying, and is dried until the water content of the sprayed corn husk is 8-12% (w/w) to make the product sprayed corn husk.
  • the moisture content of the fiber residue after dewatering by the extruder is controlled to be ⁇ 65% w/w), and then the fiber residue should enter the screw conveyor and be concentrated in a certain proportion in the screw conveyor.
  • the corn steep liquor is mixed and sent into a tube bundle dryer for drying, and dried until the water content of the sprayed corn husk is 8-12% (w/w) to make the product sprayed corn husk.
  • the product sprayed corn husk is powdery or granular, free of mold, agglomeration, or moth; light yellow or brown, and its protein content is ⁇ 18% (w /w), for example, up to at least 19% (w/w), at least 20% (w/w), at least 21% (w/w), or at least 22% (w/w), and the water content is 8 ⁇ 12% (w/w), the sprayed corn husk can be added to animal feed at a ratio of 3 to 5% (w/w).
  • the present invention by adding an enzyme preparation during the separation process of fiber from starch and protein in the corn wet milling process of corn kernels, the residual content of starch and/or protein in the by-product corn fiber residue is reduced, thereby reducing fiber
  • the reducing sugar content in the residue can control the color of the finished sprayed corn husk.
  • the fiber residue after the enzyme preparation can have a lower water content and a looser and more fluffy fiber residue structure.
  • this method can significantly increase the yield of sprayed corn husks in the wet corn milling process, that is, significantly increase the amount of sprayed corn dipping liquid on the fiber corn husks, and relieve The problem of large inventory of the by-product corn syrup in the corn starch production process is solved, and the product value of the by-product corn syrup in the production of corn starch is improved.
  • Celluclast 1.5L (available from Novozymes), expressed by Trichoderma reesei.
  • GH10 xylanase GH10 xylanase derived from Aspergillus niger (SEQ ID NO: 1).
  • GH62 Arabinofuranosidase GH62 Arabinofuranosidase derived from Aspergillus niger (SEQ ID NO: 2).
  • Determination of residual starch content accurately weigh 2.5 grams of dried fiber residue sample, add 1.124% (w/w) hydrochloric acid to react in a boiling water bath to convert starch in the sample into glucose, which has the property of rotating polarized light. Then use a polarimeter to measure the optical rotation of the hydrolyzate, and then calculate the starch content of the sample according to the formula.
  • Determination of residual protein content accurately weigh 3 grams of dried fiber residue sample into a Kjeldahl flask, add concentrated sulfuric acid and boil to decompose. After the decomposition liquid is cooled, 40% (w/w) sodium hydroxide is added to neutralize the decomposition liquid, and distillation is performed to release ammonia. The released ammonia was collected with 2% (w/w) boric acid, and titrated with 0.05 mol/L sulfuric acid solution to determine the nitrogen content in the sample, and then calculate the protein content of the sample according to the formula.
  • Moisture content measurement accurately weigh 5 grams of fiber residue sample with a constant weight aluminum box, place it in an oven at 131°C, dry it for 40 minutes, take it out, and quickly cover it. Put it in a desiccator to cool to room temperature, weigh the sample after drying, and then calculate the moisture content of the sample according to the formula.
  • Determination of the color of sprayed corn husks Select 5 experienced engineers to evaluate the color of the sprayed corn husks, and classify them according to light yellow, brown, and brown. The lighter the color, the description indicates the spray The better the quality of corn husks.
  • starch milk and gluten According to the different physical properties of the starch milk and gluten, it is separated by a disc centrifuge Starch milk and insoluble protein are extracted, and the starch milk obtained by centrifugation is washed by a twelve-stage cyclone to remove residual gluten and solubles, which is the finished starch milk.
  • the finished starch milk is mechanically dehydrated by a centrifuge, and then dried and cooled. And sieving to obtain commercial dry starch, centrifuging the obtained gluten, and then concentrating, dehydrating and drying to obtain commercial protein powder products.
  • the by-product corn steep liquor is collected, and the steep liquor is dilute corn steep liquor with a dry matter concentration of about 9% (w/w), which is sent to the evaporation process to be concentrated to a dry matter concentration of about 40% (w/w). /w) corn steep liquor, that is, concentrated corn steep liquor.
  • the process of separating the fiber from starch and protein contains a fiber washing step.
  • a seven-stage countercurrent washing method is adopted to separate the crude starch milk containing starch and protein from the fiber, and the by-product fiber residue A is collected.
  • the moisture content in the fiber residue is 60.2% by weight
  • the starch content (based on the dry fiber basis) in the fiber residue is 17.8% by weight
  • the protein content in the fiber residue is 10.6% by weight.
  • the inventor of the present application added enzymes containing cellulase, GH10 xylanase, GH62 arabinofuranosidase and GH10 xylanase during the separation process of fiber from starch and protein.
  • Preparation the addition ratio of the cellulase, GH10 xylanase and GH62 arabinofuranosidase is about 80:15:5 by weight
  • the enzyme preparation was added at 1.125 kg/ton corn dry basis.
  • the enzyme reaction time was about 15 minutes under the conditions of pH 4.0 and temperature of 50°C.
  • the by-product fiber residue B was collected, wherein the fiber residue was The water content of the fiber residue is 54.0% by weight, and the residual content of the starch content in the fiber residue (based on fiber dry basis) is 12.6% by weight, and the protein content in the fiber residue (based on fiber dry The residual content of the base) is 9.2% by weight.
  • the fiber residue B has a looser and bulkier structure.
  • the collected by-product fiber residue A and the collected by-product fiber residue B respectively in a tube bundle dryer at a temperature of 90°C for 30 minutes, and then use a sprayer to uniformize the collected by-product concentrated corn steep liquor Spray on the pre-dried fiber residue and mix it in the conveying auger.
  • the mixed sprayed corn husks are heated and dried at 90 °C through the tube bundle dryer. When the color of the sprayed corn husks reaches When it is brown, stop drying to make the product.
  • the sprayed corn husk product made from by-product fiber residue A as a raw material has a brownish-yellow color.
  • the corn wet mill production system that processes 1,000 tons of corn kernels per day makes full use of the ability of the corn wet mill production system.
  • the yield of the sprayed corn husk product that can be prepared is 136.2 tons.
  • the fiber washing step of the corn wet milling process is carried out in the presence of an enzyme preparation containing cellulase, GH62 arabinofuranosidase and GH10 xylanase, the resulting Corn fiber residue has lower water content, lower starch residue content, lower protein residue content, and a more suitable fiber residue structure, so the color of the sprayed corn husk is guaranteed to be of high quality (Such as lighter product color), can absorb more concentrated corn steep liquor, so that under the same processing capacity of corn kernels, it can significantly increase the yield of sprayed corn husks and increase the by-product fiber residue especially It is the commercial value of low-value by-product corn steep liquor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Cereal-Derived Products (AREA)

