WO2020228448A1 - 搅拌器组件、搅拌机和搅拌杯 - Google Patents

搅拌器组件、搅拌机和搅拌杯 Download PDF

Info

Publication number
WO2020228448A1
WO2020228448A1 PCT/CN2020/083579 CN2020083579W WO2020228448A1 WO 2020228448 A1 WO2020228448 A1 WO 2020228448A1 CN 2020083579 W CN2020083579 W CN 2020083579W WO 2020228448 A1 WO2020228448 A1 WO 2020228448A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
agitator
thermally conductive
stirrer
control unit
Prior art date
Application number
PCT/CN2020/083579
Other languages
English (en)
French (fr)
Inventor
刘焱
Original Assignee
刘焱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘焱 filed Critical 刘焱
Publication of WO2020228448A1 publication Critical patent/WO2020228448A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/046Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven with tools driven from the bottom side
    • A47J43/0465Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven with tools driven from the bottom side with magnetic drive
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/046Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven with tools driven from the bottom side
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/07Parts or details, e.g. mixing tools, whipping tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/07Parts or details, e.g. mixing tools, whipping tools
    • A47J43/0716Parts or details, e.g. mixing tools, whipping tools for machines with tools driven from the lower side
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass
    • A47J43/04Machines for domestic use not covered elsewhere, e.g. for grinding, mixing, stirring, kneading, emulsifying, whipping or beating foodstuffs, e.g. power-driven
    • A47J43/07Parts or details, e.g. mixing tools, whipping tools
    • A47J43/0716Parts or details, e.g. mixing tools, whipping tools for machines with tools driven from the lower side
    • A47J43/0722Mixing, whipping or cutting tools

