WO2020224419A1 - 一种利用dnp-mri测量油水分布方法 - Google Patents

一种利用dnp-mri测量油水分布方法 Download PDF

Info

Publication number
WO2020224419A1
WO2020224419A1 PCT/CN2020/085475 CN2020085475W WO2020224419A1 WO 2020224419 A1 WO2020224419 A1 WO 2020224419A1 CN 2020085475 W CN2020085475 W CN 2020085475W WO 2020224419 A1 WO2020224419 A1 WO 2020224419A1
Authority
WO
WIPO (PCT)
Prior art keywords
dnp
mri
water
phase
enhanced
Prior art date
Application number
PCT/CN2020/085475
Other languages
English (en)
French (fr)
Inventor
陈黎
陈俊飞
刘朝阳
张震
冯涛
冯继文
陈方
Original Assignee
中国科学院精密测量科学与技术创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院精密测量科学与技术创新研究院 filed Critical 中国科学院精密测量科学与技术创新研究院
Publication of WO2020224419A1 publication Critical patent/WO2020224419A1/zh
Priority to US17/520,122 priority Critical patent/US11719655B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/12Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using double resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56509Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/448Relaxometry, i.e. quantification of relaxation times or spin density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention belongs to the technical field of nuclear magnetic resonance applications, and specifically relates to a method for measuring oil-water distribution using DNP-MRI, which can be applied to analyze fluid distribution and flow laws in porous materials.
  • Porous materials such as reservoir rocks are rich in different fluid phases such as oil and water.
  • the distribution of oil and water in the rock formation is a key issue when exploring the seepage/displacement law.
  • the acquisition of two-phase distribution information helps to understand the two-phase saturation
  • the important parameters such as degree of permeability and relative permeability provide reference for reservoir evaluation and development.
  • NMR technology is widely used in the study of the structure and fluid properties of porous materials such as cores due to its non-destructive testing characteristics.
  • the present invention provides a method for measuring oil-water distribution using DNP-MRI, which is simple, convenient to operate, short in measurement time, and high in measurement efficiency.
  • a method for measuring oil-water distribution using DNP-MRI which is characterized by comprising the following steps:
  • step 3 Under the same MRI experimental conditions as in step 2, apply microwave excitation to perform DNP-MRI experiments, and collect DNP-enhanced MRI images of the sample to be tested;
  • the area where the MRI signal strength is enhanced is the fluid phase distribution area that is selected to be enhanced, and the area where the MRI signal strength does not change significantly is Non-selective enhanced fluid phase distribution area.
  • the free radicals are non-selective free radicals, which can enhance the NMR signal of the water phase and the oil phase at the same time. If only the NMR signal of the water phase needs to be enhanced, it is necessary to add an enhanced oil phase For relaxing relaxation reagents, if only the NMR signal of the oil phase needs to be enhanced, it is also necessary to add a relaxation reagent that can enhance the relaxation of the water phase.
  • the free radicals are selective free radicals.
  • the selective free radicals can enhance the NMR signal of the water phase or the oil phase by DNP. If DNP is required to enhance the NMR signal of the water phase, add a DNP capable of enhancing the NMR signal of the water phase. Selective free radicals. If DNP is needed to enhance the NMR signal of the oil phase, then a selective free radical capable of DNP can enhance the NMR signal of the oil phase is added.
  • the present invention has the following beneficial effects and advantages:
  • This method takes advantage of the immiscibility of the oil and water phases, and uses DNP to selectively enhance the NMR signal of the oil or water phase, which has strong applicability.
  • This method can improve NMR signal sensitivity and MRI image contrast. By comparing the MRI images before and after DNP enhancement, it can directly reflect the distribution of oil and water phases.
  • This method can improve the signal-to-noise ratio of NMR and ensure the reliability of the measurement results, and the measurement time is short and the measurement efficiency is high.
  • Figure 1 is a schematic diagram of a glass bead model.
  • Figure 2 is a schematic diagram of a spin echo pulse sequence containing microwave excitation.
  • Figure 3 is an MRI image of the glass bead model without DNP enhancement.
  • Figure 4 shows the enhanced MRI image of the glass bead model DNP.
  • Fig. 5 is the difference image between the MRI image of the glass bead model without DNP enhancement and the MRI image of the glass bead model with DNP enhancement.
  • the glass bead model (as shown in Figure 1) is made as follows: take a quartz tube 1 with a diameter of 10mm, open one end of the quartz tube 1, and seal the other end.
  • the glass beads 2 with a particle size of 3-5mm are randomly stacked in a quartz tube with a diameter of 10mm, and they are infiltrated by layers of water containing relaxation reagent MnCl 2 and mineral oil containing free radical TEMPO (Tetramethylpiperidine Nitrogen Oxide)
  • MnCl 2 Tetramethylpiperidine Nitrogen Oxide
  • the glass beads in the quartz tube, the upper layer is the oil phase
  • the lower layer is the water phase.
  • TEMPO can enhance the NMR signal of the oil phase under DNP conditions
  • MnCl 2 can enhance the relaxation of the water phase, and suppress the NMR signal of the water phase under DNP conditions ;
  • the glass bead model is placed in the sample area of a 0.06T DNP magnetic resonance imaging system, where the static magnetic field is provided by a permanent magnet, and the resonant cavity used to excite electronic resonance can provide a cylindrical sample with a diameter of 10mm and a height of 22mm. Space, the glass bead model is located in the center of the magnetic field;

