WO2020228758A1 - 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法 - Google Patents

一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法 Download PDF

Info

Publication number
WO2020228758A1
WO2020228758A1 PCT/CN2020/090150 CN2020090150W WO2020228758A1 WO 2020228758 A1 WO2020228758 A1 WO 2020228758A1 CN 2020090150 W CN2020090150 W CN 2020090150W WO 2020228758 A1 WO2020228758 A1 WO 2020228758A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
added
preparation
add
hydrochloric acid
Prior art date
Application number
PCT/CN2020/090150
Other languages
English (en)
French (fr)
Inventor
孙静
李志波
邢超
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2020228758A1 publication Critical patent/WO2020228758A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen

Definitions

  • the invention belongs to the field of biopolymer synthesis, and specifically relates to an antibacterial random copolymer with an amine group and an alkyl group in the molecular side chain.
  • Cluster peptides also known as nitrogen-substituted polyglycines, are a type of polymer with a structure similar to polypeptides. The difference in structure from polypeptides is that the R group originally attached to the central carbon is transferred to the nitrogen atom.
  • peptoids have no central carbon and amide bond, they have no secondary structure and no hydrogen bond interaction, and they are not easy to be digested by enzymes.
  • Peptoids have many excellent physical and chemical properties that are different from peptides. They not only have good biocompatibility and biological activity, but also have good solubility and processability of traditional polymer materials. They are a very promising class of biopolymer materials. Receive more and more attention.
  • the purpose of the present invention is to synthesize a random copolymer cluster peptide with a positively charged amine group and a hydrophobic alkyl chain on the side group of the molecular chain.
  • the present invention reports a series of clustering peptide macromolecules prepared by ring-opening polymerization and/or alkyne-thiol click chemistry modification methods, finally making the side groups have hydrophobic alkyl chains and positively charged amine groups and have antibacterial behavior.
  • the antibacterial activity of cluster peptides can be determined by three main factors: the length of the alkyl chain, the content of the alkyl segment on the peptide-like molecular chain, and the content of the amine segment on the peptide-like molecular chain.
  • the present invention studies in detail the three main decisive factors affecting the antibacterial properties of the cluster peptide, and compares the antibacterial properties of the polymer against different types of bacteria and the toxicity to tissue cells. Finally, a series of polymers with better antibacterial effects were tested in mice to characterize the actual antibacterial effects in animals.
  • the compound is a polymer represented by formula (I):
  • the value of m is about 40, and the value of n is a number from 10-40.
  • the method for synthesizing antibacterial cluster peptides of the present invention is as follows:
  • Photoinitiator (DMPA) and mercaptoethylamine are added to the obtained polymer, and a click chemistry reaction occurs under ultraviolet light to modify the double bond on the molecular chain, and finally a random copolymer clustering peptide with antibacterial properties is obtained.
  • step (1) reacts in dichloromethane solvent at room temperature, the reaction time is 3-5 hours, specifically 3 hours, 4 hours, 5 hours, and the solvent dichloromethane is removed after the reaction is completed;
  • the amount of n-butylamine added in (1) is 0.5 times the amount of glyoxylic acid; the concentration of hydrochloric acid required for reflux in step (1) is 2mol/L, and the amount of hydrochloric acid added is the amount of n-butylamine.
  • reflux needs to be refluxed overnight at a temperature of 110°C, and the solvent and unreacted hydrochloric acid in the system are removed by rotary evaporation.
  • step (2) N-n-butyl-substituted glycine hydrochloride is first dissolved in water, triethylamine is added to provide a basic environment for the reaction, and di-tert-butyl dicarbonate is added to provide the protective group BOC;
  • step (2) the amount of di-tert-butyl dicarbonate, triethylamine, and N-n-butyl substituted glycine hydrochloride is added in the ratio of 3.5-4.5:7-8:1; step (2) reaction A little exotherm, reaction at room temperature, the reaction time is 18 hours; after step (2) the reaction is completed, use n-hexane to wash off the excess di-tert-butyl dicarbonate in the separatory funnel, then add 1mol/L hydrochloric acid, The pH of the system was adjusted to about 2, the mixture was extracted with ethyl acetate, and then saturated brine was added to wash off the excess hydrochloric acid. After the final
  • step (3) the product obtained in the previous step is further dehydrated; in step (3), the reaction solvent is anhydrous dichloromethane to prevent ring opening by water molecules in the system after ring closure; in step ( 3) Phosphorus trichloride is added as a ring-closure catalyst, and the amount of material added is 2.5 times the reactant; step (3) needs to be reacted under nitrogen protection, the reaction time is 3 hours, and the reaction temperature is 0°C; step (3) After the reaction is completed, the dichloromethane and the catalyst phosphorus trichloride are removed in vacuo, 15-20mL of anhydrous dichloromethane is added to extract the NCA in the mixture, the solvent is removed again, and 15mL of anhydrous tetrahydrofuran is added, and the tetrahydrofuran solution is poured into 150mL of anhydrous n-hexane Sedimentation and purification in alkane.
  • NCA needs sedimentation and purification
  • step (6) mix the two NCAs in corresponding proportions, and then add the required amount of initiator Bianamine for ring-opening polymerization; step (6) the polymerization reaction is carried out in anhydrous tetrahydrofuran, the reaction temperature is 50°C The reaction time is 24-48 hours, specifically 24 hours, 36 hours, 48 hours; step (6) After the reaction is completed, the polymer solution is added to excess cold ether to settle, and the polymer is obtained after centrifugal drying.
  • step (7) the polymer: dimethyl ether (DMPA): mercaptoethylamine is added to DMF at a ratio of 100:5:1000 to dissolve, the oxygen in the reaction flask is removed, and nitrogen is filled for protection.
  • UV light reaction at room temperature, the reaction time is 4 hours; the light source in step (7) is an ultraviolet light source (wavelength 270nm-400nm); step (7) after the reaction is completed, it is dialyzed in deionized water to remove unreacted small molecules and then lyophilized The final antibacterial cluster peptide is obtained.
  • DMPA dimethyl ether
  • the compound is a compound represented by formula (II):
  • the value of m is about 40, and the value of n is a number from 10-40.
  • the method for synthesizing antibacterial cluster peptides of the present invention is as follows:
  • a photoinitiator and mercaptoethylamine are added to the obtained polymer, and a click chemical reaction occurs under ultraviolet light to modify the double bond on the molecular chain to finally obtain an antibacterial random copolymer clustering peptide.
  • step (1) reacts in dichloromethane solvent at room temperature, the reaction time is 3-5 hours, specifically 3 hours, 4 hours, 5 hours, and the solvent dichloromethane is removed after the reaction is completed;
  • the amount of n-hexylamine added in (1) is 0.5 times the amount of glyoxylic acid; the concentration of hydrochloric acid required for reflux in step (1) is 2mol/L, and the amount of hydrochloric acid added is the amount of n-hexylamine. 2 times; in step (1), reflux needs to be refluxed overnight at a temperature of 110°C, and the solvent and unreacted hydrochloric acid in the system are removed by rotary evaporation.