Definitions

  • the application relates to a blender component, a blender and a blender cup, especially a blender component, a blender and a blender cup for cold and fresh mixing.
  • Patent application CN201811504279 "A semiconductor multifunctional cold and hot food integrated machine” discloses a blender with two functions of refrigeration and stirring.
  • the patent application states: "The said heat preservation layer is provided with a through groove, and the said through groove is sequentially provided with a fixed aluminum block and a cooling and heating chip, and the fixed aluminum block is attached to the mobile inner pot;”. This is the closest prior art found in the current limited search.
  • the agitator of the blender rotates and rubs against the processed food, which inevitably generates frictional heat, which causes the freshness of the processed food to decrease.
  • the solution mentioned in the background art cools the food on the inner wall of the mixing cup, it still cannot solve the problem of local temperature rise caused by the friction between the agitator and the food.
  • the present application provides an agitator assembly, which is used to remove heat from a location where frictional heat is generated.
  • this application also provides a blender and a blender cup.
  • the present application provides a stirrer assembly, including: a stirrer, and further including: a heat-conducting stirring shaft, a semiconductor refrigeration fin, and a radiator; the heat-conducting stirring shaft includes a heat conduction component composed of a good heat conductor; the stirring One end of the heat-conducting stirring shaft has a heat conduction connection; the other end of the heat conduction stirring shaft and the cold end of the semiconductor refrigeration fin have a heat conduction connection; the hot end of the semiconductor refrigeration fin and the heat sink have a heat conduction connection .
  • This solution cools the agitator and removes some heat from the parts generated by frictional heat.
  • a first possible implementation manner in combination with the first aspect an insulation material is filled between the cold end and the hot end of the semiconductor refrigeration sheet. This solution reduces the loss caused by heat radiation and heat convection inside the semiconductor refrigeration fin.
  • the stirrer is a thermally conductive stirrer, and includes a thermally conductive member composed of a good thermal conductor; the thermally conductive member of the thermally conductive stirrer and the thermally conductive stirring shaft
  • the thermally conductive member has a thermally conductive connection.
  • the heat-conducting stirring shaft and the heat-conducting stirrer are seamlessly connected integral parts. This solution prevents the thermal conduction connection from loosening, and the integration is stronger.
  • This solution uses wire-free power supply so that the outer surface can be electrically insulated from the outside and achieve a waterproof function.
  • a fourth possible implementation manner combined with the first aspect a control unit and a cold junction temperature sensor are provided, and the control unit is connected to the cold junction temperature sensor; the control unit has an execution circuit for adjusting the semiconductor refrigeration The cooling power of the chip; the control unit is used to obtain the temperature of the cold end, adjust the cooling power of the semiconductor refrigeration chip, and keep the temperature of the cold end stable.
  • This solution measures the temperature of the cold end, adjusts the cooling power, and maintains the temperature of the agitator to stabilize.
  • control unit has a communication module, and the communication module is configured to receive the torsion torque and rotation speed of the mixing host, and the control unit It is used to estimate the cooling power of the semiconductor refrigeration sheet according to the torsion torque and the rotation speed. This scheme predicts the power of frictional heat generation, so as to cool and calm the heat in time.
  • a fifth possible implementation manner in combination with the first aspect a control unit and a hot-end temperature sensor are provided, and the control unit is connected to the hot-end temperature sensor; the control unit has an execution circuit for when the hot-end temperature exceeds At the threshold, the cooling power of the semiconductor refrigeration fin is reduced. This solution prevents the hot end temperature from being too high and damaging the semiconductor refrigeration chip.
  • the present application provides a blender, including a blending host and a blending cup, the blending cup includes: a blending cup body, a blender assembly; the blender assembly is the first aspect to the first aspect in combination with the first aspect.
  • the agitator assembly according to any one of five possible implementation manners; the agitating host has a fan module, and the output air flow of the fan module faces the heat sink of the radiator of the agitator assembly.
  • This scheme is a kind of blender that takes away some heat from the parts generated by frictional heat while processing food.
  • the stirring host has a magnetic field generating module, and the magnetic field generating module is one of a conductive coil or a magnet. This solution allows the mixing host to have the ability to support power supply without wires.
  • the present application provides a stirring cup including a stirring cup body and a stirrer assembly.
  • the stirrer assembly is any one of the above-mentioned first aspect to the above-mentioned fifth possible implementation manner in combination with the first aspect.
  • the agitator assembly also has a power interface; the agitating cup body has a heat preservation layer and a sealing cover.
  • This scheme is a kind of mixing cup, which has the functions of refrigerating food and cold stirring food.
  • Figure 1 is a schematic diagram of the first embodiment of the agitator assembly
  • Figure 2 is a schematic partial cross-sectional view of a semiconductor refrigeration sheet
  • Figure 3 is a schematic diagram of a second embodiment of the agitator assembly
  • Figure 4 is a schematic diagram of the mixing host, agitator components, a mixing cup and their assembly relationships
  • Figure 5 is a schematic diagram of the complete assembly of the mixer
  • Figure 6 is a schematic diagram of a mixing cup.
  • FIG. 1 shows a schematic diagram of the first embodiment of the agitator assembly.
  • the stirrer 101 may be a stirrer among a stirring knife, a stirring rod, a stirring blade, and a stirring rack.
  • the stirrer 101 and the thermally conductive stirring shaft 102 are mechanically connected and also have a thermally conductive connection.
  • Thermally conductive connections often need to eliminate gaps between components or substances with thermal resistance effects.
  • stir The device and the heat-conducting stirring shaft are integrated into one part, and the contact surfaces of the two parts can also be filled with solder (the soldering material is also a good heat conductor) to achieve a seamless connection.
  • the heat-conducting stirring shaft 102 drives the stirrer 101 to rotate, and the stirrer 101 stirs the processed food.
  • the other end of the heat-conducting stirring shaft 102 and the cold end of the semiconductor refrigeration fin 103 have a heat conduction connection.
  • the hot end of the pelmet 103 and the radiator 104 have a thermal conduction connection.
  • FIG. 2 is a schematic partial cross-sectional view of the semiconductor refrigeration fin 103.
