WO2020228599A1 - 一种发光二极管 - Google Patents

一种发光二极管 Download PDF

Info

Publication number
WO2020228599A1
WO2020228599A1 PCT/CN2020/089147 CN2020089147W WO2020228599A1 WO 2020228599 A1 WO2020228599 A1 WO 2020228599A1 CN 2020089147 W CN2020089147 W CN 2020089147W WO 2020228599 A1 WO2020228599 A1 WO 2020228599A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode structure
electrode
emitting diode
diameter
light emitting
Prior art date
Application number
PCT/CN2020/089147
Other languages
English (en)
French (fr)
Inventor
林素慧
许圣贤
沈孟骏
陈思河
黄禹杰
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Priority to KR1020217027049A priority Critical patent/KR102631088B1/ko
Publication of WO2020228599A1 publication Critical patent/WO2020228599A1/zh
Priority to US17/454,079 priority patent/US20220123173A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present invention relates to the field of semiconductor technology, in particular to a light emitting diode.
  • Light-emitting diodes Light Emitting Diodes, LEDs
  • LEDs Light Emitting Diodes
  • the complete structure of LEDs generally includes P-type GaN, multiple quantum well MQW, N-type GaN, non-doped GaN, substrate, and the P-type is etched from the front on this structure.
  • GaN and MQW structure to fabricate a component with PN junction, and fabricate a PN electrode structure.
  • Most of the electrode structure is a platform structure with up and down flat surfaces. Such flat surfaces will cause a series of problems during the subsequent packaging and wire bonding process. For example, the electrode material will be extruded to both sides of the electrode due to the extrusion of solder balls. It will destroy the overall structure of the platform electrode, especially the bottom structure of the electrode structure.
  • the electrode material and the material below it in contact with it are generally different materials, so the connection between the two has poor adhesion, Relatively fragile and other shortcomings. At this time, when the electrode structure is subjected to force during wire bonding, it is easy to cause the electrode structure to fall off or peel off, thereby affecting the conductivity during the period.
  • the purpose of the present invention is to provide a light-emitting diode, the electrode structure of the light-emitting diode is formed with an insulating flat plate structure, the flat plate structure is poor in ductility, flat structure It will block the force of the solder ball on the electrode, change the force of the entire electrode structure, and limit the deformation of the electrode material, thereby protecting the structure of the bottom electrode, especially the edge structure of the bottom electrode from being damaged, thereby preventing the electrode or the solder ball from falling off or Peel off.
  • a light emitting diode including:
  • the conductivity type of the second semiconductor layer is opposite to that of the first semiconductor layer
  • Electrode structures are respectively formed on the second part of the first semiconductor layer and on the second semiconductor layer;
  • the electrode structure includes an insulator structure, the insulator structure is embedded in the electrode structure, and a mesa structure is formed in the electrode structure, the height of the mesa structure is smaller than the height of the electrode structure.
  • the light emitting diode further includes a current conducting layer formed on the second part of the first semiconductor layer and the second semiconductor layer.
  • the insulator structure includes a disk structure embedded in the electrode structure, the center of the disk structure is aligned with the center of the cylindrical electrode structure, and the diameter of the disk structure is smaller than The diameter of the electrode structure and the thickness of the disc structure are smaller than the height of the electrode structure.
  • the disc structure forms a discontinuous structure including a plurality of sector-shaped structures.
  • the insulator structure further includes a support portion extending downwardly from the center of the disc structure, and the diameter of the support portion is smaller than the diameter of the disc structure.
  • the insulator structure further includes a peripheral ring structure formed on the outside of the support portion and formed in a different plane from the disk structure, and the peripheral ring structure
  • the outer diameter of is less than or equal to the diameter of the electrode structure
  • the inner diameter of the peripheral ring structure is greater than the diameter of the support portion
  • the thickness of the peripheral ring structure is less than the height of the support portion.
  • the support portion extends to the bottom of the electrode structure.
  • the insulator structure includes a ring structure embedded in the electrode structure, the center of the ring structure is aligned with the center of the cylindrical electrode structure, and the outer diameter of the ring structure is smaller than Equal to the diameter of the electrode structure, the thickness of the ring structure is smaller than the height of the electrode structure.
  • the ring structure forms a discontinuous structure, including a plurality of sector-shaped ring structures.
  • the insulator structure further includes a peripheral support wall extending downwardly from the edge of the ring structure, and the thickness of the peripheral support wall is smaller than the width of the ring structure.
  • the insulator structure further includes an intermediate disc structure, which is located on the inner side of the peripheral support wall, and The intermediate disc structure and the annular structure are formed in different planes, the diameter of the intermediate disc is smaller than the inner diameter of the peripheral support wall, and the thickness of the intermediate disc is smaller than the height of the peripheral support wall .
  • the peripheral support wall extends to the bottom of the electrode structure.
  • the insulator structure when the outer diameter of the ring structure is smaller than the diameter of the electrode structure, the insulator structure further includes a second ring structure formed on the outer side of the peripheral support wall , And the second ring structure and the ring structure are formed in different planes, the outer diameter of the second ring structure is less than or equal to the diameter of the electrode, and the inner diameter of the second ring structure is greater than or equal to The diameter of the peripheral support wall and the thickness of the second ring are smaller than the height of the peripheral support wall.
  • the peripheral support wall extends to the bottom of the electrode structure.
  • the electrode structure forms a cylindrical structure or a truncated cone structure with a top diameter smaller than a bottom diameter.
  • the electrode structure includes a bottom layer and an upper layer, wherein the ring of the insulator structure is supported on the bottom layer of the electrode structure.
  • the electrode structure forms a cylindrical structure or a truncated cone structure with a top diameter smaller than a bottom diameter.
  • the thickness of the insulator structure is 100-6000 nm.
  • the bottom layer of the electrode structure includes a reflective layer.
  • an insulating layer is included around the electrode structure, and the insulating layer extends into the electrode structure to form a continuous structure with the insulator structure.
  • the electrode is an electrode for wire bonding.
  • the light emitting diode of the present invention has the following beneficial effects:
  • an insulator structure is embedded in the electrode structure, and the insulator structure forms a mesa structure in the electrode structure.
  • the mesa structure has a diameter smaller than that of the electrode structure and a height smaller than the height of the electrode structure, and will not affect the electrode structure and the current below.
  • the contact of the conductive layer will not affect the contact between the solder ball and the electrode structure during the later wire bonding, and therefore will not affect the conductivity of the entire device.
  • the insulator structure causes the metal material of the electrode structure to break or isolate the metal material of the electrode structure from each other, and the ductility of the insulator structure is significantly less than that of the metal material of the electrode structure, so it can effectively block wire bonding. Of force. Therefore, during packaging and wire bonding, the insulator structure will block the force applied during wire bonding and change the force of the electrode structure, thereby changing the extrusion direction of the metal material of the electrode structure to avoid deformation of the bottom of the electrode structure Or damage, thereby ensuring that the electrode structure or solder will not fall off or peel off.
  • the above-mentioned insulator structure is embedded in the electrode structure, so an embedded capacitor can be formed inside the electrode.
  • the embedded capacitor can be formed at the edge of the electrode, which can improve the antistatic ability of the electrode structure and reduce the light-emitting diode The risk of electrostatic breakdown increases the reliability and service life of the device.
  • FIG. 1 is a schematic diagram of the structure of a light emitting diode according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure along the L1-L1 direction along the plane a1 where the insulator structure in the electrode structure of the light emitting diode shown in FIG. 1 is located.
  • FIG. 3 is a schematic diagram of an electrode structure of a light emitting diode according to a preferred embodiment of the first embodiment of the present invention.
  • FIG. 4 shows a schematic diagram of the electrode structure of a light emitting diode according to another preferred embodiment of the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional structure diagram of the electrode structure of the light emitting diode provided in the second embodiment of the present invention along the plane a1 shown in FIG. 1 in the direction L1-L1.
  • FIG. 6 is a schematic diagram of an electrode structure of a light emitting diode according to a third embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the structure of a light emitting diode provided in the fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a cross-sectional structure in the direction L2-L2 along the plane a2 where the insulator structure in the electrode structure of the light emitting diode shown in FIG. 7 is located.
  • FIG. 9 is a schematic diagram of an electrode structure of a light emitting diode according to a preferred embodiment of the fourth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the electrode structure of a light emitting diode according to another preferred embodiment of the fourth embodiment of the present invention.
  • FIG. 11 shows the cross-sectional structure of the electrode structure of the light-emitting diode provided by the fifth embodiment of the present invention along the same plane as the plane a2 where the insulator structure in the electrode structure of the light-emitting diode shown in FIG. 7 is located in the same direction L2-L2 Schematic.
  • FIG. 12 is a schematic diagram of an electrode structure of a light emitting diode provided in a sixth embodiment of the invention.
  • FIG. 13 is a schematic diagram showing the structure of a light emitting diode according to the seventh embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing a cross-sectional structure in the direction L3-L3 along the plane a3 where the insulator structure in the electrode structure of the light emitting diode shown in FIG. 13 is located.
  • FIG. 15 is a schematic diagram of the electrode structure of a light emitting diode in a preferred embodiment according to the seventh embodiment of the present invention.
  • FIG. 16 is a schematic diagram of an electrode structure of a light emitting diode according to another preferred embodiment of the seventh embodiment of the present invention.
  • FIG. 17 shows a cross-sectional structure of the electrode structure of the light-emitting diode provided by the eighth embodiment of the present invention along the same plane as the plane a3 where the insulator structure in the electrode structure of the light-emitting diode shown in FIG. 14 is located in the same direction L3-L3 Schematic.
  • FIG. 18 is a schematic diagram of an electrode structure of a light-emitting diode according to a ninth embodiment of the present invention.
  • FIG. 19 is a schematic diagram of an electrode structure of a light emitting diode according to a preferred embodiment of Embodiment 9 of the present invention.
  • FIG. 20 is a schematic diagram of an electrode structure of a light emitting diode according to another preferred embodiment of Embodiment 9 of the present invention.
