WO2020228073A1 - 毛细结构、其制作方法和散热件 - Google Patents

毛细结构、其制作方法和散热件 Download PDF

Info

Publication number
WO2020228073A1
WO2020228073A1 PCT/CN2019/089933 CN2019089933W WO2020228073A1 WO 2020228073 A1 WO2020228073 A1 WO 2020228073A1 CN 2019089933 W CN2019089933 W CN 2019089933W WO 2020228073 A1 WO2020228073 A1 WO 2020228073A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary structure
metal
metal powder
wire layer
metal wire
Prior art date
Application number
PCT/CN2019/089933
Other languages
English (en)
French (fr)
Inventor
莫文剑
易翠
Original Assignee
苏州铜宝锐新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州铜宝锐新材料有限公司 filed Critical 苏州铜宝锐新材料有限公司
Publication of WO2020228073A1 publication Critical patent/WO2020228073A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • This application relates to a capillary structure, a manufacturing method thereof, and a heat sink, which can be applied to fields such as heat pipes, soaking plates, and heat column structures.
  • Phase change heat dissipation is currently recognized as the most advanced heat dissipation technology. It uses the transformation of gas and liquid to achieve heat exchange. Its thermal conductivity is 1,000 times that of a good thermal conductor, and it is known as a thermal "superconductor".
  • the structure of the phase change heat dissipation component there is a layer of capillary structure material on the inner wall of the closed vacuum chamber, and it contains a moving fluid. The liquid is heated in the heat absorption zone and volatilizes into a gas, and flows to the condensation zone. The gas is condensed when it is cold, and under the action of capillary force Return to the endothermic area, so that the heat is continuously conducted out by the circulation.
  • the capillary structure is the driving force for the continuous flow of liquid, and it is also a key material that affects the efficiency of heat transfer components.
  • the porosity, water absorption rate and strength of the capillary structure of the heat dissipation component are all important indicators.
  • Phase change heat dissipation components have many forms, such as heat pipes, soaking plates, and heat column structures.
  • the capillary structure is mainly a layer of sintered metal powder on the inner wall.
  • Chinese utility model patent 207543468U discloses an ultra-thin soaking plate in which copper powder or metal fiber capillary structure is distributed in the groove. This structure still has problems such as low liquid absorption rate, weak strength, and low heat transfer efficiency.
  • the purpose of the present invention is to provide a capillary structure, a manufacturing method thereof, and a heat sink to overcome the deficiencies in the prior art.
  • the embodiment of the application discloses a capillary structure, which includes at least one metal wire layer and at least one metal powder film,
  • the metal wire layer is formed by interweaving or arraying a plurality of metal wires
  • the metal powder film and the metal wire layer are sintered together.
  • a gap or a through hole is formed between the plurality of metal wires, and the pore is connected to the gap or through hole.
  • the material of the metal powder film is selected from copper, aluminum, titanium, silver, gold or alloys thereof;
  • the material of the metal wire layer is selected from copper, aluminum, titanium, silver, gold or alloys thereof.
  • the metal wire layer and the metal powder film are alternately arranged.
  • the thickness of each layer of the metal powder film is 15-2000um
  • the particle size of the powder in the metal powder film is 0.1-250 microns
  • the powder bulk density is 0.7-5g/cm 3 .
  • the metal wire layer is woven from a plurality of metal wires to form a metal grid, the metal wire diameter of the metal grid is 5-200um, and the mesh diameter is 10-500um.
  • the metal wire layer is formed by a plurality of metal wires side by side, the diameter of the metal wire is 5-200um, and the distance between adjacent metal wires is 10-1000um.
  • the embodiment of the present application also discloses a method for manufacturing a capillary structure, including:
  • the metal powder and the polymer material are mixed to prepare a paste
  • the paste is formed on the surface of the metal wire layer by casting, coating or spraying.
  • a film structure is formed on the surface of the metal wire layer by injection molding.
  • the polymer material at least includes a paste structure selected from a resin adhesive, a solvent, or a combination thereof.
  • the mass ratio of the metal powder in the mixed material of the metal powder and the polymer material is 50% to 90%.
  • an embodiment of the present application also discloses a heat sink, the surface of which is formed with the capillary structure.
  • the capillary structure and the surface of the heat sink are sintered or assembled together.
  • the application also discloses a method for manufacturing the capillary structure of the heat sink, which includes:
  • the paste is sintered to form a capillary structure on the surface of the heat sink.
  • the polymer material at least includes a paste structure selected from a resin adhesive, a solvent, or a combination thereof.
