WO2020228688A1 - 移相器、阵列天线及基站 - Google Patents
移相器、阵列天线及基站 Download PDFInfo
- Publication number
- WO2020228688A1 WO2020228688A1 PCT/CN2020/089720 CN2020089720W WO2020228688A1 WO 2020228688 A1 WO2020228688 A1 WO 2020228688A1 CN 2020089720 W CN2020089720 W CN 2020089720W WO 2020228688 A1 WO2020228688 A1 WO 2020228688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- network
- frequency band
- signal output
- cavity
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
- H01Q3/34—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
Definitions
- This application relates to mobile communication technology, in particular to a phase shifter, an array antenna and a base station.
- the feed network of the antenna includes a phase shifter and a combiner separately arranged, and the two are electrically connected through a radio frequency cable.
- the phase shifter is used to adjust the phase of the signal
- the combiner is used to connect the two channels. Or combine multiple signals into one signal.
- the feed network including two phase shifters as an example, both phase shifters are arranged inside the cavity, and the combiner is arranged on the cavity between the two phase shifters.
- the structure of the peripherals of the combiner causes the combiner to have a large loss, which in turn leads to a large loss of the feed network.
- the embodiments of the present application provide a phase shifter, an array antenna, and a base station to reduce the loss of the combiner and the feed network.
- an embodiment of the present application provides a phase shifter, including: a cavity, a first frequency band phase-shifting filter network, a second frequency band phase-shifting filter network, and a signal input and output network;
- the cavity includes a first sub-cavity and a second sub-cavity
- the first frequency band phase-shifting filter network is arranged in the first sub-cavity
- the second frequency band phase-shifting filter network is arranged in the second sub-cavity
- Signal input and output network includes signal input network and signal output network
- One end of the first signal input line of the signal input network is set outside the cavity to receive the first frequency band input signal, and the other end of the first signal input line is connected to the input end of the first frequency band phase-shifting filter network.
- the output end of the phase filter network is connected to one end of the first signal output strip line of the signal output network;
- One end of the second signal input line of the signal input network is set outside the cavity to receive the second frequency band input signal, and the other end of the second signal input line is connected to the input end of the second frequency band phase shift filter network.
- the second frequency band The output end of the phase-shifting filter network is connected to one end of the second signal output strip line of the signal output network;
- the first signal output strip line After the other end of the first signal output strip line is connected to the other end of the second signal output strip line, it is connected to one end of the third signal output strip line, and the other end of the third signal output strip line is the signal output end of the phase shifter .
- the output terminal of the first frequency band phase shift filter network is connected to one end of the first signal output belt line of the signal output network
- the output terminal of the second frequency band phase shift filter network is connected to the second signal output belt of the signal output network Connect one end of the line, and connect the other end of the first signal output line to the other end of the second signal output line, then connect to one end of the third signal output line, and the other end of the third signal output line is
- the signal output terminal of the phase shifter realizes the function of a combiner by synthesizing the output signals of the two filter networks into one output; in addition, by setting the first frequency band phase shift filter network in the first subcavity, the second The frequency band phase shift filter network is arranged in the second sub-cavity, that is, the two filter networks are arranged inside the cavity, which can reduce the loss of the combiner and thereby reduce the loss of the feed network.
- the signal input network and the signal output network are both 3D-MID parts of the three-dimensional mold interconnection assembly, and the 3D-MID parts are in a funnel shape, wherein the funnel shape penetrates into the cavity;
- the metal strip line on the 3D-MID component is a three-dimensional wiring method. One end of the metal strip line is located outside the cavity, and the other end of the metal strip line goes deep into the cavity along the funnel shape;
- the first frequency band phase-shifting filter network includes a first phase-shifting filter metal strip line and first dielectric components respectively arranged on two longitudinal sides of the first phase-shifting filter metal strip line.
- the first medium component may be a sliding medium component.
- the second frequency band phase-shifting filter network includes a second phase-shifting filter metal strip line and second dielectric components respectively arranged on two longitudinal sides of the second phase-shifting filter metal strip line.
- the second medium component may be a sliding medium component.
- Both the first frequency band phase shift filter network and the second frequency band phase shift filter network include sliding medium components.
- the sliding medium component can move along the axial direction of the phase shifter, using a slot of the PCB or setting a guide boss on the cavity as a track for the phase shifter to move.
- the cavity is made by pultrusion in one piece, which is simple and convenient for mass production.
- the first phase-shifting filter metal strip line may include a first phase-shifting power dividing part and a first filtering part;
- the second phase-shifting filtering metal strip line may include a second phase-shifting power dividing part and a first filtering part. Two filtering part.
- the number of signal output networks may be at least two, and each of the at least two signal output networks is provided with a first filtering part and a second filtering part.
- the lengths of the first signal output strip line, the second signal output strip line and the third signal output strip line are determined based on signal impedance matching.
- an embodiment of the present application provides an array antenna, including the phase shifter as described in any one of the first aspect.
- the number of phase shifters may be two, and these two phase shifters form a four-cavity phase shifter, and the four sub-cavities of the four-cavity phase shifter are sequentially arranged to shift the second frequency band.
- the above-mentioned array antenna may further include: an array reflector.
- the array reflector and the cavity of the four-cavity phase shifter are an integral structure.
- the above-mentioned array antenna may further include: a vibrator.
- the vibrator is located directly above the center of the four sub-cavities.
- the feed network of the array antenna is electrically connected to the signal output network of the phase shifter.
- an embodiment of the present application provides a base station, the base station includes the phase shifter described in the above technical solution, and/or the base station includes the array antenna described in the above technical solution, because the base station and the array
- the antennas are all improved on the basis of the above-mentioned phase shifter, and naturally inherit the advantages of the above-mentioned phase shifter, and will not be repeated here.
- Figure 1 is a right side view of a phase shifter provided by an embodiment of the application.
- Figure 2 is an assembly diagram of a phase shifter provided by an embodiment of the application
- phase shifter 3 is a schematic diagram of the overall appearance of a phase shifter provided by an embodiment of the application.
- phase shifter 4 is a top view of a phase shifter provided by an embodiment of the application.
- FIG. 5 is a front perspective view of a phase shifter provided by an embodiment of the application.
- FIG. 6 is a schematic diagram of a signal input network in a phase shifter provided by an embodiment of the application.
- FIG. 7 is a schematic diagram of a signal output network in a phase shifter provided by an embodiment of the application.
- FIG. 8 is a schematic diagram of the assembly of the first frequency band phase shift filter network in the phase shifter provided by an embodiment of the application;
- FIG. 9 is a schematic structural diagram of a first frequency band phase shift filter network in a phase shifter provided by an embodiment of this application.
- FIG. 10 is a schematic diagram of the assembly of the second frequency band phase shift filter network in the phase shifter provided by an embodiment of the application;
- FIG. 11 is a schematic structural diagram of a second frequency band phase shift filter network in a phase shifter provided by an embodiment of the application;
- FIG. 12 is a schematic diagram of the assembly of the signal output network and the first and second frequency band phase-shifting filter networks in the phase shifter provided by an embodiment of the application;
- FIG. 13 is a side view of an array antenna provided by an embodiment of the application.
- FIG. 14 is a schematic diagram of the overall appearance of an array antenna provided by an embodiment of the application.
- FIG. 15 is a side view of an array antenna provided by another embodiment of the application.
- FIG. 16 is a schematic diagram of the overall appearance of an array antenna provided by another embodiment of the application.
- connection should be understood in a broad sense.
- they can be fixedly connected or can be The connection between the two elements can be the internal communication or the interaction relationship between the two elements.
- connection between the two elements can be the internal communication or the interaction relationship between the two elements.
- the structure of the peripheral of the combiner causes the combiner to have a large loss, which in turn leads to a large loss of the feed network.
- the embodiments of the present application provide a phase shifter, an array antenna, and a base station, which use a three-dimensional wiring method to reduce the loss of the combiner in the feed network, thereby reducing the loss of the feed network.
- phase shifter provided in the present application will be further described below in conjunction with the drawings and embodiments of the specification.