  • the light emitting diode 100 includes a substrate 101 and a first semiconductor layer 102 formed on the substrate 101. As shown in FIG. 1, the first semiconductor layer 102 is formed to include a first portion 1021 and a second portion 1022.
  • the light emitting diode 100 also includes an active layer 103 formed on the first portion 1021 of the first semiconductor layer 102, a second semiconductor layer 104 formed on the active layer 103, and a second semiconductor layer 104 formed on the second semiconductor layer 104 and the first semiconductor layer.
  • the electrode structure 106 on the second portion 1022 of the semiconductor layer 102.
  • the electrode structure 106 includes an insulator structure embedded in the electrode structure 106, a mesa structure is formed in the electrode structure 106, and the height of the formed mesa structure is smaller than the height of the electrode structure.
  • the embedded arrangement can be interpreted as: the insulator structure is arranged inside the electrode structure, and the uppermost part of the non-electrode structure is not at the lowermost part of the electrode structure. That is, the insulator structure will not be exposed directly above the electrode structure.
  • the aforementioned substrate 101 includes a substrate commonly used in the art, for example, it may be an insulator material such as silicon rubber, quartz, glass, aluminum nitride, or ceramic.
  • the first semiconductor material layer 102 and the second semiconductor layer 104 are semiconductor layers with opposite conductivity types.
  • the first semiconductor layer 102 is a p-type semiconductor
  • the second semiconductor layer 104 can be an n-type semiconductor with opposite conductivity types.
  • One semiconductor layer 102 is an n-type semiconductor
  • the second semiconductor layer 104 may be a p-type semiconductor with an opposite conductivity type.
  • the active layer 103 may be a neutral, p-type or n-type semiconductor.
  • the active layer 103 When current passes through the light emitting diode 100, the active layer 103 is excited to emit light.
  • the active layer 103 includes nitride-based materials, the light emitting diode 100 emits blue or green light; when the active layer 103 includes aluminum indium phosphide-based materials, the light emitting diode 100 emits red and orange light. , Amber light of yellow light.
  • the first semiconductor layer 102 is an n-type semiconductor and the second semiconductor layer 104 is a p-type semiconductor as an example.
  • the light emitting diode further includes a current conducting layer 105 formed on the second semiconductor layer 104.
  • the second semiconductor layer 104 is formed on the current conducting layer 105.
  • the electrode structure 106 that is, the drawings only show that the current conducting layer is formed on the p-type second semiconductor layer, and the current conducting layer 105 is not formed on the second part of the n-type first semiconductor layer. In practical applications, it can also be based on actual needs.
  • a current conducting layer is formed on the second part of the n-type first semiconductor.
  • the insulator structure may be formed of oxide and/or nitride.
  • oxides include silicon dioxide, silicon oxide, aluminum oxide, etc.
  • nitrides include silicon nitride and the like.
  • the electrode structure 106 may include a multilayer structure.
  • the electrode structure 106 in this embodiment does not show a multilayer structure of the electrode structure.
  • the aforementioned current conducting layer 105 may be a current conducting layer material commonly used in the art, such as indium tin oxide ITO or the like.
  • the electrode structure is a stack of multiple layers of metal, including at least a bottom layer and an upper layer, wherein the bottom layer includes at least one or more layers, and at least a reflective layer is included, and the reflective layer provides reflection of radiation from the light-emitting layer to its surface, Therefore, the utilization rate of the light radiated to the bottom surface of the electrode is improved.
  • the material of the reflective layer is Al or Ag.
  • the upper layer includes at least one layer and multiple layers, including at least a surface layer, which is a wire bonding layer, and provides an adhesion layer for external wire bonding electrodes during packaging. Because metal reflective layers such as Al and Ag are easily oxidized, or because water vapor migrates.
  • the upper layer may also include a barrier layer, which is interposed between the bottom reflective layer and the wire bonding layer of the upper layer, such as Ti, Pt, Ni or W. The barrier layer can block the diffusion or migration of metal in the reflective layer.
  • the ductility of the insulator structure is significantly lower than the ductility of the metal material of the electrode structure, so it can effectively block the force applied during wire bonding. Therefore, during packaging and wire bonding, the insulator structure will block the force applied during wire bonding and change the force of the electrode structure, thereby changing the extrusion direction of the metal material of the electrode structure to avoid deformation of the bottom of the electrode structure Or damage to ensure that the electrode structure or solder will not fall off or peel off.
  • the bottom layer includes a reflective layer, and the insulator structure is located on the bottom reflective layer, which can prevent the reflective layer from being squeezed, deformed, broken, etc., and metal diffusion or Migration, leading to electrode failure.
  • the electrode structure has an insulator structure embedded between two layers, and the insulator structure at least includes a layered structure part extending on the opposite surface between two adjacent layers in the electrode structure.
  • FIG. 1 a view in the direction of L1-L1 along the plane a1 where the insulator structure shown in FIG. 1 is located is shown in FIG. 2.
  • the electrode structure 106 is formed as a cylindrical structure, and the insulator structure is formed in two adjacent layers.
  • the disk structure 107 extends on the opposite surface between the two, and the diameter of the disk structure 107 is smaller than the diameter of the electrode structure 106, and its thickness is smaller than the height of the electrode structure 106.
  • the disc structure 107 is embedded in the electrode structure 106, which will not affect the contact between the electrode structure and the current conducting layer below, nor will it affect the contact between the solder ball and the electrode structure during later wire bonding, so it will not affect The conductivity of the entire device.
  • the center of the disk structure is aligned with the center of the electrode structure 106.
  • Such a configuration can ensure that the disc structure 107 formed by the insulator structure can be uniformly stressed during the later packaging and wire bonding, thereby uniformly dispersing or blocking the force of the electrode structure 106.
  • FIG. 3 a schematic diagram of the electrode structure of the preferred embodiment is shown.
  • the insulator structure not only includes the above-mentioned disc structure 107, but also includes a support portion 108 extending downwardly from the center of the disc structure 107.
  • the supporting portion 108 may be formed in a cylindrical shape, and the diameter of the supporting portion 108 is smaller than the diameter of the disc structure 107, and the height is less than or equal to the distance from the disc structure 107 to the bottom of the electrode.
  • the supporting portion 108 can further prevent the electrode structure from being subjected to wire bonding. force.
  • the supporting portion 108 extends longitudinally downward along the thickness direction of the electrode structure, and passes through at least part of the thickness or the entire thickness of one layer, or through the thickness of multiple metal layers.
  • the aforementioned supporting portion 108 extends to the bottom of the electrode structure, that is, the height of the supporting portion 108 is equal to the distance from the disc structure 107 to the bottom of the electrode. As shown in Figure 3.
  • the insulator structure not only includes the above-mentioned disc structure 107, and the support portion 108 formed extending downward from the center of the disc structure 107, but also includes an electrode structure formed on the outside of the support portion.
  • the peripheral ring structure 109 of the edge portion of 106 is formed in a different plane from the disk structure 107.
  • the outer diameter of the outer ring structure 109 is less than or equal to the diameter of the electrode structure 106, and the inner diameter is greater than the diameter of the support portion 108. Therefore, the insulator structure will not affect the continuity of the electrode structure, and will not affect the electrode structure and the current below. Electrical connectivity of the conductive layer.
  • This embodiment also provides a light-emitting diode.
  • the structure of the light-emitting diode is similar to the structure of the light-emitting diode shown in the first embodiment and will not be repeated here. The difference is:
  • FIG. 5 there is shown a schematic structural diagram of the electrode structure 206 of the light emitting diode of this embodiment along the plane a1 shown in FIG. 1 in the direction L1-L1.
  • the insulator structure in the electrode structure 206 is formed as a plurality of discontinuous discontinuous structures, for example, a plurality of sector-shaped structures 207 are formed.
  • four independent fan-shaped structures 207 are formed. Of course, other numbers of fan-shaped structures can also be formed.
  • the insulator structure may also include the supporting portion and the peripheral ring structure described in the first embodiment.
  • This embodiment also provides a light-emitting diode.
  • the structure of the light-emitting diode is similar to the structure of the light-emitting diode shown in Embodiment 1 and Embodiment 2, and will not be repeated here. The difference is:
  • the electrode structure 306 is formed as a truncated cone structure whose lower diameter is larger than the upper diameter, that is, a truncated cone structure with a trapezoidal vertical cross section.
  • the insulator structure is also formed as a disc structure 307, and may also include the support portion and the peripheral ring structure described in the embodiment.
  • the electrode structure 306 is formed as a truncated cone structure with a trapezoidal vertical cross-section, the diameter of the disc structure, the inner diameter and the outer diameter of the outer ring structure are expressed relative to the diameter of the electrode structure on the plane where it is located. In terms of. And for the case where the outer diameter of the outer ring is equal to the electrode structure 306, the outer side of the outer ring structure correspondingly has an inclination consistent with the electrode structure 306.
  • the light emitting diode 400 includes a substrate 401 and a first semiconductor layer 402 formed on the substrate 401. As shown in FIG. 1, the first semiconductor layer 402 is formed to include a first portion 4021 and a second portion 4022.
  • the light emitting diode 400 further includes an active layer 403 formed on the first portion 4021 of the first semiconductor layer 402, a second semiconductor layer 404 formed on the active layer 403, and a second semiconductor layer 404 formed on the second semiconductor layer 404 and the first semiconductor layer 404.
  • the electrode structure 106 includes an insulator structure embedded in the electrode structure 406, a mesa structure is formed in the electrode structure 406, and the height of the formed mesa structure is smaller than the height of the electrode structure.
  • the embedded arrangement is interpreted as that the insulator structure is arranged inside the electrode structure, and the uppermost part of the non-electrode structure is not at the lowermost part of the electrode structure. That is, the insulator structure will not be exposed directly above the electrode structure.
  • the substrate 401, the first semiconductor material layer 402, the second semiconductor layer 404, and the active layer 404 may be neutral, p-type or n-type semiconductors, insulator structures, current conducting layers 405 and the embodiments
  • a material layer with the same name can have the same material composition, which will not be repeated here.
  • the ductility of the insulator structure is significantly lower than the ductility of the metal material of the electrode structure, so it can effectively block the force applied during wire bonding. Therefore, during packaging and wire bonding, the insulator structure will block the force applied during wire bonding and change the stress on the bottom layer of the bottom electrode structure, thereby changing the extrusion direction of the metal material of the electrode structure and avoiding the bottom of the electrode structure Deformation or damage occurs upon compression, thereby ensuring that the electrode structure or solder does not fall off or peel off.