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种利用DNP-MRI测量油水分布方法,该方法为:1、在含油水的待测样品中加入用于DNP增强水相或油相NMR信号的自由基;2、将待测样品进行MRI实验,采集待测样品无DNP增强的MRI图像;3、在与步骤2同等的MRI实验条件下,施加微波激励,进行DNP-MRI测试,采集待测样品DNP增强后的MRI图像;4、将DNP增强后的MRI图像与无DNP增强的MRI图像进行比较,DNP增强的MRI图像中,MRI信号强度增强的区域为选择增强的流体相分布区域,MRI信号强度未明显变化的区域为非选择增强的流体相分布区域。该方法简单,操作方便,测量时间短,测量效率高。

Description

一种利用DNP-MRI测量油水分布方法 技术领域
本发明属于核磁共振应用技术领域,具体涉及一种利用DNP-MRI测量油水分布方法,可应用于分析多孔材料中流体分布及流动规律。
背景技术
储层岩石等多孔材料富含油、水等不同流体相,岩层中的油水分布是开展渗流/驱替规律探究时所面临的关键问题,两相分布信息的获取,有助于了解两相饱和度、相对渗透率等重要参数,为储层评估、开发提供参考。
NMR技术以其无损检测的特点广泛应用于岩心等多孔材料结构及流体特性的研究。
高场NMR下,利用油水中 1H化学位移差异,采用化学位移成像可以获取两相流体分布。然而,受材料中固液两相磁化率差异引起的内部磁场梯度的影响,材料中两相化学位移谱的分辨率不高。高场并不适合岩心等材料的研究,尤其是岩心等非匀质材料,孔径越小,内部磁场梯度越大,会使小孔径内NMR信号快速衰减甚至不可测量,从而进一步降低测试结果的可靠性。
为了减少固液两相磁化率引起的磁场梯度,岩心等多孔材料的应用研究多在低场条件下开展。然而,低场条件下多依赖于样品的弛豫或扩散特性区分不同流体,但由于材料结构的非匀质性及流体的分布差异,不同流体可能具有相同的弛豫或扩散特性,从而不能有效区分。此外,较低的NMR灵敏度及分辨率极大地增加了样品的测试时间,也进一步限制了常规MRI方法在测量油水分布中的应用。为缩短样品测试时间,提高低场MRI方法的效率与可靠性,需要寻求新的方法来提高NMR的灵敏度。
发明内容
基于上述现有技术存在的问题,本发明提供了一种利用DNP-MRI测量油水分布方法,该方法简单,操作方便,测量时间短,测量效率高。
实现本发明上述目的所采用的技术方案为:
一种利用DNP-MRI测量油水分布方法,其特征在于包括如下步骤:
1、在含油水的待测样品中加入用于DNP增强水相或油相NMR信号的自由基;
2、将待测样品进行MRI实验,采集待测样品无DNP增强的MRI图像;
3、在与步骤2同等的MRI实验条件下,施加微波激励,进行DNP-MRI实验,采集待测样品DNP增强后的MRI图像;
4、将DNP增强后的MRI图像与无DNP增强的MRI图像进行比较,DNP增强的MRI 图像中,MRI信号强度增强的区域为选择增强的流体相分布区域,MRI信号强度未明显变化的区域为非选择增强的流体相分布区域。
进一步,所述的自由基为非选择性自由基,非选择性自由基能同时增强水相和油相的NMR信号,若只需要增强水相的NMR信号时,则还需加入能增强油相弛豫的弛豫试剂,若只需要增强油相的NMR信号时,则还需加入能增强水相弛豫的弛豫试剂。