  • the mass ratio of the metal powder in the mixed material of the metal powder and the polymer material is 50% to 90%.
  • the capillary structure of the present invention has high porosity, fast liquid absorption, good strength, high heat transfer efficiency, can be directly sintered on the inner wall of the heat dissipation component, convenient to use, and simple in procedures , Suitable for heat dissipation components such as heat pipes, soaking plates, and heat column structures.
  • an embodiment of the present application provides a capillary structure, including at least one metal wire layer 2 and at least one metal powder film 1.
  • the metal wire layer 2 is formed by interweaving or arraying multiple metal wires. Connected pores are formed between the particles of the metal powder film 1, and the metal powder film 1 and the metal wire layer 2 are sintered together.
  • the materials of the metal wire and metal powder used are metals with higher thermal conductivity, such as copper, aluminum, titanium, silver, gold, etc. or alloys with them as the main matrix.
  • the price of titanium is high, and copper and aluminum, which are currently used most often, are preferred.
  • the shape and particle size of the metal powder are not particularly limited. Spherical, quasi-spherical, irregular, scaly, and irregular shapes can all be used appropriately. Irregular shapes are preferred, and the powder particle size is preferably 0.1- 250 microns, more preferably 30-250 microns. The bulk density of the powder is 0.7-5 g/cm 3 , more preferably 1.2-3.5 g/cm 3 .
  • the metal powder can be manufactured by atomization method, electrolysis method, reduction method, melt rotation method and other extremely solidification methods.
  • the water atomization method is preferred, and irregular powder is obtained by impacting molten metal copper liquid with high pressure water.
  • each metal powder film is 15-2000um, preferably 50-500um.
  • the metal wire layer is formed by interweaving a plurality of metal wires into a metal grid.
  • the mesh shape is square.
  • the metal wire diameter of the metal grid is 5-200um, and the mesh diameter (side length) is 10-500um. More preferably, the diameter of the metal wire is 20-60um, and the diameter of the mesh is 50-150um.
  • the metal wire layer is formed by a plurality of metal wires in parallel.
  • the diameter of the metal wire is 5-200um, and the distance between adjacent metal wires is 10-1000um. More preferably, the diameter of the metal wire is 20-60um, and the distance between adjacent metal wires is 20-200um.
  • the capillary structure may be a composite structure of metal wire layer + metal powder film, metal wire layer + metal powder film + metal wire layer, metal powder film + metal wire layer + metal powder film, etc.
  • the embodiment of the present application also provides a method for manufacturing a capillary structure, including:
  • the polymer may contain a resin binder, a solvent, a surfactant, etc. as required, and known or commercially available ones can be used for these. It is preferable to contain at least one of a resin adhesive or a solvent for use as a paste structure, which can form an excellent film layer or has an excellent use effect of injection molding.
  • the resin binder for example, epoxy resin, phenol resin, polypropionaldehyde, polyester resin, acrylic resin, acrylonitrile resin, paraffin wax, vinyl alcohol resin, polyolefin resin, polyethylene resin, vinyl acetate resin, etc.
  • It is a natural resin such as paraffin wax, beeswax, tar, turpentine and glue. These resins volatilize when heated. If there is residue after the metal is sintered, it is not the best option and needs to be distinguished.
  • the polymer material is fully mixed with the metal powder, and the metal powder is evenly dispersed.
  • a solvent can be used as needed, or it can be heated during the mixing process.
  • the polymer and the metal powder do not delaminate, and the metal powder does not precipitate.
  • Solvents can be used alone or in combination. Solvents include water, alcohols, ethers, ketone esters, etc.
  • Surfactants are used to improve the compatibility of metal powders with solvents and polymers, such as stearic acid, sodium dodecylbenzene sulfonate, lecithin, amino acid type, fatty acid glycerides, fatty acid sorbitan, polysorbate, etc. .
  • the mass ratio of the metal powder is 50% to 90%.
  • the manufacturing method of the capillary structure includes:
  • the embryo body can be made into various shapes and thicknesses according to needs, such as columnar and sheet , Ring and so on.
  • the sintering temperature is 30-300°C lower than the melting point of the metal.
  • the sintering time can be adjusted according to the sintering temperature. Usually the sintering time (including the organic debinding process) is 30min-24h.
  • the sintering atmosphere can be an inert atmosphere, a reducing atmosphere or a vacuum atmosphere. . Since the metal powder film contains organic matter such as resin adhesive, it needs to be degreasing treatment before high temperature sintering.
  • the degreasing treatment temperature is below 700°C, and the degreasing time is> 4h.