  • the electrode structure 406 includes an insulator structure embedded therein.
  • a view in the direction of L2-L2 along the plane a2 where the insulator structure shown in FIG. 7 is located is shown in FIG. 8, the electrode structure 406 is formed as a cylindrical structure, and The electrode structure is multi-layered.
  • the electrode structure has an insulator structure embedded between two layers.
  • the insulator structure at least includes an extension formed on the opposite surface between two adjacent layers in the electrode structure.
  • the insulator structure in this embodiment is formed as a ring structure 407.
  • the outer diameter of the ring structure is equal to the diameter of the electrode structure 406, and its thickness is smaller than the height of the electrode structure 406.
  • the ring structure 407 is embedded in the electrode structure 406, and the opening of the ring structure 407 is filled with the material of the electrode structure, which will not affect the contact between the electrode structure and the current conducting layer below, and will not affect the later wire bonding The contact between the solder ball and the electrode structure will not affect the conductivity of the entire device.
  • the center of the ring structure is aligned with the center of the electrode structure 406.
  • Such a configuration can ensure that the ring structure 107 formed by the insulator structure can be uniformly stressed during the later packaging and wiring, thereby uniformly dispersing or blocking the force of the electrode structure 406.
  • the insulator structure not only includes the above-mentioned circular ring structure 407, but also includes a peripheral support wall 408 formed from the edge of the circular ring structure 407 downwardly.
  • the peripheral support wall 408 can further block the force of the electrode structure during wire bonding.
  • the thickness of the peripheral support wall 408 is smaller than the width of the ring structure 407 (that is, the outer diameter of the ring structure 407 minus the difference of the inner diameter), and the height of the peripheral support wall 408 is equal to that of the ring structure 407.
  • the sum of the thickness of the structure 407 is smaller than the height of the electrode structure 406.
  • peripheral support wall 408 extends all the way to the bottom of the electrode structure 406. As shown in Figure 9.
  • the insulator structure not only includes the above-mentioned circular ring structure 407 and the peripheral support wall 408 formed by extending the edge of the circular ring structure 407 downwards, but also includes an intermediate disk structure 409, which 409 is formed on the inner side of the aforementioned peripheral support wall, and is formed in a different plane from the ring structure 407.
  • the diameter of the middle disc structure 409 is smaller than the inner diameter of the peripheral support wall, and the thickness of the middle disc structure 409 is smaller than the height of the peripheral support wall 408. Therefore, the insulator structure will not damage the continuity of the electrode structure and will not affect The electrical connectivity between the electrode structure and the underlying current conducting layer.
  • the above-mentioned insulator structure especially the insulator structure forming the ring structure 407, can form a capacitor at the edge of the electrode, which can increase the antistatic breakdown performance of the electrode edge, thereby reducing the light-emitting diode
  • the risk of electrostatic breakdown increases the reliability and service life of the device.
  • This embodiment also provides a light-emitting diode.
  • the structure of the light-emitting diode is similar to the structure of the light-emitting diode shown in the fourth embodiment and will not be repeated here. The difference is:
  • FIG. 11 there is shown a schematic structural diagram of the electrode structure 506 of the light-emitting diode of the present embodiment along the plane a2 shown in FIG. 7 in the L2-L2 direction.
  • the insulator structure in the electrode structure 506 is formed as an intermittent discontinuous ring structure, for example, a plurality of sector-shaped ring structures 507 are formed. As shown in FIG. 11, it is formed into four independent fan-shaped ring structures 507. Of course, other numbers of fan-shaped ring structures can also be formed.
  • the insulator structure may also include the peripheral support wall and/or the intermediate disk described in the fourth embodiment.
  • This embodiment also provides a light-emitting diode.
  • the structure of the light-emitting diode is similar to the structure of the light-emitting diode shown in the fourth and fifth embodiments and will not be repeated here. The difference is:
  • the electrode structure 606 is formed as a truncated cone structure with a bottom diameter larger than that of the upper part, that is, a truncated cone structure with a trapezoidal vertical section.
  • the insulator structure is also formed as a ring structure 607, and may also include the peripheral support wall and the middle disk structure described in the fourth embodiment.
  • the electrode structure 606 is formed as a truncated cone structure with a trapezoidal vertical cross section, the outer diameter, inner diameter, and the diameter of the intermediate disc of the annular structure are all relative to the diameter of the electrode structure on the plane where it is located. In terms of. And for the case where the outer diameter of the ring structure 607 is equal to the diameter of the electrode structure 606 in this embodiment, the peripheral support wall correspondingly has the same inclination as the side wall of the electrode structure 606. Refer to FIG. 19 and 20 shown.
  • This embodiment also provides a light-emitting diode.
  • the structure of the light-emitting diode is similar to the structure of the light-emitting diode shown in the fourth embodiment and will not be repeated here. The difference is:
  • the outer diameter of the ring structure 707 formed by the insulator structure embedded in the electrode structure 706 is smaller than the diameter of the electrode structure 706.
  • the insulator structure not only includes the above-mentioned annular structure 707, but also includes a peripheral support wall 708 formed along the edge of the annular structure 707 extending downward.
  • the peripheral support wall 708 has the same structural features as the peripheral support wall 408 in the fourth embodiment.
  • the insulator structure not only includes the above-mentioned circular ring structure 707 and the peripheral support wall 708 formed by extending the edge of the circular ring structure 707 downward, but also includes a second peripheral support wall 708 formed outside the peripheral support wall 708.
  • a two-ring structure 709, the second ring structure 709 and the ring structure 707 are formed in different planes.
  • the inner diameter of the second annular structure 709 is greater than or equal to the diameter of the peripheral support wall 708, and the outer diameter thereof is less than or equal to the diameter of the electrode structure 706.
  • the thickness of the second ring structure 709 is less than the height of the peripheral support wall 408, thus, the insulator structure will not damage the continuity of the electrode structure, and will not affect the electrical connection between the electrode structure and the current conducting layer below. .
  • the formed second ring structure 709 and the insulating layer formed above the device form a continuous structure, which can simplify the process of forming the aforementioned insulator structure.
  • This embodiment also provides a light-emitting diode.
  • the structure of the light-emitting diode is similar to the structure of the light-emitting diode shown in the seventh embodiment and will not be repeated here. The difference is:
  • the insulator structure in the electrode structure 806 is formed as a discontinuous circular ring structure, for example, a plurality of sector-shaped circular ring structures 807 are formed. As shown in FIG. 17, it is formed into four independent sector-shaped ring structures 807. Of course, other numbers of fan-shaped ring structures can also be formed.
  • the insulator structure may also include the peripheral support wall and/or the second circular ring described in the seventh embodiment.
  • This embodiment also provides a light-emitting diode.
  • the structure of the light-emitting diode is similar to the structure of the light-emitting diode shown in the seventh and eighth embodiments and will not be repeated here. The difference is:
  • the electrode structure 906 is formed as a truncated cone structure with a bottom diameter larger than the upper diameter, that is, a truncated cone structure with a trapezoidal vertical cross section.
  • the insulator structure is also formed as a ring structure 907, and the horizontal outer diameter of the ring structure is smaller than or equal to the horizontal diameter of the electrode structure.
  • the insulator structure not only includes the above-mentioned ring structure 907, but also includes a peripheral support wall 908 extending downward along the edge portion of the ring structure. More preferably, the peripheral support wall 908 has the same inclination as the side wall of the electrode structure 906.
  • the insulator structure may also include the above-mentioned annular structure 907 and the peripheral support wall 908 extending downward along the edge of the annular structure.
  • a second ring structure 909 is formed outside the peripheral support wall 908.
  • the second ring structure 709 of the insulator structure and the insulating layer formed above the device form a continuous structure.
  • the second ring structure and the insulating layer formed above the device may be the same insulating material to form the effect that the insulating layer above the device extends into the electrode structure. In this way, while protecting the electrode structure from damage to the bottom structure during wiring, it can also simplify the process of forming the above-mentioned insulator structure.
  • the second ring structure 909 has the same features as the second ring structure 709 in the seventh embodiment, and will not be described in detail here.
  • the electrode structure 906 is formed as a truncated cone structure with a trapezoidal vertical cross-section, the outer diameter and inner diameter of the toroidal structure, and the outer diameter and inner diameter of the second toroidal structure are expressed relative to its plane. In terms of the diameter of the electrode structure.
  • the light emitting diode of the present invention includes the following beneficial effects:
  • an insulator structure is embedded in the electrode structure, and the insulator structure forms a mesa structure in the electrode structure.
  • the mesa structure has a diameter smaller than that of the electrode structure and a height smaller than that of the electrode structure, and does not affect the electrode structure and the current below. The contact of the conductive layer will not affect the contact between the solder ball and the electrode structure during the later wire bonding, and therefore will not affect the conductivity of the entire device.
  • the insulator structure causes the metal material of the electrode structure to break or isolate the metal material of the electrode structure from each other, and the ductility of the insulator structure is significantly less than that of the metal material of the electrode structure, so it can effectively block wire bonding. Of force. Therefore, during packaging and wire bonding, the insulator structure will block the force applied during wire bonding and change the force of the electrode structure, thereby changing the extrusion direction of the metal material of the electrode structure to avoid deformation of the bottom of the electrode structure Or damage, thereby ensuring that the electrode structure or solder will not fall off or peel off.
  • the above-mentioned insulator structure is embedded in the electrode structure, so an embedded capacitor can be formed inside the electrode.
  • the embedded capacitor can be formed at the edge of the electrode, which can improve the antistatic ability of the electrode structure and reduce the light-emitting diode The risk of electrostatic breakdown increases the reliability and service life of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种发光二极管(100),包括基板(101)、形成在基板(101)上的第一半导体层(102),形成在第一半导体层(102)的第一部分(1021)上的有源层(103),形成在有源层(103)上的第二半导体层(104),形成在第二半导体层(104)和第一半导体层(102)的第二部分(1022)上的电极结构(106),电极结构(106)中包括嵌入式设置在其中的绝缘体结构,该绝缘体结构在所述电极结构(106)内形成高度小于电极结构(106)的高度的台面结构。该台面结构不会影响整个器件的导电性。在封装打线时,该绝缘体结构会对打线时的施力进行阻挡,改变电极结构(106)的受力情况,避免电极结构(106)的底部发生变形或破坏,进而保证电极结构(106)或者焊料不会脱落或者剥离。绝缘体结构能够在电极边缘形成电容,提升电极结构(106)的抗静电能力,降低发光二极管(100)的静电击穿的风险。