进一步,所述的自由基为选择性自由基,选择性自由基能DNP增强水相或油相的NMR信号,若需要DNP增强水相的NMR信号时,则加入能DNP增强水相NMR信号的选择性自由基,若需要DNP增强油相的NMR信号时,则加入能DNP增强油相NMR信号的选择性自由基。
与现有技术相比,本发明的有益效果和优点在于:
1、该方法利用油水两相不相溶的特点,使用DNP选择性增强油相或水相NMR信号,适用性强。
2、该方法可提高NMR信号灵敏度及MRI图像对比度,通过对比DNP增强前后的MRI图像,可直观反映油水两相的分布情况。
3、该方法可提高NMR的信噪比,确保测量结果的可靠性,而且测量时间短,测量效率高。
附图说明
图1为玻璃珠模型示意图。
图2为含有微波激励的自旋回波脉冲序列的示意图。
图3为玻璃珠模型无DNP增强的MRI图像。
图4为玻璃珠模型DNP增强的MRI图像。
图5为玻璃珠模型无DNP增强的MRI图像与玻璃珠模型DNP增强的MRI图像的差值图像。
其中,1-石英管、2-玻璃珠。
具体实施方式
下面结合附图对本发明进行详细说明。
实施例1
1、制作玻璃珠模型以模拟含油水的多孔材料,玻璃珠模型(如图1所示)的制作方法为:取直径为10mm的石英管1,石英管1的一端开口,另一端密封,用粒径为3-5mm的玻璃珠2随机堆叠于直径为10mm石英管中,采用含弛豫试剂MnCl 2的水与含自由基TEMPO (四甲基哌啶氮氧化物)的矿物油分层浸润石英管中的玻璃珠,上层为油相,下层为水相,TEMPO能在DNP条件下增强油相的NMR信号,MnCl 2能增强水相的弛豫,在DNP条件下抑制水相的NMR信号;
2、将玻璃珠模型放置在0.06T DNP磁共振成像系统的样品区域,该系统中静磁场由永磁体提供,用于激发电子共振的谐振腔能够提供直径为10mm、高度为22mm的圆柱形样品空间,玻璃珠模型位于磁场中心;
3、进行常规、无DNP增强的MRI实验:
3.1、设置实验参数并开始测试,采用自旋回波脉冲序列(SE),测试参数如下:FOV:30×30mm、AcquMatrix=128×128、TE=50ms、TR=1.2s、累加次数NS=4;成像方位为矢状位,并选定成像层面;
3.2、实验结束后,进行图像重建,重建结果记录为matrix1,将重建结果映射为灰度图像,即得到玻璃珠模型无DNP增强的MRI图像,如图3所示;
4、进行DNP-MRI实验:
4.1、设置实验参数并开始实验,采用含有微波激励的自旋回波脉冲序列(DNP-SE),如图2所示,测试参数如下:FOV:30×30mm、AcquMatrix=128×128、TE=50ms、TR=3s、累加次数NS=1,微波照射时间1s,微波功率50W;成像方位为矢状位,并选定成像层面(与步骤3中的成像层面保持一致);
4.2、测试结束后,进行图像重建,重建结果记录为matrix2,将重建结果映射为灰度图像,即得到玻璃珠模型DNP增强的MRI图像,如图4所示;
5、将步骤3.2和步骤4.2中得到的重建结果matrix1和matrix2作差,并将差值映射为灰度图像,即得到差值图像,如图5所示,以玻璃珠模型无DNP增强的图像作为参考图像,与图3相比较,图4中,石英管底部的MRI信号强度大幅减小甚至几乎消失,而石英管上部的MRI信号不仅没有减弱而且还进一步增强,由此表明,水分布在石英管的底部,油分布在石英管的上半部,图5中显示的灰度图像即为油的分布图像。