- the implementation of the present application includes but is not limited to the following embodiments.
- Fig. 1 is a right side view of a phase shifter provided by an embodiment of the application.
- Fig. 2 is an assembly diagram of a phase shifter provided by an embodiment of the application.
- FIG. 3 is a schematic diagram of the overall appearance of a phase shifter provided by an embodiment of the application.
- FIG. 4 is a top view of a phase shifter provided by an embodiment of the application.
- Fig. 5 is a front perspective view of a phase shifter provided by an embodiment of the application.
- FIG. 6 is a schematic diagram of a signal input network in a phase shifter provided by an embodiment of the application.
- FIG. 7 is a schematic diagram of a signal output network in a phase shifter provided by an embodiment of the application.
- an embodiment of the present application provides a phase shifter, which includes: a cavity 1, a first frequency band phase-shifting filter network 2, a second frequency band phase-shifting filter network 3 and a signal input and output network 4. among them:
- the cavity 1 includes a first subcavity 101 and a second subcavity 102, the first frequency band phase shifting filter network 2 is arranged in the first subcavity 101, and the second frequency band phase shifting filter network 3 is arranged in the second subcavity 102;
- the signal input and output network 4 includes a signal input network 401 and a signal output network 402;
- One end of the first signal input line 4011 of the signal input network 401 is set outside the cavity 1 to receive the first frequency band input signal, and the other end of the first signal input line 4011 is connected to the input end of the first frequency band phase shift filter network 2 ,
- the output end of the first frequency band phase-shifting filter network 2 is connected to one end of the first signal output strip line 4021 of the signal output network 402;
- One end of the second signal input line 4012 of the signal input network 401 is set outside the cavity 1 for receiving the second frequency band input signal, and the other end of the second signal input line 4012 is connected to the input end of the second frequency band phase shift filter network 3 Connected, the output end of the second frequency band phase-shifting filter network 3 is connected to one end of the second signal output strip line 4022 of the signal output network 402;
- the first signal output strip line 4021 After the other end of the first signal output strip line 4021 is connected to the other end of the second signal output strip line 4022, it is connected to one end of the third signal output strip line 4023, and the other end of the third signal output strip line 4023 is a phase shifter The signal output terminal.
- one end of the first signal input line 4011 on the signal input network 401 is set outside the cavity 1, and the other end of the first signal input line 4011 goes deep into the first sub-cavity 101, and is connected to the first frequency band phase shift filter network 2.
- the input end of the first frequency band phase shift filter network 2 is connected to the first signal output belt line 4021 of the signal output network 402, and the connection part is inside the first subcavity 101;
- the signal input network 401 is the second signal
- One end of the input line 4012 is set outside the cavity 1, and the other end of the second signal input line 4012 goes deep into the second sub-cavity 102, and is connected to the input end of the second frequency band phase shift filter network 3, and the second frequency band phase shift filter
- the output end of the network 3 is connected to the second signal output ribbon line 4022 on the signal output network 402, and the connection part is inside the first subcavity 102.
- phase shifter provided in this embodiment is illustrated by taking a seven-port phase shifter as an example, but this application is not limited thereto.
- the seven ports of the phase shifter include two input ports and five output ports.
- the two input ports are structurally displayed as one, as shown in Figure 2, from top to bottom, the first port, the second port, the fourth port, the fifth port and the sixth port , Are output ports, and the third port is input port.
- the cavity 1 is a metal cavity.
- the cavity 1 can be manufactured in a pultrusion manner to be integrally formed, which is simple in process and convenient for mass production.
- the output terminal of the first frequency band phase shift filter network is connected to one end of the first signal output belt line of the signal output network
- the output terminal of the second frequency band phase shift filter network is connected to the second signal output belt of the signal output network Connect one end of the line, and connect the other end of the first signal output line to the other end of the second signal output line, then connect to one end of the third signal output line, and the other end of the third signal output line is
- the signal output terminal of the phase shifter realizes the function of a combiner by combining the output signals of the two filter networks into one output, that is, the phase shifter is integrated with a combiner and has the function of a combiner;
- the combination can be reduced. The loss of the feeder, thereby reducing the loss of the feed network.
- the traditional combiner is divided into three parts, and the filters of the two frequency bands in the combiner are respectively arranged in the first sub-cavity and the second sub-cavity, and integrated with the phase shifter circuit,
- the first frequency band phase shifting filter network and the second frequency band phase shifting filter network are formed; the two filter output ports of the combiner are connected to the strip line inside the cavity and then combined for output.
- two filters are arranged inside the cavity to reduce the loss of the network, and the output signals of the two filters are synthesized into one output, which realizes the function of a combiner.
- the cost of the antenna can be reduced, and the loss of the feed network can be further reduced.
- the signal input network 401 and the signal output network 402 are both three-dimensional mold interconnect component (Three Dimensional Molded Interconnect Device, 3D-MID) components, and the 3D-MID component is a funnel
- the metal strip line on the 3D-MID component is a three-dimensional wiring method, one end of the metal strip line is located outside the cavity 1, and the other end of the metal strip line goes deep into the cavity 1 along the funnel shape; the 3D-MID component Above, a slot 103 or a slot 104 is opened along the length of the cavity 1, as shown in FIG.
- the signal input network 401 is provided with a slot 104 along the length direction of the cavity 1
- the signal output network 402 is provided with a slot 103 along the length direction of the cavity 1.
- 3D-MID is a plastic molded part whose surface can make a three-dimensional conductive strip loop.
- FIG. 8 is a schematic diagram of the assembly of the first frequency band phase shift filter network in the phase shifter provided by an embodiment of the application.
- the first frequency band phase-shifting filter network 2 may include a first phase-shifting filter metal strip line 201 and first dielectric components 202 respectively arranged on two longitudinal sides of the first phase-shifting filter metal strip line 201.
- the first medium component 202 may be a sliding medium component.
- FIG. 9 is a schematic structural diagram of a first frequency band phase shift filter network in a phase shifter provided by an embodiment of the application.
- the first phase-shifting and filtering metal strip line 201 may include a first phase-shifting power division part and a first filtering part. It can be understood that, in the first phase-shifting filter metal strip line 201 shown in FIG. 9, the part other than the marked first filter part (the part within the dashed line frame) is the first phase-shifting power component.
- FIG. 10 is a schematic diagram of the assembly of the second frequency band phase shift filter network in the phase shifter provided by an embodiment of the application.
- the second frequency band phase-shifting filter network 3 includes a second phase-shifting filter metal strip line 301 and second dielectric components 302 respectively arranged on two longitudinal sides of the second phase-shifting filter metal strip line 301.
- the second medium component 302 may be a sliding medium component.
- both the first frequency band phase shift filter network or the second frequency band phase shift filter network include sliding medium components.
- the sliding medium component can move along the axial direction of the phase shifter, using a slot of the PCB or setting a guide boss on the cavity as a track for the phase shifter to move.
- FIG. 11 is a schematic structural diagram of a second frequency band phase shift filter network in a phase shifter provided by an embodiment of this application.
- the second phase-shifting filtering metal strip line 301 may include a second phase-shifting power dividing part and a second filtering part. It can be understood that, in the second phase-shifting filtering metal strip line 301 shown in FIG. 11, the part except the marked second filtering part (the part within the dashed line frame) is the second phase-shifting power component. Among them, the first filtering part, the second filtering part and the signal output network jointly complete the combiner function.
- FIG. 12 is a schematic diagram of the assembly of the signal output network and the first and second frequency band phase shift filter networks in the phase shifter provided by an embodiment of the application.
- the output end of the first phase-shifting filter metal strip line 201 is used as the output end of the first frequency band phase-shifting filter network 2 and is connected to one end of the first signal output strip line 4021 of the signal output network 402;
- the output end of the phase shift filter metal strip line 301 is used as the output end of the first frequency band phase shift filter network 2 and is connected to one end of the second signal output strip line 4022 of the signal output network 402.
- the number of signal output networks 402 may be at least two, and each of the at least two signal output networks 402 is provided with a first filtering part and a second filtering part.
