WO2020224402A1 - 数据传输的方法、接入类别创建的方法、装置及存储介质 - Google Patents

数据传输的方法、接入类别创建的方法、装置及存储介质 Download PDF

Info

Publication number
WO2020224402A1
WO2020224402A1 PCT/CN2020/084984 CN2020084984W WO2020224402A1 WO 2020224402 A1 WO2020224402 A1 WO 2020224402A1 CN 2020084984 W CN2020084984 W CN 2020084984W WO 2020224402 A1 WO2020224402 A1 WO 2020224402A1
Authority
WO
WIPO (PCT)
Prior art keywords
access category
tolerance
value
frame
data
Prior art date
Application number
PCT/CN2020/084984
Other languages
English (en)
French (fr)
Inventor
郝晶晶
周瑞卿
孟醒
李刘腾
宁斌晖
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to EP20802977.7A priority Critical patent/EP3968725A4/en
Priority to JP2021542118A priority patent/JP7204932B2/ja
Publication of WO2020224402A1 publication Critical patent/WO2020224402A1/zh
Priority to US17/358,204 priority patent/US20210321454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • This application relates to the field of communication technology, and in particular to a method of data transmission, a method and device for creating access categories, and a computer-readable storage medium.
  • the embodiments of the present application provide a data transmission method, access category creation method, device, and computer-readable storage medium, which can dynamically reduce the backoff value corresponding to the backoff count, thereby increasing the flexibility of backoff. Speed up the data transmission efficiency of LJ business.
  • the embodiment of the present application provides a data transmission method, including:
  • the LJ tolerance of the LJ access category is set to the first tolerance value, where the LJ tolerance represents the upper limit of the transmission delay of the LJ access category value;
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff value, where the second The tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0;
  • the data frame is sent to the target station through the LJ access category.
  • the embodiment of the present application provides a method for creating an access category, including:
  • LJ associated parameter set is used to indicate data transmission conditions supported by the LJ access category, and the data transmission conditions are conditions met for transmitting LJ service data
  • the embodiment of the application provides a data transmission method, which is applied to a site, the site includes one or more processors and memories, and one or more programs, wherein the one or more programs are stored in In the memory, the program may include one or more units each corresponding to a set of instructions, and the one or more processors are configured to execute instructions; the method includes:
  • the LJ tolerance of the LJ access category is set to the first tolerance value, where the LJ tolerance represents the upper limit of the transmission delay of the LJ access category value;
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to a second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff value;
  • the second tolerance value is less than or equal to the first tolerance value
  • the second backoff value is less than the first backoff value
  • the first backoff value is when the LJ tolerance decreases to 0 The corresponding backoff value
  • the data frame is sent to the target station through the LJ access category.
  • the embodiment of the present application provides a method for creating an access category, which is applied to a site.
  • the site includes one or more processors and memories, and one or more programs, wherein the one or more programs Stored in a memory, the program may include one or more units each corresponding to a set of instructions, and the one or more processors are configured to execute instructions; the method includes:
  • LJ associated parameter set is used to indicate data transmission conditions supported by the LJ access category, and the data transmission conditions are conditions met for transmitting LJ service data
  • An embodiment of the application provides a data transmission device, including:
  • a setting module configured to set the LJ tolerance of the LJ access category to a first tolerance value when the data frame enters the low jitter LJ access category, where the LJ tolerance represents the LJ tolerance of the LJ access category Upper limit of transmission delay;
  • the setting module is further configured to set the LJ tolerance to a second tolerance value when the LJ tolerance decreases to 0, and set the backoff count of the LJ access category from the first backoff value to the second backoff value Value, wherein the second tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is when the LJ tolerance decreases to The backoff value corresponding to 0;
  • the sending module is configured to send the data frame to the target station through the LJ access category when the backoff count is decremented to 0.