  • step (2) first dissolve N-hexyl-substituted glycine hydrochloride in water, add triethylamine to provide a basic environment for the reaction, and add di-tert-butyl dicarbonate to provide the protective group BOC; step (2) The amount of di-tert-butyl dicarbonate, triethylamine, and N-hexyl substituted glycine hydrochloride should be added in a ratio of 3.5-4.5:7-8:1; step (2) will cause a little reaction Heat and react at room temperature. The reaction time is 18 hours.
  • step (2) the excess di-tert-butyl dicarbonate is washed with n-hexane in the separatory funnel, and then 1mol/L hydrochloric acid is added to adjust the pH of the system. The mixture was adjusted to about 2, and the mixture was extracted with ethyl acetate, and then saturated brine was added to wash off excess hydrochloric acid. After the final drying and rotary evaporation to remove the solvent, the purified BOC-protected N-hexyl substituted glycine hydrochloride was obtained.
  • step (3) the product obtained in the previous step is further dehydrated; in step (3), the reaction solvent is anhydrous methylene chloride to prevent ring opening by the water molecules in the system after ring closure; (3) Phosphorus trichloride is added as a ring-closing catalyst, and the amount of substance added is 2.5 times the reactant; step (3) needs to be reacted under nitrogen protection, the reaction time is 3 hours, and the reaction temperature is 0°C; step (3) ) After the reaction is completed, the dichloromethane and the catalyst phosphorus trichloride are removed in vacuo, 15-20mL of anhydrous dichloromethane is added to extract the NCA in the mixture, the solvent is removed again, 15mL of anhydrous tetrahydrofuran is added, and the tetrahydrofuran solution is poured into 150mL of anhydrous Sedimentation and purification in n-hexane. In step (3), NCA needs sedimentation and purification three times
  • step (4) mix the two NCAs in corresponding proportions, and then add the required amount of initiator Bianamine for ring-opening polymerization; step (4) the polymerization reaction is carried out in anhydrous tetrahydrofuran, and the reaction temperature is 50°C , The reaction time is 24-48 hours, specifically 24 hours, 36 hours, 48 hours; step (4) after the reaction is completed, the polymer solution is added to excess cold ether to settle, and the polymer is obtained after centrifugal drying.
  • step (5) the polymer: dimethyl ether (DMPA): mercaptoethylamine was dissolved in DMF at a ratio of 100:5:500, the oxygen in the reaction flask was removed, and nitrogen was filled for protection.
  • DMPA dimethyl ether
  • the chemicals and reagents used in each reaction in the present invention are all purchased from commercial channels unless otherwise specified.
  • the synthesis method described herein has the characteristics of low cost, simple operation, simple equipment, and easy availability of raw materials.
  • the antimicrobial properties of the synthesized antimicrobial cluster peptide polymer material can be controlled by the degree of polymerization, the ratio of hydrophilic segment/hydrophobic segment, and the length of alkyl chain.
  • the polymer material provided by the present invention can be applied to the fields of biomedicine, smart materials, etc., has broad prospects and has great potential for solving the problem of "super bacteria”.
  • Figure 1 is the NBG-NCA 1 HNMR spectrum
  • Figure 2 shows the NHG-NCA 1 H NMR spectrum
  • Figure 3 is a synthetic 1 H NMR spectrum of NAG-NCA
  • Figure 4 is the 1 H NMR spectrum of the clustered peptide of PNAG 40 -r-PNHG 40 ;
  • Figure 5 shows the survival rate of Staphylococcus aureus at different concentrations of PNAG m -r-PNHG n ;
  • Figure 6 shows the survival rate of E. coli under different concentrations of PNAG m -r-PNHG n ;
  • Figure 7 shows the survival rate of Pseudomonas aeruginosa at different concentrations of PNAG m -r-PNHG n ;
  • Figure 8 shows the hemolysis rate of PNAG m -r-PNHG n at different concentrations
  • Figure 9 is a graph showing the particle size changes of PNAG m -r-PNHG n at different concentrations
  • Figure 10 shows the AFM and TEM images of the polymer at 2000mg/L and 20mg/L respectively;
  • Figure 11 is a tissue section after cultured mice
  • Fig. 12 is a graph showing the colony count of the silicone rubber sheet cultured on the solid medium after mouse culture.
  • NCA was determined by hydrogen NMR spectroscopy, Bruker 500MHz, CDCl 3 was the solvent, the number average molecular weight of the polymer was determined by gel permeation chromatography, SSIpump connected to Wyatt Optilab DSP, DMF was the solvent, flow rate 1mL min -1 , test temperature 50°C .
  • bacterial freeze-dried powder (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa) to a fresh medium for overnight culture, dilute the bacterial suspension with fresh medium and measure the OD value of the bacterial solution at a wavelength of 600nm. The OD value is about 0.07
  • the Macfarlane turbidity standard is 10 8 CFU/mL. On the basis of this concentration, continue to dilute 1000 times to obtain a bacterial solution of 10 5 CFU/mL for testing.
  • the polymer was prepared as a 20mg/mL aqueous solution, 40 ⁇ L of polymer solution was added to the 11th column of the 96-well plate (4 groups of parallel controls for each sample, 2 samples in one well), 160 ⁇ L of fresh medium was added to the 11th column Add 100 ⁇ L of the fresh medium in the column to columns 1-10, and perform serial dilution operations (use a row gun to take 100 ⁇ L of the solution in the 11th column, add it to the 10th column and mix well, use the row gun to take the solution in the 10th column 100 ⁇ L, add it to the 9th column of holes and mix well,..., use a row gun to take 100 ⁇ L of the solution in the third row of holes, add it to the second row of holes and mix well, use a row gun to take 100 ⁇ L of the solution in the second row of holes and discard) After the dilution is complete, add 100 ⁇ L of 10 5 CFU/mL bacterial solution to all wells of the 96-well plate with a discharge gun, and add 100
  • the polymer of Example 2 was serially diluted and cultured with long-eared rabbit red blood cells in a well plate, and the OD value of the well plate was tested at a wavelength of 572 nm, and the data was also presented in a graph. See Figure 8 of the specification. It can be seen from the figure that the polymer exhibits greater cytotoxicity when the polymer concentration is lower. In other words, the polymer has the same bactericidal effect and even greater toxicity to cells at the same concentration. When the concentration of the polymer is continuously increased, a significant decrease in cytotoxicity can be seen. DLS was tested on solutions of different polymer concentrations. See Figure 9 of the specification. It can be seen that the polymer aggregates at high concentrations, which reduces the toxicity of the polymer to cells. The morphology of the samples at different concentrations was further characterized by AFM and TEM, see attached figure 10 of the specification.
  • the polymer was coated on a silicon rubber sheet with a diameter of 0.5 cm, and 10 ⁇ L of 10 8 CFU/mL bacterial suspension was inoculated on the silicon rubber sheet and placed under the skin of the back of the mouse. After 5 days, the mice were dissected and sectioned. See the instructions attached Figure 11 shows that the inflammatory cells on the polymer-coated side are almost invisible, while the inflammatory reaction on the reference side is more severe. After the mice were cultured, the silicone rubber sheet was taken out and cultured with a solid medium for counting. See attached figure 12 of the specification. It can be seen that the number of colonies of the reference sample was significantly more than that of the silicone rubber coated with the polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法,其特点是模拟天然抗菌多肽的结构,将正电性亲水基团与烷基链疏水基团引入聚类肽分子中,从而使得聚类肽兼具抗菌性以及类肽分子本身的双重优点。本发明通过调节聚合物分子链上烷基链的含量,来调节聚合物的抗菌性以及细胞毒性,实现了对聚类肽分子抗菌选择性的调控。