Abstract

公开了一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法,在纤维与淀粉和蛋白质分离过程中添加有酶制剂,经酶制剂处理之后的纤维残渣能具有更低的含水量、更低的淀粉和/或蛋白质的残留含量、以及更松散、更蓬松的纤维残渣结构,在确保成品喷浆玉米皮的色泽正常的同时,能显著提高了玉米湿磨工艺中喷浆玉米皮的产率,即能显著增加了纤维玉米皮上的浓缩玉米浸渍液的喷浆量。

Description

一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法
涉及序列表
本申请含有计算机可读形式的序列表,其通过提述并入本文。
技术领域
本发明涉及一种玉米湿磨工艺中的副产物综合利用的方法,尤其是涉及一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法。
技术背景
玉米籽粒包含淀粉、胚芽、纤维、蛋白质、及其它可以被分离以制备有用产品的物质。典型地,用于湿磨将玉米籽粒的湿磨方法包括以下步骤:首先,将籽粒用亚硫酸浸渍约30分钟至约48小时,以开始使淀粉和蛋白质键断裂,该方法的下一步骤涉及粗磨,以破坏籽粒皮并使胚芽与剩余的籽粒分离。剩余的浆液由纤维、淀粉和蛋白质组成,将其细磨并筛选,以将纤维与淀粉和蛋白质分离,在水力旋流器中将淀粉与剩余的浆液分离,然后,可以将淀粉转化为糖浆或醇,或干燥并销售为玉米淀粉,或用化学方法或物理方法修饰以产生改性玉米淀粉。纤维可以被压榨并干燥作为动物饲料。
作为副产物的用亚硫酸浸渍玉米籽粒的浸渍液即为玉米浆,其含有丰富的可溶性蛋白、生长素和一些前体物质,味道微咸,是微生物生长普遍应用的有机氮源。在现有工艺中以浓缩玉米浆与纤维混合生产高蛋白饲料喷浆玉米皮时,由于制成的喷浆玉米皮的颜色过深等因素,在玉米纤维上的玉米浆的喷浆量偏小。近年来,玉米淀粉生产增长较快,特别是玉米淀粉厂比较集中的产区,玉米浆的出路成了问题,玉米淀粉生产企业玉米浆库存大,甚至只能废弃,带来了严重的环保压力,是玉米淀粉生产企业急需解决的难题。
发明概述
本申请的发明人发现通过在玉米湿磨工艺中的纤维与淀粉和蛋白质分离过程中添加有酶制剂,通过降低所述副产物玉米纤维残渣中淀粉和/或蛋白质的残留含量,从而减少纤维残渣中的还原糖含量,进而能够控制成品喷浆玉米皮的色度,此外,经酶制剂处理之后的纤维残渣能具有更低的含水量 以及更松散、更蓬松的纤维残渣结构,因此,在确保成品喷浆玉米皮的色泽正常的同时,本方法能显著提高了玉米湿磨工艺中的副产物喷浆玉米皮的产率,即显著增加了纤维玉米皮上的浓缩玉米浸渍液的喷浆量,能缓解玉米淀粉生产过程中副产物玉米浆的库存量大的难题,提高了生产玉米淀粉的副产物玉米浆的产品价值。
基于此,本发明涉及一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法,其包括以下步骤:
a)将玉米籽粒置于含亚硫酸的溶液中浸渍,收集玉米浸渍液进行浓缩;
b)对经浸渍的玉米籽粒经研磨,以使玉米籽粒中的纤维与淀粉和蛋白质分离,收集纤维残渣;
c)将浓缩玉米浸渍液与纤维残渣混合,以使所述纤维残渣吸附所述浓缩玉米浸渍液,经干燥制成喷浆玉米皮,
其中,在步骤b)中的纤维与淀粉和蛋白质分离过程中添加有酶制剂。
在本发明的优选实施方式中,其中所述的纤维与淀粉和蛋白质分离过程含有纤维洗涤步骤,所述纤维洗涤是在酶制剂存在的情况下进行。
在本发明的优选实施方式中,其中所述的酶制剂含有纤维素酶和/或半纤维素酶,例如含有纤维素酶、木聚糖酶和/或阿拉伯呋喃糖苷酶。
在本发明的优选实施方式中,其中所述的酶制剂含有纤维素酶、木聚糖酶和阿拉伯呋喃糖苷酶,优选的,所述纤维素酶由里氏木霉表达,优选的,所述木聚糖酶是GH10木聚糖酶,优选的,所述阿拉伯呋喃糖苷酶是GH62阿拉伯呋喃糖苷酶。
发明详述
本发明涉及一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法,其包括以下步骤:
a)将玉米籽粒置于含亚硫酸的溶液中浸渍,收集玉米浸渍液进行浓缩;
b)对经浸渍的玉米籽粒经研磨,以使玉米籽粒中的纤维与淀粉和蛋白质分离,收集纤维残渣;
c)将浓缩玉米浸渍液与纤维残渣混合,以使所述玉米纤维残渣吸附所述浓缩玉米浸渍液,经干燥制成喷浆玉米皮,
其中,在步骤b)中的纤维与淀粉和蛋白质分离过程中添加有酶制剂。
在本发明中,所述的玉米例如是马齿型玉米、硬粒玉米、有稃种玉米、具条纹玉米、甜玉米、糯玉米等。
湿磨过程可以取决于使用的特定的研磨设备而显著变化,优选的,玉米湿磨工艺含有以下四个步骤组成:浸渍并分离胚芽、洗涤纤维并干燥、分离淀粉和蛋白,并且洗涤淀粉。