  • An embodiment of the present application provides an access category creation device, including:
  • the obtaining module is configured to obtain a low-jitter LJ associated parameter set, where the LJ associated parameter set is used to indicate data transmission conditions supported by the LJ access category, and the data transmission conditions are conditions met for transmitting LJ service data;
  • the creation module is configured to create the LJ access category according to the associated LJ parameter set acquired by the acquisition module.
  • the embodiment of the present application provides a site, including: a memory, a transceiver, a processor, and a bus system;
  • the memory is configured to store a program
  • the processor is configured to execute the program in the memory, including the following steps:
  • the LJ tolerance of the LJ access category is set to the first tolerance value, where the LJ tolerance represents the upper limit of the transmission delay of the LJ access category value;
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff value, where the second The tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0;
  • the bus system is configured to connect the memory and the processor, so that the memory and the processor communicate.
  • the embodiment of the present application provides a site, including: a memory, a transceiver, a processor, and a bus system;
  • the memory is configured to store a program
  • the processor is configured to execute the program in the memory, including the following steps:
  • the LJ tolerance of the LJ access category is set to the first tolerance value, where the LJ tolerance represents the upper limit of the transmission delay of the LJ access category value;
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff value, where the second The tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0;
  • the bus system is configured to connect the memory and the processor, so that the memory and the processor communicate.
  • An embodiment of the present application provides a computer-readable storage medium that stores executable instructions in the computer-readable storage medium, and when the executable instructions are executed, the foregoing method is implemented.
  • a data transmission method is provided.
  • the station sets the upper limit of the transmission delay of the LJ access category to the first tolerable value, and when the LJ tolerates When the degree decreases to 0, the upper limit of the transmission delay of the LJ access category is reduced, and the backoff count of the LJ access category is reduced from the first backoff value to the second backoff value.
  • the first backoff value is when the LJ tolerance decreases
  • FIG. 1 is a schematic diagram of an embodiment of a wireless local area network in an embodiment of the application
  • FIG. 2 is a schematic diagram of an architecture of the data transmission system in an embodiment of the application.
  • FIG. 3 is a schematic diagram of an implementation process of a data transmission method provided by an embodiment of this application.
  • Figure 4 is a schematic diagram of data transmission based on low jitter access categories in an embodiment of the application
  • FIG. 5 is another schematic diagram of data transmission based on low jitter access category in an embodiment of the application.
  • FIG. 6 is a schematic diagram of an embodiment of creating a low jitter access category in an embodiment of the application
  • FIG. 7 is a schematic diagram of an embodiment of creating a low jitter access category in an embodiment of the application.
  • FIG. 8 is a schematic diagram of an embodiment of creating a low jitter access category in an embodiment of the application.
  • FIG. 9 is a schematic diagram of an embodiment in which a data frame enters a low jitter access category in an embodiment of the application.
  • FIG. 10 is a schematic diagram of an arbitrary interframe interval of a conventional access category in an embodiment of this application.
  • FIG. 11 is a schematic diagram of another embodiment of a method for creating an access category in an embodiment of this application.
  • FIG. 12 is a schematic diagram of a structure of a data transmission device provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of another composition structure of a data transmission device provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of still another composition structure of the data transmission device provided by an embodiment of the application.
  • 15 is a schematic diagram of another composition structure of a data transmission device provided by an embodiment of this application.
  • 16 is a schematic diagram of another composition structure of a data transmission device provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of another composition structure of a data transmission device provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of a composition structure of an access category creation apparatus in an embodiment of the application.
  • Figure 19 is a schematic structural diagram of a site in an embodiment of the application.
  • FIG. 20 is another schematic structural diagram of a site in an embodiment of the application.
  • the embodiments of the present application provide a data transmission method, a method and device for creating an access category, which can dynamically adjust the tolerance value corresponding to the LJ tolerance, and dynamically reduce the backoff value corresponding to the backoff count, thereby increasing the flexibility of backoff Speed up the data transmission efficiency of LJ business.