Description

一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法
本申请要求于2019年5月14日提交中国专利局、申请号为201910401577.6、发明名称为“一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于生物高分子合成领域,具体涉及一种分子侧链含有胺基和烷基的抗菌型无规共聚物。
背景技术
抗生素发明之初拯救了无数的生命。但近几十年来,抗生素的不断滥用导致“超级细菌”这一非常棘手的问题。科研人员不断开发新的抗生素,以延缓“超级细菌”问题的到来,但总归治标不治本。而天然抗菌多肽一度被认为是一种可以解决“超级细菌”的有着巨大潜力的高分子材料。微生物发生入侵时,大部分的动植物体都会产生一些物质对侵入体加以抵抗,这些物质中多数为抗菌多肽。结构上,此类多肽一般含有10-50个左右的氨基酸组成,分子链上一部分氨基酸为阳离子型的亲水段,另一部分是含有烷基链的疏水段。此类抗菌多肽具有免疫原性较低、杀菌迅速、广谱抗菌的优点。不仅可以杀灭细菌,对一些病毒、癌细胞、真菌也有杀灭作用,同时对正常细胞没有任何破坏作用。
聚类肽又称为氮取代聚甘氨酸,是一类有着与多肽相似结构的高分子,它与多肽结构上的不同是原本连接在中心碳上的R基团转移至氮原子上。性质上,由于类肽没有中心碳和酰胺键,使得类肽没有二级结构以及没有氢键的相互作用,并且不易被酶解。类肽具有许多不同于多肽的优异的理化性质,既具有良好的生物相容性和生物活性又具有传统高分子材料良好的溶解性和加工性,是一类非常有前景的生物高分子材料,受到越来越多的关注。
将以上二者相互结合,模拟天然抗菌多肽的结构,将正电性亲水链段以及疏水性烷基链段引入聚类肽中,得到兼具天然抗菌多肽的抗菌性以及 聚类肽优点的一系列高分子材料。该高分子材料在解决“超级细菌”问题上极具潜力。
发明内容
本发明的目的是合成一种分子链侧基带有正电性胺基以及疏水烷基链的无规共聚聚类肽。
本发明报道了一系列用开环聚合以及/炔-硫醇点击化学修饰方法制备的聚类肽高分子,最终使得侧基带有疏水烷基链以及正电性的胺基并具有抗菌行为。聚类肽的抗菌性可由烷基链长度、烷基链段在类肽分子链上的含量以及胺基链段在类肽分子链上的含量三个主要因素决定。本发明详细研究了影响该聚类肽抗菌性的三个主要决定性因素,并且比较了聚合物对不同种类细菌的抗菌性以及对组织细胞的毒性。最后对一系列抗菌效果较好的聚合物进行了小鼠动物实验,以此表征在动物体内的实际抗菌效果。
1、根据本发明的实施例,所述化合物为式(I)所示的聚合物:
Figure PCTCN2020090150-appb-000001
其中,m值为40左右,n值为10-40的数。
本发明关于抗菌性聚类肽的合成方法如下:
(1)室温条件下,将正丁胺加入乙醛酸中反应,待反应结束后加入盐酸回流,亚氨基质子化后重结晶提纯。过滤干燥得到N-正丁基取代甘氨酸盐酸盐。
(2)向上一步产物中加入三乙胺、二碳酸二叔丁酯,BOC将取代亚氨基上的氢原子,目的在于保护胺基。最终得到BOC保护的N-正丁基取代甘氨酸盐酸盐。
(3)向上步产物中加入三氯化磷合环,得到N-正丁基-NCA。
(4)将上述步骤中正丁胺替换为正己胺,相应的摩尔比、反应条件均不变,可得N-正己基-NCA。
(5)N-炔丙基-NCA以及N-烯丙基-NCA的合成方法在我们之前专利中(2018103388816与2018103392883,目前已经公开,未授权)已有详细介绍。
(6)两种NCA按设计比例投料,加入相应量的卞胺引发开环聚合,得到无规共聚聚类肽。
(7)所得聚合物中加入光引发剂(DMPA)、巯基乙胺,在紫外光照下发生点击化学反应,对分子链上双键进行修饰,最终得到具有抗菌性的无规共聚聚类肽。
上述合成方法中,步骤(1)在二氯甲烷溶剂中室温下进行反应,反应时间为3-5小时,具体可为3小时,4小时,5小时,反应结束后除去溶剂二氯甲烷;步骤(1)中所加入的正丁胺是乙醛酸物质的量的0.5倍;步骤(1)中回流时所需要的盐酸浓度是2mol/L,盐酸加入的物质的量是正丁胺物质的量的2倍;步骤(1)中回流需在110℃的温度下回流过夜,旋蒸除去体系中的溶剂以及未反应的盐酸。随后先加入甲醇溶解旋蒸后的固体,再缓慢加入过量的乙醚在-20℃的温度下重结晶过夜。最终过滤干燥可得到纯净的N-正丁基取代甘氨酸盐酸盐。
上述合成方法中,步骤(2)中先将N-正丁基取代甘氨酸盐酸盐溶解在水中,加入三乙胺为反应提供碱性环境,加入二碳酸二叔丁酯提供保护基团BOC;步骤(2)中二碳酸二叔丁酯、三乙胺、N-正丁基取代甘氨酸盐酸盐的物质的量按3.5-4.5:7-8:1的比例加入;步骤(2)反应会少许放热,室温下反应即可,反应时间是18小时;待步骤(2)反应完成,分液漏斗中用正己烷洗去过量的二碳酸二叔丁酯,后加入1mol/L盐酸,将体系pH调至2左右,混合物用乙酸乙酯萃取,再加入饱和食盐水洗去过量的盐酸,最终的干燥、旋蒸除去溶剂后得到纯净BOC保护的N-正丁基取代甘氨酸盐酸盐。