  • the semiconductor refrigeration sheet is composed of an N-type semiconductor 201, a P-type semiconductor 202, an electrical and thermal conductor 203, and an electrical insulating and thermal conductor 204.
  • 204a of the electrically insulating heat conductor 204 is the cold end, and 204b is the hot end.
  • the size of the cooling power is determined by the size of the circulating current and the number of N-type semiconductors and P-type semiconductors. It can be seen from FIG.
  • the gap between the cold end and the hot end is filled with an insulating material 205 to reduce loss.
  • the thermally conductive stirring shaft 102 includes a thermally conductive member composed of a good thermal conductor.
  • the heat-conducting stirring shaft 102 may be a heat-conducting component added to the prior art stirring shaft.
  • the heat-conducting stirring shaft 102 itself can also be composed of a good heat conductor, and the heat-conducting stirring shaft 102 itself is a heat conducting component.
  • the hot end of the semiconductor refrigeration fin 103 and the radiator 104 must have a reliable heat conduction connection, otherwise it is easy to damage the semiconductor refrigeration fin due to heat accumulation and excessive temperature.
  • the cold end is used to cool the agitator 101 and take away heat. Therefore, the cold end and the heat conducting stirring shaft 102 must also have a reliable heat conduction connection.
  • the agitator 101, the heat conduction stirring shaft 102, the semiconductor refrigeration fin 103, and the radiator 104 rotate together as a whole, so that the hot end of the semiconductor refrigeration fin and the radiator, the cold end and the heat conduction stirring shaft, and the heat conduction Both the stirring shaft and the stirrer maintain a reliable heat conduction connection, so that the refrigeration is reliable and acts on the stirrer 101 through heat conduction.
  • the semiconductor refrigeration fin 103 in FIG. 1 has a plate shape.
  • the lower part of the heat-conducting stirring shaft 102 expands in a horn shape, and covers the entire cold end side of the semiconductor refrigeration fin 103.
  • the radiator 104 covers the entire hot end side of the semiconductor cooling fin 103.
  • the geometric shapes of the heat-conducting stirring shaft, semiconductor refrigeration fins, and radiator can also have various changes.
  • the lower part of the heat-conducting stirring shaft has no horn-shaped enlargement, and the upper and lower parts are cylindrical.
  • the planes of the cold end and the hot end of the semiconductor refrigeration sheet are the same and smaller than the cross section of the heat conducting stirring shaft.
  • the contact area of the radiator and the hot end of the semiconductor refrigeration fin is also reduced accordingly, and the heat sink at the lower part is enlarged in a horn shape to make the heat dissipation area sufficient. If the semiconductor refrigeration chip still maintains the same cooling power, because the area on both sides of the cold end and the hot end is reduced, the thermal conductivity of the heat conduction material near the cold end and the hot end will be higher.
  • a special-shaped semiconductor refrigeration sheet the area of the cold end is smaller than the area of the hot end, so that the cold end can be connected to the cylindrical heat conduction stirring shaft, and the hot end can be connected to a large-area radiator (such as 104).
  • a large-area radiator such as 104.
  • thermally conductive stirring shaft the geometric shapes of the thermally conductive stirring shaft, semiconductor refrigeration fins, and radiator shown in FIG. 1 are the most economical solutions currently considered by the inventor.
  • the gradually enlarged part of the thermally conductive stirring shaft 102 and the upper cylindrical part are processed separately and then combined.
  • thermally conductive stirring shaft no matter what kind of change the geometric shape of the above-mentioned thermally conductive stirring shaft is divided into several parts, it is called: thermally conductive stirring shaft.
  • the stirrer 101 is generally composed of metal and has a certain heat conductivity, so that refrigeration has a certain cooling effect on the surface of the stirrer 101 and can eliminate some frictional heat.
  • the prior art agitator is not specifically designed to conduct heat, and its heat conduction power is not necessarily high. This embodiment is mainly applied to occasions where the frictional heat generation power is not high.
  • the stirrer 101 shown in FIG. 1 is a two-blade stirrer. Generally, there are many kinds of agitators such as 2-blade, 4-blade, 6-blade, and 8-blade. The more leaves, the greater the total heat transfer power. This embodiment adopts the agitator of the prior art, and the total heat conduction power can also reach a higher level.
  • the agitator assembly of this embodiment also has: a stirring torque interface 105, a torque transmission component 106, a stirring shaft supporting component 107, and a heat preservation material 108.
  • the stirring shaft support member 107 has sealing and heat insulating members.
  • the insulating material 108 is used to prevent loss of cooling efficiency.
  • the torsion torque of the mixing host is applied to the radiator 104 through the mixing torque interface 105, and then applied to the torque transmission component 106, and then applied to the heat conducting mixing shaft 102 to prevent the semiconductor refrigeration fin 103 from being stressed.
  • the radiator 104 is used to transmit the torsion torque because the position of the radiator 104 has a certain mechanical strength. In fact, this is not the only way. It is also possible to redesign the torque transmission component to directly connect the stirring torque interface 105 and the heat conducting stirring shaft 102.
  • the agitator assembly of the first embodiment by reliably cooling the agitator, takes away some heat from the location where frictional heat is generated.
  • FIG 3 shows a schematic diagram of a second embodiment of the agitator assembly.
  • the thermally conductive stirrer 301 also includes a thermally conductive member made of a good thermal conductor.
  • the heat-conducting stirrer 301 can be a heat-conducting component added to the prior art stirrer.
  • the thermally conductive stirrer 301 itself can also be composed of a good heat conductor, and then the stirrer 301 itself is a thermally conductive component.
  • the thermally conductive member of the thermally conductive stirrer 301 and the thermally conductive member of the thermally conductive stirring shaft 102 have a thermally conductive connection.
  • thermally conductive stirring shaft needs a larger heat conduction cross section to increase the heat transfer power. .
  • the thermal conductivity of the above-mentioned thermal conduction path needs to be accurately designed according to various parameters.
  • FIG. 4 is a schematic diagram of the assembly relationship of the three components.
  • Figure 5 is a schematic diagram of the completion of the assembly of the above three components.
  • the upper part of the mixing cup body 551 in FIG. 4 is not all drawn to fit the size of the layout, and its full view is shown in FIG. 5.
  • the third embodiment of the agitator assembly is described with reference to FIGS. 4 and 5. Because the agitator assembly and the mixing host work together, the implementation of the mixing host is incidentally described in some places below.