  • the degreasing atmosphere is selected according to the decomposition of organic matter. Oxidizing atmosphere and vacuum can be used. Atmosphere, inert atmosphere or reducing atmosphere.
  • the manufacturing method of the capillary structure includes:
  • the metal powder and polymer film can be various thicknesses and shapes of embryos according to needs, such as Columnar, sheet, ring, protrusions, pillars and so on.
  • the embryo body and the inner wall of the heat dissipation component are directly sintered for use.
  • the embryo body can be fired at a high temperature with a certain strength capillary structure, and then connected to the inner wall of the heat dissipation component.
  • the sintering temperature is 30-300°C lower than the melting point of the metal.
  • the sintering time can be adjusted according to the sintering temperature. Usually the sintering time (including the organic debinding process) is 30min-24h.
  • the sintering atmosphere can be an inert atmosphere, a reducing atmosphere or a vacuum atmosphere. . Since the metal powder film contains organic matter such as resin adhesive, it needs to be degreasing treatment before high temperature sintering.
  • the degreasing treatment temperature is below 700°C, and the degreasing time is> 4h.
  • the degreasing atmosphere is selected according to the decomposition of organic matter. Oxidizing atmosphere and vacuum can be used. Atmosphere, inert atmosphere or reducing atmosphere.
  • the metal wire is arranged using a metal braiding machine, or other machines that can straighten and close the metal wires, so that the metal wires can be arranged evenly and straight on a plane, or arranged in other required shapes.
  • metal wire can also be wound on the mold, and the shape of the mold is selected according to needs. The arrangement distance of the metal wire and the number of layers of the wire can be adjusted.
  • the capillary structure obtained in this embodiment can be applied to the heat pipe of the electronic heat dissipation assembly and the VC soaking plate.
  • the capillary structure is connected with the inner wall of the heat dissipation assembly through sintering to transfer heat to the inner wall of the heat dissipation assembly and store liquid , Provide the capillary force of the liquid reflux.
  • the embodiment of the application also discloses a manufacturing method of the capillary structure of the heat sink, which includes:
  • the paste is sintered to form a capillary structure on the surface of the heat sink.
  • the metal powder is prepared into a paste, which can form capillary structures of different shapes as required, and the operation is simple.
  • the metal wire layer is made of multiple metal wires interwoven into a metal grid.
  • Copper powder and copper mesh refer to a single-layer structure. The sizes of copper meshes involved in each embodiment and comparative example are the same. , The thickness of the copper powder layer is the same, and the copper powder layer has the same laying shape.
  • Examples 1-4 and Comparative Examples 1-3 the copper powder and polymer paste formulations are all used: copper powder 63%; water 33%, cellulose 3%.
  • the examples involving the combination of copper powder and copper mesh all adopt means: the copper powder and polymer are uniformly mixed to form a paste, which is coated on the copper mesh, then degreased and sintered, and the sintering temperature is 960 °C, holding time 60min.
  • the sintering condition of the copper powder satisfies: the sintering temperature is 960°C and the holding time is 60 minutes.
  • the metal wire layer is formed by multiple metal wires in parallel, copper powder and copper wire wires refer to a single-layer structure, and the copper meshes involved in each embodiment and comparative example have the same size and copper powder The layer thickness is the same, and the copper powder layer is laid in the same shape.
  • Example 5-8 the copper powder and polymer paste formulations are all used: copper powder 65%; polyethylene 30%, microcrystalline wax 4%, and stearic acid 1%.
  • Examples 5-8 the examples involving the combination of copper powder and copper meshes all adopted methods: heating and mixing the copper powder and polymer uniformly, straightening the metal wires, and the mixture of copper powder and polymer through injection molding Embossing on the wire, then high temperature debinding and sintering, sintering temperature 960 °C, holding time 60min.
  • the sintering condition of the copper powder satisfies: the sintering temperature is 960°C, and the holding time is 60 min.
  • the composite capillary structure material of the invention is used to make a soaking plate, the composite capillary structure material is placed on the inner wall of the soaking plate, and then high-temperature sintering can complete the production of the capillary structure of the soaking plate, and the process is simple;
  • the composite capillary structure has better strength than the existing capillary structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请公开了一种毛细结构,包括至少一层金属线层和至少一层金属粉膜,所述金属线层由多条金属线交织或阵列形成,所述金属粉膜的颗粒之间形成有相连通的孔隙,所述金属粉膜与所述金属线层烧结在一起。本发明还公开了一种毛细结构的制作方法和散热件。本发明的毛细结构孔隙率高、吸液速度快、强度好、传热效率高,可以直接烧结于散热组件中的内壁,使用方便,工序简单,适用于热导管,均热板,热柱结构等散热组件。