  • EDCA Enhanced Distributed Channel Access
  • PHY Physical Layer
  • the low-priority AC When multiple ACs have backoff timers to 0 at the same time, the low-priority AC will be treated as a collision, and the contention window (CW) will be doubled, and the backoff will be restarted; while the high-priority AC will consider the successful competition to the transmission opportunity ( Transmission Opportunity, TXOP), and then start to send data on the competing channel, which affects the data transmission efficiency.
  • TXOP Transmission Opportunity
  • the back-off time is fixed each time the integer value is selected.
  • long-term data transmission needs to be completed according to the required delay jitter. Therefore, the comparison between the fixed back-off time and the complex and changeable wireless transmission environment will result in the lack of flexibility in supporting the LJ service and reduce the data transmission efficiency of the LJ service.
  • EDCA is a control channel access protocol for wireless transmission
  • EDCA is based on carrier sense multiple access/collision avoidance (Carrier Sensing Multiple Access/Collision Avoidance, CSMA/CA), allowing compatible physical layers (Physical Layer, PHY) to use wireless media (Wireless Media).
  • CSMA/CA has multiple implementation methods, such as Wireless Fidelity (WiFi).
  • the PHY in the site performs physical listening in each time slot (aSlotTime) to know whether the shared medium is in an idle state.
  • Sites that support EDCA will select a random integer value from a certain range as the initial backoff time.
  • EDCA will start backoff, that is, the backoff count is subtracted by 1.
  • TXOP Transmission Opportunity
  • EDCA judges that the contention channel access is successful, that is, it obtains a transmission opportunity (Transmission Opportunity, TXOP), and starts to send data frames. If during the backoff process, when the shared medium is detected to be busy in a time slot, the backoff count will be temporarily suspended, and when it is detected to be idle again, the previous backoff count will continue.
  • two stations Station, STA
  • TXOP limit Transmission opportunity limit
  • an STA When an STA obtains the TXOP, it can immediately send the data frame, but the time occupied by the shared medium is limited, that is, it has the transmission opportunity to limit the TXOP limit.
  • the random selection of the backoff time is defined by the competition window parameter, that is, an integer value is randomly selected from the uniform distribution of [0, CW].
  • the value of CW is between CW minimum (CWmin) and CW maximum (CWmax). For each successful transmission, CW will be reset to Cwmin, and for each collision or transmission failure, CW will be doubled until CWmax is reached.
  • EDCA divided into the priority of differentiated services, EDCA defines a variety of AC. Each AC contains a queue for storing MAC Service Data Unit (MSDU) and an Enhanced Distributed Channel Access Function (EDCAF) for prioritization. .
  • MSDU MAC Service Data Unit
  • EDCAF Enhanced Distributed Channel Access Function
  • the STA receives the MSDU issued by the upper-layer protocol
  • the EDCA first maps it to the corresponding AC according to the upper-layer user priority (User Priority, UP) field.
  • Each AC independently competes for the channel according to the aforementioned backoff mechanism.
  • each AC corresponds to an EDCAF, which is responsible for defining different parameter values to achieve different priorities between ACs.
  • the parameters defined by EDCAF include CWmin, CWmax, TXOP limit and Arbitration Inter-Frame Space (AIFS). Compared with low-priority ACs, high-priority ACs have a greater probability of competing for TXOP.
  • the low-priority AC will make a collision, then double the CW, and start backoff again; while the high-priority AC considers that it has successfully competed to the TXOP and starts to send data frames.
  • AIFS is used to define the waiting time before the random backoff process is started after the shared media listening result changes from busy to idle.
  • Different ACs have different AIFSs. High-priority ACs will start random backoff earlier, so there will be a greater probability of competing for TXOP.
  • FIG. 1 is an embodiment of the wireless local area network in the embodiment of the application
  • the data transmission method provided by the embodiments of this application can be applied to sites in Wireless Local Area Networks (WLAN), and is especially suitable for STA-intensive scenarios, which can meet the high-density WiFi standards. The needs of users and high throughput.