  • the third embodiment of the agitator assembly further adds technical features on the basis of the first and second embodiments.
  • the first optional implementation manner under this embodiment includes a magnetic induction coil 410.
  • Cooperating with the magnetic induction coil 410 is the magnetic field generating module 510 on the stirring host 500.
  • the magnetic field generating module 510 may be composed of a conductive coil or a magnet.
  • the magnetic induction coil 410 receives electric energy through electromagnetic induction, and supplies power to the electronic devices and circuits on the stirrer assembly 100.
  • the outer surface of the agitator assembly 100 of this embodiment can be electrically insulated, and it is also easy to achieve a waterproof function.
  • the number of magnetic induction coils 410 can be greater than or equal to one, and the number of magnetic field generating modules 510 can also be greater than or equal to one.
  • the agitator assembly 100 has a control unit 420, a cold end temperature sensor 421, and a hot end temperature sensor 422.
  • the control unit 420, the cold junction temperature sensor 421, and the hot junction temperature sensor 422 all have connected circuits (not shown in the figure).
  • the control unit 420 is a digital circuit with a certain computing capability, it can generate a variety of more flexible control methods. For example, the temperature is obtained from the temperature sensor 421 of the cold end, and if the temperature of the cold end is higher than the threshold, the cooling power is increased. If the cold junction temperature is lower than the threshold, reduce the cooling power.
  • the temperature is obtained from the hot end temperature sensor 422, and if the temperature is too high, the cooling power is reduced or the cooling is stopped.
  • the control unit 420 may also send an alarm signal when the temperature of the hot end is too high.
  • the control unit 420 has a corresponding execution circuit (not shown in the figure), which is used to turn on and off the cooling of the semiconductor refrigeration fin 103, and is also used to adjust the operating power of the semiconductor refrigeration fin.
  • control unit 420 includes a communication module (not shown in the figure), and the mixing host 500 also has a control unit 520 and a corresponding communication module (not shown in the figure).
  • the control unit 420 receives information such as the torsion torque and rotation speed of the mixing host, and estimates the heat generated by the heat conduction mixer 301 or the friction between the mixer and the food.
  • the control unit generates power based on the estimated frictional heat, and at the same time compensates for the loss of the heat conduction path, and finally outputs a suitable output The cooling power. In this way, through information transmission, processing and execution, it is ensured that the frictional heat accumulation during food processing is kept within a certain range.
  • control unit 420 can also control the agitator assembly to work in a state of cooling while stirring. For example, for the processing of a certain amount of room temperature fruits and vegetables, when the fruit and vegetable puree is processed, the temperature of the fruit and vegetable puree is also reduced to a target range.
  • the control unit 420 may be able to design a variety of smarter working modes by having computing capabilities.
  • the mixing cup body 551 is coupled with the agitator assembly through a sealing bayonet to form a mixing cup.
  • the stirring cup 551 is coupled with the stirring host through another bayonet, and at the same time, the stirring torque interface 105 of the agitator assembly and the motor interface 505 of the stirring host are also coupled.
  • the stirring torque interface 105 of the agitator assembly and the motor interface 505 of the stirring host are also coupled.
  • the torsion torque of the motor 501 is finally transferred to the stirrer or the heat conduction stirrer.
  • the magnetic induction coil 410 of the stirrer assembly and the magnetic field generating module 510 of the stirring host also reach the coupling position.
  • the magnetic induction coil 410 of the stirrer assembly rotates with the stirrer assembly, it interacts with the magnetic field generating module 510 to generate an induced current to obtain electrical energy.
  • the mixing host 500 further has a fan module 502, and the fan module 502 shown in FIGS. 4 and 5 has two blades.
  • the fan module has n blades, and n is greater than or equal to 1.
  • the fan module 502 and the heat sink 104 of the agitator assembly are not in contact.
  • the air flow generated by the fan module 502 is used for the heat dissipation of the radiator 104.
  • the output air flow of the fan module 502 faces the heat sink of the heat sink 104 of the agitator assembly.
  • the mixing host has an air inlet 503 with a fan.
  • the mixing cup 551 has an air outlet 552 of a fan. Facilitate the inflow and outflow of heat dissipation airflow.
  • the number of air inlets 503 is n, and n is greater than or equal to 1.
  • the number of air outlets 552 can also be greater than or equal to one.
  • they have corresponding wind deflectors.
  • they have fan guard nets.
  • control unit 520 of the mixing host communicates with the control unit 420 of the agitator assembly, and a feedback adjustment mechanism is established between the working power of the fan module 502 and the temperature of the radiator 104 to improve the air cooling efficiency, thereby improving the agitator assembly The cooling efficiency.
  • the mixing host also has a drain 506 and a fan motor 504. There are also some ventilation holes (not shown in the figure) on the shell of the mixing host to dissipate heat to the motor.
  • the mixing cup 600 After the mixing cup body 651 is connected to the agitator assembly 100 through the sealing bayonet, the mixing cup 600 has the container function.
  • the mixing cup 651 also has a sealing cover 653.
  • the sealed container thus formed can be used to store food.
  • the outer layer of the mixing cup body 651 is provided with a heat preservation material 654, which can heat the food put into the above-mentioned sealed container.
  • the agitator assembly 100 also has a power supply interface 655, which provides a semiconductor refrigeration chip for electrical energy.
  • the power supply interface 655 can be powered in a wire manner or in a wireless manner (receive power through the magnetic induction coil 410).
  • the radiator naturally dissipates heat.
  • the mixing cup body 651 has a heat dissipation fan (not shown in the figure) to air-cool the radiator to increase the cooling power.
  • the cooling fan can be separated from the mixing cup body 651 when not in use.
  • the mixing cup 600 can cool the stored food under the condition of being separated from the mixing host. In order to keep the food storage position not higher than the cold source, the sealed mixing cup is generally placed at about 600 rotations and 90 degrees.
  • the mixing cup 600 of this embodiment can be used for heat preservation and storage of food, can be used for cooling food, and can also be used for cold and fresh stirring of food, integrating multiple functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Food-Manufacturing Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种搅拌器组件(100)、搅拌机和搅拌杯(600)。搅拌器组件(100)包括:搅拌器(101)、导热搅拌轴(102)、半导体制冷片(103)、散热器(104);导热搅拌轴(102)包含热的良导体构成的热传导部件;搅拌器(101)和导热搅拌轴(102)的一端具有热传导连接;导热搅拌轴(102)的另一端和半导体制冷片(103)的冷端具有热传导连接;半导体制冷片(103)的热端和散热器(104)具有热传导连接。用于给搅拌器制冷,从摩擦热产生的部位带走一些热量。