- the lengths of the first signal output strip line 4021, the second signal output strip line 4022, and the third signal output strip line 4023 are determined based on signal impedance matching.
- phase shifter provided in the embodiments of the present application is not limited to include the first frequency band phase-shifting filter network and the second frequency band phase-shifting filter network, and may also include phase-shifting filter networks with more than two frequency bands, such as the first Three-band phase-shift filter network and fourth-band phase-shift filter network. Adjust the number of input terminals and output terminals and the connection method accordingly.
- phase shifter integrated with the combiner can realize different forms of array antennas through different combinations.
- the following embodiments are based on the above embodiments, combining phase shifters in different forms and applying them to the array antenna.
- the embodiment of the present application provides an array antenna including a phase shifter.
- the phase shifter includes: a cavity, a first frequency band phase-shifting filter network, a second frequency band phase-shifting filter network and a signal input and output network;
- the cavity includes a first sub-cavity and a second sub-cavity
- the first frequency band phase-shifting filter network is arranged in the first sub-cavity
- the second frequency band phase-shifting filter network is arranged in the second sub-cavity
- Signal input and output network includes signal input network and signal output network
- One end of the first signal input line of the signal input network is set outside the cavity to receive the first frequency band input signal, and the other end of the first signal input line is connected to the input end of the first frequency band phase-shifting filter network.
- the output end of the phase filter network is connected to one end of the first signal output strip line of the signal output network;
- One end of the second signal input line of the signal input network is set outside the cavity to receive the second frequency band input signal, and the other end of the second signal input line is connected to the input end of the second frequency band phase shift filter network.
- the second frequency band The output end of the phase-shifting filter network is connected to one end of the second signal output strip line of the signal output network;
- the first signal output strip line After the other end of the first signal output strip line is connected to the other end of the second signal output strip line, it is connected to one end of the third signal output strip line, and the other end of the third signal output strip line is the signal output end of the phase shifter .
- the output end of the first frequency band phase shift filter network is connected to one end of the first signal output belt line of the signal output network, and the output end of the second frequency band phase shift filter network is connected to the second signal output belt line of the signal output network.
- the signal output end of the phase shifter realizes the function of a combiner by combining the output signals of the two filter networks into one output; in addition, by setting the first frequency band phase shift filter network in the first subcavity, the second The frequency band phase shift filter network is arranged in the second sub-cavity, that is, the two filter networks are arranged inside the cavity, which can reduce the loss of the combiner and thereby reduce the loss of the feed network.
- the cavity is made in one piece by pultrusion, which is simple and convenient for mass production.
- the signal input network and the signal output network are both 3D-MID components
- the 3D-MID component is in the shape of a funnel, wherein the funnel shape penetrates into the cavity;
- the metal strip line on the 3D-MID component is three-dimensional
- one end of the metal strip line is located outside the cavity, and the other end of the metal strip line goes deep into the cavity along the funnel shape; and, on the 3D-MID component, there are different slots along the length of the cavity. They are the avoiding chutes of the first frequency band phase-shifting filter network and the second frequency band phase-shifting filter network.
- the first frequency band phase-shifting filter network includes a first phase-shifting filter metal strip line and first dielectric components respectively arranged on two longitudinal sides of the first phase-shifting filter metal strip line.
- the first medium component may be a sliding medium component.
- the second frequency band phase-shifting filter network includes a second phase-shifting filter metal strip line and second dielectric components respectively arranged on two longitudinal sides of the second phase-shifting filter metal strip line.
- the second medium component may be a sliding medium component.
- Both the first frequency band phase shift filter network and the second frequency band phase shift filter network include sliding medium components.
- the sliding medium component can move along the axial direction of the phase shifter, using a slot of the PCB or setting a guide boss on the cavity as a track for the phase shifter to move.
- first phase-shifting filter metal strip line may include a first phase-shifting power dividing part and a first filtering part;
- second phase-shifting filtering metal strip line may include a second phase-shifting power dividing part and a second filtering part.
- the first filtering part, the second filtering part and the signal output network jointly complete the combiner function.
- the number of signal output networks may be at least two, and each of the at least two signal output networks is provided with a first filtering part and a second filtering part.
- the lengths of the first signal output strip line, the second signal output strip line and the third signal output strip line are determined based on signal impedance matching.
- the number of phase shifters may be two, and the two phase shifters form a four-cavity phase shifter.
- the four sub-cavities of the four-cavity phase shifter are sequentially provided with a second frequency band phase shift filter network, a first frequency band phase shift filter network, a first frequency band phase shift filter network, and a second frequency band phase shift filter.
- the internet In this example, the cavity of the phase shifter is a metal cavity.
- the above-mentioned array antenna may also include: an array reflector, refer to FIG. 13. Wherein, the array reflector and the cavity of the four-cavity phase shifter are an integral structure.
- the above-mentioned array antenna may further include: a vibrator.
- the vibrator is located directly above the center positions of the four sub-cavities, as shown in Figs. 13 and 14.
- the feed network of the array antenna is electrically connected with the signal output network of the phase shifter.
- the number of phase shifters may be two, and the two phase shifters form a four-cavity phase shifter.
- the two phase shifters described in the above embodiment are combined to form a compact four-cavity phase shifter.
- the four-cavity phase shifter the two subcavities on the left and the two subcavities on the right are separated ,
- the four sub-cavities are sequentially arranged with a second frequency band phase-shifting filter network, a first frequency band phase-shifting filter network, a first frequency band phase-shifting filter network, and a second frequency band phase-shifting filter network.
- the cavity of the phase shifter is a metal cavity.
- the above-mentioned array antenna may further include: an array reflector, refer to FIG. 15. Wherein, the array reflector and the cavity of the four-cavity phase shifter are an integral structure.
- the above-mentioned array antenna may further include: a vibrator.
- the vibrator is located directly above the center of the four sub-cavities, as shown in Figs. 15 and 16.
- the feed network of the array antenna is electrically connected with the signal output network of the phase shifter.
- the cavities mentioned in the embodiments of the present application are all described with a vertical cavity structure as an example.
- the cavity may also be a horizontal cavity structure.
- the specific implementation principle is the same as that in the above embodiment, and will not be omitted here. Repeat.
- An embodiment of the present application also provides a base station, which includes the phase shifter described in any of the foregoing embodiments, and/or an array antenna.
- the array antenna includes: a phase shifter.
- the phase shifter includes:
- first frequency band phase-shifting filter network second frequency band phase-shifting filter network and signal input and output network;
- the cavity includes a first sub-cavity and a second sub-cavity
- the first frequency band phase-shifting filter network is arranged in the first sub-cavity
- the second frequency band phase-shifting filter network is arranged in the second sub-cavity
- Signal input and output network includes signal input network and signal output network
- One end of the first signal input line of the signal input network is set outside the cavity to receive the first frequency band input signal, and the other end of the first signal input line is connected to the input end of the first frequency band phase-shifting filter network.
- the output end of the phase filter network is connected to one end of the first signal output strip line of the signal output network;
- One end of the second signal input line of the signal input network is set outside the cavity to receive the second frequency band input signal, and the other end of the second signal input line is connected to the input end of the second frequency band phase shift filter network.
- the second frequency band The output end of the phase-shifting filter network is connected to one end of the second signal output strip line of the signal output network;
- the first signal output strip line After the other end of the first signal output strip line is connected to the other end of the second signal output strip line, it is connected to one end of the third signal output strip line, and the other end of the third signal output strip line is the signal output end of the phase shifter .
- the output end of the first frequency band phase shift filter network is connected to one end of the first signal output line of the signal output network, and the output end of the second frequency band phase shift filter network is connected to the second signal output line of the signal output network.
- the signal output end of the filter realizes the function of a combiner by combining the output signals of the two filter networks into one output; in addition, by setting the first frequency band phase-shifting filter network in the first subcavity, the second frequency band is shifted
- the phase filter network is arranged in the second sub-cavity, that is, the two filter networks are arranged inside the cavity, which can reduce the loss of the combiner and thereby reduce the loss of the feed network.