Claims (3)

  1. 一种利用DNP-MRI测量油水分布方法,其特征在于包括如下步骤:
    1.1、在含油水的待测样品中加入用于DNP增强水相或油相NMR信号的自由基;
    1.2、将待测样品进行MRI实验,采集待测样品无DNP增强的MRI图像;
    1.3、在与步骤2同等的MRI实验条件下,施加微波激励,进行DNP-MRI实验,采集待测样品DNP增强后的MRI图像;
    1.4、将DNP增强后的MRI图像与无DNP增强的MRI图像进行比较,DNP增强的MRI图像中,MRI信号强度增强的区域为选择增强的流体相分布区域,MRI信号强度未明显变化的区域为非选择增强的流体相分布区域。
  2. 根据权利要求1所述的利用DNP-MRI测量油水分布方法,其特征在于:所述的自由基为非选择性自由基,非选择性自由基能同时增强水相和油相的NMR信号,若只需要增强水相的NMR信号时,则还需加入能增强油相弛豫的弛豫试剂,若只需要增强油相的NMR信号时,则还需加入能增强水相弛豫的弛豫试剂。
  3. 根据权利要求1所述的利用DNP-MRI测量油水分布方法,其特征在于:所述的自由基为选择性自由基,选择性自由基能DNP增强水相或油相的NMR信号,若需要DNP增强水相的NMR信号时,则加入能DNP增强水相NMR信号的选择性自由基,若需要DNP增强油相的NMR信号时,则加入能DNP增强油相NMR信号的选择性自由基。
PCT/CN2020/085475 2019-05-08 2020-04-18 一种利用dnp-mri测量油水分布方法 WO2020224419A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/520,122 US11719655B2 (en) 2019-05-08 2021-11-05 Method for measuring oil-water distribution using dynamic nuclear polarization for magnetic resonance imaging (DNP-MRI)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910380282.5A CN110082381B (zh) 2019-05-08 2019-05-08 一种利用dnp-mri测量油水分布方法
CN201910380282.5 2019-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/520,122 Continuation US11719655B2 (en) 2019-05-08 2021-11-05 Method for measuring oil-water distribution using dynamic nuclear polarization for magnetic resonance imaging (DNP-MRI)

Publications (1)

Publication Number Publication Date
WO2020224419A1 true WO2020224419A1 (zh) 2020-11-12

Family

ID=67419199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085475 WO2020224419A1 (zh) 2019-05-08 2020-04-18 一种利用dnp-mri测量油水分布方法

Country Status (3)