浸渍的目的在于软化玉米籽粒,削弱玉米籽粒中各组分之间的联系,破坏胚体细胞中蛋白质网,除去大部分可溶性物质,将玉米籽粒中的淀粉和非淀粉部分分离开来,使后工序的操作容易进行。浸渍过程主要为玉米的软化过程和玉米中可溶性物质的扩散过程,同时伴随着乳酸菌的自然发酵和作用过程。
优选的是,玉米籽粒的浸渍是在亚硫酸水溶液中逆流进行的。一般采用半连续流程,浸泡罐8~12个,浸渍过程中玉米籽粒留在罐内静止,用泵将浸渍液在罐内一边自身循环一边向前一级罐内输送,始终保持新的亚硫酸溶液与浸渍时间最长(即将结束浸泡)的玉米籽粒接触,而新入罐的玉米籽粒与即将排出的浸渍液接触,从而保持最佳的浸渍效果。优选的是,浸渍温度(50±2)℃,浸渍时的亚硫酸质量浓度为0.12%~0.25%,浸泡时间24-72h,例如36~60h。完成浸渍的浸泡液即稀玉米浆含6%~9%质量浓度的干物质,送到蒸发工序,例如是通过多效降膜式蒸发系统,浓缩成含干物质质量浓度约40%左右的浓缩玉米浸渍液。
在本发明的优选的实施方式中,在浸渍过程中,玉米籽粒吸水,从而将其水分含量从15%增加至45%并使大小增加超过一倍。任选地向水中添加例如0.12%二氧化硫(SO 2)和/或NaHSO 3以防止细菌在温暖环境中生长。随着玉米膨胀并软化,浸渍水的温和酸度开始使玉米内的面筋键松散并释放淀粉。
在本发明的优选的实施方式中,经过粗磨,利用玉米胚乳浆料和胚芽比重不同的物理性质,通过旋流器分离出胚芽,玉米胚乳浆料再经过针磨研磨,使绝大部分淀粉和蛋白质颗粒游离出来,然后借助筛分洗涤工艺,使含有淀粉和蛋白质的粗淀粉乳与纤维分离,得到除去纤维的粗淀粉乳,根据其中淀粉乳和麸质比重不同的物理性质,经碟片离心机分离出淀粉乳和不溶性蛋白质,离心所得淀粉乳再经十二级旋流器洗涤,除去残留的麸质和可溶物,即为成品淀粉乳,成品淀粉乳经离心机机械脱水,然后干燥、冷却和筛分,即 得商品干淀粉,离心所得的麸质,通过浓缩、脱水和烘干,制得商品蛋白粉产品。
优选的是,所述的纤维与淀粉和蛋白质分离过程中含有纤维洗涤步骤,在纤维洗涤过程中进行精细碾磨和筛选,以将纤维与淀粉和蛋白分离,优选采用多次逆流洗涤法。
根据物料洗涤的难易程度和生产的实际需要,纤维残渣采用六级或七级逆流洗涤方法,即六/七次洗涤和六/七次筛分。纤维残渣的筛分均用曲筛。曲筛是弯曲的筛面,筛面上有许多细长的筛缝,被分离的物料沿切线引入弯曲筛面的上部,物料沿筛面向下移动。与筛缝成直角关系。当物料进入筛面后,淀粉乳被刮入筛缝落下,与纤维残渣分离,淀粉乳从下部收集管路中排出。筛上物在重力作用下滑落至筛面的下部卸出。
优选的是,经二次旋流分离器分离出胚芽后的稀浆料通过压力曲筛,筛下物为粗淀粉乳,淀粉乳与细磨后分离出的粗淀粉浆液汇合后进入淀粉分离工序;筛上物进入针磨进行细磨,以最大限度地使与纤维联结的淀粉游离出来,细磨后的浆料进入纤维洗涤槽;细磨后的浆料进入纤维洗涤槽,在此与洗涤纤维的洗涤水一起用泵送到第一级压力曲筛,筛下分离出粗淀粉乳,筛上物再经7级压力曲筛逆流洗涤,洗涤工艺水从最后一级筛前加入,通过筛面,带着洗涤下来的游离淀粉逐级向前移动,与细磨后的浆料合并,共同进入第一级压力曲筛,分出粗淀粉乳,并与细磨前筛分出的粗淀粉乳汇合,进入淀粉分离工序;筛面上的纤维从最后一级曲筛筛面排出,然后经螺旋挤压机脱水送纤维饲料工序。
在本发明的优选的实施方式中,其中所述的纤维与淀粉和蛋白质分离过程的纤维洗涤步骤是在酶制剂存在的情况下进行。
在本发明的优选的实施方式中,其中所述的纤维与淀粉和蛋白质分离过程含有纤维洗涤步骤,在所述纤维洗涤之后、纤维脱水之前,可添加有酶制剂。在所述纤维洗涤之后,对湿纤维残渣进行酶处理,以进一步减少所述副产物纤维残渣中的淀粉和/或蛋白质残留含量,能更好地形成具有更低的含水量以及更松散、更蓬松的纤维残渣结构。
在本发明的优选实施方式中,其中所述的酶制剂含有纤维素酶和/或半纤维素酶,例如含有纤维素酶、木聚糖酶和/或阿拉伯呋喃糖苷酶。
在本发明的优选实施方式中,其中所述的酶制剂含有纤维素酶、木聚糖 酶和阿拉伯呋喃糖苷酶,优选含有由里氏木霉表达的纤维素酶、以及GH10木聚糖酶和GH62阿拉伯呋喃糖苷酶。
“纤维素酶”意指一种或多种(例如,若干种)水解纤维素材料的酶。用于测量纤维素分解酶活性的两种基本方法包括:(1)测量总纤维素分解酶活性,以及(2)测量个体纤维素分解酶活性(内切葡聚糖酶、纤维二糖水解酶、和β-葡糖苷酶),如在Zhang等人,2006,Biotechnology Advances[生物技术进展]24:452-481中所述的。可使用不溶性底物,包括沃特曼(Whatman)№1滤纸、微晶纤维素、细菌纤维素、藻类纤维素、棉花、预处理的木质纤维素等,测量总纤维素分解酶活性。最常见的总纤维素分解活性测定法是使用Whatman No.1滤纸作为底物的滤纸测定法。该测定是由国际纯粹与应用化学联合会(IUPAC)建立的(Ghose,1987,Pure Appl.Chem.[纯粹与应用化学]59:257-68)。