- the cavity is made in one piece by pultrusion, which is simple and convenient for mass production.
- the signal input network and the signal output network are both 3D-MID components
- the 3D-MID component is in the shape of a funnel, wherein the funnel shape penetrates into the cavity;
- the metal strip line on the 3D-MID component is three-dimensional
- one end of the metal strip line is located outside the cavity, and the other end of the metal strip line goes deep into the cavity along the funnel shape; and, on the 3D-MID component, there are different slots along the length of the cavity. They are the avoiding chutes of the first frequency band phase-shifting filter network and the second frequency band phase-shifting filter network.
- the first frequency band phase-shifting filter network includes a first phase-shifting filter metal strip line and first dielectric components respectively arranged on two longitudinal sides of the first phase-shifting filter metal strip line.
- the first medium component may be a sliding medium component.
- the second frequency band phase-shifting filter network includes a second phase-shifting filter metal strip line and second dielectric components respectively arranged on two longitudinal sides of the second phase-shifting filter metal strip line.
- the second medium component may be a sliding medium component.
- Both the first frequency band phase shift filter network and the second frequency band phase shift filter network include sliding medium components.
- the sliding medium component can move along the axial direction of the phase shifter, using a slot of the PCB or setting a guide boss on the cavity as a track for the phase shifter to move.
- first phase-shifting filter metal strip line may include a first phase-shifting power dividing part and a first filtering part;
- second phase-shifting filtering metal strip line may include a second phase-shifting power dividing part and a second filtering part.
- the first filtering part, the second filtering part and the signal output network jointly complete the combiner function.
- the number of signal output networks may be at least two, and each of the at least two signal output networks is provided with a first filtering part and a second filtering part.
- the lengths of the first signal output strip line, the second signal output strip line and the third signal output strip line are determined based on signal impedance matching.
- the number of phase shifters may be two, and the two phase shifters form a four-cavity phase shifter.
- the four sub-cavities of the four-cavity phase shifter are sequentially provided with a second frequency band phase shift filter network, a first frequency band phase shift filter network, a first frequency band phase shift filter network, and a second frequency band phase shift filter.
- the internet In this example, the cavity of the phase shifter is a metal cavity.
- the above-mentioned array antenna may also include: an array reflector, refer to FIG. 13. Wherein, the array reflector and the cavity of the four-cavity phase shifter are an integral structure.
- the above-mentioned array antenna may further include: a vibrator.
- the vibrator is located directly above the center of the four sub-cavities, as shown in Figure 13 and Figure 14.
- the feed network of the array antenna is electrically connected with the signal output network of the phase shifter.
- the number of phase shifters may be two, and the two phase shifters form a four-cavity phase shifter.
- the two phase shifters described in the above embodiment are combined to form a compact four-cavity phase shifter.
- the four-cavity phase shifter the two subcavities on the left and the two subcavities on the right are separated ,
- the four sub-cavities are sequentially arranged with a second frequency band phase-shifting filter network, a first frequency band phase-shifting filter network, a first frequency band phase-shifting filter network, and a second frequency band phase-shifting filter network.
- the cavity of the phase shifter is a metal cavity.
- the above-mentioned array antenna may further include: an array reflector, refer to FIG. 15. Wherein, the array reflector and the cavity of the four-cavity phase shifter are an integral structure.
- the above-mentioned array antenna may further include: a vibrator.
- the vibrator is located directly above the center of the four sub-cavities, as shown in Figs. 15 and 16.