Description

搅拌器组件、搅拌机和搅拌杯 技术领域
本申请涉及搅拌器组件、搅拌机和搅拌杯,尤其是进行冷鲜搅拌的一种搅拌器组件、搅拌机和搅拌杯。
背景技术
当前普通搅拌机已经广泛应用。专利申请CN201811504279《一种半导体多功能冷热食物一体机》公开了一种具有制冷和搅拌两种功能的搅拌机。该专利申请写道:“所述的保温层上设有通槽,所述的通槽内依次设有固定铝块和冷暖芯片,且固定铝块贴合移动内壶;”。这是当前有限的检索中发现的最接近的现有技术。
发明内容
搅拌机的搅拌器旋转,与被加工的食物摩擦,不可避免地产生摩擦热,造成被加工的食物新鲜程度下降。背景技术中提到的方案虽然在搅拌杯内壁上对食物进行降温,但是仍然解决不了搅拌器和食物摩擦造成的局部温度上升问题。
本申请提供一种搅拌器组件,用于从摩擦热产生的部位带走热量的搅拌器组件。另外,本申请还提供了一种搅拌机和一种搅拌杯。
第一方面,本申请提供一种搅拌器组件,包括:搅拌器,还包括:导热搅拌轴、半导体制冷片、散热器;所述导热搅拌轴包含热的良导体构成的热传导部件;所述搅拌器和所述导热搅拌轴的一端具有热传导连接;所述导热搅拌轴的另一端和所述半导体制冷片的冷端具有热传导连接;所述半导体制冷片的热端和所述散热器具有热传导连接。本方案给搅拌器制冷,从摩擦热产生的部位带走一些热量。
结合第一方面的第一种可能的实施方式:所述半导体制冷片的所述冷端和所述热端之间填充保温材料。本方案减小半导体制冷片内部的热辐 射、热对流造成的损耗。
结合第一方面的第二种可能的实施方式:所述搅拌器为导热搅拌器,包含热的良导体构成的热传导部件;所述导热搅拌器的所述热传导部件和所述导热搅拌轴的所述热传导部件具有热传导连接。本方案具有热传导通路,更好地进行热传导。
结合上述第一方面的第二种可能的实施方式的第一种可能的子实施方式:所述导热搅拌轴和所述导热搅拌器是无缝连接的一体部件。本方案防止热传导连接的部位松动,一体化更为坚固。
结合第一方面的第三种可能的实施方式:具有一磁感应线圈,用于接收电能。本方案采用无导线供电,以便外表面可以和外部电绝缘,实现防水功能。
结合第一方面的第四种可能的实施方式:具有控制单元和冷端温度传感器,所述控制单元和所述冷端温度传感器相连;所述控制单元具有执行电路,用于调节所述半导体制冷片的制冷功率;所述控制单元用于获取冷端温度,调节所述半导体制冷片的制冷功率,保持冷端温度稳定。本方案通过测量冷端温度,调节制冷功率,维护搅拌器的温度趋于稳定。
结合上述第一方面的第四种可能的实施方式的第一种可能的子实施方式:所述控制单元具有通信模块,所述通信模块用于接收搅拌主机的扭转力矩和转速,所述控制单元用于根据所述扭转力矩和所述转速估计半导体制冷片的制冷功率。本方案预估摩擦产热的功率,从而及时制冷、平抑热量。
结合第一方面的第五种可能的实施方式:具有控制单元和热端温度传感器,所述控制单元和所述热端温度传感器相连;所述控制单元具有执行电路,用于在热端温度超过阈值时降低所述半导体制冷片的制冷功率。本方案防止热端温度过高,损坏半导体制冷片。
第二方面,本申请提供一种搅拌机,包括搅拌主机和搅拌杯,所述搅拌杯包括:搅拌杯体、搅拌器组件;所述搅拌器组件为上述第一方面至上述结合第一方面的第五种可能的实施方式的任意一种所述的搅拌器组件;所述搅拌主机具有风扇模块,所述风扇模块的输出风流朝向所述搅拌器组件的散热器的散热片。本方案一种搅拌机,加工食物的同时从摩擦热产生的部位带走一些热量。
结合第二方面的第一种可能的实施方式:所述搅拌主机具有磁场产生 模块,所述磁场产生模块为导电线圈或者磁铁中的一种。本方案让搅拌主机具有无导线供电的支持能力。
第三方面,本申请提供一种搅拌杯,包括搅拌杯体、搅拌器组件,所述搅拌器组件为上述第一方面至上述结合第一方面的第五种可能的实施方式的任意一种所述的搅拌器组件,所述搅拌器组件还具有电源接口;所述搅拌杯体具有保温层、密封盖。本方案一种搅拌杯,具有冷藏食物和冷鲜搅拌食物的功能。
附图说明
图1是搅拌器组件第一实施例示意图;
图2是半导体制冷片局部剖面示意图;
图3是搅拌器组件第二实施例示意图;
图4是搅拌主机、搅拌器组件、搅拌杯体及其装配关系示意图;
图5是搅拌机装配完成示意图;
图6是一种搅拌杯示意图。
具体实施方式
下面结合附图和具体实施例来说明实施方式。
图1所示是搅拌器组件第一实施例示意图。搅拌器101可以是搅拌刀、搅拌棒、搅拌叶片、搅拌架中的一种搅拌器。搅拌器101和导热搅拌轴102机械连接,同时也具有热传导连接。热传导连接往往需要排除部件之间的间隙或者具有热阻效应的物质。一般有以下几种方式:1,使用导热硅脂或者液态金属填充两个部件之间的间隙;2,使用柔性的导热片夹在两个部件的接触面之间;3,更佳地,搅拌器和导热搅拌轴合体为一个部件,也可以将两个部件的接触面之间用焊接的焊料填满(焊接材料也是一种热的良导体),达到无缝连接的效果。导热搅拌轴102带动搅拌器101转动,搅拌器101搅拌被加工的食材。导热搅拌轴102的另一端和半导体制冷片103的冷端具有热传导连接。半导体制冷片103的热端和散热器104具有热传导连接。
图2是半导体制冷片103的局部剖面示意图。半导体制冷片由N型半导体201、P型半导体202、导电导热体203、电绝缘导热体204构成。电绝缘导热体204的204a为冷端,204b为热端。制冷功率大小是由流通电流的大小以及N型半导体和P型半导体的数量决定。由图2可知,冷端204a和热端204b之间除了存在导电导热体203、N型半导体201以及P型半导体202,还存在很多空隙,这些空隙容易让热辐射和热对流造成损耗。本实施例下的一种可选实施方式是:冷端和热端之间的空隙用保温材料205填充,以减小损耗。
导热搅拌轴102包含有热的良导体构成的热传导部件。导热搅拌轴102可以是在现有技术搅拌轴的基础上增加热传导部件。导热搅拌轴102本身也可以由热的良导体构成的,这时导热搅拌轴102本身就是热传导部件。
半导体制冷片103的热端和散热器104必须具有可靠的热传导连接,否则容易因热量聚集、温度过高而损坏半导体制冷片。冷端用来给搅拌器101降温、带走热量,因此冷端和导热搅拌轴102也必须具有可靠的热传导连接。本实施例在搅拌食物时,搅拌器101、导热搅拌轴102、半导体制冷片103、散热器104作为一个整体一起转动,使半导体制冷片的热端和散热器、冷端和导热搅拌轴、导热搅拌轴和搅拌器都保持可靠的热传导连接,从而使制冷可靠并通过热传导作用到搅拌器101。
图1中半导体制冷片103为板状。相应地,导热搅拌轴102的下部成喇叭形扩大,并覆盖半导体制冷片103的整个冷端一侧。散热器104覆盖半导体制冷片103的整个热端一侧。导热搅拌轴、半导体制冷片、散热器的几何形状还可以有多种变化。
例如:导热搅拌轴下部没有喇叭形扩大,上下都为圆柱体。半导体制冷片的冷端、热端的平面相同并小于导热搅拌轴横截面。散热器和半导体制冷片热端接触面积也相应缩小,其下部的散热片成喇叭形放大,使散热面积足够。如果半导体制冷片还保持同样的制冷功率,因为冷端、热端两侧面积缩小,冷端、热端附近的热传导材料的导热性能要更高。
再如:一种异型的半导体制冷片,其冷端的面积小于热端的面积,使冷端可以和圆柱体的导热搅拌轴相连,热端可以和大面积的散热器(如104)相连。半导体制冷片内部的一些N型半导体和P型半导体会倾斜放置,其制造较为复杂。如果半导体制冷片还保持同样的制冷功率,因为冷 端面积缩小,冷端附近的热传导材料的导热性能要更高。
上述三种可选实施方式还可以取一些折中,形成多种组合。从成本角度,图1中示出的导热搅拌轴、半导体制冷片、散热器的几何形状是发明人当前认为最经济的方案。参考图1,可选的,导热搅拌轴102逐渐放大的部分和上面的圆柱体部分分开加工,然后再结合。本文为了节省篇幅,不管上述导热搅拌轴的几何形状作哪种变化、分成几个部分,都称之为:导热搅拌轴。
