CN110082382A - 一种利用动态核极化进行油水两相nmr信号分离的方法 - Google Patents

一种利用动态核极化进行油水两相nmr信号分离的方法 Download PDF

Info

Publication number
CN110082382A
CN110082382A CN201910380283.XA CN201910380283A CN110082382A CN 110082382 A CN110082382 A CN 110082382A CN 201910380283 A CN201910380283 A CN 201910380283A CN 110082382 A CN110082382 A CN 110082382A
Authority
CN
China
Prior art keywords
phase
water
nmr signal
oil
free radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910380283.XA
Other languages
English (en)
Inventor
刘朝阳
陈俊飞
陈黎
冯继文
张震
张哲恺
陈方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Physics and Mathematics of CAS
Original Assignee
Wuhan Institute of Physics and Mathematics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Physics and Mathematics of CAS filed Critical Wuhan Institute of Physics and Mathematics of CAS
Priority to CN201910380283.XA priority Critical patent/CN110082382A/zh
Publication of CN110082382A publication Critical patent/CN110082382A/zh
Priority to PCT/CN2020/085478 priority patent/WO2020224420A1/zh
Priority to US17/520,263 priority patent/US11953456B2/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/448Relaxometry, i.e. quantification of relaxation times or spin density
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/082Measurement of solid, liquid or gas content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/12Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using double resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种利用动态核极化进行油水两相NMR信号分离的方法,具体为:在含油水的待测样品中加入用于增强水相或油相NMR信号的自由基,然后进行动态核极化增强的核磁共振分析检测,可得到水相或油相的NMR信号。该方法简单易操作,测试时间短,可高效地分离油水两相的NMR信号。