在本发明的优选的实施方式中,所述纤维素酶在具有纤维素酶背景的生物中表达,例如里氏木霉(Trichoderma reesei)。具有纤维素酶背景的生物应理解为天然表达一种或多种纤维素分解酶的生物。
术语“木聚糖酶”意指1,4-β-D-木聚糖-木糖水解酶(E.C.3.2.1.8),其催化木聚糖中的1,4-β-D-木糖苷键的内切水解。木聚糖酶活性可以在37℃处在0.01%
Figure PCTCN2020090394-appb-000001
X-100和200mM磷酸钠(pH 6)中用0.2%AZCL-阿拉伯糖基木聚糖作为底物来确定。一个单位的木聚糖酶活性被定义为在37℃、pH 6,在200mM磷酸钠(pH 6)中从作为底物的0.2%AZCL-阿拉伯糖基木聚糖每分钟产生1.0微摩尔天青蛋白。
GH10木聚糖酶意指该木聚糖酶在http://www.cazy.org/上可获得的碳水化合物活性酶(CAZymes)的数据库中被分类为糖苷水解酶家族10的成员。
在本发明的优选的实施方式中,木聚糖酶与SEQ ID NO:1的成熟多肽具有至少80%,例如至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列一致性。优选的,SEQ ID NO:1的成熟多肽是SEQ ID NO:1的氨基酸20至319,SEQ ID NO:1的氨基酸1至19是信号肽序列。
术语“阿拉伯呋喃糖苷酶”意指一种α-L-阿拉伯呋喃糖苷阿拉伯呋喃水解酶(EC 3.2.1.55),其催化α-L-阿拉伯糖苷中的末端非还原性α-L-阿拉伯 呋喃糖苷残基的水解。该酶对α-L-阿拉伯呋喃糖苷、含有(1,3)-和/或(1,2)-和/或(1,5)-键的α-L-阿拉伯聚糖、阿拉伯糖基木聚糖以及阿拉伯半乳聚糖起作用。α-L-阿拉伯呋喃糖苷酶也称为阿拉伯糖苷酶、α-阿拉伯糖苷酶、α-L-阿拉伯糖苷酶、α-阿拉伯呋喃糖苷酶、多糖α-L-阿拉伯呋喃糖苷酶、α-L-阿拉伯呋喃糖苷水解酶、L-阿拉伯糖苷酶或α-L-阿拉伯聚糖酶。可以使用每ml的100mM乙酸钠(pH 5)中5mg的中等粘度小麦阿拉伯糖基木聚糖(麦格酶国际爱尔兰股份有限公司(Megazyme International Ireland,Ltd.),布瑞公司(Bray,Co.),威克洛郡,爱尔兰)以总体积200μl在40℃持续30分钟,接着通过
Figure PCTCN2020090394-appb-000002
HPX-87H柱层析(伯乐实验室有限公司(Bio-Rad Laboratories,Inc.),赫拉克勒斯,加利福尼亚州,美国)进行阿拉伯糖分析来测定阿拉伯呋喃糖苷酶活性。
GH62阿拉伯呋喃糖苷酶是指该阿拉伯呋喃糖苷酶在碳水化合物活性酶(CAZymes)的数据库中被分类为糖苷水解酶家族62的成员。
在本发明的优选的实施方式中,阿拉伯呋喃糖苷酶与SEQ ID NO:2的成熟多肽具有至少80%,例如至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列一致性。优选的,SEQ ID NO:2成熟多肽是SEQ ID NO:2的氨基酸27至332,SEQ ID NO:2的氨基酸1至26是信号肽序列。
两个氨基酸序列之间或两个核苷酸序列之间的关联度通过参数“序列同一性”来描述。
出于本发明的目的,使用如在EMBOSS包(EMBOSS:The European Molecular Biology Open Software Suite[欧洲分子生物学开放软件套件],Rice等人,2000,Trends Genet.[遗传学趋势]16:276-277)(优选地3.0.0版或更新版本)的Needle程序中所实施的Needleman-Wunsch算法(Needleman和Wunsch,1970,J.Mol.Biol.[分子生物杂志]48:443-453)来确定两个氨基酸序列之间的序列同一性程度,使用6.1.0版本。所用的可选参数是空位开放罚分10、空位延伸罚分0.5和EBLOSUM62(BLOSUM62的EMBOSS版本)替代矩阵。Needle标注的“最长同一性”的输出(使用-非简化选项获得)被用作百分比同一性,并且如下计算:(同一的残基x 100)/(比对长度-比对中的空位总数)。
本发明的纤维素酶、阿拉伯呋喃糖苷酶或木聚糖酶可以从任何属的微生物中获得。出于本发明的目的,如在此结合给定来源使用的术语“从……获得”应当意指由多核苷酸编码的多肽是由该来源或由已经插入了来自该来源的多核苷酸的菌株产生的。在一方面,获得自给定来源的多肽被分泌到细胞外。