  • WLAN Wireless Local Area Networks
  • the network nodes include an access point (Access Point, AP) 100 and a STA 200 (Figure 1 exemplarily shows two STAs, namely STA 200-1 and STA 200 -2)
  • AP 100 provides data services for STAs within its coverage area
  • BSS Basic Service Set
  • a BSS includes several STAs.
  • FIG. 2 is a schematic diagram of the architecture of the data transmission system in an embodiment of the application.
  • the data transmission system includes an AP and an STA, and the AP and the STA can communicate through a wireless link.
  • WLAN adopts IEEE802.11 series standards.
  • the network node of BSS is STA.
  • STA includes AP type STA (300 shown in Fig. 2) and Non-AP type STA ( In 400) shown in Figure 2, each BBS may include one AP and multiple Non-AP STAs associated with the AP.
  • AP type sites are also called wireless access points or hotspots.
  • APs are the access points for mobile users to enter the wired network. They are generally deployed in homes, buildings, and campuses. The typical coverage radius is tens of meters to hundreds of meters, and they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its role is to connect each STA together, and then connect the wireless network to the wired network.
  • the AP may be a terminal device or a network device with a WiFi chip, such as a routing device that provides AP functions or services.
  • the AP may be a device that supports the 802.11ax standard. In some embodiments, the AP may also be a device that supports multiple WLAN standards such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA can be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • mobile phones that support WiFi communication, tablets that support WiFi communication, set-top boxes that support WiFi communication, smart TVs that support WiFi communication, smart wearable devices that support WiFi communication, and in-vehicle communication that supports WiFi communication Equipment and computers that support WiFi communication.
  • the STA can support the 802.11ax standard.
  • the STA can also support multiple WLAN standards such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • AP one end providing wireless connection access
  • Non-AP namely STA
  • STA the AP and Non-AP STA in the embodiment of this application Collectively referred to as STA.
  • FIG. 3 is a schematic diagram of an implementation process of a data transmission method provided by an embodiment of the application. As shown in FIG. 3, the method includes:
  • the LJ tolerance of the LJ access category is set to a first tolerance value, where the LJ tolerance represents the upper limit of the transmission delay of the LJ access category.
  • a data transmission method of AC (AC[LJ]) supporting LJ service is introduced.
  • LJ means that the transmission delay jitter is less than the delay jitter threshold.
  • the delay jitter threshold is individually set according to the operation of the site equipment.
  • the AC that supports the LJ service refers to an AC that can satisfy that the transmission delay jitter is less than the delay jitter threshold.
  • the data frame may be social dynamic information received or sent by the site, or game data frame received or sent by the site.
  • the count value of the LJ tolerance is set as the first tolerance value.
  • the counting method of the LJ tolerance is similar to the calculation method of the backoff count, and the time slot (aSlotTime ) Is the unit, that is, after each time slot, the count of LJ tolerance is subtracted by 1.
  • the LJ tolerance indicates the upper limit of the transmission delay of the LJ access category.
  • the station When the data frame enters the LJ access category, the station sets the LJ tolerance of the LJ access category to the first tolerance value, where the first tolerance value is a positive integer, such as T1. It is understandable that the data frame may be an MSDU or other types of data units, which is not limited here.
  • the LJ tolerance decreases to 0
  • the LJ tolerance is set to the second tolerance value
  • the backoff count of the LJ access category is set from the first backoff value to the second backoff value, where the second tolerance value is less than or Equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0;
  • the site when the LJ tolerance decreases to 0, the site sets the LJ tolerance to the second tolerance value, where the second tolerance value is also a positive integer, such as T2, and the second tolerance value is less than or equal to The first tolerance value.
  • the station needs to update the backoff count from the first backoff value to the second backoff value, where the first backoff value refers to the backoff value corresponding to when the LJ tolerance decreases to zero.
  • the first backoff value is a positive integer, such as t1.
  • the second backoff value is also a positive integer, such as t2, and the second backoff value is less than the first backoff value.
  • the station when the backoff count is decremented to 0, it indicates that the data frame can be sent, that is, the station sends the data frame to the target station through the LJ access category.