- the feed network of the array antenna is electrically connected with the signal output network of the phase shifter.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本申请实施例提供一种移相器、阵列天线及基站。在该移相器中,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线的一端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接,并将第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端,通过将两个滤波网络的输出信号合成一路输出,实现了合路器的功能;另外,通过将第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内,也即将两个滤波网络设置在腔体内部,可以降低合路器的损耗,进而降低馈电网络的损耗。
Description
本申请要求于2019年05月13日提交中国专利局、申请号为201920673404.5、申请名称为“移相器、阵列天线及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及移动通信技术,尤其涉及一种移相器、阵列天线及基站。
随着天线频段越来越多,天线的集成度也越来越高。考虑到天线内部空间的局限性,业内通常使用外设的合路器来扩展天线的频段,以充分利用天线内部空间。通常情况下,天线的馈电网络包括分开设置的移相器和合路器,二者之间通过射频线缆进行电气连接,其中,移相器用于信号的相位调整,合路器用于将两路或多路信号合成为一路信号。例如以馈电网络包括两个移相器为例,将两个移相器均设置在腔体内部,将合路器设置在该两个移相器之间的腔体之上。
上述合路器外设的结构,使得合路器具有较大损耗,进而导致馈电网络损耗较大。
发明内容
本申请实施例提供一种移相器、阵列天线及基站,以降低合路器及馈电网络的损耗。
第一方面,本申请实施例提供一种移相器,包括:腔体,第一频段移相滤波网络,第二频段移相滤波网络和信号输入输出网络;
其中,腔体包括第一子腔和第二子腔,第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内;
信号输入输出网络包括信号输入网络和信号输出网络;
信号输入网络的第一信号输入线一端设置在腔体外部,用于接收第一频段输入信号,第一信号输入线的另一端与第一频段移相滤波网络的输入端连接,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线的一端连接;
信号输入网络的第二信号输入线的一端设置在腔体外部,用于接收第二频段输入信号,第二信号输入线的另一端与第二频段移相滤波网络的输入端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接;
第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端。
上述移相器,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线的一端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接,并将第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端, 通过将两个滤波网络的输出信号合成一路输出,实现了合路器的功能;另外,通过将第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内,也即将两个滤波网络设置在腔体内部,可以降低合路器的损耗,进而降低馈电网络的损耗。
一种可能的实施方式中,信号输入网络和信号输出网络均为三维模具互连组件3D-MID部件,该3D-MID部件呈漏斗形状,其中,漏斗形状深入到腔体的内部;
3D-MID部件上的金属带线为三维走线方式,金属带线的一端位于腔体的外部,金属带线的另一端沿漏斗形状深入到腔体内部;
且,3D-MID部件上,沿腔体的长度方向开设有不同的槽,分别为第一频段移相滤波网络和第二频段移相滤波网络的避位滑槽。
一种可能的实施方式中,第一频段移相滤波网络包括第一移相滤波金属带线和分别设置在第一移相滤波金属带线两纵侧的第一介质组件。可选地,第一介质组件可以为滑动介质组件。通过改变第一介质组件的位置,改变传输路径的实际长度,可以调整第一频段移相滤波网络的相位,从而在第一频段实现天线下倾角。
和/或,
第二频段移相滤波网络包括第二移相滤波金属带线和分别设置在第二移相滤波金属带线两纵侧的第二介质组件。可选地,第二介质组件可以为滑动介质组件。通过改变第二介质组件的位置,改变传输路径的实际长度,可以调整第二频段移相滤波网络的相位,从而在第二频段实现天线下倾角。
第一频段移相滤波网络及第二频段移相滤波网络均包括滑动介质组件。
其中,滑动介质组件可以沿着移相器的轴向移动,利用PCB的开槽或者在腔体上设置导向凸台作为移相器移动的轨道。
一种可能的实施方式中,腔体的制作采用拉挤方式一体成型,工艺简便,便于大批量生产。
一种可能的实施方式中,第一移相滤波金属带线可以包括第一移相功分部分和第一滤波部分;第二移相滤波金属带线可以包括第二移相功分部分和第二滤波部分。
一种可能的实施方式中,信号输出网络的个数可以为至少两个,该至少两个信号输出网络均设置有第一滤波部分和第二滤波部分。
一种可能的实施方式中,第一信号输出带线、第二信号输出带线和第三信号输出带线的长度是基于信号阻抗匹配确定的。
第二方面,本申请实施例提供一种阵列天线,包括:如第一方面中任一所述的移相器。
一种可能的实施方式中,移相器的个数可以为两个,这两个移相器组成四腔移相器,四腔移相器的四个子腔体中依次设置第二频段移相滤波网络、第一频段移相滤波网络、第一频段移相滤波网络、第二频段移相滤波网络。
一种可能的实施方式中,上述阵列天线还可以包括:阵列反射板。其中,该阵列反射板与四腔移相器的腔体为一体结构。
一种可能的实施方式中,上述阵列天线还可以包括:振子。其中,振子位于四个子腔体的中心位置的正上方。
一种可能的实施方式中,阵列天线的馈电网络与移相器的信号输出网络电连接。
第三方面,本申请实施例提供一种基站,所述基站包括上述技术方案所述的移相器,和/或,所述基站包括上述技术方案所述的阵列天线,由于所述基站及阵列天线皆是在上述移相器的基础上进行改进的,自然承继了所述移相器的优点,在此不再赘述。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
图1为本申请一实施例提供的移相器的右侧视图;
图2为本申请一实施例提供的移相器的装配图;
图3为本申请一实施例提供的移相器的整体外观示意图;
图4为本申请一实施例提供的移相器的俯视图;
图5为本申请一实施例提供的移相器的前视透视图;
图6为本申请一实施例提供的移相器中的信号输入网络示意图;
图7为本申请一实施例提供的移相器中的信号输出网络示意图;
图8为本申请一实施例提供的移相器中的第一频段移相滤波网络的装配示意图;
图9为本申请一实施例提供的移相器中的第一频段移相滤波网络的结构示意图;
图10为本申请一实施例提供的移相器中的第二频段移相滤波网络的装配示意图;
图11为本申请一实施例提供的移相器中的第二频段移相滤波网络的结构示意图;
图12为本申请一实施例提供的移相器中的信号输出网络与第一、第二频段移相滤波网络的装配示意图;
图13为本申请一实施例提供的阵列天线的侧视图;
图14为本申请一实施例提供的阵列天线的整体外观示意图;
图15为本申请另一实施例提供的阵列天线的侧视图;
图16为本申请另一实施例提供的阵列天线的整体外观示意图。
下面详细描述本申请的实施例,所述实施例的实例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解对本申请的限制。
在本申请实施例的描述中,需要理解的是,术语“上部”、“上”、“下”、“前”、“后”、“纵向”、“横向”、“底部”、“内”、“外”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连通”、“连接”应作广义理解,例如,可以使固定连接,也可以是通过中介媒介间相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含 义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
现有技术将合路器外设的结构,使得合路器具有较大损耗,进而导致馈电网络损耗较大。基于上述技术问题,本申请实施例提供一种移相器、阵列天线及基站,利用三维走线方式,降低馈电网络中合路器的损耗,进而降低馈电网络的损耗。
实施例
下面结合说明书附图和实施例对本申请提供的移相器作进一步说明,本申请的实施方式包括但不限于下列实施例。
图1为本申请一实施例提供的移相器的右侧视图。图2为本申请一实施例提供的移相器的装配图。图3为本申请一实施例提供的移相器的整体外观示意图。图4为本申请一实施例提供的移相器的俯视图。图5为本申请一实施例提供的移相器的前视透视图。图6为本申请一实施例提供的移相器中的信号输入网络示意图。图7为本申请一实施例提供的移相器中的信号输出网络示意图。
参考图1至图7,本申请实施例提供一种移相器,包括:腔体1,第一频段移相滤波网络2,第二频段移相滤波网络3和信号输入输出网络4。其中:
腔体1包括第一子腔101和第二子腔102,第一频段移相滤波网络2设置在第一子腔101内,第二频段移相滤波网络3设置在第二子腔102内;
信号输入输出网络4包括信号输入网络401和信号输出网络402;
信号输入网络401的第一信号输入线4011一端设置在腔体1外部,用于接收第一频段输入信号,第一信号输入线4011的另一端与第一频段移相滤波网络2的输入端连接,第一频段移相滤波网络2的输出端与信号输出网络402的第一信号输出带线4021的一端连接;
信号输入网络401的第二信号输入线4012的一端设置在腔体1外部,用于接收第二频段输入信号,第二信号输入线4012的另一端与第二频段移相滤波网络3的输入端连接,第二频段移相滤波网络3的输出端与信号输出网络402的第二信号输出带线4022的一端连接;
第一信号输出带线4021的另一端和第二信号输出带线4022的另一端连接后,与第三信号输出带线4023的一端相连,第三信号输出带线4023的另一端为移相器的信号输出端。
具体地,信号输入网络401上的第一信号输入线4011一端设置在腔体1外部,第一信号输入线4011的另一端深入到第一子腔101内部,与第一频段移相滤波网络2的输入端相连,第一频段移相滤波网络2的输出端与信号输出网络402的第一信号输 出带线4021相连,连接部分在第一子腔101内部;信号输入网络401上的第二信号输入线4012的一端设置在腔体1外部,第二信号输入线4012的另一端深入到第二子腔102内部,与第二频段移相滤波网络3的输入端相连,第二频段移相滤波网络3的输出端与信号输出网络402上的第二信号输出带线4022相连,连接部分在第一子腔102内部。