优选的是,在一个实施例中,本发明所述的阿拉伯呋喃糖苷酶从黑曲霉中获得。
优选的是,在一个实施例中,本发明所述的木聚糖酶是从黑曲霉中获得。
在本发明的优选的实施方式中,其中在纤维与淀粉和蛋白质分离的过程中,所述的酶制剂作用于含淀粉和蛋白质的纤维的反应时间至少在10分钟以上,例如是至少15分钟或者至少30分钟,优选是至少45分钟。
在本发明的优选的实施方式中,其中所述的纤维残渣中的淀粉含量(基于纤维干基)的残留含量,与不加酶处理工艺相比,按重量计,至少降低2%,例如是至少降低3%,或至少降低4%,优选至少降低5%。
在本发明的优选的实施方式中,其中所述的纤维残渣中的蛋白含量(基于纤维干基)的残留含量,与不加酶处理工艺相比,按重量计,至少降低0.5%,例如是至少降低1%,优选至少降低1.5%。
在本发明的优选的实施方式中,其中所述的纤维残渣中的含水量的残留含量,与不加酶处理工艺相比,至少降低2%,按重量计,例如是至少降低5%,优选至少降低6%。
在本发明的优选的实施方式中,其中酶制剂处理之后的纤维残渣能具有更松散、更蓬松的结构。
在本发明的优选的实施方式中,在本发明中,纤维残渣与浓缩玉米浆混合后一般采用管束式干燥设备干燥,优选干燥温度是80~100℃。管束干燥机是接触式(间接式)干燥机,其结构为固定的壳体内置带有料铲的可传动的加热管束。传动系统带动管束装置旋转。蒸汽通过旋转接头进入管内传热变为冷凝水排出;物料中的水分份在管外受热变成蒸汽由抽湿风机排出,物料在管束内被传动的料铲提升,均匀落至加热管外表面,并从进口端由料铲推至出口,料得到干燥。
在本发明的优选的实施方式中,纤维干燥工序工艺控制参数:蒸汽压力0.4~0.6MPa、干燥后水分<12%、蒸汽温度150~210℃、纤维管束排气温度 80~98℃。
在本发明的优选的实施方式中,其中在步骤c)之前,将至少部分纤维残渣烘干,或将其与部分干燥纤维残渣混合。
在本发明的优选的实施方式中,其中,在首次制成喷浆玉米皮之后,可将该喷浆玉米皮再次与浓缩玉米浸渍液混合,以进一步吸附所述浓缩玉米浸渍液,以进一步吸附所述浓缩玉米浸渍液,经干燥制成具备更高玉米浆喷浆量的喷浆玉米皮。
在本发明的优选的实施方式中,将至少部分纤维残渣进入管束干燥器内初步干燥,初步干燥后的纤维残渣经螺旋输送机送至混料器内(或在此螺旋输送机内),与浓缩玉米浸渍液混合后,进入下一级管束干燥器内进一步干燥,干燥到喷浆玉米皮中含水量是8~12%(w/w),制成产品喷浆玉米皮。
在本发明的优选的实施方式中,控制挤压机脱水后的纤维残渣含水量≤65%w/w),然后使该纤维残渣该进入螺旋输送机,在螺旋输送机中按一定比例与浓缩玉米浸渍液混合,送入管束干燥器内进行干燥,干燥到喷浆玉米皮中含水量是8~12%(w/w),制成产品喷浆玉米皮。
在本发明的优选的实施方式中,制成的产品喷浆玉米皮是粉状或颗粒状,无发霉、无结块、无虫蛀;淡黄色或棕黄色,其蛋白含量≥18%(w/w),例如可达至少19%(w/w)、至少20%(w/w)、至少21%(w/w),或至少22%左右(w/w),含水量是8~12%(w/w),可以将制成的喷浆玉米皮以3~5%(w/w)的比例添加于动物饲料中。
在本发明中,通过在玉米籽粒玉米湿磨工艺中的纤维与淀粉和蛋白质分离过程中添加有酶制剂,通过降低所述副产物玉米纤维残渣中淀粉和/或蛋白质的残留含量,从而减少纤维残渣中的还原糖含量,进而能够控制成品喷浆玉米皮的色度,此外,经酶制剂处理之后的纤维残渣能具有更低的含水量以及更松散、更蓬松的纤维残渣结构,因此,在确保成品喷浆玉米皮的色泽正常的同时,本方法能显著提高了玉米湿磨工艺中喷浆玉米皮的产率,即显著增加了纤维玉米皮上的浓缩玉米浸渍液的喷浆量,缓解了玉米淀粉生产过程中副产物玉米浆的库存量大的难题,提高了生产玉米淀粉的副产物玉米浆的产品价值。
本文中描述并要求保护的发明不限于本文中公开的具体实施方案的范围,这些实施方案仅旨在说明本发明的几个方面。
材料与方法
纤维素酶:Celluclast 1.5L(可购自诺维信公司),由里氏木霉表达。
GH10木聚糖酶:来源于黑曲霉的GH10木聚糖酶(SEQ ID NO:1)。
GH62阿拉伯呋喃糖苷酶:来源于黑曲霉的GH62阿拉伯呋喃糖苷酶(SEQ ID NO:2)。
评定方法:
残留淀粉含量测定:精确称取2.5克烘干的纤维残渣样品,加入1.124%(w/w)盐酸在沸水浴中反应,使样品中的淀粉转化为葡萄糖,葡萄糖并具有旋转偏振光的性质。再利用旋光仪测定水解液的旋光度,进而根据公式计算出样品的淀粉含量。