Description

一种发光二极管 技术领域
本发明涉及半导体技术领域,特别涉及一种发光二极管。
背景技术
发光二极管(Light Emitting Diode,LED)由于具有寿命长、耗能低等优点,应用于各种领域,尤其随着其照明性能指标日益大幅提升,LED的应用越来越广泛,例如用于光学显示装置、交通标志、数据储存装置、通信装置及照明装置等。
以GaN系发光二极管为例,目前,LED的完整结构由正面往下一般包括P型GaN、多重量子井MQW、N型GaN、无参杂GaN、基板并在此结构上由正面蚀刻掉P型GaN与MQW结构而制作出一含PN结之组件,并制作出PN电极结构。该电极结构大多是上下平整的平台式结构,这样的上下平整表面在后续封装打线过程中会出现一些列的问题,例如,电极材料受焊球的挤压会向电极两侧挤出,这会破坏平台式电极的整体结构,尤其会使电极结构的底部结构发生变化;另外,电极材料及其下方与之接触的材料一般为不同的材料,因此二者的连接存在粘附力较差、相对脆弱等缺点,此时当电极结构受到打线时的施力时,很容易造成电极结构的脱落或剥离,进而影响期间的导电性能。
发明概述
技术问题
问题的解决方案
技术解决方案
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种发光二极管,该发光二极管的电极结构中形成有绝缘的平板结构,该平板结构的延展性较差,在打线时平板结构会阻挡焊球对电极的施力,改变整个电极结构的受力,限制电极材料的变形,从而保护底部电极的结构,尤其底部电极的边缘结构不被破坏,进而避免电极或者焊球的脱落或剥离。
根据本发明,提供一种发光二极管,包括:
基板;
第一半导体层,形成在所述基板上,所述第一半导体层形成为包括第一部分和第二部分的台阶结构;
有源层,形成在所述第一半导体层的所述第一部分上;
第二半导体层上,形成在所述有源层上,所述第二半导体层与所述第一半导体层的导电类型相反;
电极结构,分别形成在位于所述第一半导体层的所述第二部分上和所述第二半导体层上;
其中,所述电极结构包括绝缘体结构,所述绝缘体结构嵌入式设置在所述电极结构中,并且在所述电极结构内形成台面结构,所述台面结构的高度小于所述电极结构的高度。
可选地,所述发光二极管还包括电流传导层,形成在所述第一半导体层的所述第二部分和所述第二半导体层上。
可选地,所述绝缘体结构包括嵌入在所述电极结构的内部的圆盘结构,所述圆盘结构的中心与圆柱状的所述电极结构的中心对齐,并且所述圆盘结构的直径小于所述电极结构的直径,所述圆盘结构的厚度小于所述电极结构的高度。
可选地,所述圆盘结构形成间断的结构,包括多个扇形结构。
可选地,所述绝缘体结构还包括自所述圆盘结构的中心向下延伸形成的支撑部,所述支撑部的直径小于所述圆盘结构的直径。
可选地,所述绝缘体结构还包括外围圆环结构,所述外围圆环结构形成在所述支撑部外侧,并且与所述圆盘结构形成在不同的平面内,并且所述外围圆环结构的外径小于等于所述电极结构的直径,所述外围圆环结构的内径大于所述支撑部的直径,所述外围圆环结构的厚度小于所述支撑部的高度。
可选地,所述支撑部延伸至所述电极结构的底部。
可选地,所述绝缘体结构包括嵌入在所述电极结构内的圆环结构,所述圆环结构的中心与圆柱状的所述电极结构的中心对齐,并且所述圆环结构的外径小于等于所述电极结构的直径,所述圆环结构的厚度小于所述电极结构的高度。
可选地,所述圆环结构形成间断的结构,包括多个扇形圆环结构。
可选地,所述绝缘体结构还包括自所述圆环结构的边缘向下延伸形成的外围支撑壁,所述外围支撑壁的厚度小于所述圆环结构的宽度。
可选地,当所述圆环结构的外径等于所述电极结构的直径时,所述绝缘体结构还包括中间圆盘结构,所述中间圆盘结构位于所述外围支撑壁的内侧,并且所述中间圆盘结构与所述圆环结构形成在不同的平面内,所述中间圆盘的直径小于所述外围支撑壁的内径,所述中间圆盘的厚度小于所述外围支撑壁的的高度。
可选地,所述外围支撑壁延伸至所述电极结构的底部。
可选地,当所述圆环结构的外径小于所述电极结构的直径时,所述绝缘体结构还包括第二圆环结构,所述第二圆环结构形成在所述外围支撑壁的外侧,并且所述第二圆环结构与所述圆环结构形成在不同的平面内,所述第二圆环结构的外径小于等于所述电极的直径,所述第二圆环的内径大于等于所述外围支撑壁的直径,所述第二圆环的厚度小于所述外围支撑壁的高度。
可选地,所述外围支撑壁延伸至所述电极结构的底部。
可选地,所述电极结构形成圆柱状结构或顶部直径小于底部直径的圆台结构。
可选地,所述的电极结构包括底层和上层,其中所述的绝缘体结构圆环支撑在所述电极结构的底层上。
可选地,所述电极结构形成圆柱状结构或顶部直径小于底部直径的圆台结构。
可选地,所述的绝缘体结构的厚度为100~6000nm。
可选地,所述的电极的结构的底层包括反射层。
可选地,所述的电极结构周围包括一绝缘层,绝缘层延伸入电极结构中与绝缘体结构形成连续的结构。
可选地,所述的电极为打线用的电极。
发明的有益效果
有益效果
如上所述,本发明的发光二极管,具有以下有益效果:
本发明的发光二极管,在电极结构内嵌入绝缘体结构,该绝缘体结构在电极结构内形成台面结构,该台面结构的直径小于电极结构、高度小于电极结构的高 度,不会影响电极结构与下方的电流传导层的接触,也不会影响后期打线时焊球与电极结构的接触,因此也就不会影响整个器件的导电性。
另外,绝缘体结构使得电极结构的金属材料产生断点或者将电极结构的金属材料相互隔离,并且,所述绝缘体结构的延展性明显小于电极结构的金属材料的延展性,因此能够有效阻挡打线时的施力。因此,在封装打线时,该绝缘体结构会对打线时的施力进行阻挡,改变电极结构的受力情况,由此改变电极结构的金属材料的挤出方向,避免电极结构的底部发生变形或破坏,进而保证电极结构或者焊料不会脱落或者剥离。
上述绝缘体结构嵌入式设置在电极结构中,因此能够在电极内部形成内嵌式电容,该内嵌式电容可以形成在电极的边缘处,由此可以提升电极结构的抗静电能力,降低发光二极管的静电击穿的风险,增加器件的可靠性及使用寿命。
对附图的简要说明
附图说明
图1显示为本发明实施例一的发光二极管的结构示意图。
图2显示为沿图1所示的发光二极管的电极结构中的绝缘体结构所在的平面a1在L1-L1方向上的结构示意图。
图3显示为本发明实施例一的一优选实施例的发光二极管的电极结构的示意图。
图4显示为本发明实施例一的另一优选实施例的发光二极管的电极结构的示意图。
图5显示为本发明实施例二提供的发光二极管的电极结构沿图1所示的平面a1在L1-L1方向上的截面结构示意图。
图6显示为本发明实施例实施例三提供的发光二极管的电极结构的示意图。
图7显示为本发明实施例四提供的发光二极管的结构示意图。
图8显示为沿图7所示的发光二极管的电极结构中的绝缘体结构所在的平面a2在L2-L2方向上的截面结构示意图。
图9显示为本发明实施例四的一优选实施例的发光二极管的电极结构的示意图。
图10显示为本发明实施例四的另一优选实施例的发光二极管的电极结构的示意图。
图11显示为本发明实施例五提供的发光二极管的电极结构沿与图7所示的发光二极管的电极结构中的绝缘体结构所在的平面a2相同的平面在L2-L2相同的方向上的截面结构示意图。
图12显示为本发明实施例实施例六提供发光二极管的电极结构的示意图。
图13显示为本发明实施例七提供的发光二极管的结构示意图。
图14显示为沿图13所示的发光二极管的电极结构中的绝缘体结构所在的平面a3在L3-L3方向上的截面结构示意图。
图15显示为本发明实施例七的以优选实施例中发光二极管的电极结构的示意图。
图16显示为本发明实施例七的另一优选实施例的发光二极管的电极结构的示意图。
图17显示为本发明实施例八提供的发光二极管的电极结构沿与图14所示的发光二极管的电极结构中的绝缘体结构所在的平面a3相同的平面在L3-L3相同的方向上的截面结构示意图。
图18显示为本发明实施例实施例九提供的发光二极管的电极结构的示意图。
图19显示为本发明实施例实施例九的一优选实施例的发光二极管的电极结构的示意图。
图20显示为本发明实施例实施例九的另一优选实施例的发光二极管的电极结构的示意图。
元件标号说明
100发光二极管;101基板;102第一半导体层;1021第一半导体层的第一部分;1022第一半导体层的第二部分;103有源层;104第二半导体层;105电流传导层;106电极结构;107绝缘体结构的圆盘结构;108绝缘体结构的支撑部;109绝缘体结构的外围圆环结构;206电极结构;207绝缘体结构的圆盘结构;306电极结构;307绝缘体结构的圆盘结构;400发光二极管;401基板;402第一半导体层;4021第一半导体层的第一部分;4022第一半导体层的第二部分 ;403有源层;404第二半导体层;405电流传导层;406电极结构;407绝缘体结构的圆盘结构;408绝缘体结构的外围支撑壁;409绝缘体结构的中间圆盘结构;506电极结构;507绝缘体结构的圆环结构;606电极结构;607绝缘体结构的圆环结构;706电极结构;707绝缘体结构的圆环结构;708绝缘体结构的外围支撑壁;709绝缘体结构的第二圆环结构;806电极结构;807绝缘体结构的扇形圆环结构;906电极结构;907绝缘体结构的圆环结构;908绝缘体结构的外围支撑壁;909绝缘体结构的第二圆环结构