上述合成方法中,步骤(3)中将上步得到的产物进一步除水;步骤(3)中反应溶剂为无水的二氯甲烷,防止合环后被体系中的水分子开环;步骤 (3)中加入三氯化磷作为合环催化剂,加入物质的量为反应物2.5倍;步骤(3)需要在氮气保护下反应,反应时间为3小时,反应温度为0℃;步骤(3)反应完成后真空除去二氯甲烷以及催化剂三氯化磷,后加入15-20mL无水二氯甲烷萃取出混合物中的NCA,再次除去溶剂加入无水四氢呋喃15mL,将四氢呋喃溶液倒入150mL无水正己烷中沉降提纯。步骤(3)中NCA需沉降提纯三次。
上述合成方法中,步骤(6)将两种NCA按相应比例混合,再加入所需量的引发剂卞胺开环聚合;步骤(6)聚合反应在无水四氢呋喃中进行,反应温度为50℃,反应时间24-48小时,具体可为24小时、36小时、48小时;步骤(6)反应完成后将聚合物溶液加入过量的冷乙醚中沉降,离心干燥后得到聚合物。
上述合成方法中,步骤(7)中聚合物:安香息二甲醚(DMPA):巯基乙胺按照100:5:1000的比例加入DMF中溶解,去除反应瓶中氧气,充入氮气保护,室温下紫外光照反应,反应时间为4小时;步骤(7)所述光源为紫外光源(波长270nm-400nm);步骤(7)反应完成后在去离子水中透析去除未反应的小分子后冻干得到最终的抗菌聚类肽。
2、根据本发明的实施例,所述化合物为式(Ⅱ)所示的化合物:
Figure PCTCN2020090150-appb-000002
其中,m值为40左右,n值为10-40的数。
本发明关于抗菌性聚类肽的合成方法如下:
(1)室温条件下,将正己胺加入乙醛酸中反应,待反应结束后加入盐酸回流,亚氨基质子化后重结晶提纯。过滤干燥得到N-正己基取代甘氨 酸盐酸盐。
(2)向上一步产物中加入三乙胺、二碳酸二叔丁酯,BOC将取代亚氨基上的氢原子取代。得到BOC保护的N-正己基取代甘氨酸盐酸盐。
(3)向上步产物中加入三氯化磷合环,得到N-正己基-NCA。
(4)N-正己基-NCA与N-烯丙基-NCA两种按设计比例投料,加入相应量的卞胺引发开环聚合,得到无规共聚聚类肽。
(5)所得聚合物中加入光引发剂、巯基乙胺,在紫外光照下发生点击化学反应,对分子链上双键进行修饰,最终得到具有抗菌性的无规共聚聚类肽。
上述合成方法中,步骤(1)在二氯甲烷溶剂中室温下进行反应,反应时间为3-5小时,具体可为3小时,4小时,5小时,反应结束后除去溶剂二氯甲烷;步骤(1)中所加入的正己胺是乙醛酸物质的量的0.5倍;步骤(1)中回流时所需要的盐酸浓度是2mol/L,盐酸加入的物质的量是正己胺物质的量的2倍;步骤(1)中回流需在110℃的温度下回流过夜,旋蒸除去体系中的溶剂以及未反应的盐酸。随后先加入甲醇溶解旋蒸后的固体,再缓慢加入过量的四氢呋喃在-20℃的温度下重结晶过夜。最终过滤干燥可得到纯净的N-正己基取代甘氨酸盐酸盐。
上述合成方法中,步骤(2)中先将N-正己基取代甘氨酸盐酸盐溶解在水中,加入三乙胺为反应提供碱性环境,加入二碳酸二叔丁酯提供保护基团BOC;步骤(2)中二碳酸二叔丁酯、三乙胺、N-正己基取代甘氨酸盐酸盐的物质的量按3.5-4.5:7-8:1的比例加入;步骤(2)反应会少许放热,室温下反应即可,反应时间是18小时;待步骤(2)反应完成,分液漏斗中用正己烷洗去过量的二碳酸二叔丁酯,后加入1mol/L盐酸,将体系pH调至2左右,混合物用乙酸乙酯萃取,再加入饱和食盐水洗去过量的盐酸,最终的干燥、旋蒸除去溶剂后得到纯净BOC保护的N-正己基取代甘氨酸盐酸盐。
上述合成方法中,步骤(3)中将将上步得到的产物进一步除水;步骤(3)中反应溶剂为无水的二氯甲烷,防止合环后被体系中的水分子开环;步骤(3)中加入三氯化磷作为合环催化剂,加入物质的量为反应物2.5倍;步骤(3)需要在氮气保护下反应,反应时间为3小时,反应温度为0℃;步骤(3) 反应完成后真空除去二氯甲烷以及催化剂三氯化磷,后加入15-20mL无水二氯甲烷萃取出混合物中的NCA,再次除去溶剂加入无水四氢呋喃15mL,将四氢呋喃溶液倒入150mL无水正己烷中沉降提纯。步骤(3)中NCA需沉降提纯三次。
上述合成方法中,步骤(4)将两种NCA按相应比例混合,再加入所需量的引发剂卞胺开环聚合;步骤(4)聚合反应在无水四氢呋喃中进行,反应温度为50℃,反应时间24-48小时,具体可为24小时、36小时、48小时;步骤(4)反应完成后将聚合物溶液加入过量的冷乙醚中沉降,离心干燥后得到聚合物。
上述合成方法中,步骤(5)中聚合物:安香息二甲醚(DMPA):巯基乙胺按照100:5:500的比例加入DMF中溶解,去除反应瓶中氧气,充入氮气保护,室温下紫外光照反应,反应时间为4小时;步骤(5)所述光源为紫外光源(波长270nm-400nm);步骤(5)反应完成后在去离子水中透析去除未反应的小分子,后冻干得到最终的抗菌聚类肽。