Description

毛细结构、其制作方法和散热件 技术领域
本申请涉及一种毛细结构、其制作方法和散热件,可应用于热导管、均热板、热柱结构等领域。
背景技术
相变散热是当前公认的最先进的散热技术,利用气液两相的转化来实现热量交换,它的导热能力是热良导体的1000倍,有热的“超导体”之称。相变散热组件的结构:封闭真空腔体内壁有一层毛细结构材料,且含有运动流体,液体在吸热区受热挥发为气体,流向冷凝区,气体遇冷发生冷凝,并在毛细力的作用下回流到吸热区,这样热量被循环不断的传导出去。其毛细结构是液体持续回流的驱动力,也是影响传热组件效率的关键材料。
散热组件毛细结构的孔隙率、吸水速率、强度都是重要的指标。毛细结构孔隙率越大,能容纳的液体越多,吸水速率越高,液体在冷凝区回流到吸热区的速度越快,对应散热组件的导热能力越强,另外热导管制造过程中经常需要弯折、打扁,这就需要毛细结构有良好的强度和韧性。相变散热组件有多种形态,如热导管,均热板,热柱结构等,其毛细结构主要是内壁烧结一层金属粉末。
中国实用新型专利207543468U披露了一种超薄均热板,在沟槽中分布铜粉或者金属纤维毛细结构。该结构仍然存在吸液速率低、强度弱、传热效率低等问题。
发明内容
本发明的目的在于提供一种毛细结构、其制作方法和散热件,以克服现有技术中的不足。
为实现上述目的,本发明提供如下技术方案:
本申请实施例公开一种毛细结构,包括至少一层金属线层和至少一层金属粉膜,
所述金属线层由多条金属线交织或阵列形成,
所述金属粉膜的颗粒之间形成有相连通的孔隙,
所述金属粉膜与所述金属线层烧结在一起。
优选的,在上述的毛细结构中,所述多条金属线之间形成有缝隙或通孔,所述孔隙与该缝隙或通孔连通。
优选的,在上述的毛细结构中,所述金属粉膜材质选自铜、铝、钛、银、金或其合金;
所述金属线层材质选自铜、铝、钛、银、金或其合金。
优选的,在上述的毛细结构中,所述金属线层和金属粉膜交替设置。
优选的,在上述的毛细结构中,每层所述金属粉膜的厚度为15-2000um,金属粉膜中的粉末粒径为0.1-250微米;粉末松装密度0.7-5g/cm 3
优选的,在上述的毛细结构中,所述金属线层由多条金属线交织成金属网格,所述金属网格的金属线直径为5-200um,网孔径为10-500um。
优选的,在上述的毛细结构中,所述金属线层由多条金属线并列形成,所述金属线的直径为5-200um,相邻金属线之间的间距为10-1000um。
相应的,本申请实施例还公开了一种毛细结构的制作方法,包括:
将金属粉末和高分子材料混合后形成于金属线层表面;
烧结,形成结合于金属线层上的金属粉膜。
优选的,在上述的毛细结构的制作方法中,将金属粉末和高分子材料混合制备成膏体;
膏体以流延、涂层或喷涂方式形成在金属线层表面。
优选的,在上述的毛细结构的制作方法中,金属粉末和高分子材料混合后,通过注射成型方式在金属线层表面形成膜结构。
优选的,在上述的毛细结构的制作方法中,所述高分子材料至少包括膏状构成物,该膏状构成物选自树脂粘接剂、溶剂或其组合。
优选的,在上述的毛细结构的制作方法中,金属粉末和高分子材料的混合材料中,金属粉末质量比例为50%~90%。
相应的,本申请一实施例还公开了一种散热件,其表面形成有所述的毛细结构。
优选的,在上述的散热件中,所述毛细结构与散热件表面之间烧结在一起或组装在一起。
本申请还公开了一种散热件毛细结构的制作方法,包括:
将金属粉末和高分子材料混合制备成膏体,膏体以流延、涂层、喷涂或注射成型方式形成于散热件表面;
膏体烧结,在散热件表面形成毛细结构。
优选的,在上述的散热件毛细结构的制作方法中,所述高分子材料至少包括膏状构成物,该膏状构成物选自树脂粘接剂、溶剂或其组合。
优选的,在上述的散热件毛细结构的制作方法中,金属粉末和高分子材料的混合材料中,金属粉末质量比例为50%~90%。
与现有技术相比,本发明的优点在于:本发明的毛细结构孔隙率高、吸液速度快、强度好、传热效率高,可以直接烧结于散热组件中的内壁,使用方便,工序简单,适用于热导管,均热板,热柱结构等散热组件。