发明实施例
本发明的实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例一
本实施例提供一发光二极管,如图1所示,发光二极管100包括基板101,形成在所述基板101上的第一半导体层102。如图1所示,第一半导体层102形成包括第一部分1021和第二部分1022。发光二极管100还包括形成在第一半导体层102的第一部分1021上的有源层103,形成在所述有源层103上的第二半导体层104,以及形成在第二半导体层104和第一半导体层102的第二部分1022上的电极结构106。该电极结构106包括绝缘体结构,该绝缘体结构嵌入式地设置在电极结构106中,在电极结构106中形成台面结构,并且所形成的台面结构的高度小于电极结构的高度。在本实施例中,嵌入式地设置可以解释为:绝缘体结构设置在电极结构的内部,非电极结构的最上部也不是电极结构的最下部的位置。即在电极结构的正上方不会显露该绝缘体结构。
在本实施例中,上述基板101包括本领域常用的基板,例如可以是硅橡胶、石英、玻璃、氮化铝或陶瓷等绝缘体材料。第一半导体材层102和第二半导体层104为导电类型相反的半导体层,例如,第一半导体层102为p型半导体,第二半导体层104可为导电类型相反的n型半导体,反之,第一半导体层102为n型半导体 ,第二半导体层104可为导电类型相反的p型半导体。有源层103可为中性、p型或n型的半导体。电流通过发光二极管100时,激发有源层103发光出光线。当有源层103包括以氮化物为基础的材料时,发光二极管100发出蓝或绿光;当有源层103包括以磷化铝铟擦为基础的材料时,发光二极管100会发出红、橙、黄光的琥珀色系的光。在本实施例中,以第一半导体层102为n型半导体,第二半导体层104为p型半导体为例进行说明。
在本实施例中,如图1所示,该发光二极管还包括形成在第二半导体层104上的电流传导层105,此时,在该电流传导层105上形成所述第二半导体层104上的电极结构106。即,附图中仅示出在p型第二半导体层上形成电流传导层,n型第一半导体层的第二部分上未形成上述电流传导层105,在实际应用中,也可以根据实际需要在n型第一半导体的第二部分上形成电流传导层。
在优选实施例中,该绝缘体结构可以由氧化物和/或氮化物形成,例如,常用的氧化物包括二氧化硅、氧化硅、氧化铝等,常用的氮化物包括氮化硅等。
在本实施例中,所述电极结构106可以包括多层结构。为了便于说明,本实施例中的电极结构106并未示出电极结构的多层结构。上述电流传导层105可以是本领域常用的电流传导层材料,例如可以是铟锡氧化物ITO等。
所述的电极结构为多层金属堆叠而成,至少包括底层和上层,其中底层包括至少一层或多层,其中至少包括反射层,该反射层提供对来自发光层辐射至其表面的反射,从而提升辐射至电极底层表面上的光的利用率。较佳的,所述的反射层材料为Al或者Ag。所述上层包括至少一层和多层,其中至少包括表面层,该表面层为打线层,提供封装时外部打线电极的附着层。由于金属反射层如Al和Ag容易氧化,或因为水汽发生迁移。所述的上层还可以包括阻挡层,介于底层反射层和上层的表面层打线层之间,例如Ti、Pt或Ni或者W,阻挡层能够阻挡反射层金属扩散或迁移等。
所述绝缘体结构的延展性明显小于电极结构的金属材料的延展性,因此能够有效阻挡打线时的施力。因此,在封装打线时,该绝缘体结构会对打线时的施力进行阻挡,改变电极结构的受力情况,由此改变电极结构的金属材料的挤出方向,避免电极结构的底部发生变形或破坏,进而保证电极结构或者焊料不会脱 落或者剥离,特别的是,底层包括反射层,绝缘体结构位于底层的反射层之上,可以阻挡反射层被挤压变形、破裂等,发生金属扩散或迁移,导致电极失效。
电极结构中有嵌入其中两层之间的绝缘体结构,所述的绝缘体结构在电极结构中至少包括在相邻两层之间的相对的面上的延伸形成的层状结构部分。如图1所示,沿图1所示的绝缘体结构所在的平面a1在L1-L1方向的视图如图2所示,电极结构106形成为圆柱结构,绝缘体结构形成为在相邻相邻两层之间的相对的面上延伸的圆盘结构107,并且该圆盘结构107的直径小于电极结构106的直径,其厚度小于电极结构106的高度。该圆盘结构107嵌入式设置在电极结构106中,不会影响电极结构与下方的电流传导层的接触,也不会影响后期打线时焊球与电极结构的接触,因此也就不会影响整个器件的导电性。
优选地,所述圆盘结构的中心与所述电极结构106的中心对齐设置。如此设置可以保证在后期封装打线时,绝缘体结构所形成的圆盘结构107能够均匀地受力,由此均匀地分散或者阻挡电极结构106的受力。
在本实施例的一优选实施例中,如图3,示出了该优选实施例的电极结构的示意图。
在该优选实施例中,绝缘体结构不仅包括上述的圆盘结构107,还包括自所述圆盘结构107的中心向下延伸形成的支撑部108。支撑部108可以形成为圆柱状,并且该支撑部108直径小于圆盘结构107的直径,高度小于等于圆盘结构107至电极底部的距离,该支撑部108能够进一步阻挡打线时电极结构的受力。支撑部108为沿着电极结构的厚度方向纵向向下延伸,并且穿过至少至一层的部分厚度或全部厚度,或者穿过多层金属层的厚度。
在更加优选的实施例中,上述支撑部108延伸至所述电极结构的底部,即支撑部108的高度等于圆盘结构107至电极底部的距离。如图3所示。
在本实施例的另一优选实施例中,如图4,示出了该优选实施例的电极结构的示意图。在该优选实施例中,绝缘体结构不仅包括上述的圆盘结构107,以及自所述圆盘结构107的中心向下延伸形成的支撑部108,还包括形成在所述支撑部外侧,例如电极结构106的边缘部分的外围圆环结构109,该外围圆环结构109与 圆盘结构107形成在不同的平面内。并且外围圆环结构109的外径小于等于电极结构106的直径,内径大于支撑部108的直径,由此,该绝缘体结构不会影响电极结构的连续性,也就不会影响电极结构与下方电流传导层的电连接性。
实施例二
本实施例同样提供一种发光二极管,该发光二极管的结构与实施例一所示的发光二极管的结构的相同之处不再赘述,不同之处在于:
如图5所示,示出了本实施例的发光二极管的电极结构206沿图1所示的平面a1在L1-L1方向上的结构示意图。在本实施例中,电极结构206内的绝缘体结构形成为多个间断的不连续的结构,例如,形成多个扇形结构207。如图5所示,形成为4个独立的扇形结构207。当然也可以形成其他数量的扇形结构。
在本实施例中,所述绝缘体结构同样还可以包括实施例一所述的支撑部、外围圆环结构这样的结构。
实施例三
本实施例同样提供一种发光二极管,该发光二极管的结构与实施例一和实施例二所示的发光二极管的结构的相同之处不再赘述,不同之处在于:
如图6所示,本实施例中,电极结构306形成为下部直径大于上部直径的圆台结构,即垂直截面为梯形的圆台结构。本实施例中,绝缘体结构同样形成为圆盘结构307,并且同样还可以包括实施例所述的支撑部和外围圆环结构。
在本实施例中,由于电极结构306形成为垂直截面为梯形的圆台结构,因此,圆盘结构的直径、外围圆环结构的内径和外径的表述均相对于其所在平面的电极结构的直径而言。并且对于外围圆环外径等于电极结构306的情况而言,外围圆环结构的外侧相应地具有与电极结构306一致的倾斜度。
实施例四
本实施例提供一种发光二极管,如图7所示,发光二极管400包括基板401,形成在所述基板401上的第一半导体层402。如图1所示,第一半导体层402形成包括第一部分4021和第二部分4022。发光二极管400还包括形成在第一半导体层402的第一部分4021上的有源层403,形成在所述有源层403上的第二半导体层404,形成在第二半导体层404和第一半导体层402的第二部分4022上的电流传导层4 05,以及形成在电流传导层405上的电极结构406。该电极结构106包括绝缘体结构,该绝缘体结构嵌入式地设置在电极结构406中,在电极结构406中形成台面结构,并且所形成的台面结构的高度小于电极结构的高度。在本实施例中,嵌入式地设置解释为,绝缘体结构设置在电极结构的内部,非电极结构的最上部也不是电极结构的最下部的位置。即在电极结构的正上方不会显露该绝缘体结构。
在本实施例中,上述基板401、第一半导体材层402、第二半导体层404、有源层404可为中性、p型或n型的半导体、绝缘体结构、电流传导层405与实施例一相同命名的材料层可具有相同材料成分,在此不再赘述。