  • Figure 4 is a schematic diagram of data transmission based on the low jitter access category in an embodiment of the application.
  • a data frame A enters AC[LJ]
  • AC[LJ ] Is set to the first tolerance value, for example, set to 30, each time a time slot, LJ tolerance is reduced by 1.
  • other ACs can also send data. Assuming that other ACs are conventional ACs that send data frame B, then data frame A cannot be sent on AC[LJ]. Therefore, AC[LJ] The countdown will continue based on the LJ tolerance.
  • the LJ tolerance value is 0, if the data frame A has not been able to be sent, the LJ tolerance value needs to be reset, that is, set to the second tolerance value.
  • the first tolerance value is 30 and the second tolerance value is 15.
  • the AC sending data in the embodiments of the present application refers to the station sending data through the AC, or the station sending data on the AC.
  • the backoff count of AC[LJ] is the first backoff value, which is 8 as shown in Figure 4, while the backoff count of conventional AC is already 0, and the data frame can be sent C, AC[LJ] should set the backoff count of the current queue from the first backoff value to the second backoff value, for example, the first backoff value is 8, and the second backoff value is 4.
  • a data transmission method is provided.
  • the station sets the LJ tolerance of the LJ access category to the first tolerance value, where LJ tolerance represents The upper limit of the transmission delay of the LJ access category.
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff Value, where the second tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0, and when the backoff count decreases At 0, the station sends a data frame to the target station through the LJ access category.
  • the station can dynamically adjust the tolerance value corresponding to the LJ tolerance and dynamically reduce the backoff value corresponding to the backoff count, thereby increasing the flexibility of backoff and speeding up the data transmission efficiency of the LJ service.
  • the data transmission method provided in the embodiment of the present application may further include:
  • the LJ tolerance and backoff count can be set, that is, one of the conditions is AC At least one data frame already exists in the queue of [LJ].
  • the second condition is that a new data frame needs to enter the queue of AC[LJ].
  • the acceleration operation is performed, that is, the first backoff value of the backoff count is set to the second backoff value, which is consistent with the foregoing embodiment, and the second backoff value is smaller than the first backoff value.
  • AC[LJ] needs to reset the LJ tolerance to the first tolerance value.
  • Figure 5 is another schematic diagram of data transmission based on the low jitter access category in the embodiment of this application.
  • the first tolerance value is 30, the AC[LJ] In the queue, when the LJ tolerance is 30, the AC[LJ] queue enters the data frame A, but the backoff count has not decreased to 0 at this time, so the station cannot send the data frame A through AC[LJ].
  • the LJ tolerance is 20, the queue of AC[LJ] enters data frame B. At this time, the queue of AC[LJ] already has data frame A.
  • the LJ tolerance can be reset to 30.
  • the station can send data frame A and data frame B to the target station through AC[LJ].
  • a data transmission method based on AC[LJ] is also provided.
  • the station can increase the LJ tolerance Set to the first tolerance value, and set the backoff count of the LJ access category from the first backoff value to the second backoff value.
  • the LJ access category When the number of data frames in the LJ access category is greater than or equal to the maximum number of frames, the LJ access category is destroyed, where the maximum number of frames represents the upper limit of the number of data frames simultaneously stored in the LJ access category.
  • the first way to destroy AC[LJ] is to destroy the AC[LJ] if the survival time of AC[LJ] is reduced to 0 and there are still no X data frames entering the queue of AC[LJ].
  • Time represents the upper limit of survival of the LJ access category, X can usually be set to 1, in practical applications, X can also be set to other integers greater than 1.
  • the counting method of the survival time is similar to the calculation method of the backoff count and the counting method of the LJ tolerance, and it is also based on a slot (aSlotTime), that is, every time a slot passes, the count of the survival time is reduced by 1.
  • the survival time can be reset to the initial value of 100.
  • the second way to destroy AC[LJ] is to destroy the AC[LJ] if the number of data frames already in the queue of AC[LJ] is greater than or equal to the maximum number of frames that AC[LJ] can support.