搅拌器101一般由金属构成,具有一定的热传导能力,从而制冷对搅拌器101的表面有一定的降温效果,可以消除一些摩擦热。不过现有技术的搅拌器并没有专门设计用于传导热量,它的热传导功率不一定很高。本实施方式主要应用于摩擦热产生功率不高的场合。图1所示的搅拌器101为两叶式搅拌器。一般搅拌器有2叶、4叶、6叶、8叶等多种。叶数越多,总的热传导功率越大。本实施方式采用现有技术的搅拌器,总的热传导功率也可以达到更高的水平。
本实施例搅拌器组件还具有:搅拌转矩接口105、转矩传递部件106、搅拌轴支承部件107、保温材料108。搅拌轴支承部件107具有密封和隔热的部件。保温材料108用来防止制冷效率的损耗。搅拌主机的扭转力矩通过搅拌转矩接口105施加给散热器104,然后施加到转矩传递部件106,再施加到导热搅拌轴102上,避免半导体制冷片103受力。本实施方式借用散热器104传递扭转力矩,是因为散热器104所处的位置并具有一定的机械强度。其实这并不是唯一的方式。也可以通过重新设计,让转矩传递部件将搅拌转矩接口105和导热搅拌轴102直接连接起来。
本第一实施例搅拌器组件,通过可靠地给搅拌器制冷,从摩擦热产生的部位带走一些热量。
图3所示是搅拌器组件第二实施例示意图。导热搅拌器301也包含有热的良导体构成的热传导部件。导热搅拌器301可以是在现有技术搅拌器的基础上增加热传导部件。导热搅拌器301本身也可以由热的良导体构成的,这时搅拌器301本身就是热传导部件。导热搅拌器301的热传导部件和导热搅拌轴102的热传导部件具有热传导连接。其他方面的实施方式参考搅拌器组件第一实施例。这样从半导体制冷片103的冷端到导热搅拌轴102、再到导热搅拌器301、一直到导热搅拌器301的产生摩擦热的表面,存在一个良好 的热传导通路。更便于从摩擦热的源头带走热量,从而更好地解决摩擦发热问题,便于食材的冷鲜加工。
在同等转速下,导热搅拌器301的叶数越多,总的摩擦生热的功率也就越高,需要制冷功率也就越高,导热搅拌轴就需要更大的导热横截面来提高热传导功率。上述热传导通路的导热能力需要根据各方面的参数精确地设计。
图4中的搅拌主机500、搅拌器组件100、搅拌杯体551共中心线,是三个部件装配关系的示意图。图5是上述三个部件装配完成示意图。图4中的搅拌杯体551上部未全部画出以适应版面大小,其全貌在图5中有展示。
搅拌器组件第三实施例参考图4、图5进行说明。因为搅拌器组件和搅拌主机相互配合工作,下文有些地方顺带描述了搅拌主机的实施方式。
搅拌器组件第三实施例在第一、第二实施例的基础上,进一步增加技术特征。本实施例下的第一种可选实施方式:包含磁感应线圈410。与磁感应线圈410配合的是搅拌主机500上的磁场发生模块510,所述磁场发生模块510可以由导电线圈构成,也可以由磁铁构成。磁感应线圈410通过电磁感应接收电能,给搅拌器组件100上的电子器件、电路供电。这样本实施方式的搅拌器组件100的外表面可以实现电绝缘,也容易实现防水功能。为了接收更多的电量,磁感应线圈410的数量可以大于等于1,同样磁场发生模块510的数量也可以大于等于1。
本实施例下的第二种可选实施方式,搅拌器组件100具有控制单元420和冷端温度传感器421、热端温度传感器422。控制单元420和冷端温度传感器421、热端温度传感器422都具有连接的电路(图中未示出)。控制单元420作为具有一定计算能力的数字电路,则可以产生多种更为灵活的控制方式。例如,从冷端的温度传感器421获取温度,如果冷端温度高于阈值,则加大制冷功率。如果冷端温度低于阈值,则减小制冷功率。再如,从热端温度传感器422获取温度,如果温度过高,减小制冷功率或者停止制冷。控制单元420还可以对热端温度过高,发出报警信号。控制单元420具有相应的执行电路(图中未示出),用于开启、关闭半导体制冷片103的制冷,也用于调节半导体制冷片的运行功率。
更佳地,控制单元420包含有通信模块(图中未示出),搅拌主机500也具有一个控制单元520并含有相应的通信模块(图中未示出)。控制单元420接收搅拌主机的扭转力矩和转速等信息,估算导热搅拌器301或搅拌器 与食物摩擦产生的热量,控制单元根据估算到的摩擦热产生功率,同时补偿热传导通路的损耗,最后输出合适的制冷功率。这样通过信息传递、处理和执行,保证食物加工过程中摩擦热聚集保持在一定的范围内。
更优地,控制单元420还可以控制搅拌器组件工作于边搅拌边制冷的状态。例如,对一定份量的室温果蔬的加工,当加工成果蔬泥的同时,把果蔬泥的温度也降到一个目标范围。控制单元420通过具备运算能力,还有可能再设计出多种更为智能的工作模式。
参考图5、图4,一种搅拌机的实施例。首先搅拌杯体551通过密封卡口和搅拌器组件耦合,形成搅拌杯。然后,搅拌杯体551再通过另一卡口和搅拌主机耦合,同时上述搅拌器组件的搅拌转矩接口105和搅拌主机的马达接口505也耦合。通过两个扭转力矩接口的耦合,将马达501的扭转力矩最终传递给搅拌器或者导热搅拌器。
更优地,在搅拌器组件的搅拌转矩接口105和搅拌主机的马达接口505耦合的同时,搅拌器组件的磁感应线圈410和搅拌主机的磁场发生模块510也到达相耦合的位置。搅拌器组件的磁感应线圈410随着搅拌器组件转动时,与磁场发生模块510作用产生感生电流,获得电能。
更优地,搅拌主机500还具有一个风扇模块502,图4、图5上风扇模块502有两个叶片。可选地,风扇模块具有n个叶片,n大于等于1。图5中风扇模块502和搅拌器组件的散热器104并不接触。实际上风扇模块502产生的风流用于散热器104的散热。风扇模块502的输出风流朝向所述搅拌器组件的散热器104的散热片。搅拌主机上具有风扇的进风口503。搅拌杯体551上具有风扇的出风口552。便于散热风流的流进和流出。为了有利于风冷,进风口503的数量为n个,n大于等于1。同样出风口552的数量也可以大于等于1。可选地,它们具有相应的导风板。可选地,它们具有风扇防护网。
更优地,搅拌主机的控制单元520和搅拌器组件的控制单元420通信,在风扇模块502的工作功率和散热器104的温度之间建立反馈调整机制,提高风冷效率,从而提高搅拌器组件的制冷效率。
搅拌主机还具有排水口506、风扇马达504。搅拌主机的外壳上还具有一些通风孔(图中未示出),给马达散热。
参考图6,一种搅拌杯的实施例。当搅拌杯体651通过密封卡口连接了搅 拌器组件100后,搅拌杯600具有了容器功能。搅拌杯体651还具有一个密封盖653。这样形成的密封容器可以用来存储食物。搅拌杯体651外层具有保温材料654,可以对放入上述密封容器的食物进行保温。
搅拌器组件100还具有一个供电接口655,提供半导体制冷片以电能。所述供电接口655可以采用导线方式供电,也可以以无导线方式供电(通过磁感应线圈410接收电能)。在半导体制冷片制冷功率不大的情况下,散热器自然散热。更优地,搅拌杯体651具有一个散热风扇(图中未示出)对散热器风冷,提高制冷功率。该散热风扇在不用的情况下可以脱离搅拌杯体651。本搅拌杯600可以在脱离搅拌主机的状况下,给存储的食物降温。为了让存储食物位置不高于冷源的位置,一般把密封的搅拌杯600转90度左右放置。当需要搅拌所存储的食物时,和图4所示的搅拌主机500连接。本实施例搅拌杯600可以用于食物的保温存储、可以用于给食物降温、还可以用于食物的冷鲜搅拌,集多种功能于一体。
为了描述精简,不可避免地各个实施例之间有些相互参考,否则篇幅会过长、重复。每个实施例的实施方式应该在通读全文后,以所属技术领域人员的技术水平来理解。通常,上述实施例用于解释权利要求,本申请的保护范围并不局限于实施例,本申请的保护范围应该根据权利要求得到。