Description

一种利用动态核极化进行油水两相NMR信号分离的方法
技术领域
本发明属于核磁共振应用技术领域,具体涉及一种利用动态核极化进行油水两相NMR信号分离的方法。
背景技术
随着世界经济的飞速发展,全球范围内油气资源的急速消耗,油、气需求量急剧攀升,提高石油开采率,开发全新高效地油气探测、开采方法的需求愈来愈迫切。地质储层等多孔介质材料中富含丰富的油、气资源,为解决日趋紧张的供需矛盾提供了新的可能。评估储层含量、开采储层中的油气资源及提高石油开采率的方法等,需要了解储层结构、润湿性以不同流体相在储层中的驱替、渗流等规律,而上述科学问题的研究依赖于材料内不同流体相的区分。
NMR作为一种分析材料结构、特性的重要工具,为研究储层岩石中的油、气、水提供了新的研究方法。高场化学位移谱可以有效的区分不同流体,然而受固液两相磁化率差异引起的内部磁场梯度以及磁场不均性等因素的影响,在岩心等多孔材料分析应用中分辨率有限。为减小内部磁场梯度的影响,多孔材料的分析测试常在低场条件下进行,依据不同流体弛豫与扩散特性差异实现对不同流体的辨别。由于多孔材料结构的异质性、流体类型及分布的差异,使得不同流体的弛豫或扩散呈现相似的分布,只依据1D(dimension)弛豫或扩散表征并不能有效地区分不同流体相。2D NMR方法如弛豫-弛豫、弛豫-扩散、弛豫-梯度等相比于1D方法,可以提供更多的信息,能够分辨弛豫或扩散特性相同的不同流体相。受限于较低的灵敏度,低场NMR测试时间较长,2D NMR测试时间甚至需要3~4小时。
此外,1D或2D的低场NMR方法测得的NMR数据,需要经过数据处理如拉普拉斯逆变,才能换得到对应的弛豫分布或扩散特性的变化趋势。NMR信号的处理在数学上具有不确定性,较低的信噪比使得弛豫分布宽化,甚至微量分量的分布直接不可见。为提高低场条件下岩心测试结构的可靠性、缩短分析测试周期,需要发展新的测试分析方法。
发明内容
基于上述现有技术存在的问题,本发明提供了一种利用动态核极化进行油水两相NMR信号分离的方法,该方法简单易操作,测试时间短,可高效地分离油水两相的NMR信号。
实现本发明上述目的所采用的技术方案为:
一种利用动态核极化进行油水两相NMR信号分离的方法,在含油水的待测样品中加入用于增强水相或油相NMR信号的自由基,然后进行动态核极化增强的核磁共振分析检测,可得到水相或油相的NMR信号。
所述的自由基为非选择性自由基,非选择性自由基能同时增强水相和油相的NMR信号,若只需要增强水相的NMR信号时,则加入能增强油相弛豫的弛豫试剂,若只需要增强油相的NMR信号时,则加入能增强水相弛豫的弛豫试剂。
所述的自由基为选择性自由基,选择性自由基能选择增强水相或油相的NMR信号,若需要增强水相的NMR信号时,则加入能增强水相NMR信号的选择性自由基,若需要增强油相的NMR信号时,则加入能增强油相NMR信号的选择性自由基。
与现有技术相比,本发明的有益效果和优点在于:
1、本发明针对油水两相NMR信号分离需求,采用自由基与弛豫试剂相结合的方式,自由基用于增强流体相的NMR信号,弛豫试剂用于增强未选择流体相的弛豫,选择性的增强所需流体相NMR信号,抑制未选择流体相的NMR信号,从而实现所需流体相NMR信号的分离。
2、由于DNP增强与观测核的泄露因子相关,弛豫试剂的存在能够减弱自由基对未选择流体相的弛豫作用,从而减小与DNP相关的泄露因子,抑制非选择流体相的DNP增强,从而实现在自由基为非选择性自由基时,弛豫试剂可以有效抑制未选择流体相的DNP增强,确保所需流体相的NMR信号增强及分离。
3、本发明在能够实现油水两相NMR信号分离目的基础上,还能够进一步提高NMR信号信噪比,而且测试时间短,且无需反演计算,数据处理简单易行。
附图说明
图1为弛豫试剂MnCl2对油水样品中油水两相的弛豫影响效果图。
图2为弛豫试剂MnCl2和非选择性自由基TEMPO同时存在时油水样品中油水两相的DNP增强效果图。
图3为弛豫试剂MnCl2和非选择性自由基TEMPO同时存在时油水样品的DNP增强效果图。
图4为弛豫试剂MnCl2和非选择性自由基TEMPO同时存在时油水样品有无DNP增强时的T2图。
图5为含油砂岩和含油水砂岩的DNP增强效果图。
图6为含油砂岩、含水砂岩在有无DNP增强条件下同时测量的T2分布图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。
选取5#矿物油与去离子水配制样品,将等体积的5#矿物油和水混合,静置分层,得到油水样品,选取四甲基哌啶氮氧化物(TEMPO)作为非选择性自由基,选取MnCl2为弛豫试剂,用于增强水相弛豫,所有样品的DNP-NMR分析检测在0.06T DNP谱仪上进行。
实施例1
1、测试油水样品中油水两相在0.06T静磁场条件下的T1
2、向油水样品中加入MnCl2,振荡至Mncl2完全溶解,静置分层,得到混合样品A,混合样品A中MnCl2的浓度为10mM,测试混合样品A中油水两相在0.06T静磁场条件下的T1,两次测试T1的结果如图1所示,由图1可知,加入MnCl2前后,油相弛豫时间不变,水相弛豫由3.5s变为3.2ms;
3、向混合样品A中加入TEMPO,混合均匀后得到混合样品B,混合样品B中TEMPO的浓度为10mM,采用DNP单脉冲序列分别测试混合样品B中油水两相的DNP增强效果,结果如图2所示,由图2可知,水相的DNP增强最大时为-0.5,即水相信号强度减小,反之矿物油的DNP增强远大于水相增强,表明TEMPO与Mn2+共存时可以有效抑制水相的DNP增强,而油相仍有较大DNP增强。
实施例2
1、向油水样品中加入MnCl2和TEMPO,振荡至Mncl2完全溶解,静置分层,得到混合样品,混合样品中MnCl2和TEMPO的浓度均为10mM,采用DNP单脉冲序列测试混合样品的DNP增强效果,并以采用DNP单脉冲序列测试矿物油的DNP增强效果作为对照,结果如图3所示,由图3可知,混合样品的DNP增强与矿物油增强相接近,表明水相信号被抑制,混合样品增强后的信号基本为油相NMR信号。
2、采用CPMG序列测试微波功率为10W时混合样品中油水两相的T2分布,并以测试无DNP增强时混合样品中油水两相的T2作为对照,结果如图4所示,由图4所示,在有DNP增强时,混合样品表现为油相弛豫特征,进一步表明TEMPO与Mn2+结合可以从混合样品中分离出油相NMR信号,并选择性增强油相NMR信号。
实施例3
1、向油水样品中加入MnCl2和TEMPO,振荡至Mncl2完全溶解,静置分层,得到混合样品,混合样品中MnCl2和TEMPO的浓度均为10mM;
2、取两块渗透率为100md、孔隙度为10.9%的砂岩,将两块砂岩分别浸没在混合样品的油相和水相中,浸没12h以上,浸没结束后,擦除两砂岩表面多余的液体并称重,浸没于水相的砂岩由1062mg增至1118mg,含水量为54mg,浸没于油相的砂岩由715mg增至747mg,含油量为32mg;
3、采用DNP单脉冲序列同时测量含油砂岩、含水砂岩的DNP增强效果,并以采用DNP单脉冲序列测试含油砂岩的DNP增强效果作为对照,结果如图5所示,由图5可知,含油砂岩、含水砂岩同时测量的DNP增强与含油砂岩的DNP增强相接近,即使砂岩样品中含水量高于含油量,对含油水混合的砂岩样品的增强影响也不大,由此表明,含油水混合的砂岩样品中的油相的NMR信号可以通过DNP-NMR直接分离出来。
4、采用CPMG序列测试微波功率为10W时含油砂岩、含水砂岩中油水两相的T2分布,并以测试无DNP增强时含油砂岩、含水砂岩中油水两相的T2分布为对照,结果如图6所示,由图6可知,无ODNP增强时能够看到油水两相的弛豫分布,而在微波功率为10W时,只得到油相T2分布,进一步可以验证采用DNP、非选择性自由基以及水相弛豫试剂相结合的方式,可以分离出多孔介质材料中的油相的NMR信号。