  • the maximum number of frames indicates the upper limit of the number of data frames stored at the same time for the LJ access category.
  • the data frame can be sent again after a period of time, or the data frame can be sent to the target station through another AC, or the data frame can be determined not to be sent again.
  • the station sends a notification of data transmission failure to the target station through the LJ service request frame or the LJ service response frame, for example, the corresponding operation type field (such as the field destroyed by AC[LJ]) is carried in the LJ service request frame or LJ service response frame And AC[LJ] identification (LJ-ID) and other content.
  • the site or upper layer that requests the creation of AC[LJ] can also initiate a destruction request.
  • the upper layer can refer to the layers above the MAC layer and the PHY layer, such as the application layer and remote procedure call (Remote Procedure Call). Call, RPC) layer, Internet Protocol Address (IP) layer, Transmission Control Protocol (TCP) layer, User Datagram Protocol (User Datagram Protocol, UDP) layer, etc., are not limited here.
  • a way to destroy AC[LJ] is provided.
  • One way is to destroy the LJ access category when no data frame enters the LJ access category within the lifetime, where the lifetime represents The upper limit of survival for the LJ access category.
  • Another way is to destroy the LJ access category when the number of data frames in the LJ access category is greater than or equal to the maximum frame number, where the maximum frame number represents the upper limit of the number of data frames stored at the same time in the LJ access category .
  • the frequency of AC[LJ] can be effectively restricted to accelerate the competition for TXOP, so that AC[LJ] will not occupy air time too frequently, and at the same time, the priority effect of AC[LJ] can be ensured, which is suitable for frequent network collisions or other
  • AC[LJ]’s rapid competition TXOP capability will only further aggravate collisions until the network is paralyzed, so destroying AC[LJ] in time can also help reduce collisions.
  • a large number of frames in a short time for service requirements will compete for TXOP, which will also cause a large increase in collisions, especially the competition between AC[LJ] of multiple sites under the same WiFi network. Therefore, destroying AC[LJ] in this case can let the upper layer and the target site know the Wi-Fi network situation in time, avoiding the intensification of collisions, making the priority effect of AC[LJ] on LJ services more obvious and more flexible.
  • FIG. 6 is A schematic diagram of an embodiment of creating a low jitter access category in the embodiment of this application.
  • station 1 can initiate the creation of AC[LJ].
  • station 1 sends an LJ Service Request frame to station 2.
  • Request site 2 to create AC[LJ] this AC[LJ] is used to preferentially serve the LJ business data sent from site 2 to site 1.
  • station 2 After station 2 receives the LJ Service Request frame, it should feed back an LJ Service Response frame to station 1, so that station 1 can determine whether AC[LJ] has been created according to the LJ Service Response frame, that is,
  • the LJ Service Response frame carries fields related to the operation type, such as the field of "created successfully” or the field of "creation failed".
  • site 1 is the source site and site 2 is the target site.
  • site 1 in Figure 6 can be an AP, and site 2 can be a non-AP STA associated with the AP, or, as shown in Figure 6
  • the station 2 of may be an AP, and the station 1 may be a certain Non-AP STA associated with the AP, which is not limited here.
  • a method of creating AC[LJ] is provided.
  • the source site may also send an LJ service request frame to the target site. Then the source station receives the LJ service response frame sent by the target station, and finally the source station creates an LJ access category based on the LJ service response frame.
  • the target site can establish AC[LJ] according to the request frame sent by the source site, thus providing a feasible way for the creation of AC[LJ].
  • FIG. 7 is a schematic diagram of an embodiment for creating a low jitter access category in an embodiment of this application.
  • station 1 can initiate the creation of AC[LJ]. First, station 1 obtains the AC[LJ] creation request issued by the upper layer. The AC[LJ] is used to distinguish the LJ service data provided by site 2. After site 1 creates AC[LJ], site 1 needs to send an LJ Service Response frame to site 2 to notify site 2 that AC[LJ] has been established.