本发明中各个反应中所用到的化学药品、试剂除特殊说明均于商业途径购置,本文所述合成方法具有成本低,操作简便,设备简单,原料易得等特点。合成所得到的抗菌型聚类肽高分子材料,其抗菌性可由聚合度、亲水链段/疏水链段比值、烷基链长度调控。本发明提供的高分子材料可以应用于生物医药、智能材料等领域,前景广阔,具有解决“超级细菌”问题的极大潜力。
说明书附图
图1为NBG-NCA  1HNMR谱图;
图2为NHG-NCA  1H NMR谱图;
图3为NAG-NCA的合成 1H NMR谱图;
图4为PNAG 40-r-PNHG 40的聚类肽 1H NMR谱图;
图5为PNAG m-r-PNHG n在不同浓度下,金黄色葡萄球菌的存活率;
图6为PNAG m-r-PNHG n在不同浓度下,大肠杆菌的存活率;
图7为PNAG m-r-PNHG n在不同浓度下,绿脓杆菌的存活率;
图8为PNAG m-r-PNHG n在不同浓度下的溶血率;
图9为PNAG m-r-PNHG n在不同浓度下的粒径变化图;
图10为聚合物分别在2000mg/L、20mg/L的AFM与TEM图像;
图11为小鼠培养后的组织切片;
图12为小鼠培养后的硅橡胶片经固体培养基培养的菌落计数图。
具体实施方式
通过实施例进一步说明本发明,但本发明并不限于此。本发明的实施例可以使本专业的技术人员更全面的理解本发明。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。NCA纯度通过核磁氢谱测定,Bruker 500MHz,CDCl 3为溶剂,聚合物数均分子量通过凝胶渗透色谱法测定,SSIpump connected to Wyatt Optilab DSP,DMF为溶剂,流速1mL min -1,测试温度50℃。
实施例1、式(III)所示聚类肽的制备
Figure PCTCN2020090150-appb-000003
(1)60g(0.4mol,水溶液)乙醛酸与300mL二氯甲烷加入500mL圆底烧瓶中,随后向烧瓶中缓慢加入19.7mL(0.2mol)正丁胺,室温下反应4小时。反应完成后旋蒸除去溶剂二氯甲烷,加入2M HCl水溶液110℃回流18小时。旋蒸除去溶剂水以及过量的HCl后,加入30mL甲醇溶解,然后缓慢加入300mL乙醚,放入冰箱-20℃中过夜重结晶。最终过滤干燥得到N-正丁基取代甘氨酸盐酸盐。
(2)将16.6g(0.1mol)N-正丁基取代甘氨酸盐酸盐溶解于200mL去离子水中,先后加入76.3g(0.35mol)二碳酸二叔丁酯、97mL(0.7mol)三乙胺,室温下反应18小时。待反应完成后先用3*100mL正己烷洗去体系过量的二碳酸二叔丁酯,再加入1M盐酸将pH值调至2左右。然后加入3*100mL乙酸乙酯萃取产物,萃取液加入饱和氯化钠溶液洗去过量盐酸,经过硫酸镁干燥、旋蒸除去溶剂,最终得到BOC保护的N-正丁基取代甘氨酸盐酸 盐。
(3)将10.7g(0.047mol)的上步产物加入500mL史莱克瓶中进一步抽真空除水,随后加入300mL无水二氯甲烷溶解,在0℃冰水浴中不断搅拌的条件下,向体系中滴加10mL三氯化磷。反应4小时后真空去除溶剂二氯甲烷以及催化剂三氯化磷,继续加入15mL无水二氯甲烷,后将二氯甲烷溶液缓慢加入150mL无水正己烷中并置入-20℃冰箱中重结晶。重复上述重结晶过程三次,最终得到纯净的N-正丁基-NCA。核磁氢谱 1H NMR(500MHz,CDCl 3)δ:4.08(s,2H),3.24(t,2H),1.61(m,2H),1.22(m,2H),0.85(t,3H).核磁图见说明书附图1c。
(4)278mg(2mmol)N-炔丙基-NCA、314mg(2mmol)N-正丁基-NCA溶解于6mL无水四氢呋喃中,然后在50℃的油浴中预加热。将卞胺溶于无水四氢呋喃中配成2%-3%的溶液,向反应物中加入252μL(0.05mmol,2.38%质量分数的卞胺溶液),反应在50℃下反应48小时。反应完成后将聚合物溶液倒入冷的正己烷中沉降,离心干燥后得到287mg白色粉末。凝胶渗透色谱测得数均分子量9300g/L,分子量分布1.43,数均聚合度为36:35。
(5)将100mg聚合物粉末与5mg的DMPA、1000mg巯基乙胺盐酸盐一同加入反应瓶中,加入2mL DMF,在氮气气氛、270nm紫外灯下反应4小时。反应完成后将混合物溶液置于截留分子量为1000Da的透析袋在去离子水中透析三天。之后冻干得到(93mg)抗菌型聚类肽。
实施例2、式(Ⅳ)所示聚类肽的制备
Figure PCTCN2020090150-appb-000004
(1)60g(0.4mol,水溶液)乙醛酸与300mL二氯甲烷加入500mL圆底烧 瓶中,随后向烧瓶中缓慢加入26mL(0.2mol)正己胺,室温下反应4小时。反应完成后旋蒸除去溶剂二氯甲烷,加入2M HCl水溶液110℃回流18小时。旋蒸除去溶剂水以及过量的HCl后,加入30mL甲醇溶解,然后缓慢加入300mL四氢呋喃,放入冰箱-20℃中过夜重结晶。最终过滤干燥得到N-正己基取代甘氨酸盐酸盐。