具体实施方式
结合图1所示,本申请实施例提供了一种毛细结构,包括至少一层金属线层2和至少一层金属粉膜1,所述金属线层2由多条金属线交织或阵列形成,所述金属粉膜1的颗粒之间形成有相连通的孔隙,所述金属粉膜1与所述金属线层2烧结在一起。
在一实施例中,使用的金属线和金属粉的材质都是具有较高热导率的金属,如铜、铝、钛、银、金等或者以他们为主要基体的合金,由于金属金、银、钛价格高,优选现在使用最多的金属铜和金属铝。
在一实施例中,金属粉末的形状和粒径不特别限定,球形、类球形、不规则形状、鳞片状、不规则形状等均能够适当使用,优选不规则形状,优选粉末粒径是0.1-250微米,更优选为30-250微米。粉末松装密度0.7-5g/cm 3,更优选为1.2-3.5g/cm 3
在一实施例中,金属粉末可以通过雾化法,电解法,还原法,熔体旋转 法以及其他的极冷凝固方式制造。在工业上优选水雾化法,通过高压水冲击熔融的金属铜液获得不规则粉体。
在一实施例中,每层金属粉膜的厚度为15-2000um,优选为50-500um。
在一实施例中,金属线层是由多条金属线交织成金属网格。
作为优选的,网孔形状为正方形。
作为优选的,金属网格的金属线直径为5-200um,网孔直径(边长)为10-500um。更为优选的,金属线直径为20-60um,网孔直径为50-150um。
在另一实施例中,金属线层由多条金属线并列形成。
作为优选的,金属线的直径为5-200um,相邻金属线之间的间距为10-1000um。更为优选的,金属线直径为20-60um,相邻金属线之间的间距为20-200um。
在一实施例中,毛细结构可以为金属线层+金属粉膜、金属线层+金属粉膜+金属线层、金属粉膜+金属线层+金属粉膜等复合结构。
本申请实施例还提供了一种毛细结构的制作方法,包括:
将金属粉末和高分子材料混合后形成于金属线层表面;
烧结,形成结合于金属线层上的金属粉膜。
在一实施例中,高分子可以根据需要,包含树脂粘接剂,溶剂,表面活性剂等,这些根据能够使用公知的或者市售的。优选含有树脂粘接剂或者溶剂中至少一种作为膏状构成物使用,可以形成优异的膜层或者有优异的注射成型的使用效果。
作为树脂粘合剂可适当使用如:环氧树脂、酚醛树脂、聚丙醛、聚酯树脂、丙烯酸树脂、丙烯晴树脂、石蜡、乙烯醇树脂、聚烯烃树脂、聚乙烯树脂、乙酸乙烯树脂等或者是石蜡、蜜蜡、焦油、松脂、胶等天然树脂。这些树脂在加热的时候挥发,如果在金属烧结后有残留,则不是最佳选项,需要进行区分。将高分子材料与金属粉末充分的混合,金属粉末分散均匀,可以根据需要使用溶剂,也可以在混合过程中加热。优选高分子与金属粉末不分层,金属粉末不沉淀。
溶剂能单独使用或者混合使用,溶剂包括水,醇类,醚类,酮类酯类等。
表面活性剂用来提高金属粉末与溶剂和高分子的相容性,如硬脂酸,十二烷基苯磺酸钠,卵磷脂,氨基酸型,脂肪酸甘油酯,脂肪酸山梨坦,聚山 梨酯等。
在优选实施例中,金属粉末和高分子材料的混合材料中,金属粉末质量比例为50%~90%。
在一实施例中,毛细结构的制作方法包括:
(1)、将金属粉末与高分子结合制造成膏体,使用辊涂,流延、涂层、喷涂等方式,在金属网上覆盖一定厚度金属粉末膏体;
(2)、然后在25℃-300℃这样的温度范围内干燥固化,这样可以制造多层金属粉与金属网结构胚体,胚体可以根据需要制作各种形状和厚度,如柱状,片状,环状等。
(3)、将胚体与散热组件内壁一起烧结,或将胚体高温烧成为一定的强度的毛细结构,再与散热组件的内壁连接在一起。烧结温度在低于金属熔点30-300℃的温度下烧结,烧结时间可以根据烧结温度而调整,通常烧结时间(包括有机物脱脂过程)30min-24h,烧结气氛可以是惰性气氛、还原气氛或真空气氛。由于金属粉膜含有树脂粘接剂等有机物,还需要在高温烧结前进行脱脂处理,脱脂处理温度在700℃以下,脱脂时间>4h,脱脂气氛根据有机物的分解需要选择,可以使用氧化气氛、真空气氛、惰性气氛或者还原气氛。
在另一实施例中,毛细结构的制作方法包括:
(1)、将金属粉末与高分子结合,通过注射成型的方式,在金属网上覆盖一层膜,这层金属粉末与高分子的膜根据需要可以是各种厚度,各种形状胚体,如柱状,片状,环状,也可以有突起,有支柱等。
(2)、直接将胚体与散热组件内壁一起烧结来使用,也可以将胚体高温烧后具有一定强度的毛细结构,再与散热组件的内壁连接在一起。烧结温度在低于金属熔点30-300℃的温度下烧结,烧结时间可以根据烧结温度而调整,通常烧结时间(包括有机物脱脂过程)30min-24h,烧结气氛可以是惰性气氛、还原气氛或真空气氛。由于金属粉膜含有树脂粘接剂等有机物,还需要在高温烧结前进行脱脂处理,脱脂处理温度在700℃以下,脱脂时间>4h,脱脂气氛根据有机物的分解需要选择,可以使用氧化气氛、真空气氛、惰性气氛或者还原气氛。
该方法中,金属丝线的排布使用金属编织机,或者其它能够对金属丝线拉直且密排的机器,使金属丝线可以均匀,笔直的排布在一个平面上,或者 其他需要的形状进行排布,也可以将金属丝线缠绕在模具上,模具形状根据需要选择。金属丝线的排布的距离和丝线的层数可以调节。
本实施例获得的毛细结构,可以应用于电子散热组件热导管和VC均热板中,该毛细结构与散热组件的内壁通过烧结连接为一体,起到与散热组件内壁间进行热量传输,储存液体,提供液体回流的毛细力的作用。
本申请实施例还公开了一种散热件毛细结构的制作方法,包括:
将金属粉末和高分子材料混合制备成膏体,膏体以流延、涂层、喷涂或注射成型方式形成于散热件表面;
膏体烧结,在散热件表面形成毛细结构。
该技术方案中,将金属粉末制备成膏体,可以根据需要形成不同形状的毛细结构,操作简单。
本发明通过下列实施例作进一步说明:根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
结合表1,下面实施例中,金属线层是由多条金属线交织成金属网格,铜粉和铜网均指单层结构,各实施例和对比例中所涉及的铜网尺寸大小相同、铜粉层厚度相同、铜粉层铺设形状相同。
实施例1-4以及对比例1-3中,铜粉与高分子膏体配方均采用:铜粉63%;水33%,纤维素3%,。
实施例1-4中,涉及铜粉与铜网结合的实施例,均采用手段:将铜粉与高分子混合均匀制成膏体,膏体涂在铜网上,然后脱脂并烧结,烧结温度960℃,保温时间60min。
对比例1-3中,铜粉的烧结条件满足:烧结温度960℃,保温时间60min。
表1
Figure PCTCN2019089933-appb-000001
由表1可以看出,铜粉和铜网采用烧结方式进行结合,可以明显提高其吸水速率、孔隙率和强度。
结合表2,下面实施例中,金属线层是由多条金属线并列形成,铜粉和铜丝线均指单层结构,各实施例和对比例中所涉及的铜网尺寸大小相同、铜粉层厚度相同、铜粉层铺设形状相同。
实施例5-8以及对比例6中,铜粉与高分子膏体配方均采用:铜粉65%;聚乙烯30%,微晶蜡4%,硬脂酸1%。
实施例5-8中,涉及铜粉与铜网结合的实施例,均采用手段:将铜粉与高分子加热混炼均匀,将金属丝线密排拉直,铜粉与高分子混合物通过注射成型压印在金属丝线上,然后高温脱脂烧结,烧结温度960℃,保温时间60min。
对比例6中,铜粉的烧结条件满足:烧结温度960℃,保温时间60min。
表2
Figure PCTCN2019089933-appb-000002
Figure PCTCN2019089933-appb-000003
由表2中数据可知,铜粉和金属线层采用烧结方式进行结合,可以明显提高其吸水速率、孔隙率和强度。
综上所述,本发明制造铜粉与铜网复合毛细结构的优势:
1、使用该方法制造铜粉与铜网复合毛细结构的工艺简单,且可以制造各种形状复杂的毛细结构;
2、使用该发明的复合毛细结构材料用于制作均热板时,将复合毛细结构材料放置于均热板的内壁,然后高温烧结就可以完成均热板毛细结构的制作,工序简单;
3、该复合毛细结构与现有的毛细结构比有更好的强度。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