  • the upper layer can decide whether to issue a creation request according to the business currently used by the user. For example, if the current business is detected as an LJ type business, the upper layer can issue an AC[LJ] creation request.
  • site 1 in Figure 7 can be an AP
  • site 2 can be a non-AP STA associated with the AP
  • site 2 in Figure 7 can be an AP
  • site 1 can be associated with the AP.
  • a non-AP STA of the AP is not limited here.
  • a method of creating AC[LJ] is provided.
  • the source site Before setting the LJ tolerance of the LJ access category as the first tolerance count, the source site obtains the creation request from the upper layer, and then according to the creation request Create the LJ access category, and finally send the LJ service response frame to the target site.
  • the source site can establish AC[LJ] according to the request of the upper layer, thereby providing another feasible way for the creation of AC[LJ], thereby enhancing the flexibility and feasibility of the scheme.
  • FIG. 8 This is a schematic diagram of an embodiment of creating a low jitter access category in an embodiment of this application.
  • site 1 can determine whether to actively create an AC[LJ] based on local information, and this AC[LJ] is used to distinguish site 2 LJ business data provided.
  • site 1 After site 1 creates AC[LJ], site 1 needs to send an LJ Service Response frame to site 2 to notify site 2 that AC[LJ] has been established.
  • the local information can include network throughput. If the network condition is poor, the AC[LJ] creation request can be triggered actively. Local information can also refer to detecting the sending frequency of the data frame. If the data frame is continuously sent for a period of time, it is considered that the service may be an LJ service. Therefore, the creation request of AC[LJ] can be actively triggered.
  • site 1 in Figure 8 can be an AP
  • site 2 can be a non-AP STA associated with the AP
  • site 2 in Figure 8 can be an AP
  • site 1 can be associated with the AP.
  • a non-AP STA of the AP is not limited here.
  • a method of creating AC[LJ] is provided. Before the LJ tolerance of the LJ access category is set as the first tolerance count, the source site generates a creation request according to its own information, and then generates a creation request according to the creation Request to create the LJ access category, and finally send the LJ service response frame to the target site.
  • the source site can create AC[LJ] based on its own information, which provides another feasible way for the creation of AC[LJ], thereby enhancing the flexibility and feasibility of the program.
  • the LJ service request frame or the LJ service response frame includes an LJ control parameter set, where the LJ control parameter set includes the identification and source of the LJ access category At least one of the address of the site, the address of the target site, the address of the site that supports the LJ access category, the operation type, the reason code, and the service priority field;
  • the LJ service request frame or the LJ service response frame includes the LJ parameter set, where the LJ parameter set includes at least one of LJ tolerance, survival time, maximum frame length, and maximum frame number.
  • the survival time represents the survival of the LJ access category.
  • Limit the maximum frame length indicates the upper limit of the length of the data frame supported by the LJ access category
  • the maximum number of frames indicates the upper limit of the number of data frames supported by the LJ access category at the same time.
  • a set of LJ control parameter sets and LJ parameter sets are defined.
  • the LJ control parameter set and the LJ parameter set can be carried in the LJ Service Request frame or the LJ Service Response frame, the LJ Service Request frame and the LJ Service The Response frame can use the same frame format, or two different frame formats. They can reuse a defined MAC frame structure, such as a MAC control frame, or a newly defined frame format, and can be an element contained in the MAC frame.
  • the LJ Service Request frame and the LJ Service Response frame include but are not limited to the following LJ control parameter sets:
  • the site address that supports the LJ access category means that it has the site address of AC[LJ];
  • Operation type indicating the content of the current request, such as "request creation”, “confirm creation”, “creation failure”, “request destruction”, “confirm destruction”, “destruction failure” and “capability broadcast”, etc. , Where the operation type is usually carried by the LJ Service Request frame;
  • the service priority field is used to describe the priority level of AC[LJ].
  • the traffic identification code (Traffic Identification, TID) defined by IEEE802.11 can be used, and the newly defined field can be used.