需说明的是,该实施例提供的移相器以七端口移相器示例说明,但本申请不以此为限制。其中,该移相器七端口包括两个输入口和五个输出口。可选地,两个输入口在结构上显示为一个,如图2所示,从上至下,第一个端口、第二个端口、第四个端口、第五个端口和第六个端口,均为输出口,第三个端口为输入口。
可选地,腔体1为金属腔体。
一种可能的实施方式中,腔体1的制作可以采用拉挤方式一体成型,工艺简便,便于大批量生产。
上述移相器,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线的一端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接,并将第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端,通过将两个滤波网络的输出信号合成一路输出,实现了合路器的功能,也就是说,该移相器集成有合路器,具备合路器的功能;另外,通过将第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内,也即将两个滤波网络设置在腔体内部,可以降低合路器的损耗,进而降低馈电网络的损耗。
本申请实施例将传统的合路器拆分成三个部分,把合路器中两个频段的滤波器分别设置在第一子腔体和第二子腔体内,与移相器电路集成,形成第一频段移相滤波网络和第二频段移相滤波网络;合路器的两个滤波器输出口在腔体内部与带线相连接后合路输出。该方案将两个滤波器设置在腔体内部,减小了网络的损耗,并且将两个滤波器的输出信号合成一路输出,实现了合路器的功能。相比现有技术将移相器与合路器分开设置的结构,还可以降低天线的成本,进一步减少馈电网络的损耗。
在上述实施例的基础上,一种实现方式中,信号输入网络401和信号输出网络402均为三维模具互连组件(Three Dimensional Molded Interconnect Device,3D-MID)部件,该3D-MID部件呈漏斗形状,其中,漏斗形状深入到腔体1的内部,参考图6和图7。具体地:3D-MID部件上的金属带线为三维走线方式,金属带线的一端位于腔体1的外部,金属带线的另一端沿漏斗形状深入到腔体1内部;3D-MID部件上,沿腔体1的长度方向开设有槽103或槽104,如图2所示,分别为第一频段移相滤波网络2和第二频段移相滤波网络3的避位滑槽。其中,信号输入网络401沿腔体1的长度方向开设有槽104,信号输出网络402沿腔体1的长度方向开设有槽103。其中,3D-MID是一种塑料成型的零件,其表面可以制作三维立体的导电带线回路。
图8为本申请一实施例提供的移相器中的第一频段移相滤波网络的装配示意图。参考图8,第一频段移相滤波网络2可以包括第一移相滤波金属带线201和分别设置在第一移相滤波金属带线201两纵侧的第一介质组件202。可选地,第一介质组件202可以为滑动介质组件。通过改变第一介质组件202的位置,改变传输路径的实际长度, 可以调整第一频段移相滤波网络2的相位,从而在第一频段实现天线下倾角。
图9为本申请一实施例提供的移相器中的第一频段移相滤波网络的结构示意图。如图9所示,第一移相滤波金属带线201可以包括第一移相功分部分和第一滤波部分。可以理解,在图9中所示的第一移相滤波金属带线201中,除已标示的第一滤波部分(虚线框内部分)之外的部分,为第一移相功分部分。
图10为本申请一实施例提供的移相器中的第二频段移相滤波网络的装配示意图。参考图10,第二频段移相滤波网络3包括第二移相滤波金属带线301和分别设置在第二移相滤波金属带线301两纵侧的第二介质组件302。可选地,第二介质组件302可以为滑动介质组件。通过改变第二介质组件302的位置,改变传输路径的实际长度,可以调整第二频段移相滤波网络3的相位,从而在第二频段实现天线下倾角。
本领域技术人员可以理解,第一频段移相滤波网络或者第二频段移相滤波网络均包含滑动介质组件。
其中,滑动介质组件可以沿着移相器的轴向移动,利用PCB的开槽或者在腔体上设置导向凸台作为移相器移动的轨道。
图11为本申请一实施例提供的移相器中的第二频段移相滤波网络的结构示意图。第二移相滤波金属带线301可以包括第二移相功分部分和第二滤波部分。可以理解,在图11中所示的第二移相滤波金属带线301中,除已标示的第二滤波部分(虚线框内部分)之外的部分,为第二移相功分部分。其中,第一滤波部分、第二滤波部分以及信号输出网络共同完成了合路器功能。
图12为本申请一实施例提供的移相器中的信号输出网络与第一、第二频段移相滤波网络的装配示意图。如图10所示,第一移相滤波金属带线201的输出端作为第一频段移相滤波网络2的输出端,与信号输出网络402的第一信号输出带线4021的一端连接;第二移相滤波金属带线301的输出端作为第一频段移相滤波网络2的输出端,与信号输出网络402的第二信号输出带线4022的一端连接。
一些实施例中,信号输出网络402的个数可以为至少两个,该至少两个信号输出网络402均设置有第一滤波部分和第二滤波部分。
在上述实施例中,第一信号输出带线4021、第二信号输出带线4022和第三信号输出带线4023的长度是基于信号阻抗匹配确定的。
值得说明的是,本申请实施例提供的移相器,并不仅限于包括第一频段移相滤波网络和第二频段移相滤波网络,也可以包括超过两个频段的移相滤波网络,如第三频段移相滤波网络及第四频段移相滤波网络。相应调整输入端、输出端的数量及连接方式即可。
上述集成有合路器的移相器,可以通过不同的组合可以实现不同形式的阵列天线。以下实施例是在上述实施例的基础上,对移相器进行不同形式的组合并应用到阵列天线中。
本申请实施例提供一种阵列天线,包括:移相器。该移相器,包括:腔体,第一频段移相滤波网络,第二频段移相滤波网络和信号输入输出网络;
其中,腔体包括第一子腔和第二子腔,第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内;
信号输入输出网络包括信号输入网络和信号输出网络;
信号输入网络的第一信号输入线一端设置在腔体外部,用于接收第一频段输入信号,第一信号输入线的另一端与第一频段移相滤波网络的输入端连接,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线的一端连接;
信号输入网络的第二信号输入线的一端设置在腔体外部,用于接收第二频段输入信号,第二信号输入线的另一端与第二频段移相滤波网络的输入端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接;
第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端。
上述阵列天线中,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线的一端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接,并将第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端,通过将两个滤波网络的输出信号合成一路输出,实现了合路器的功能;另外,通过将第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内,也即将两个滤波网络设置在腔体内部,可以降低合路器的损耗,进而降低馈电网络的损耗。
可选地,腔体的制作采用拉挤方式一体成型,工艺简便,便于大批量生产。
一些实施例中,信号输入网络和信号输出网络均为3D-MID部件,该3D-MID部件呈漏斗形状,其中,漏斗形状深入到腔体的内部;3D-MID部件上的金属带线为三维走线方式,金属带线的一端位于腔体的外部,金属带线的另一端沿漏斗形状深入到腔体内部;且,3D-MID部件上,沿腔体的长度方向开设有不同的槽,分别为第一频段移相滤波网络和第二频段移相滤波网络的避位滑槽。
可选地,第一频段移相滤波网络包括第一移相滤波金属带线和分别设置在第一移相滤波金属带线两纵侧的第一介质组件。可选地,第一介质组件可以为滑动介质组件。通过改变第一介质组件的位置,改变传输路径的实际长度,可以调整第一频段移相滤波网络的相位,从而在第一频段实现天线下倾角。
和/或,
第二频段移相滤波网络包括第二移相滤波金属带线和分别设置在第二移相滤波金属带线两纵侧的第二介质组件。可选地,第二介质组件可以为滑动介质组件。通过改变第二介质组件的位置,改变传输路径的实际长度,可以调整第二频段移相滤波网络的相位,从而在第二频段实现天线下倾角。
第一频段移相滤波网络及第二频段移相滤波网络均包括滑动介质组件。
其中,滑动介质组件可以沿着移相器的轴向移动,利用PCB的开槽或者在腔体上设置导向凸台作为移相器移动的轨道。
进一步地,第一移相滤波金属带线可以包括第一移相功分部分和第一滤波部分;第二移相滤波金属带线可以包括第二移相功分部分和第二滤波部分。其中,第一滤波部分、第二滤波部分以及信号输出网络共同完成了合路器功能。
可选地,信号输出网络的个数可以为至少两个,该至少两个信号输出网络均设置 有第一滤波部分和第二滤波部分。
其中,第一信号输出带线、第二信号输出带线和第三信号输出带线的长度是基于信号阻抗匹配确定的。
一种可能的实现方式中,在阵列天线中,移相器的个数可以为两个,这两个移相器组成四腔移相器。如图13所示例,该四腔移相器的四个子腔体中依次设置第二频段移相滤波网络、第一频段移相滤波网络、第一频段移相滤波网络、第二频段移相滤波网络。该示例中,移相器的腔体为金属腔体。
进一步地,上述阵列天线还可以包括:阵列反射板,参考图13。其中,该阵列反射板与四腔移相器的腔体为一体结构。
可选地,上述阵列天线还可以包括:振子。其中,振子位于四个子腔体的中心位置的正上方,如图13和图14所示。
该阵列天线的馈电网络与移相器的信号输出网络电连接。
另一种可能的实现方式中,在阵列天线中,移相器的个数可以为两个,这两个移相器组成四腔移相器。如图15所示例,将两个如上述实施例所述的移相器合并组成一个紧凑的四腔移相器,该四腔移相器中,左边两个子腔和右边两个子腔分隔开,四个子腔中依次设置第二频段移相滤波网络、第一频段移相滤波网络、第一频段移相滤波网络、第二频段移相滤波网络。该示例中,移相器的腔体为金属腔体。
进一步地,上述阵列天线还可以包括:阵列反射板,参考图15。其中,该阵列反射板与四腔移相器的腔体为一体结构。
可选地,上述阵列天线还可以包括:振子。其中,振子位于四个子腔体的中心位置的正上方,如图15和图16所示。