Claims (11)

  1. 一种搅拌器组件,包括:搅拌器,其特征在于,还包括:导热搅拌轴、半导体制冷片、散热器;
    所述导热搅拌轴包含热的良导体构成的热传导部件;
    所述搅拌器和所述导热搅拌轴的一端具有热传导连接;
    所述导热搅拌轴的另一端和所述半导体制冷片的冷端具有热传导连接;
    所述半导体制冷片的热端和所述散热器具有热传导连接。
  2. 如权利要求1所述的搅拌器组件,其特征在于:所述半导体制冷片的所述冷端和所述热端之间填充保温材料。
  3. 如权利要求1所述的搅拌器组件,其特征在于:所述搅拌器为导热搅拌器,包含热的良导体构成的热传导部件;
    所述导热搅拌器的所述热传导部件和所述导热搅拌轴的所述热传导部件具有热传导连接。
  4. 如权利要求3所述的搅拌器组件,其特征在于:所述导热搅拌轴和所述导热搅拌器是无缝连接的一体部件。
  5. 如权利要求1所述的搅拌器组件,其特征在于:具有一磁感应线圈,用于接收电能。
  6. 如权利要求1所述的搅拌器组件,其特征在于:具有控制单元和冷端温度传感器,所述控制单元和所述冷端温度传感器相连;所述控制单元具有执行电路,用于调节所述半导体制冷片的制冷功率;所述控制单元用于获取冷端温度,调节所述半导体制冷片的制冷功率,保持冷端温度稳定。
  7. 如权利要求6所述的搅拌器组件,其特征在于:所述控制单元具有通信模块,所述通信模块用于接收搅拌主机的扭转力矩和转速,所述控制单元用于根据所述扭转力矩和所述转速估计半导体制冷片的制冷功率。
  8. 如权利要求1所述的搅拌器组件,其特征在于:具有控制单元和热端温度传感器,所述控制单元和所述热端温度传感器相连;所述控制单元具有执行电路,用于在热端温度超过阈值时降低所述半导体制冷片的制冷功率。
  9. 一种搅拌机,包括搅拌主机和搅拌杯,其特征在于,
    所述搅拌杯包括:搅拌杯体、搅拌器组件;所述搅拌器组件为权利要求1至8任意一项所述的搅拌器组件;
    所述搅拌主机具有风扇模块,所述风扇模块的输出风流朝向所述搅拌器 组件的散热器的散热片。
  10. 如权利要求9所述的搅拌机,其特征在于,所述搅拌主机具有磁场产生模块,所述磁场产生模块为导电线圈或者磁铁中的一种。
  11. 一种搅拌杯,包括搅拌杯体、搅拌器组件,其特征在于:
    所述搅拌器组件为权利要求1至8任意一项所述的搅拌器组件,所述搅拌器组件还具有电源接口;
    所述搅拌杯体具有保温层、密封盖。
PCT/CN2020/083579 2019-05-15 2020-04-07 搅拌器组件、搅拌机和搅拌杯 WO2020228448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910400484.1 2019-05-15
CN201910400484.1A CN111938467A (zh) 2019-05-15 2019-05-15 搅拌器组件、搅拌机和搅拌杯