Claims (3)

1.一种利用动态核极化进行油水两相NMR信号分离的方法,其特征在于:在含油水的待测样品中加入用于增强水相或油相NMR信号的自由基,然后进行动态核极化增强的核磁共振分析检测,可得到水相或油相的NMR信号。
2.根据权利要求1所述的利用动态核极化进行油水两相NMR信号分离的方法,其特征在于:所述的自由基为非选择性自由基,非选择性自由基能同时增强水相和油相的NMR信号,若只需要增强水相的NMR信号时,则加入能增强油相弛豫的弛豫试剂,若只需要增强油相的NMR信号时,则加入能增强水相弛豫的弛豫试剂。
3.根据权利要求1所述的利用动态核极化进行油水两相NMR信号分离的方法,其特征在于:所述的自由基为选择性自由基,选择性自由基能选择增强水相或油相的NMR信号,若需要增强水相的NMR信号时,则加入能增强水相NMR信号的选择性自由基,若需要增强油相的NMR信号时,则加入能增强油相NMR信号的选择性自由基。
CN201910380283.XA 2019-05-08 2019-05-08 一种利用动态核极化进行油水两相nmr信号分离的方法 Pending CN110082382A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910380283.XA CN110082382A (zh) 2019-05-08 2019-05-08 一种利用动态核极化进行油水两相nmr信号分离的方法
PCT/CN2020/085478 WO2020224420A1 (zh) 2019-05-08 2020-04-18 一种利用动态核极化进行油水两相nmr信号分离的方法
US17/520,263 US11953456B2 (en) 2019-05-08 2021-11-05 Method for separating oil-water two-phase NMR signals by using dynamic nuclear polarization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910380283.XA CN110082382A (zh) 2019-05-08 2019-05-08 一种利用动态核极化进行油水两相nmr信号分离的方法

Publications (1)

Publication Number Publication Date
CN110082382A true CN110082382A (zh) 2019-08-02

Family

ID=67419200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910380283.XA Pending CN110082382A (zh) 2019-05-08 2019-05-08 一种利用动态核极化进行油水两相nmr信号分离的方法

Country Status (3)