Claims (17)

  1. 一种毛细结构,包括至少一层金属线层和至少一层金属粉膜,
    所述金属线层由多条金属线交织或阵列形成,
    所述金属粉膜的颗粒之间形成有相连通的孔隙,
    所述金属粉膜与所述金属线层烧结在一起。
  2. 根据权利要求1所述的毛细结构,其特征在于,所述多条金属线之间形成有缝隙或通孔,所述孔隙与该缝隙或通孔连通。
  3. 根据权利要求1所述的毛细结构,其特征在于,所述金属粉膜材质选自铜、铝、钛、银、金或其合金;
    所述金属线层材质选自铜、铝、钛、银、金或其合金。
  4. 根据权利要求1所述的毛细结构,其特征在于,所述金属线层和金属粉膜交替设置。
  5. 根据权利要求1所述的毛细结构,其特征在于,每层所述金属粉膜的厚度为15-2000um,金属粉膜中的粉末粒径为0.1-250微米;粉末松装密度0.7-5g/cm 3
  6. 根据权利要求1所述的毛细结构,其特征在于,所述金属线层由多条金属线交织成金属网格,所述金属网格的金属线直径为5-200um,网孔径为10-500um。
  7. 根据权利要求1所述的毛细结构,其特征在于,所述金属线层由多条金属线并列形成,所述金属线的直径为5-200um,相邻金属线之间的间距为10-1000um。
  8. 权利要求1至7任一所述的毛细结构的制作方法,其特征在于,包括:
    将金属粉末和高分子材料混合后形成于金属线层表面;
    烧结,形成结合于金属线层上的金属粉膜。
  9. 根据权利要求8所述的毛细结构的制作方法,其特征在于,将金属粉末和高分子材料混合制备成膏体;
    膏体以辊涂、流延、涂层、喷涂或刷涂方式形成在金属线层表面。
  10. 根据权利要求8所述的毛细结构的制作方法,其特征在于,金属粉末和高分子材料混合后,通过注射成型方式在金属线层表面形成膜结构。
  11. 根据权利要求8所述的毛细结构的制作方法,其特征在于,所述高 分子材料至少包括膏状构成物,该膏状构成物选自树脂粘接剂、溶剂或其组合。
  12. 根据权利要求8所述的毛细结构的制作方法,其特征在于,金属粉末和高分子材料的混合材料中,金属粉末质量比例为50%~90%。
  13. 一种散热件,其表面形成有权利要求1至7任一所述的毛细结构。
  14. 根据权利要求13所述的散热件,其特征在于,所述毛细结构与散热件表面之间烧结在一起或组装在一起。
  15. 一种散热件毛细结构的制作方法,其特征在于,包括:
    将金属粉末和高分子材料混合制备成膏体,膏体以辊涂、流延、涂层、喷涂、刷涂或注射成型方式形成于散热件表面;
    膏体烧结,在散热件表面形成毛细结构。
  16. 根据权利要求15所述的散热件毛细结构的制作方法,其特征在于,所述高分子材料至少包括膏状构成物,该膏状构成物选自树脂粘接剂、溶剂或其组合。
  17. 根据权利要求15所述的散热件毛细结构的制作方法,其特征在于,金属粉末和高分子材料的混合材料中,金属粉末质量比例为50%~90%。
PCT/CN2019/089933 2019-05-10 2019-06-04 毛细结构、其制作方法和散热件 WO2020228073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910388645.XA CN111912272A (zh) 2019-05-10 2019-05-10 毛细结构、其制作方法和散热件
CN201910388645.X 2019-05-10

Publications (1)

Publication Number Publication Date
WO2020228073A1 true WO2020228073A1 (zh) 2020-11-19

Family

ID=73242683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089933 WO2020228073A1 (zh) 2019-05-10 2019-06-04 毛细结构、其制作方法和散热件

Country Status (2)