该阵列天线的馈电网络与移相器的信号输出网络电连接。
还需说明的,本申请实施例中提及的腔体均以竖腔结构为例进行说明,可选地,腔体还可以为横腔结构,具体实现原理同上述实施例,此处不再赘述。
本申请实施例还提供一种基站,该基站包括如上述任一实施例所述的移相器,和/或,阵列天线。其中,该阵列天线,包括:移相器。具体地,移相器包括:
腔体,第一频段移相滤波网络,第二频段移相滤波网络和信号输入输出网络;
其中,腔体包括第一子腔和第二子腔,第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内;
信号输入输出网络包括信号输入网络和信号输出网络;
信号输入网络的第一信号输入线一端设置在腔体外部,用于接收第一频段输入信号,第一信号输入线的另一端与第一频段移相滤波网络的输入端连接,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线的一端连接;
信号输入网络的第二信号输入线的一端设置在腔体外部,用于接收第二频段输入信号,第二信号输入线的另一端与第二频段移相滤波网络的输入端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接;
第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端。
上述基站,第一频段移相滤波网络的输出端与信号输出网络的第一信号输出带线 的一端连接,第二频段移相滤波网络的输出端与信号输出网络的第二信号输出带线的一端连接,并将第一信号输出带线的另一端和第二信号输出带线的另一端连接后,与第三信号输出带线的一端相连,第三信号输出带线的另一端为移相器的信号输出端,通过将两个滤波网络的输出信号合成一路输出,实现了合路器的功能;另外,通过将第一频段移相滤波网络设置在第一子腔内,第二频段移相滤波网络设置在第二子腔内,也即将两个滤波网络设置在腔体内部,可以降低合路器的损耗,进而降低馈电网络的损耗。
可选地,腔体的制作采用拉挤方式一体成型,工艺简便,便于大批量生产。
一些实施例中,信号输入网络和信号输出网络均为3D-MID部件,该3D-MID部件呈漏斗形状,其中,漏斗形状深入到腔体的内部;3D-MID部件上的金属带线为三维走线方式,金属带线的一端位于腔体的外部,金属带线的另一端沿漏斗形状深入到腔体内部;且,3D-MID部件上,沿腔体的长度方向开设有不同的槽,分别为第一频段移相滤波网络和第二频段移相滤波网络的避位滑槽。
可选地,第一频段移相滤波网络包括第一移相滤波金属带线和分别设置在第一移相滤波金属带线两纵侧的第一介质组件。可选地,第一介质组件可以为滑动介质组件。通过改变第一介质组件的位置,改变传输路径的实际长度,可以调整第一频段移相滤波网络的相位,从而在第一频段实现天线下倾角。
和/或,
第二频段移相滤波网络包括第二移相滤波金属带线和分别设置在第二移相滤波金属带线两纵侧的第二介质组件。可选地,第二介质组件可以为滑动介质组件。通过改变第二介质组件的位置,改变传输路径的实际长度,可以调整第二频段移相滤波网络的相位,从而在第二频段实现天线下倾角。
第一频段移相滤波网络及第二频段移相滤波网络均包括滑动介质组件。
其中,滑动介质组件可以沿着移相器的轴向移动,利用PCB的开槽或者在腔体上设置导向凸台作为移相器移动的轨道。
进一步地,第一移相滤波金属带线可以包括第一移相功分部分和第一滤波部分;第二移相滤波金属带线可以包括第二移相功分部分和第二滤波部分。其中,第一滤波部分、第二滤波部分以及信号输出网络共同完成了合路器功能。
可选地,信号输出网络的个数可以为至少两个,该至少两个信号输出网络均设置有第一滤波部分和第二滤波部分。
其中,第一信号输出带线、第二信号输出带线和第三信号输出带线的长度是基于信号阻抗匹配确定的。
一种可能的实现方式中,在阵列天线中,移相器的个数可以为两个,这两个移相器组成四腔移相器。如图13所示例,该四腔移相器的四个子腔体中依次设置第二频段移相滤波网络、第一频段移相滤波网络、第一频段移相滤波网络、第二频段移相滤波网络。该示例中,移相器的腔体为金属腔体。
进一步地,上述阵列天线还可以包括:阵列反射板,参考图13。其中,该阵列反射板与四腔移相器的腔体为一体结构。
可选地,上述阵列天线还可以包括:振子。其中,振子位于四个子腔体的中心位 置的正上方,如图13和图14所示。
该阵列天线的馈电网络与移相器的信号输出网络电连接。
另一种可能的实现方式中,在阵列天线中,移相器的个数可以为两个,这两个移相器组成四腔移相器。如图15所示例,将两个如上述实施例所述的移相器合并组成一个紧凑的四腔移相器,该四腔移相器中,左边两个子腔和右边两个子腔分隔开,四个子腔中依次设置第二频段移相滤波网络、第一频段移相滤波网络、第一频段移相滤波网络、第二频段移相滤波网络。该示例中,移相器的腔体为金属腔体。
进一步地,上述阵列天线还可以包括:阵列反射板,参考图15。其中,该阵列反射板与四腔移相器的腔体为一体结构。
可选地,上述阵列天线还可以包括:振子。其中,振子位于四个子腔体的中心位置的正上方,如图15和图16所示。
该阵列天线的馈电网络与移相器的信号输出网络电连接。
虽然仅仅已经对本申请的某些部件和实施例进行了图示并且描述,但是在不实际脱离在权利要求书中的范围和精神的情况下,本领域技术人员可以想到许多修改和改变(例如,各个元件的大小、尺寸、结构、形状和比例、安装布置、材料使用、颜色、取向等的变化)。而且,为了提供对示例性实施例的简洁说明,可能尚未描述实际实施方式的所有部件(即,与目前视为是执行本申请的最佳谐振模式无关的部件、或者与实现所要求的发明无关的部件)。应该了解,在任何这种实际实施方式的开发中,如在任何工程或者设计项目中一样,可能进行若干具体实施决策。这种开发工作可能是复杂的且耗时的,但对受益于本申请的那些普通技术人员来说,仍将是设计、加工和制造的例行程序,而无需过多实验。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
Claims (13)
- 一种移相器,其特征在于,包括:腔体(1),第一频段移相滤波网络(2),第二频段移相滤波网络(3)和信号输入输出网络(4);其中,所述腔体(1)包括第一子腔(101)和第二子腔(102),所述第一频段移相滤波网络(2)设置在所述第一子腔(101)内,所述第二频段移相滤波网络(3)设置在所述第二子腔(102)内;所述信号输入输出网络(4)包括信号输入网络(401)和信号输出网络(402);所述信号输入网络(401)的第一信号输入线(4011)一端设置在所述腔体(1)外部,用于接收第一频段输入信号,所述第一信号输入线(4011)的另一端与所述第一频段移相滤波网络(2)的输入端连接,所述第一频段移相滤波网络(2)的输出端与所述信号输出网络(402)的第一信号输出带线(4021)的一端连接;所述信号输入网络(401)的第二信号输入线(4012)的一端设置在所述腔体(1)外部,用于接收第二频段输入信号,所述第二信号输入线(4012)的另一端与所述第二频段移相滤波网络(3)的输入端连接,所述第二频段移相滤波网络(3)的输出端与所述信号输出网络(402)的第二信号输出带线(4022)的一端连接;所述第一信号输出带线(4021)的另一端和所述第二信号输出带线(4022)的另一端连接后,与第三信号输出带线(4023)的一端相连,所述第三信号输出带线(4023)的另一端为所述移相器的信号输出端。
- 根据权利要求1所述的移相器,其特征在于,所述信号输入网络(401)和所述信号输出网络(402)均为三维模具互连组件3D-MID部件,所述3D-MID部件呈漏斗形状,所述漏斗形状深入到所述腔体(1)的内部;所述3D-MID部件上的金属带线为三维走线方式,所述金属带线的一端位于腔体(1)的外部,所述金属带线的另一端沿所述漏斗形状深入到腔体(1)内部;所述3D-MID部件上,沿腔体(1)的长度方向开设有槽(103)或槽(104),分别为所述第一频段移相滤波网络(2)和所述第二频段移相滤波网络(3)的避位滑槽。
- 根据权利要求1或2所述的移相器,其特征在于,所述第一频段移相滤波网络(2)包括第一移相滤波金属带线(201)和分别设置在所述第一移相滤波金属带线(201)两纵侧的第一介质组件(202);所述第二频段移相滤波网络(3)包括第二移相滤波金属带线(301)和分别设置在所述第二移相滤波金属带线(301)两纵侧的第二介质组件(302)。
- 根据权利要求3所述的移相器,其特征在于,所述第一介质组件(202)为滑动介质组件;和/或,所述第二介质组件(302)为滑动介质组件。
- 根据权利要求3或4所述的移相器,其特征在于,所述第一移相滤波金属带线(201)包括第一移相功分部分和第一滤波部分;所述第二移相滤波金属带线(301)包括第二移相功分部分和第二滤波部分。
- 根据权利要求5所述的移相器,其特征在于,所述信号输出网络(402)的个数为至少两个,至少两个所述信号输出网络(402)均设置有所述第一滤波部分和所述第二滤波部分。
- 根据权利要求1至6中任一所述的移相器,其特征在于,所述第一信号输出带线(4021)、所述第二信号输出带线(4022)和所述第三信号输出带线(4023)的长度是基于信号阻抗匹配确定的。
- 一种阵列天线,其特征在于,包括:如权利要求1至7中任一所述的移相器。
- 根据权利要求8所述的阵列天线,其特征在于,所述移相器的个数为两个,两个所述移相器组成四腔移相器,所述四腔移相器的四个子腔体中依次设置第二频段移相滤波网络、第一频段移相滤波网络、第一频段移相滤波网络、第二频段移相滤波网络。
- 根据权利要求9所述的阵列天线,其特征在于,还包括:阵列反射板,所述阵列反射板与所述四腔移相器的腔体为一体结构。
- 根据权利要求8至10任一所述的阵列天线,其特征在于,还包括:振子,所述振子位于四个所述子腔体的中心位置的正上方。
- 根据权利要求8至11中任一所述的阵列天线,其特征在于,所述阵列天线的馈电网络与所述移相器的信号输出网络电连接。
- 一种基站,其特征在于,包括:如权利要求1至7中任一所述的移相器,和/或,如权利要求8至12中任一所述的阵列天线。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920673404.5U CN210430115U (zh) | 2019-05-13 | 2019-05-13 | 移相器、阵列天线及基站 |
CN201920673404.5 | 2019-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020228688A1 true WO2020228688A1 (zh) | 2020-11-19 |
Family