所述绝缘体结构的延展性明显小于电极结构的金属材料的延展性,因此能够有效阻挡打线时的施力。因此,在封装打线时,该绝缘体结构会对打线时的施力进行阻挡,改变底层电极结构底层的受力情况,由此改变电极结构的金属材料的挤出方向,避免电极结构的底部收到挤压发生变形或破坏,进而保证电极结构或者焊料不会脱落或者剥离。
如图7所示,电极结构406包括嵌入其中的绝缘体结构,沿图7所示的绝缘体结构所在的平面a2在L2-L2方向的视图如图8所示,电极结构406形成为圆柱结构,并且所述的电极结构为多层,电极结构中有嵌入其中两层之间的绝缘体结构,所述的绝缘体结构在电极结构中至少包括在相邻两层之间的相对的面上的延伸形成的层状结构部分,本实施例中绝缘体结构形成为圆环结构407。并且该圆环结构的外径等于电极结构406的直径,其厚度小于电极结构406的高度。该圆环结构407嵌入式设置在电极结构406中,并且圆环结构407的开口内部充满电极结构的材料,不会影响电极结构与下方的电流传导层的接触,也不会影响后期打线时焊球与电极结构的接触,因此也就不会影响整个器件的导电性。
优选地,所述圆环结构的中心与所述电极结构406的中心对齐设置。如此设置可以保证在后期封装打线时,绝缘体结构所形成的圆环结构107能够均匀地受力,由此均匀地分散或者阻挡电极结构406的受力。
在本实施例的一优选实施例中,如图9,示出了该优选实施例的电极结构的示意图。在该优选实施例中,绝缘体结构不仅包括上述的圆环结构407,还包括自 所述圆环结构407的边缘向下延伸形成的外围支撑壁408。该外围支撑壁408能够进一步阻挡打线时电极结构的受力。在本优选实施例中个,外围支撑壁408的厚度小于所述圆环结构407的宽度(即圆环结构407的外径减去内径的差值),并且外围支撑壁408的高度与圆环结构407的厚度之和小于电极结构406的高度。
在更加优选的实施例中,外围支撑壁408一直延伸至电极结构406的底部。如图9所示。
在本实施例的另一优选实施例中,如图10,示出了该优选实施例的电极结构的示意图。在该优选实施例中,绝缘体结构不仅包括上述的圆环结构407,以及所述圆环结构407的边缘向下延伸形成的外围支撑壁408,还包括中间圆盘结构409,该中间圆盘结构409形成在上述外围支撑壁的内侧,与圆环结构407形成在不同的平面内。并且中间圆盘结构409的直径小于外围支撑壁的内径,中间圆盘结构409的厚度小于外围支撑壁408的高度,由此,该绝缘体结构不会破坏电极结构的连续性,也就不会影响电极结构与下方电流传导层的电连接性。
另外,在本实施例中,上述绝缘体结构,尤其形成圆环结构407的绝缘体结构,能够在电极的边缘部分形成电容,该电容能够增加电极边缘的抗静电击穿性能,由此降低发光二极管的静电击穿风险,增加器件的可靠性及使用寿命。
实施例五
本实施例同样提供一发光二极管,该发光二极管的结构与实施例四所示的发光二极管的结构的相同之处不再赘述,不同之处在于:
如图11所示,示出了本实施例的发光二极管的电极结构506沿图7所示的平面a2在L2-L2方向上的结构示意图。在本实施例中,电极结构506内的绝缘体结构形成为间断的不连续的圆环结构,例如,形成多个扇形圆环结构507。如图11所示,形成为4个独立的扇形圆环结构507。当然也可以形成其他数量的扇形圆环结构。
在本实施例中,所述绝缘体结构同样还可以包括实施例四所述的外围支撑壁和/或中间圆盘这样的结构。
实施例六
本实施例同样提供一种发光二极管,该发光二极管的结构与实施例四和实施例 五所示的发光二极管的结构的相同之处不再赘述,不同之处在于:
如图12所示,本实施例中,电极结构606形成为底部直径大于上部直径的圆台结构,即垂直截面为梯形的圆台结构。本实施例中,绝缘体结构同样形成为圆环结构607,并且同样还可以包括实施例四所述的外围支撑壁和中间圆盘结构。
在本实施例中,由于电极结构606形成为垂直截面为梯形的圆台结构,因此,圆环结构的外径、内径,以及中间圆盘的直径的表述均相对于其所在平面的电极结构的直径而言。并且对于本实施例所述的圆环结构607的外径等于电极结构606的直径的情况而言,外围支撑壁相应地具有与电极结构606的侧壁一致的倾斜度,可参照附图19和20所示。
实施例七
本实施例同样提供一种发光二极管,该发光二极管的结构与实施例四所示的发光二极管的结构的相同之处不再赘述,不同之处在于:
本实施例中,如图13和14所示,嵌入式设置在电极结构706中的绝缘体结构形成的圆环结构707的外径小于所述电极结构706的直径。
在本实施例的优选实施例中,如图15所示,绝缘体结构出包括上述圆环结构707之外,还包括沿圆环结构707的边缘部分向下延伸形成的外围支撑壁708。该外围支撑壁708与实施例四中的外围支撑壁408具有相同的结构特征。
在本实施例的另一优选实施例中,如图16所示,示出了该优选实施例的电极结构的示意图。在该优选实施例中,绝缘体结构不仅包括上述的圆环结构707,以及所述圆环结构707的边缘向下延伸形成的外围支撑壁708,还包括形成在所述外围支撑壁708外侧的第二圆环结构709,该第二圆环结构709与圆环结构707形成在不同的平面内。并且第二圆环结构709的内径大于等于外围支撑壁708的直径,其外径小于等于电极结构706的直径。另外,该第二圆环结构709的厚度小于外围支撑壁408的高度,由此,该绝缘体结构不会破坏电极结构的连续性,也就不会影响电极结构与下方电流传导层的电连接性。
在更加优选的实施例中,形成的所述第二圆环结构709与器件上方形成的绝缘层形成连续结构,这样可以简化形成上述绝缘体结构的制程。
实施例八
本实施例同样提供一种发光二极管,该发光二极管的结构与实施例七所示的发光二极管的结构的相同之处不再赘述,不同之处在于:
如图17所示,示出了本实施例的发光二极管的电极结构806沿图7所示的平面a2在L2-L2方向上的结构示意图。本实施例中,电极结构806中的绝缘体结构形成为间断的不连续的圆环结构,例如,形成多个扇形圆环结构807。如图17所示,形成为4个独立的扇形圆环结构807。当然也可以形成其他数量的扇形圆环结构。
在本实施例中,所述绝缘体结构同样还可以包括实施例七所述的外围支撑壁和/或第二圆环这样的结构。
实施例九
本实施例同样提供一种发光二极管,该发光二极管的结构与实施例七和八所示的发光二极管的结构的相同之处不再赘述,不同之处在于:
如图18所示,本实施例中,电极结构906形成为底部直径大于上部直径的圆台结构,即垂直截面为梯形的圆台结构。本实施例中,绝缘体结构同样形成为圆环结构907,该圆环结构的水平外径小于或等于电极结构的水平直径。
如图19所示,在本实施例的优选实施例中,绝缘体结构除了包括上述圆环结构907之外,还包括沿圆环结构的边缘部分向下延伸的外围支撑壁908。更优选地,外围支撑壁908具有与电极结构906的侧壁相同的倾斜度。
在本实施例的另一优选实施例中,如图20所示,绝缘体结构除了包括上述圆环结构907,沿圆环结构的边缘部分向下延伸的外围支撑壁908之外,同样还可以包括形成在所述外围支撑壁908外侧的第二圆环结构909。在更加优选的实施例中,所述绝缘体结构的所述第二圆环结构709与器件上方形成的绝缘层形成连续结构。并且所述第二圆环结构和器件上方形成的绝缘层可以是相同的绝缘材料,形成器件上方的绝缘层延伸进电极结构中的效果。这样在保护所述电极结构在打线时免于底部结构被破坏的同时,还可以简化形成上述绝缘体结构的制程。
该第二圆环结构909与实施例七中的第二圆环结构709具有相同的特征,在此不再详述。
在本实施例中,由于电极结构906形成为垂直截面为梯形的圆台结构,因此,圆环结构的外径、内径,以及第二圆环结构的外径、内径的表述均相对于其所在平面的电极结构的直径而言。
如上所述,本发明的发光二极管,包括以下有益效果:
本发明的发光二极管,在电极结构内嵌入绝缘体结构,该绝缘体结构在电极结构内形成台面结构,该台面结构的直径小于电极结构、高度小于电极结构的高度,不会影响电极结构与下方的电流传导层的接触,也不会影响后期打线时焊球与电极结构的接触,因此也就不会影响整个器件的导电性。
另外,绝缘体结构使得电极结构的金属材料产生断点或者将电极结构的金属材料相互隔离,并且,所述绝缘体结构的延展性明显小于电极结构的金属材料的延展性,因此能够有效阻挡打线时的施力。因此,在封装打线时,该绝缘体结构会对打线时的施力进行阻挡,改变电极结构的受力情况,由此改变电极结构的金属材料的挤出方向,避免电极结构的底部发生变形或破坏,进而保证电极结构或者焊料不会脱落或者剥离。
上述绝缘体结构嵌入式设置在电极结构中,因此能够在电极内部形成内嵌式电容,该内嵌式电容可以形成在电极的边缘处,由此可以提升电极结构的抗静电能力,降低发光二极管的静电击穿的风险,增加器件的可靠性及使用寿命。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (16)