Country Link
CN (1) CN111912272A (zh)
WO (1) WO2020228073A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404434A (zh) * 2020-11-13 2021-02-26 上海富驰高科技股份有限公司 一种注射成形Cu均热板
CN113141756B (zh) * 2021-03-22 2022-10-25 联想(北京)有限公司 一种导热结构、电子设备和导热结构的制造方法
CN115261747B (zh) * 2021-04-29 2023-08-22 苏州铜宝锐新材料有限公司 粉末冶金复合功能材料、其制作方法及应用
CN114251965A (zh) * 2021-12-27 2022-03-29 飞荣达科技(江苏)有限公司 一种用于高功率的低热阻复合分层毛细结构及制作方法
TWI814214B (zh) * 2022-01-18 2023-09-01 奕昌有限公司 散熱件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201119236Y (zh) * 2007-10-30 2008-09-17 陈秋香 用于导热装置的毛细结构
CN102425967A (zh) * 2011-12-05 2012-04-25 苏州聚力电机有限公司 一种薄形化复合毛细组织及其成型方法和应用
CN102435084A (zh) * 2011-11-30 2012-05-02 苏州聚力电机有限公司 一种可控制毛细组织烧结位置的热管构造及其制法
US20150101192A1 (en) * 2013-10-15 2015-04-16 Hao Pai Method of manufacturing ultra thin slab-shaped capillary structure for thermal conduction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566440B (zh) * 2008-04-23 2013-01-30 中山伟强科技有限公司 一种烧结式均热板及其制作方法
CN101848629B (zh) * 2010-03-31 2012-02-15 华南理工大学 一种具有泡沫金属与铜粉复合毛细结构的均热板
US8720062B2 (en) * 2012-01-09 2014-05-13 Forcecon Technology Co., Ltd. Molding method for a thin-profile composite capillary structure
CN210268327U (zh) * 2019-05-10 2020-04-07 苏州铜宝锐新材料有限公司 毛细结构和散热件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201119236Y (zh) * 2007-10-30 2008-09-17 陈秋香 用于导热装置的毛细结构
CN102435084A (zh) * 2011-11-30 2012-05-02 苏州聚力电机有限公司 一种可控制毛细组织烧结位置的热管构造及其制法
CN102425967A (zh) * 2011-12-05 2012-04-25 苏州聚力电机有限公司 一种薄形化复合毛细组织及其成型方法和应用
US20150101192A1 (en) * 2013-10-15 2015-04-16 Hao Pai Method of manufacturing ultra thin slab-shaped capillary structure for thermal conduction

Also Published As

Publication number Publication date
CN111912272A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2020228073A1 (zh) 毛细结构、其制作方法和散热件
CN106041101B (zh) 一种复合金属多孔管及其制备方法
CN104903031B (zh) 多孔铝烧结体
CN102295474B (zh) 一种SiC-TaC涂层/基体协同改性C/C复合材料制备方法
TWI718004B (zh) 以金屬漿料製作毛細結構的方法
WO2009131786A2 (en) Porous structured thermal transfer article
CN210268327U (zh) 毛细结构和散热件
CN112129146A (zh) 一种定向微通道和无序多孔复合热管及其制备方法
CN102618868A (zh) 以挤压法预置粉末进行激光熔覆得到复合涂层的方法
CN110804735A (zh) 一种适用于钛合金的导热辐射散热复合涂层
CN113758325B (zh) 一种内置铜/金刚石烧结吸液芯的vc散热器及其制备方法
CN110284019A (zh) 一种在金属中定向掺杂石墨的方法
TWI743945B (zh) 薄型均溫板毛細結構元件及其製造方法
CN201413076Y (zh) 一种散热结构
CN101705464B (zh) 一种热喷涂型铁基粉末多孔表面换热管的制备方法
US20230117192A1 (en) Preparation method for w-cu composite plate with cu phase in finger-shaped gradient distribution
Ji et al. Effects of oxidation processes and microstructures on the hydrophilicity of copper surface
Liu et al. Improved joint strength with sintering bonding using microscale Cu particles by an oxidation-reduction process
CN207180103U (zh) 一种石墨烯冷凝器散热片
TW202006308A (zh) 一種製作毛細結構的方法
CN108213407A (zh) 一种功能分区多孔传热表面的制备方法
DE102014216994B4 (de) Verfahren zur Herstellung eines Temperierelements sowie mit dem Verfahren hergestelltes Temperierelement
TWM602198U (zh) 散熱器之毛細結構
CN114071938A (zh) 毛细结构、均温板、其制作方法及应用
WO2022068110A1 (zh) 一种膜厚梯度分布陶瓷过滤膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928677

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19928677

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19928677

Country of ref document: EP

Kind code of ref document: A1