(2)将20.5g(0.1mol)N-正己基取代甘氨酸盐酸盐溶解于200mL去离子水中,先后加入76.3g(0.35mol)二碳酸二叔丁酯、97mL(0.7mol)三乙胺,室温下反应18小时。待反应完成后先用3*100mL正己烷洗去体系过量的二碳酸二叔丁酯,再加入1M盐酸将pH值调至2左右。然后加入3*100mL乙酸乙酯萃取产物,萃取液加入饱和氯化钠溶液洗去过量盐酸,经过硫酸镁干燥、旋蒸除去溶剂,最终得到BOC保护的N-正己基取代甘氨酸盐酸盐。
(3)将12.4g(0.046mol)的上步产物加入500mL史莱克瓶中进一步抽真空除水,随后加入300mL无水二氯甲烷溶解,在0℃冰水浴中不断搅拌的条件下,向体系中滴加10mL三氯甲烷。反应4小时后真空去除溶剂二氯甲烷以及催化剂三氯化磷,继续加入15mL无水二氯甲烷,后将二氯甲烷溶液缓慢加入150mL不断搅拌的无水正己烷中沉降,去除NCA中的杂质,重复上述沉降过程三次,最终得到纯净的N-正己基-NCA。核磁氢谱 1H NMR(500MHz,CDCl 3)δ:4.12(s,2H),3.31(t,2H),1.67(m,2H),1.38(m,3*2H),0.92(t,3H).核磁图见说明书附图2c。
(4)282mg(2mmol)N-烯丙基-NCA、370mg(2mmol)N-正己基-NCA溶解于6.5mL无水四氢呋喃中,然后在50℃的油浴中预加热。将卞胺溶于无水四氢呋喃中配成2%-3%的溶液,向反应物中加入252μL(0.05mmol,2.38%质量分数的卞胺溶液),反应在50℃下反应48小时。反应完成后将聚合物溶液倒入冷的乙醚中沉降,离心干燥后得到312mg白色粉末。核磁氢谱 1H NMR(500MHz):3.7-4.3(bm,4H),5.2(s,1H),5.5-6.0(d,2H).凝胶渗透色谱测得数均分子量4500g/L,分子量分布1.29,数均聚合度47:43。核磁图见说明书图4。
(5)将100mg聚合物粉末与5mg的DMPA、500mg巯基乙胺盐酸盐一同加入反应瓶中,加入2mL DMF,在氮气气氛、270nm紫外灯下反应4 小时。反应完成后将混合物溶液置于截留分子量为1000Da的透析袋在去离子水中透析三天。之后冻干得到(82mg)抗菌型聚类肽。
实施例1、2所示聚类肽的细菌表征:
将细菌冻干粉(金黄色葡萄球菌、大肠杆菌、绿脓杆菌)加入新鲜培养基过夜培养,用新鲜培养基稀释细菌悬液后在600nm波长测量细菌溶液的OD值,OD值为0.07左右时马克法兰氏浊度标准为10 8CFU/mL,在此浓度的基础上继续稀释1000倍,得到10 5CFU/mL的细菌溶液以便测试使用。
聚合物配制为20mg/mL的水溶液,取40μL聚合物溶液加入96孔板的第11列中(每个样品4组平行对照,一个孔板2个样品),取160μL的新鲜培养基加入第11列中、100μL的新鲜培养基加入第1-10列中,进行连续稀释操作(用排枪取第11列孔中溶液100μL,加入第10列孔中混合均匀,用排枪取第10列孔中溶液100μL,加入第9列孔中混合均匀,......,用排枪取第3列孔中溶液100μL,加入第2列孔中混合均匀,用排枪取第2列孔中溶液100μL弃置),稀释完成后用排枪向96孔板中所有孔加入100μL 10 5CFU/mL的细菌溶液,向第12列中加入100μL杀菌液。使得孔板中第1列为阴性对照,第12列为阳性对照,聚合物溶液浓度自第11列至第2列成倍稀释。
孔板置入37℃、120转/分钟的摇床中培养18小时后,在600nm测量其OD值,处理数据用图表方式呈现。见说明书附图5、6、7,是实施例2的聚合物分别对金黄色葡萄球菌、大肠杆菌、绿脓杆菌作用后细菌的存活率,可见聚合物在非常低的浓度下就具有很好的杀菌效果,尤其是对金黄色葡萄球菌更是在32μg/mL就具有100%的杀灭效果。将实施例2的聚合物应用连续稀释的方法与长耳兔红细胞置于孔板中培养,在572nm的波长下测试孔板OD值,同样将数据用图表呈现。见说明书附图8,由图中可知在聚合物浓度较低时就表现出比较大的细胞毒性,换言之,同一浓度下,聚合物对细胞的毒性与杀菌效果一样甚至对细胞的毒性更大。在继续增加聚合物的浓度时可看到细胞毒性又有显著的降低。对聚合物不同浓度下的溶液测试DLS,见说明书附图9,可以看到聚合物在高浓度下发生了聚集现象,使得聚合物对于细胞的毒性下降。进一步用AFM、TEM 表征了样品在不同浓度下的形貌,见说明书附图10。
最后将聚合物涂膜于直径0.5cm硅橡胶片,取10μL 10 8CFU/mL细菌悬液接种在硅橡胶片上,并置于小鼠背部皮下,5天后对小鼠解剖并切片,见说明书附图11,可见涂有聚合物一侧的切片炎症细胞几乎不可见,而参比样一侧炎症反应较严重。小鼠培养后的硅橡胶片取出用固体培养基培养计数,见说明书附图12,可见参比样菌落数明显多于涂有聚合物一侧的硅橡胶。