Publications (1)

Publication Number Publication Date
WO2020228448A1 true WO2020228448A1 (zh) 2020-11-19

Family

ID=73290016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083579 WO2020228448A1 (zh) 2019-05-15 2020-04-07 搅拌器组件、搅拌机和搅拌杯

Country Status (2)

Country Link
CN (1) CN111938467A (zh)
WO (1) WO2020228448A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016101A2 (en) * 2007-07-27 2009-02-05 Technology From Ideas Stirring device
CN201585384U (zh) * 2010-01-31 2010-09-22 王天然 速冷豆浆机
CN104441073A (zh) * 2014-11-28 2015-03-25 重庆义三木业有限公司 木料切割锯片
CN106136828A (zh) * 2015-04-16 2016-11-23 佛山市顺德区美的电热电器制造有限公司 榨汁机
CN206102485U (zh) * 2016-07-28 2017-04-19 广东美的生活电器制造有限公司 食物料理机
CN206365824U (zh) * 2016-09-28 2017-08-01 浙江绍兴苏泊尔生活电器有限公司 刀座组件、功能组件和食物料理机
CN107788822A (zh) * 2017-12-11 2018-03-13 重庆懿熙品牌策划有限公司 一种奶瓶底座及其全功能玻璃奶瓶和控制方法
CN208319053U (zh) * 2017-09-29 2019-01-04 浙江绍兴苏泊尔生活电器有限公司 料理机用搅拌杯组件及包括该搅拌杯组件的料理机
CN210019061U (zh) * 2019-05-15 2020-02-07 刘焱 搅拌器组件、搅拌机和搅拌杯

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016101A2 (en) * 2007-07-27 2009-02-05 Technology From Ideas Stirring device
CN201585384U (zh) * 2010-01-31 2010-09-22 王天然 速冷豆浆机
CN104441073A (zh) * 2014-11-28 2015-03-25 重庆义三木业有限公司 木料切割锯片
CN106136828A (zh) * 2015-04-16 2016-11-23 佛山市顺德区美的电热电器制造有限公司 榨汁机
CN206102485U (zh) * 2016-07-28 2017-04-19 广东美的生活电器制造有限公司 食物料理机
CN206365824U (zh) * 2016-09-28 2017-08-01 浙江绍兴苏泊尔生活电器有限公司 刀座组件、功能组件和食物料理机
CN208319053U (zh) * 2017-09-29 2019-01-04 浙江绍兴苏泊尔生活电器有限公司 料理机用搅拌杯组件及包括该搅拌杯组件的料理机
CN107788822A (zh) * 2017-12-11 2018-03-13 重庆懿熙品牌策划有限公司 一种奶瓶底座及其全功能玻璃奶瓶和控制方法
CN210019061U (zh) * 2019-05-15 2020-02-07 刘焱 搅拌器组件、搅拌机和搅拌杯

Also Published As

Publication number Publication date
CN111938467A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
CN106256176B (zh) 电子设备
CN209893723U (zh) 冷藏冷冻装置
CN210019061U (zh) 搅拌器组件、搅拌机和搅拌杯
CN103123509B (zh) 一种单板控温装置及方法
US20180128153A1 (en) Cooling fan using surface cooling effect for rotating fan blade part
WO2020228448A1 (zh) 搅拌器组件、搅拌机和搅拌杯
KR20100005329U (ko) 열전현상을 이용한 선풍기
CN207135429U (zh) 一种便携式散热装置
JP2010267912A (ja) 冷却装置
CN218100141U (zh) 一种服务器散热结构
CN108334177A (zh) 一种防水机箱的水冷散热系统
JP2011233304A (ja) 誘導加熱調理器
JPH11318695A (ja) 家庭用加熱機器
JP2008286506A (ja) 保存庫及び冷蔵用保存庫
CN210512286U (zh) 母乳冷藏装置及薄型高效散热机构
CN213248476U (zh) 料理机
CN206102472U (zh) 破壁料理机
CN207543470U (zh) 一种节能环保散热器
CN208059380U (zh) 试剂舱制冷系统
CN210611856U (zh) 带制冷功能的电热水壶
CN104186903A (zh) 分体式冰淇淋机
KR100672516B1 (ko) 냉각팬의 가변 제어장치
CN104171247A (zh) 分体式冰淇淋机
CN206102483U (zh) 散热风扇、散热结构及破壁料理机
CN219042322U (zh) 一种散热器及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805034

Country of ref document: EP

Kind code of ref document: A1