残留蛋白含量测定:精确称取3克烘干的纤维残渣样品至凯氏烧瓶,加入浓硫酸煮沸分解。待分解液冷却后,加入40%(w/w)氢氧化钠中和分解液,并进行蒸馏使氨释放。用2%(w/w)的硼酸收集释放的氨,并用0.05mol/L的硫酸溶液进行滴定,从而测定样品中的氮含量,再根据公式计算出样品的蛋白质含量。
含水量测定:用恒重的铝盒精确称取5克纤维残渣样品,置于131℃的烘箱中,烘干40分钟取出,迅速盖盖。放入干燥器内冷却至室温,称量样品烘干后的重量,进而根据公式计算出样品的含水量。
喷浆玉米皮颜色测定:选取有经验的工程师5人,对制成的喷浆玉米皮的颜色进行评价,按淡黄色、棕黄色、褐黄色进行分类,颜色越浅,说明表示制成的喷浆玉米皮的质量越好。
实施例
以每天加工处理1000吨玉米籽粒原料(其中玉米籽粒例的含水量是14%W/W)的玉米湿磨生产系统为例:
先将净化的玉米籽粒置于浓度为0.12%(w/w)、温度为50℃的亚硫酸溶液中,玉米粒与亚硫酸水溶液的质量比为按0.8:1的比例,浸渍48小时,浸渍后软化的玉米籽粒粒,经过粗磨,利用玉米胚乳浆料和胚芽比重不同的物理性质,通过旋流器分离出胚芽,玉米胚乳浆料再经过针磨研磨,使绝大部分淀粉和蛋白质颗粒游离出来,然后借助筛分洗涤工艺,使含有淀粉和蛋白 质的粗淀粉乳与纤维分离,得到除去纤维的粗淀粉乳,根据其中淀粉乳和麸质比重不同的物理性质,经碟片离心机分离出淀粉乳和不溶性蛋白质,离心所得淀粉乳再经十二级旋流器洗涤,除去残留的麸质和可溶物,即为成品淀粉乳,成品淀粉乳经离心机机械脱水,然后干燥、冷却和筛分,即得商品干淀粉,离心所得的麸质,通过浓缩、脱水和烘干,制得商品蛋白粉产品。
其中,收集副产物玉米浸渍液,所述浸渍液为稀玉米浆,其含有的干物质的浓度约为9%(w/w),送到蒸发工序浓缩成含干物质浓度约40%(w/w)的玉米浆,即浓缩玉米浸渍液。
其中,所述的纤维与淀粉和蛋白质分离过程中含有纤维洗涤步骤,采用七级逆流洗涤法,使含有淀粉和蛋白质的粗淀粉乳与纤维分离,收集副产物纤维残渣A,其中,所述的纤维残渣中的含水量按重量计是60.2%,其中所述的纤维残渣中的淀粉含量(基于纤维干基)的残留含量按重量计是17.8%,其中所述的纤维残渣中的蛋白含量(基于纤维干基)的残留含量按重量计是10.6%。
为了比较,在保持其他所有条件不变,本申请发明人在纤维与淀粉和蛋白质分离过程中添加有含有纤维素酶、GH10木聚糖酶和GH62阿拉伯呋喃糖苷酶和GH10木聚糖酶的酶制剂(所述纤维素酶、GH10木聚糖酶和GH62阿拉伯呋喃糖苷酶的添加比例按重量计约是80:15:5),以使其中所述的纤维洗涤步骤是在酶制剂存在的情况下进行,该酶制剂的添加量为1.125千克/吨玉米干基,在pH 4.0,温度50℃条件下,酶反应时间约15分钟,收集副产物纤维残渣B,其中,所述的纤维残渣中的含水量按重量计是54.0%,其中所述的纤维残渣中的淀粉含量(基于纤维干基)的残留含量是按重量计12.6%,其中所述的纤维残渣中的蛋白含量(基于纤维干基)的残留含量按重量计是9.2%,与纤维残渣A相比,该纤维残渣B具有更松散、更蓬松的结构。
将收集的副产物纤维残渣A和收集的副产物纤维残渣B分别置于90℃的温度下管束式烘干机预烘干30分钟,然后用喷淋器将收集的副产物浓缩玉米浸渍液均匀喷淋至预烘干纤维残渣上,并在输送绞龙中混合,混合后的喷浆玉米皮经管束式烘干机在90℃下加热烘干,当制成的喷浆玉米皮的颜色达到棕黄色时,停止烘干,制成产品。
由副产物纤维残渣A作为原料制成的喷浆玉米皮产品的颜色为棕黄色, 以每天加工处理1000吨玉米籽粒的玉米湿磨生产系统为例,在充分利用了玉米湿磨生产系统所能得到的副产物纤维残渣的情况下,其能制备的喷浆玉米皮产品的产量是136.2吨。
相比之下,由副产物纤维残渣B作为原料制备的喷浆玉米皮时,以每天加工处理1000吨玉米籽粒的玉米湿磨生产系统为例,在充分利用了玉米湿磨生产系统所能得到的副产物纤维残渣的情况下,当制备的喷浆玉米皮的颜色接近棕黄色,该色度位于淡黄色和棕黄色的中间区间,其制备的喷浆玉米皮产品的产量已经达到了142.7吨,根据喷浆玉米皮产品的色度,说明在该条件下由纤维残渣B制成的喷浆玉米皮不仅产量更高,而且质量相对由纤维残渣A制成的喷浆玉米皮更好。
这就说明,在本发明的工艺中,由于玉米湿磨工艺的纤维洗涤步骤是在含有纤维素酶、GH62阿拉伯呋喃糖苷酶和GH10木聚糖酶的酶制剂存在的情况下进行,其得到的玉米纤维残渣具有更低的含水量,更低的淀粉残留含量、更低的蛋白残留含量,以及更适合的纤维残渣结构,因此在确保制成的喷浆玉米皮的颜色处于高质量的情况下(例如更浅的产品颜色),能吸附更多的浓缩玉米浸渍液,从而在玉米粒原料处理量相同的情况下,能显著提高制成的喷浆玉米皮的产量,提高副产物纤维残渣尤其是低价值副产物玉米浸渍液的商业价值。