  1. 一种发光二极管,其特征在于,包括:
    基板;
    第一半导体层,形成在所述基板上,所述第一半导体层形成为包括第一部分和第二部分的台阶结构;
    有源层,形成在所述第一半导体层的所述第一部分上;
    第二半导体层上,形成在所述有源层上,所述第二半导体层与所述第一半导体层的导电类型相反;
    电极结构,形成在位于所述第一半导体层的所述第二部分上和/或所述第二半导体层上;
    其中,所述电极结构包括绝缘体结构,所述绝缘体结构嵌入式设置在所述电极结构中的非电极结构的最上部也不是电极结构的最下部的位置,并且在所述电极结构内形成台面结构,所述台面结构的高度小于所述电极结构的高度。
  2. 根据权利要求1所述的发光二极管,其特征在于,还包括电流传导层,形成在所述第二半导体层上,或者形成在所述第一半导体层的所述第二部分和所述第二半导体层上。
  3. 根据权利要求1所述的发光二极管,其特征在于,所述绝缘体结构包括嵌入在所述电极结构的内部的圆盘结构,且所述圆盘结构的的外围直径小于所述电极结构的外围直径,所述圆盘结构的厚度小于所述电极结构的高度。
  4. 根据权利要求3所述的发光二极管,其特征在于,所述圆盘结构形成多个间断的结构。
  5. 根据权利要求3或4所述的发光二极管,其特征在于,所述绝缘体结构还包括自所述圆盘结构向下延伸形成的支撑部。
  6. 根据权利要求5所述的发光二极管,其特征在于,所述绝缘体结构还包括外围圆环结构,所述外围圆环结构形成在所述支撑部外侧,并且与所述圆盘结构形成在不同的平面内,并且所述外围圆环 结构的外径小于等于所述电极结构的直径,所述外围圆环结构的内径大于所述支撑部的直径,所述外围圆环结构的厚度小于所述支撑部的高度。
  7. 根据权利要求6所述的发光二极管,其特征在于,所述支撑部延伸至所述电极结构的底部。
  8. 根据权利要求1所述的发光二极管,其特征在于,所述绝缘体结构包括嵌入在所述电极结构内的圆环结构,并且所述圆环结构的外径小于等于所述电极结构的直径,所述圆环结构的纵向厚度小于所述电极结构的高度。
  9. 根据权利要求8所述的发光二极管,其特征在于,所述圆环结构形成为多个间断的结构。
  10. 根据权利要求8或9所述的发光二极管,其特征在于,所述绝缘体结构还包括自所述圆环结构的边缘向下延伸形成的外围支撑壁,所述外围支撑壁的水平厚度小于所述圆环结构的水平宽度。
  11. 根据权利要求10所述的发光二极管,其特征在于,当所述圆环结构的外径等于所述电极结构的直径时,所述绝缘体结构还包括中间圆盘结构,所述中间圆盘结构位于所述外围支撑壁的内侧,并且所述中间圆盘结构与所述圆环结构形成在不同的平面内,所述中间圆盘的直径小于所述外围支撑壁的内径,所述中间圆盘的厚度小于所述外围支撑壁的高度。
  12. 根据权利要求11所述的发光二极管,其特征在于,所述外围支撑壁延伸至所述电极结构的底部。
  13. 根据权利要求10所述的发光二极管,其特征在于,当所述圆环结构的外径小于所述电极结构的直径时,所述绝缘体结构还包括第二圆环结构,所述第二圆环结构形成在所述外围支撑壁的外侧,并且所述第二圆环结构与所述圆环结构形成在不同的平面内,所述第二圆环结构的外径小于等于所述电极的直径,所述第二圆环的内径大于所述外围支撑壁的直径,所述第二圆环的厚度小于所 述外围支撑壁的高度。
  14. 根据权利要求10所述的发光二极管,其特征在于,所述外围支撑壁延伸至所述电极结构的底部。
  15. 根据权利要求1所述的发光二极管,其特征在于,所述电极结构形成圆柱状结构或顶部直径小于底部直径的圆台结构。
  16. 根据权利要求13所述的发光二极管,其特征在于,所述第二圆环结构的外径小于等于所述电极的直径。
PCT/CN2020/089147 2019-05-13 2020-05-08 一种发光二极管 WO2020228599A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217027049A KR102631088B1 (ko) 2019-05-13 2020-05-08 발광 다이오드
US17/454,079 US20220123173A1 (en) 2019-05-13 2021-11-09 Light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920679199.3 2019-05-13
CN201920679199.3U CN209804697U (zh) 2019-05-13 2019-05-13 一种发光二极管