Country Link
US (1) US11953456B2 (zh)
CN (1) CN110082382A (zh)
WO (1) WO2020224420A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224420A1 (zh) * 2019-05-08 2020-11-12 中国科学院精密测量科学与技术创新研究院 一种利用动态核极化进行油水两相nmr信号分离的方法
CN112345573A (zh) * 2019-08-06 2021-02-09 中国科学院武汉物理与数学研究所 一种利用dnp-nmr区分油类粘度的方法
CN112666048A (zh) * 2019-10-16 2021-04-16 中国科学院武汉物理与数学研究所 一种利用动态核极化增强测试材料润湿性及孔径大小的方法
US11549836B2 (en) 2021-05-26 2023-01-10 Saudi Arabian Oil Company Liquid NMR signal boost during NMR flow metering of wet gas flow using enhanced signal relaxation and/or dynamic nuclear polarisation using immobilised radicals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316616A (zh) * 2005-12-01 2008-12-03 通用电气医疗集团股份有限公司 应用三苯甲基自由基和顺磁金属离子的动态核极化(dnp)的方法
WO2009029241A1 (en) * 2007-08-24 2009-03-05 The Regents Of The University Of California Dynamic nuclear polarization enhanced nuclear magnetic resonance of water under ambient conditions
WO2012168797A1 (en) * 2011-06-10 2012-12-13 BRUKER BIOSPIN (Société par Actions Simplifiée) Non aqueous solvents or mixtures for dnp nmr spectroscopy, method to prepare said solvents or mixtures and use of said solvents or mixtures
CN105717153A (zh) * 2016-01-28 2016-06-29 中国科学院武汉物理与数学研究所 一种基于动态核极化多核同时增强的并行磁共振方法
US20170254920A1 (en) * 2016-03-03 2017-09-07 Shell Oil Company Chemically-selective imager for imaging fluid of a subsurface formation and method of using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310539A (en) * 1991-04-15 1994-05-10 Board Of Regents, The University Of Texas System Melanin-based agents for image enhancement
CN100373172C (zh) * 2004-10-21 2008-03-05 北京大学 用岩石核磁共振弛豫信号测量地层岩石物性的设备及测量方法
CN101915716B (zh) * 2010-07-06 2012-01-04 中国石油天然气股份有限公司 一种判断储层岩石的润湿性的方法
US10371653B2 (en) * 2010-10-13 2019-08-06 Perm Instruments Inc. Multi-phase metering device for oilfield applications
GB2549017B (en) * 2015-01-29 2021-03-03 Halliburton Energy Services Inc Determining the oleophilic to aqueous phase fluid ratio for drilling fluids
CN106324008B (zh) * 2015-07-02 2018-10-16 中国石油天然气股份有限公司 核磁共振测井波谱的校正方法
US10773093B2 (en) * 2017-05-29 2020-09-15 Elegant Mathematics LLC Real-time methods for magnetic resonance spectra acquisition, imaging and non-invasive ablation
CN108918573A (zh) * 2018-08-23 2018-11-30 中国石油天然气股份有限公司 油水两相流组分含量测量方法及系统
CN110082381B (zh) * 2019-05-08 2021-12-03 中国科学院武汉物理与数学研究所 一种利用dnp-mri测量油水分布方法
CN110082382A (zh) * 2019-05-08 2019-08-02 中国科学院武汉物理与数学研究所 一种利用动态核极化进行油水两相nmr信号分离的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316616A (zh) * 2005-12-01 2008-12-03 通用电气医疗集团股份有限公司 应用三苯甲基自由基和顺磁金属离子的动态核极化(dnp)的方法
WO2009029241A1 (en) * 2007-08-24 2009-03-05 The Regents Of The University Of California Dynamic nuclear polarization enhanced nuclear magnetic resonance of water under ambient conditions
WO2012168797A1 (en) * 2011-06-10 2012-12-13 BRUKER BIOSPIN (Société par Actions Simplifiée) Non aqueous solvents or mixtures for dnp nmr spectroscopy, method to prepare said solvents or mixtures and use of said solvents or mixtures
CN105717153A (zh) * 2016-01-28 2016-06-29 中国科学院武汉物理与数学研究所 一种基于动态核极化多核同时增强的并行磁共振方法
US20170254920A1 (en) * 2016-03-03 2017-09-07 Shell Oil Company Chemically-selective imager for imaging fluid of a subsurface formation and method of using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. HORASAN ET AL.: "A Weak Field EPR Study of TANOL in Water and Water-Oil Using Dynamic Nuclear Polarization", 《Z. NATURFORSCH.》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020224420A1 (zh) * 2019-05-08 2020-11-12 中国科学院精密测量科学与技术创新研究院 一种利用动态核极化进行油水两相nmr信号分离的方法
CN112345573A (zh) * 2019-08-06 2021-02-09 中国科学院武汉物理与数学研究所 一种利用dnp-nmr区分油类粘度的方法
CN112666048A (zh) * 2019-10-16 2021-04-16 中国科学院武汉物理与数学研究所 一种利用动态核极化增强测试材料润湿性及孔径大小的方法
CN112666048B (zh) * 2019-10-16 2022-06-07 中国科学院武汉物理与数学研究所 一种利用动态核极化增强测试材料润湿性及孔径大小的方法
US11549836B2 (en) 2021-05-26 2023-01-10 Saudi Arabian Oil Company Liquid NMR signal boost during NMR flow metering of wet gas flow using enhanced signal relaxation and/or dynamic nuclear polarisation using immobilised radicals