Claims (11)

  1. 一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法,其包括以下步骤:
    a)将玉米籽粒置于含亚硫酸的溶液中浸渍,收集玉米浸渍液进行浓缩;
    b)对经浸渍的玉米籽粒经研磨,以使玉米籽粒中的纤维与淀粉和蛋白质分离,收集纤维残渣;
    c)将浓缩玉米浸渍液与纤维残渣混合,以使所述纤维残渣吸附所述浓缩玉米浸渍液,经干燥制成喷浆玉米皮,
    其中,在步骤b)中纤维与淀粉和蛋白质分离过程中添加有酶制剂。
  2. 权利要求1所述的方法,其中所述的纤维与淀粉和蛋白质分离过程含有纤维洗涤步骤,所述纤维洗涤是在酶制剂存在的情况下进行。
  3. 权利要求1所述的方法,其中所述的纤维与淀粉和蛋白质分离过程含有纤维洗涤步骤,在所述纤维洗涤之后、纤维脱水之前,添加有酶制剂。
  4. 权利要求1所述的方法,其中所述的酶制剂含有纤维素酶和/或半纤维素酶,例如含有纤维素酶、木聚糖酶和/或阿拉伯呋喃糖苷酶。
  5. 权利要求1所述的方法,其中所述的酶制剂含有纤维素酶、木聚糖酶和阿拉伯呋喃糖苷酶,优选的是,所述纤维素酶由里氏木霉表达,优选的、所述木聚糖酶是GH10木聚糖酶,优选的,所述阿拉伯呋喃糖苷酶是GH62阿拉伯呋喃糖苷酶。
  6. 权利要求1所述的方法,其中在所述纤维与淀粉和蛋白质分离时,所述的酶制剂作用于含淀粉和蛋白质的纤维的反应时间至少在10分钟以上,例如是至少15分钟或者至少30分钟,优选是至少45分钟。
  7. 权利要求1所述的方法,其中所述的纤维残渣中的淀粉含量(基于纤维干基)的残留含量,与不加酶处理工艺相比,按重量计,至少降低2%, 例如是至少降低3%,或至少降低4%,优选至少降低5%。
  8. 权利要求1所述的方法,其中所述的玉米纤维残渣中的蛋白含量(基于纤维干基)的残留含量,与不加酶处理工艺相比,按重量计,至少降低0.5%,例如是至少降低1%,优选至少降低1.5%。
  9. 权利要求1所述的方法,其中在步骤c)之前,将至少部分纤维残渣烘干,或将其与部分干燥纤维残渣混合。
  10. 权利要求1所述的方法,其中,在首次制成喷浆玉米皮之后,可进一步将该喷浆玉米皮再次与浓缩玉米浸渍液混合,以进一步吸附所述浓缩玉米浸渍液。
  11. 权利要求1所述的方法,其中,步骤c)的干燥是在管束式烘干设备中进行的,优选干燥温度是80~100℃。
PCT/CN2020/090394 2019-05-15 2020-05-15 一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法 WO2020228802A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20805799.2A EP3971217B1 (en) 2019-05-15 2020-05-15 Method for improving yield of sprayed corn bran in corn wel-milling process
US17/611,495 US20220205006A1 (en) 2019-05-15 2020-05-15 Method For Improving Yield Of Sprayed Corn Bran In Corn Wet-Milling Process
ES20805799T ES2975532T3 (es) 2019-05-15 2020-05-15 Método para mejorar el rendimiento de salvado de maíz pulverizado en proceso de molienda en húmedo de maíz
CN202080034955.2A CN113811550B (zh) 2019-05-15 2020-05-15 一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019087052 2019-05-15
CNPCT/CN2019/087052 2019-05-15