ID=70371336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/089720 WO2020228688A1 (zh) | 2019-05-13 | 2020-05-12 | 移相器、阵列天线及基站 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN210430115U (zh) |
WO (1) | WO2020228688A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023044234A1 (en) * | 2021-09-14 | 2023-03-23 | Commscope Technologies Llc | Housing for cavity phase shifter, cavity phase shifter and base station antenna |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN210430115U (zh) * | 2019-05-13 | 2020-04-28 | 华为技术有限公司 | 移相器、阵列天线及基站 |
CN112490661B (zh) * | 2020-11-23 | 2021-09-21 | 上海海积信息科技股份有限公司 | 一种阻抗匹配装置及天线 |
CN112736378B (zh) * | 2020-12-01 | 2021-12-14 | 武汉虹信科技发展有限责任公司 | 一种滤波移相器及天线 |
WO2022133637A1 (zh) * | 2020-12-21 | 2022-06-30 | 华为技术有限公司 | 天线及通讯设备 |
EP4254652A4 (en) * | 2020-12-28 | 2024-02-14 | Huawei Technologies Co., Ltd. | SIGNAL TRANSMITTING-RECEIVING APPARATUS, POWER SUPPLY STRUCTURE AND ANTENNA |
WO2022160094A1 (zh) * | 2021-01-26 | 2022-08-04 | 摩比天线技术(深圳)有限公司 | 一种一体化基站天线 |
CN113884795B (zh) * | 2021-09-28 | 2023-11-21 | 北京京东方技术开发有限公司 | 液晶移相器的检测治具及检测装置 |
CN114976536B (zh) * | 2022-06-06 | 2023-11-21 | 京信通信技术(广州)有限公司 | 移相合路组件、天线及基站 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130287144A1 (en) * | 2012-04-12 | 2013-10-31 | Electronics Research, Inc. | High level iboc combining method and apparatus for single input antenna systems |
CN103956577A (zh) * | 2014-04-30 | 2014-07-30 | 广东晖速通信技术有限公司 | 一种4g天线的一体化馈电网络 |
CN106654494A (zh) * | 2016-09-28 | 2017-05-10 | 武汉虹信通信技术有限责任公司 | 一种双系统移相合路模块及独立电调天线 |
CN107710499A (zh) * | 2015-06-23 | 2018-02-16 | 华为技术有限公司 | 移相器和天线 |
CN107968239A (zh) * | 2017-12-29 | 2018-04-27 | 京信通信系统(中国)有限公司 | 移相结构及天线 |
CN108023147A (zh) * | 2017-12-29 | 2018-05-11 | 京信通信系统(中国)有限公司 | 合路器、移相器组件及天线 |
CN108232379A (zh) * | 2017-12-29 | 2018-06-29 | 京信通信系统(中国)有限公司 | 移相结构及天线 |
CN210430115U (zh) * | 2019-05-13 | 2020-04-28 | 华为技术有限公司 | 移相器、阵列天线及基站 |
-
2019
- 2019-05-13 CN CN201920673404.5U patent/CN210430115U/zh active Active
-
2020
- 2020-05-12 WO PCT/CN2020/089720 patent/WO2020228688A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130287144A1 (en) * | 2012-04-12 | 2013-10-31 | Electronics Research, Inc. | High level iboc combining method and apparatus for single input antenna systems |
CN103956577A (zh) * | 2014-04-30 | 2014-07-30 | 广东晖速通信技术有限公司 | 一种4g天线的一体化馈电网络 |
CN107710499A (zh) * | 2015-06-23 | 2018-02-16 | 华为技术有限公司 | 移相器和天线 |
CN106654494A (zh) * | 2016-09-28 | 2017-05-10 | 武汉虹信通信技术有限责任公司 | 一种双系统移相合路模块及独立电调天线 |
CN107968239A (zh) * | 2017-12-29 | 2018-04-27 | 京信通信系统(中国)有限公司 | 移相结构及天线 |
CN108023147A (zh) * | 2017-12-29 | 2018-05-11 | 京信通信系统(中国)有限公司 | 合路器、移相器组件及天线 |
CN108232379A (zh) * | 2017-12-29 | 2018-06-29 | 京信通信系统(中国)有限公司 | 移相结构及天线 |
CN210430115U (zh) * | 2019-05-13 | 2020-04-28 | 华为技术有限公司 | 移相器、阵列天线及基站 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023044234A1 (en) * | 2021-09-14 | 2023-03-23 | Commscope Technologies Llc | Housing for cavity phase shifter, cavity phase shifter and base station antenna |
Also Published As
Publication number | Publication date |
---|---|
CN210430115U (zh) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020228688A1 (zh) | 移相器、阵列天线及基站 | |
CN203910943U (zh) | 腔体式微波器件 | |
WO2020155722A1 (zh) | 天线及其移相馈电装置 | |
US20190273317A1 (en) | Combined Phase Shifter And Multi-Band Antenna Network System | |
CN109841963B (zh) | 一种馈电系统、天线系统及基站 | |
DE212014000088U1 (de) | Elektronische Vorrichtung mit Mehrfachanschluss-Antennenstrukturen mit Resonanzschlitz | |
EP2403053A1 (en) | Coupling mechanism for a PCB mounted microwave re-entrant resonant cavity | |
CN105305073B (zh) | 多入多出天线结构及移动终端 | |
US11705614B2 (en) | Coupling device and antenna | |
CN104681896A (zh) | 一种多路一体化介质移相器 | |
WO2022143320A1 (zh) | 一种电子设备 | |
CN113823884B (zh) | 一种介质移相器及基站天线 | |
CN109216875B (zh) | 一种带反射腔的宽频天线及天线系统 | |
CN111146539B (zh) | 一种陶瓷介质波导双工器 | |
CN204614906U (zh) | 一种多路一体化介质移相器 | |
WO2021248887A1 (zh) | 馈电网络、天线系统及基站 | |
KR20110009384A (ko) | 이동통신 단말기의 안테나 장치 제조 방법 | |
GB2378585A (en) | Resonator device, filter, duplexer, and communication apparatus using the same | |
KR100390351B1 (ko) | 유전체공진기를 내장시킨 도체캐비티로 이루어진 필터 및듀플렉서 필터 | |
EP4037093A1 (en) | Ceramic dielectric filter | |
WO2017199766A1 (ja) | 帯域通過フィルタ及びその制御方法 | |
CN114497930A (zh) | 合路移相装置与天线 | |
CN107895844A (zh) | 一种天线组合结构及移动终端 | |
CN115997320A (zh) | 介质滤波器和具有该介质滤波器的au、ru或bs | |
US20240063540A1 (en) | Phase Shifter, Antenna and Base Station Containing the Phase Shifter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20805788 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20805788 Country of ref document: EP Kind code of ref document: A1 |