Claims (18)

  1. 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法,其特征是,通过开环聚合以及点击化学修饰的手段合成具有抗菌性质的聚类肽,所述具有抗菌性质的聚类肽如结构式I或结构式II:
    Figure PCTCN2020090150-appb-100001
  2. 根据权利要求1所述的制备方法,其特征是,m为40,n为10、20、40左右的数。
  3. 根据权利要求1或2所述的制备方法,其特征是,当所述具有抗菌性质的聚类肽如结构式I时;所述开环聚合的方法为方法1,步骤如下:
    N-正丁基-NCA与N-炔丙基-NCA两种NCA按设计比例投料,加入相应量的苄胺引发开环聚合,得到无规共聚聚类肽;
    当所述具有抗菌性质的聚类肽如结构式II时,所述开环聚合的方法为方法2,步骤如下:
    N-正己基-NCA与N-烯丙基-NCA两种NCA按设计比例投料,加入相应量的卞胺引发开环聚合,得到无规共聚聚类肽。
  4. 根据权利要求3所述的制备方法,其特征是,所述方法1中,N-正丁基-NCA的制备如下:
    (1)室温条件下,将正丁胺加入乙醛酸中反应,待反应结束后加入盐酸回流,亚氨基质子化后重结晶提纯,过滤干燥得到N-正丁基取代甘氨酸盐酸盐;
    (2)向步骤(1)产物中加入三乙胺、二碳酸二叔丁酯,BOC将取代亚氨基上的氢原子,得到BOC保护的N-正丁基取代甘氨酸盐酸盐;
    (3)向步骤(2)产物中加入三氯化磷合环,得到N-正丁基-NCA;
    所述方法2中,N-正己基-NCA的制备如下:
    (a)室温条件下,将正己胺加入乙醛酸中反应,待反应结束后加入盐酸回流,亚氨基质子化后重结晶提纯,过滤干燥得到N-正己基取代甘氨酸盐酸盐;
    (b)向步骤(a)产物中加入三乙胺、二碳酸二叔丁酯,BOC将取代亚氨基上的氢原子,得到BOC保护的N-正己基取代甘氨酸盐酸盐;
    (c)向步骤(b)产物中加入三氯化磷合环,得到N-正己基-NCA。
  5. 根据权利要求4所述的制备方法,其特征是,方法1中所述步骤(1)在二氯甲烷溶剂中室温下进行反应,反应时间为3-5小时,反应结束后除去溶剂二氯甲烷;所加入的正丁胺是乙醛酸物质的量的0.5倍;回流时所需要的盐酸浓度是2mol/L,盐酸加入的物质的量是正丁胺物质的量的2倍;回流在110℃的温度下回流过夜,旋蒸除去体系中的溶剂以及未反应的盐酸;
    方法2中所述步骤(a)在二氯甲烷溶剂中室温下进行反应,反应时间为3-5小时,反应结束后除去溶剂二氯甲烷;所加入的正己胺是乙醛酸物质的量的0.5倍;回流时所需要的盐酸浓度是2mol/L,盐酸加入的物质的量是正己胺物质的量的2倍;回流在110℃的温度下回流过夜,旋蒸除去体系中的溶剂以及未反应的盐酸。
  6. 根据权利要求5所述的制备方法,其特征在于,所述方法1中步骤(1)重结晶提纯为:先向所述旋蒸得到的产物中加入甲醇溶解旋蒸后的固体,再缓慢加入过量的乙醚在-20℃的温度下重结晶过夜;
    所述方法2中步骤(a)重结晶提纯为:先向所述旋蒸得到的产物中加入甲醇溶解旋蒸后的固体,再缓慢加入过量的四氢呋喃在-20℃的温度下重结晶过夜。
  7. 根据权利要求4所述的制备方法,其特征是,所述方法1中步骤(2)二碳酸二叔丁酯、三乙胺、N-正丁基取代甘氨酸盐酸盐的物质的量按3.5-4.5:7-8:1的比例加入;室温下反应,反应时间是18小时;
    所述方法2中步骤(b)二碳酸二叔丁酯、三乙胺、N-正己基取代甘氨酸盐酸盐的物质的量按3.5-4.5:7-8:1的比例加入;室温下反应,反应时间是18小时。
  8. 根据权利要求7所述的制备方法,其特征是,所述方法1中步骤(2)反应完成后还包括,分液漏斗中用正己烷洗去过量的二碳酸二叔丁酯,后加入1mol/L盐酸,将体系pH调至2左右,混合物用乙酸乙酯萃取,再加入饱和食盐水洗去过量的盐酸,最终干燥、旋蒸除去溶剂后得到纯净BOC保护的N-正丁基取代甘氨酸盐酸盐;
    所述方法2中步骤(b)反应完成后还包括,分液漏斗中用正己烷洗去过量的二碳酸二叔丁酯,后加入1mol/L盐酸,将体系pH调至2左右,混合物用乙酸乙酯萃取,再加入饱和食盐水洗去过量的盐酸,最终干燥、旋蒸除去溶剂后得到纯净BOC保护的N-正己基取代甘氨酸盐酸盐。
  9. 根据权利要求4所述的制备方法,其特征是,所述方法1和方法2中:步骤(3)和步骤(c)反应溶剂为无水的二氯甲烷;三氯化磷加入物质的量为反应物2.5倍;步骤(3)和步骤(c)在氮气保护下反应,反应时间为3小时,反应温度为0℃。
  10. 根据权利要求9所述的制备方法,其特征是,所述步骤(3)和步骤(c)反应完成后还包括:真空除去二氯甲烷以及催化剂三氯化磷,后加入15-20mL无水二氯甲烷萃取出混合物中的NCA,再次除去溶剂加入无水四氢呋喃15mL,将四氢呋喃溶液倒入150mL无水正己烷中沉降提纯,NCA沉降提纯三次。
  11. 根据权利要求3所述的制备方法,其特征在于,所述方法1和方法2中开环聚合在无水四氢呋喃中进行,反应温度为50℃,反应时间独立为24-48小时。
  12. 根据权利要求3所述的制备方法,其特征是,得到无规共聚聚类肽后进行点击化学修饰,所述点击化学修饰的方法如下:
    所得无规共聚聚类肽中加入光引发剂、巯基乙胺,在紫外光照下发生点击化学反应,对分子链上双键进行修饰,最终得到具有抗菌性质的聚类肽。
  13. 根据权利要求12所述的制备方法,其特征是,所述光引发剂为 DMPA。
  14. 根据权利要求13所述的制备方法,其特征是,所述无规共聚聚类肽:DMPA:巯基乙胺按照100:5:500的质量比加入DMF中溶解,去除反应瓶中氧气,充入氮气保护,室温下紫外光照反应,反应时间为4小时;紫外光源的波长270nm-400nm;反应完成后在去离子水中透析去除未反应的小分子,后冻干得到最终的具有抗菌性质的聚类肽。
  15. 根据权利要求14所述的制备方法,其特征是,所述点击化学修饰为:将100mg无规共聚聚类肽粉末与5mg的DMPA、1000mg巯基乙胺盐酸盐一同加入反应瓶中,加入2mLDMF,在氮气气氛、270nm紫外灯下反应4小时;反应完成后将混合物溶液置于截留分子量为1000Da的透析袋在去离子水中透析三天;之后冻干得到93mg具有抗菌性质的聚类肽。
  16. 所述具有抗菌性质的聚类肽,如结构式I或结构式II:
    Figure PCTCN2020090150-appb-100002
  17. 根据权利要求16所述的具有抗菌性质的聚类肽,其特征是,m为40,n为10、20、40左右的数。
  18. 根据权利要求17所述的具有抗菌性质的聚类肽,其特征是,如结构式Ⅲ或结构式Ⅳ:
    Figure PCTCN2020090150-appb-100003
PCT/CN2020/090150 2019-05-14 2020-05-14 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法 WO2020228758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910401577.6 2019-05-14
CN201910401577.6A CN110204709A (zh) 2019-05-14 2019-05-14 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法