Country Link
US (1) US11719655B2 (zh)
CN (1) CN110082381B (zh)
WO (1) WO2020224419A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082381B (zh) * 2019-05-08 2021-12-03 中国科学院武汉物理与数学研究所 一种利用dnp-mri测量油水分布方法
CN110082382A (zh) * 2019-05-08 2019-08-02 中国科学院武汉物理与数学研究所 一种利用动态核极化进行油水两相nmr信号分离的方法
CN112345573B (zh) * 2019-08-06 2022-05-03 中国科学院武汉物理与数学研究所 一种利用dnp-nmr区分油类粘度的方法
CN112666048B (zh) * 2019-10-16 2022-06-07 中国科学院武汉物理与数学研究所 一种利用动态核极化增强测试材料润湿性及孔径大小的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023659A1 (en) * 2012-08-06 2014-02-13 Universite Claude Bernard Lyon I Porous and structured materials for dynamic nuclear polarization, process for their preparation and nmr analysis method
US20170254920A1 (en) * 2016-03-03 2017-09-07 Shell Oil Company Chemically-selective imager for imaging fluid of a subsurface formation and method of using same
CN107907911A (zh) * 2017-10-17 2018-04-13 中国石油天然气股份有限公司 基于核磁共振的致密储层含油量测定方法
CN109477872A (zh) * 2016-03-10 2019-03-15 纪念斯隆凯特琳癌症中心 超极化微核磁共振系统和方法
CN110082381A (zh) * 2019-05-08 2019-08-02 中国科学院武汉物理与数学研究所 一种利用dnp-mri测量油水分布方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029241A1 (en) * 2007-08-24 2009-03-05 The Regents Of The University Of California Dynamic nuclear polarization enhanced nuclear magnetic resonance of water under ambient conditions
EP2348327B1 (en) * 2010-01-18 2013-11-27 Bruker BioSpin AG Method for NMR measurements using dissolution dynamic nuclear polarization (DNP) with elimination of free radicals
US10773093B2 (en) * 2017-05-29 2020-09-15 Elegant Mathematics LLC Real-time methods for magnetic resonance spectra acquisition, imaging and non-invasive ablation
US10948439B2 (en) * 2019-05-20 2021-03-16 Saudi Arabian Oil Company Methods and systems for measuring pore volume compressibility with low field nuclear magnetic resonance techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023659A1 (en) * 2012-08-06 2014-02-13 Universite Claude Bernard Lyon I Porous and structured materials for dynamic nuclear polarization, process for their preparation and nmr analysis method
US20170254920A1 (en) * 2016-03-03 2017-09-07 Shell Oil Company Chemically-selective imager for imaging fluid of a subsurface formation and method of using same
CN109477872A (zh) * 2016-03-10 2019-03-15 纪念斯隆凯特琳癌症中心 超极化微核磁共振系统和方法
CN107907911A (zh) * 2017-10-17 2018-04-13 中国石油天然气股份有限公司 基于核磁共振的致密储层含油量测定方法
CN110082381A (zh) * 2019-05-08 2019-08-02 中国科学院武汉物理与数学研究所 一种利用dnp-mri测量油水分布方法

Also Published As

Publication number Publication date
CN110082381B (zh) 2021-12-03
US20220057346A1 (en) 2022-02-24
CN110082381A (zh) 2019-08-02
US11719655B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2020224419A1 (zh) 一种利用dnp-mri测量油水分布方法
CN104697915B (zh) 一种页岩微观孔隙大小及流体分布的分析方法
US10801941B2 (en) Isotope nuclear magnetic method for analyzing ineffective water absorption of rock pores
EP1655617B1 (en) Methods and apparatus for measuring capillary pressure in a sample
US7180288B2 (en) Downhole NMR flow and formation characterization while sampling fluids
JP3204707B2 (ja) Nmr測定実施方法及び装置
AU700428B2 (en) Producible fluid volumes in porous media determined by pulsed field gradient nuclear magnetic resonance
CN109444201A (zh) 一种测定致密岩心多孔介质中多相流体流动特征的核磁共振实验装置及方法
US20220057347A1 (en) Method for separating oil-water two-phase nmr signals by using dynamic nuclear polarization
US20140055134A1 (en) Magnetic resonance examination of porous samples
US20080186024A1 (en) Apparatus and method for measuring cased hole fluid flow with nmr
GB2260820A (en) Permeability determination from NMR T2 measurements for fluids in porous media
US9588067B2 (en) Examining porous samples
Harel et al. Time-of-flight flow imaging of two-component flow inside a microfluidic chip
Green et al. Comparison study of capillary pressure curves obtained using traditional centrifuge and magnetic resonance imaging techniques
Liao et al. NMR fluid analyzer applying to petroleum industry
US20180203153A1 (en) Methods for interpreting nmr data
Granwehr et al. Sensitivity quantification of remote detection NMR and MRI
Green et al. Oil/water imbibition and drainage capillary pressure determined by MRI on a wide sampling of rocks
JP2005345193A (ja) 核磁気共鳴法及び/又は核磁気共鳴による拡散係数測定法を用いた定量方法
US9864031B2 (en) Measurement of NMR characteristics of an object containing fast transversal relaxation components
CN111595886B (zh) 一种评价顺磁物质对多孔介质核磁共振测量结果的方法
CN112666048B (zh) 一种利用动态核极化增强测试材料润湿性及孔径大小的方法
Sylta Primary drainage capillary pressure curves in heterogeneous carbonates with ultracentrifuge and NMR
Chen et al. Calillary pressure curve measurement using a single-moderate-speed centrifuge and quantitative magnetic resonance imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802787

Country of ref document: EP

Kind code of ref document: A1