Publications (1)

Publication Number Publication Date
WO2020228802A1 true WO2020228802A1 (zh) 2020-11-19

Family

ID=73289830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090394 WO2020228802A1 (zh) 2019-05-15 2020-05-15 一种提高玉米湿磨工艺中喷浆玉米皮的产率的方法

Country Status (5)

Country Link
US (1) US20220205006A1 (zh)
EP (1) EP3971217B1 (zh)
CN (1) CN113811550B (zh)
ES (1) ES2975532T3 (zh)
WO (1) WO2020228802A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105249506A (zh) * 2015-09-11 2016-01-20 安徽丰原马鞍山生物化学有限公司 喷浆玉米皮的制备方法及生产系统
CN106832009A (zh) * 2017-03-01 2017-06-13 中粮生化能源(龙江)有限公司 一种玉米湿磨生产工艺中利用纤维素酶制剂生产玉米淀粉的方法
WO2019023222A1 (en) * 2017-07-24 2019-01-31 Novozymes A/S GH5 AND GH30 IN WET MILLING
CN109688843A (zh) * 2016-09-16 2019-04-26 诺维信公司 纤维洗涤方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675451B2 (ja) * 1986-04-18 1994-09-28 日本食品化工株式会社 コ−ンステイ−プリカ−含有粉末
CN102453098B (zh) * 2010-10-18 2014-04-23 中粮集团有限公司 一种玉米淀粉的制备方法
CN203841064U (zh) * 2014-05-15 2014-09-24 菱花集团有限公司 味精生产中利用毛刷过滤器净化浓缩玉米浆的装置
CN108850548A (zh) * 2018-06-22 2018-11-23 河南飞天农业开发股份有限公司 一种喷浆玉米皮的生产工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105249506A (zh) * 2015-09-11 2016-01-20 安徽丰原马鞍山生物化学有限公司 喷浆玉米皮的制备方法及生产系统
CN109688843A (zh) * 2016-09-16 2019-04-26 诺维信公司 纤维洗涤方法和系统
CN106832009A (zh) * 2017-03-01 2017-06-13 中粮生化能源(龙江)有限公司 一种玉米湿磨生产工艺中利用纤维素酶制剂生产玉米淀粉的方法
WO2019023222A1 (en) * 2017-07-24 2019-01-31 Novozymes A/S GH5 AND GH30 IN WET MILLING

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GHOSE, PURE APPL. CHEM., vol. 59, 1987, pages 257 - 68
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
ZHANG ET AL., BIOTECHNOLOGY ADVANCES, vol. 24, 2006, pages 452 - 481

Also Published As

Publication number Publication date
CN113811550B (zh) 2023-08-01
US20220205006A1 (en) 2022-06-30
CN113811550A (zh) 2021-12-17
ES2975532T3 (es) 2024-07-08
EP3971217A4 (en) 2023-01-18
EP3971217B1 (en) 2023-12-27
EP3971217A1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
CN109641973B (zh) Gh10木聚糖酶、gh62阿拉伯呋喃糖苷酶、研磨方法以及其他应用
US20110003341A1 (en) Process for producing saccharide
EP0531486B1 (en) A process for converting a cellulosic material into crystalline cellulose
JP6597311B2 (ja) 糖液およびキシロオリゴ糖の製造方法
CN106715704A (zh) 糖液的制造方法
US20170327855A1 (en) Milling Process
CN101946891A (zh) 玉米种皮水溶性膳食纤维的制备方法
US20160002690A1 (en) Milling Process
CA2771826A1 (en) Method for producing .beta.-glucanase and xylanase using fungus body debris, and liquid culture medium
CN114621987B (zh) 一种制备具有不同分子量分布特点的阿拉伯木聚糖方法
EP3971217B1 (en) Method for improving yield of sprayed corn bran in corn wel-milling process
CN104812778A (zh) 研磨方法
US20150315297A1 (en) Milling Process
CN108822224A (zh) 一种利用酶促反应生产玉米淀粉的方法
JP5385561B2 (ja) 糖の製造方法
JP5385563B2 (ja) 糖の製造方法
US20230220296A1 (en) Method for improving oil yield from germ in a wet milling process
RU2250026C2 (ru) Способ получения белкового продукта из отрубей
JPH03206893A (ja) とうもろこし澱粉抽出残渣の処理法
KR850001477B1 (ko) 대맥으로부터 대맥분, 대맥전분, 배아 및 기타 유용성분의 분리제조 방법
CN115836092A (zh) 玉米湿磨中改善的纤维洗涤
JP2011010617A (ja) セルロース含有製糖原料
Jun et al. Alternative source of beta-glucan from oil palm (elaeis guineensis) trunk fiber
US20170198321A1 (en) Milling Process
CN109907213A (zh) 一种小麦膳食纤维粉的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020805799

Country of ref document: EP

Effective date: 20211215