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/454,079 Continuation-In-Part US20220123173A1 (en) 2019-05-13 2021-11-09 Light-emitting diode

Publications (1)

Publication Number Publication Date
WO2020228599A1 true WO2020228599A1 (zh) 2020-11-19

Family

ID=68832542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089147 WO2020228599A1 (zh) 2019-05-13 2020-05-08 一种发光二极管

Country Status (4)

Country Link
US (1) US20220123173A1 (zh)
KR (1) KR102631088B1 (zh)
CN (1) CN209804697U (zh)
WO (1) WO2020228599A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209804697U (zh) * 2019-05-13 2019-12-17 厦门三安光电有限公司 一种发光二极管
KR20220014388A (ko) * 2020-07-24 2022-02-07 삼성디스플레이 주식회사 발광 소자, 이의 제조 방법 및 표시 장치
CN116207201B (zh) * 2023-05-06 2023-07-18 江西兆驰半导体有限公司 一种抗静电led芯片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082296A1 (en) * 2008-04-29 2013-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. LED Device with Embedded Top Electrode
CN205376566U (zh) * 2015-12-03 2016-07-06 聚灿光电科技股份有限公司 Led芯片封装结构
CN108538982A (zh) * 2018-06-21 2018-09-14 河北工业大学 一种低阻led的芯片外延结构及其制备方法
CN109671827A (zh) * 2018-12-19 2019-04-23 华灿光电(浙江)有限公司 一种发光二极管芯片及其制作方法
CN209804697U (zh) * 2019-05-13 2019-12-17 厦门三安光电有限公司 一种发光二极管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513071U (ja) * 1991-07-30 1993-02-19 日立電線株式会社 化合物半導体光デバイス
KR100580634B1 (ko) 2003-12-24 2006-05-16 삼성전자주식회사 질화물계 발광소자 및 그 제조방법
JP4899825B2 (ja) 2006-11-28 2012-03-21 日亜化学工業株式会社 半導体発光素子、発光装置
JP2009260316A (ja) * 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd 半導体発光素子およびそれを用いる照明装置
KR101163861B1 (ko) * 2010-03-22 2012-07-09 엘지이노텍 주식회사 발광소자, 전극 구조 및 발광 소자 패키지
KR20130140281A (ko) * 2012-06-14 2013-12-24 엘지이노텍 주식회사 발광소자
KR102034709B1 (ko) * 2012-08-16 2019-10-21 엘지이노텍 주식회사 발광 소자
JP5949368B2 (ja) 2012-09-13 2016-07-06 豊田合成株式会社 半導体発光素子とその製造方法
JP6299540B2 (ja) 2014-09-16 2018-03-28 豊田合成株式会社 Iii族窒化物半導体発光素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130082296A1 (en) * 2008-04-29 2013-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. LED Device with Embedded Top Electrode
CN205376566U (zh) * 2015-12-03 2016-07-06 聚灿光电科技股份有限公司 Led芯片封装结构
CN108538982A (zh) * 2018-06-21 2018-09-14 河北工业大学 一种低阻led的芯片外延结构及其制备方法
CN109671827A (zh) * 2018-12-19 2019-04-23 华灿光电(浙江)有限公司 一种发光二极管芯片及其制作方法
CN209804697U (zh) * 2019-05-13 2019-12-17 厦门三安光电有限公司 一种发光二极管

Also Published As

Publication number Publication date
KR20210114057A (ko) 2021-09-17
KR102631088B1 (ko) 2024-01-29
US20220123173A1 (en) 2022-04-21
CN209804697U (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2020228599A1 (zh) 一种发光二极管
US7768020B2 (en) AC light emitting diode
KR102075655B1 (ko) 발광 소자 및 발광 소자 패키지
TW201707233A (zh) 半導體發光結構
WO2016000458A1 (zh) 发光二极管
US11637218B2 (en) Light-emitting diode
US20210280743A1 (en) Light-emitting diode, light-emitting diode packaged module and display device including the same
CN113903836B (zh) 倒装发光二极管和发光装置
US9099594B2 (en) Nitride semiconductor light-emitting element
TWI399869B (zh) 發光二極體
KR102566499B1 (ko) 발광 소자
TWI479686B (zh) 發光二極體
WO2023185193A1 (zh) 发光装置
CN203456495U (zh) Led芯片
WO2020133722A1 (zh) 量子点led及其制作方法、电子装置
WO2023087236A1 (zh) 倒装发光二极管和发光装置
CN108269757B (zh) 被动式驱动阵列led显示面板及其制作方法、显示装置
TWI488337B (zh) 發光元件及其製作方法
US20230253531A1 (en) Light-emitting diode
KR20150059496A (ko) 발광 장치 및 그 제조 방법
KR100637652B1 (ko) 전원 극성에 관계없이 작동하는 발광다이오드 및 그제조방법
TWI548118B (zh) 發光元件及其製作方法
KR102557328B1 (ko) 반도체 발광소자
WO2024044952A1 (zh) 发光二极管及发光装置
KR102504334B1 (ko) 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217027049

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805081

Country of ref document: EP

Kind code of ref document: A1