Also Published As

Publication number Publication date
WO2020224420A1 (zh) 2020-11-12
US20220057347A1 (en) 2022-02-24
US11953456B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
CN110082382A (zh) 一种利用动态核极化进行油水两相nmr信号分离的方法
Cheng et al. New insights into spontaneous imbibition in tight oil sandstones with NMR
Li et al. Re-evaluating adsorbed and free methane content in coal and its ad-and desorption processes analysis
CN104849765B (zh) 用于测量岩石润湿性的方法
Li et al. The characteristics of movable fluid in the Triassic lacustrine tight oil reservoir: a case study of the Chang 7 member of Xin'anbian Block, Ordos Basin, China
Grunewald et al. A laboratory study of NMR relaxation times in unconsolidated heterogeneous sediments
Dong et al. NMR characterization of a tight sand's pore structures and fluid mobility: an experimental investigation for CO2 EOR potential
US11131186B1 (en) Method for determining wettability index of rock from T2 NMR measurements
Adenutsi et al. Influence of net confining stress on NMR T2 distribution and two-phase relative permeability
CN101750633A (zh) 利用核磁共振录井解释参数进行储层评价的方法
CN110082381A (zh) 一种利用dnp-mri测量油水分布方法
Liu et al. Quantitative study of CO2 huff-n-puff enhanced oil recovery in tight formation using online NMR technology
US20020081742A1 (en) Quantification of bitumen using NMR
Xin et al. Geochemical characteristics of shale gas in the Silurian Longmaxi Formation, Jiaoshiba area, southeast Sichuan Basin, China
Ren et al. Influence of micro‐pore structure in tight sandstone reservoir on the seepage and water‐drive producing mechanism—a case study from Chang 6 reservoir in Huaqing area of Ordos basin
Xinjin et al. Sedimentary charac⁃ teristics and distribution pattern of the slope-shifting fan in the low-lying slope zone of Dongying sag
Washburn et al. A new laboratory approach to shale analysis using NMR relaxometry
Zeng et al. Pore-fracture network alteration during forced and spontaneous imbibition processes in shale formation
XIE et al. The (T2, D) NMR logging method for fluids characterization
Yuan et al. A comprehensive review on shale studies with emphasis on nuclear magnetic resonance (NMR) technique
Ren et al. Dynamic and static imbibition characteristics of tight sandstone based on NMR
Hürlimann et al. Application of NMR diffusion editing as chlorite indicator
Zhang et al. The influence of permeability and heterogeneity on chemical flooding efficiency and remaining oil distribution—based on NMR displacement imaging
LIANG et al. Review on nuclear magnetic resonance characterization for rock wettability
Petrakis et al. The utilization of nuclear magnetic resonance spectroscopy for petroleum, coal, oil shale, petrochemicals, and polymers. Phenomenology, paradigms of applications, and instrumentation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802

RJ01 Rejection of invention patent application after publication