Publications (1)

Publication Number Publication Date
WO2020228758A1 true WO2020228758A1 (zh) 2020-11-19

Family

ID=67785932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090150 WO2020228758A1 (zh) 2019-05-14 2020-05-14 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法

Country Status (2)

Country Link
CN (1) CN110204709A (zh)
WO (1) WO2020228758A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204709A (zh) * 2019-05-14 2019-09-06 青岛科技大学 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法
CN113476614B (zh) * 2021-07-07 2023-08-25 青岛科技大学 一种均聚电解质复合囊泡及其制备方法以及抗菌囊泡、包载疏水性物质的囊泡和抗黏附囊泡
CN113583236B (zh) * 2021-07-22 2022-07-22 江苏大学 一种模拟天然抗冻蛋白结构的两亲性含糖聚类肽的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209805A1 (en) * 2016-06-01 2017-12-07 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Hydrophobically modified polypeptoids and uses thereof
CN107619475A (zh) * 2017-08-01 2018-01-23 同济大学 一种含多巴胺粘附基团的抗菌肽及其制备方法和应用
CN107880263A (zh) * 2017-11-06 2018-04-06 青岛科技大学 一种侧链含寡聚乙二醇的温度响应性聚类肽及其制备方法
CN108484905A (zh) * 2018-04-16 2018-09-04 青岛科技大学 一种侧链含羧基具有ucst行为的聚类肽及其制备方法
CN110204709A (zh) * 2019-05-14 2019-09-06 青岛科技大学 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828413B2 (en) * 2009-02-24 2014-09-09 New York University Peptoid oligomers, pharmaceutical compositions and methods of using the same
CN106117548B (zh) * 2016-06-27 2018-09-14 中国科学院长春应用化学研究所 一种氨基酸基聚类肽及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209805A1 (en) * 2016-06-01 2017-12-07 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Hydrophobically modified polypeptoids and uses thereof
CN107619475A (zh) * 2017-08-01 2018-01-23 同济大学 一种含多巴胺粘附基团的抗菌肽及其制备方法和应用
CN107880263A (zh) * 2017-11-06 2018-04-06 青岛科技大学 一种侧链含寡聚乙二醇的温度响应性聚类肽及其制备方法
CN108484905A (zh) * 2018-04-16 2018-09-04 青岛科技大学 一种侧链含羧基具有ucst行为的聚类肽及其制备方法
CN110204709A (zh) * 2019-05-14 2019-09-06 青岛科技大学 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAO XING, ZHEKUN SHI, JILIANG TIAN, ET AL.: "Charge-Determined LCST/UCST Behavior in Ionic Polypeptoids", BIOMACROMOLECULES, no. 19, 17 April 2018 (2018-04-17), XP55752905, DOI: 20200617143241Y *
SAMUEL H. LAHASKY, ET AL.: "Synthesis and Characterization of Cyclic Brush-Like Polymers by N-Heterocyclic Carbene-Mediated Zwitterionic Polymerization of N-Propargyl N-Carboxyanhydride and the Grafting-to Approach", MACROMOLECULES, no. 44, 7 November 2011 (2011-11-07), XP55752909, DOI: 20200617143603Y *

Also Published As

Publication number Publication date
CN110204709A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020228758A1 (zh) 一种模拟天然抗菌肽结构的阳离子抗菌聚类肽高分子的制备方法
CN107880263B (zh) 一种侧链含寡聚乙二醇的温度响应性聚类肽及其制备方法
CN107459654B (zh) 一种模拟抗菌肽共聚物及其制备方法
CN107596368B (zh) 一种细菌靶向纳米粒子的制备及其抑杀细菌的应用
CN110092814B (zh) 两亲性多嵌段类抗菌肽及其制备方法和应用
Zhang et al. A convenient approach for antibacterial polypeptoids featuring sulfonium and oligo (ethylene glycol) subunits
Bhattacharjee et al. Cadmium (II) coordination polymer based on flexible dithiolate-polyamine binary ligands system: crystal structure, Hirshfeld surface analysis, antimicrobial, and DNA cleavage potential
CN111393640B (zh) 单宁酸修饰聚乙烯亚胺化合物及其制备方法以及基因载体
WO2015180655A1 (zh) 含双硫五元环功能基团的环状碳酸酯单体及其制备方法
CN116751245A (zh) 一种抗菌多臂型类肽及其制备方法和应用
CN107648255B (zh) 一种含麦芽七糖的有机抗菌剂及其制备方法和应用
CN109485770B (zh) 亮氨酸甲基丙烯酸酯均聚物的制备方法
CN111072956B (zh) 一种含有硫正离子的抗菌聚类肽高分子的制备方法
WO2023279594A1 (zh) 一种均聚电解质复合囊泡及其制备方法以及抗菌囊泡、包载疏水性物质的囊泡和抗黏附囊泡
CN113754564B (zh) 具有抗耐药性的抗菌脒类低聚物及其制作方法和用途
CN110183546B (zh) 一种凝胶多糖水溶性抗菌衍生物及其制备方法
CN101701061B (zh) 维生素c为亲水片断的药物输送材料及其制备方法
CN109134748B (zh) 一种可功能化高分子光开关及其合成方法
CN108070062B (zh) D-阳离子手性氨基酸甲基丙烯酸酯共聚物及制备和抗菌应用
CN107011472B (zh) 可控活性聚合在调控亮氨酸—赖氨酸甲基丙烯酸酯共聚物手性中的应用
CN112194741A (zh) 一种聚乙二醇衍生物改性β-环糊精及其制备方法和应用
CN113354811A (zh) 一种侧链含有氨基和/或羟基的噁唑啉聚合物,其制备方法及应用
Gorbunova et al. Synthesis and antimicrobial activity of copolymers based on new diallyl monomers and sulfur dioxide.
RU2272045C1 (ru) Полидиаллиламины и содержащее их дезинфицирующее средство
CN107383380A (zh) 一种金属有机骨架聚阳离子衍生物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805111

Country of ref document: EP

Kind code of ref document: A1