  • the LJ Service Request frame and the LJ Service Response frame include but are not limited to the following LJ parameter sets:
  • LJ tolerance T is used to describe the tolerance of AC[LJ] to transmission delay. It can follow the setting of backoff count, take an integer, and take aSlotTime as the unit;
  • the survival time L is used to describe the longest survival time of AC[LJ]. If the queue of AC[LJ] is empty for more than this survival time, it can trigger the owner of AC[LJ] to destroy AC[LJ ], stop prioritizing LJ services;
  • the maximum frame length M is used to describe the maximum frame length supported by AC[LJ], that is, the maximum length of data frames (such as MSDU) that can enter the AC[LJ] queue;
  • the maximum number of frames, N is used to describe the maximum number of data frames that can be stored simultaneously in the AC[LJ] queue, that is, the number of MSDUs.
  • the target site When the target site receives the AC[LJ] creation request sent by the source site, it can decide whether to create AC[LJ] based on whether its own capabilities match the LJ parameter set. If the target site cannot create AC[LJ] according to the requested parameter value, it can indicate the supported or recommended LJ parameter set in the LJ Service Response frame and feed it back to the source site. After the source site receives the LJ Service Response frame, it can restart Set the LJ parameter set to initiate AC[LJ] creation request again.
  • the LJ service request frame or the LJ service response frame may include an LJ control parameter set and an LJ parameter set, where the LJ control parameter set includes the identification of the LJ access category, the address of the source site, and the address of the target site. At least one of address, site address supporting LJ access category, operation type, reason code, and service priority field.
  • the LJ parameter set includes at least one of LJ tolerance, survival time, maximum frame length, and maximum frame number .
  • the LJ service request frame or the LJ service response frame also includes enhanced distributed channel access EDCA parameters, where the EDCA parameters include the minimum value of the contention window CW , CW maximum value, transmission opportunity TXOP limit and inter-frame interval AIFS.
  • EDCA parameters suitable for WiFi scenarios are defined.
  • the EDCA parameters can be carried in the LJ Service Request frame or the LJ Service Response frame.
  • the EDCA parameters include CW minimum (CWmin) and CW maximum ( CWmax), TXOP limit (TXOP limit) and inter-frame space (AIFS).
  • the opportunity to access the channel can be obtained through EDCA parameters.
  • CWmin represents the minimum contention window, the smaller the CWmin, the higher the priority.
  • CWmax represents the maximum contention window, the smaller the CWmax, the higher the priority.
  • TXOP limit represents the longest time that the channel is occupied.
  • AIFS represents the channel idle time that must be waited to obtain TXOP.
  • AIFS(AC[LJ]) AIFSN(AC[LJ]) ⁇ aSlotTime ⁇ aSIFSTime;
  • AIFSN (AC[LJ]) represents the number of arbitration frame intervals (Arbitration Inter Frame Spacing Number, AIFSN) based on AC[LJ], and aSIFSTime represents a short interframe space (SIFS) time.
  • EDCA parameters should follow the IEEE802.11 mechanism, and when not explicitly specified, they should be set to default values.
  • the default setting should try to make AC[LJ] have a higher priority.
  • TXOP limit of AC[LJ] can be set as small as possible to avoid priority abuse and affect fairness.
  • the EDCA parameters that can be included in the LJ service request frame or the LJ service response frame are defined, that is, the CW minimum value, the CW maximum value, the TXOP limit and the AIFS are defined. Through these parameters, it can be applied to the WiFi environment under the current 802.11 protocol, thereby ensuring the applicability and feasibility of the solution.
  • the data frame is determined to enter the LJ access category; if the data frame does not meet the data transmission condition, the data frame is determined to enter the regular access category, where the regular access category includes voice VO At least one of the access category, the video VI access category, the best effort BE access category, and the background BK access category.
  • a data frame filtering method based on AC[LJ] operation is introduced.
  • the station needs to receive the data frame first, and then judge the information corresponding to the data frame. If it is judged that the data frame meets the data transmission conditions, it is determined that the data frame can enter the AC[LJ] queue for accelerated operation. Conversely, if it is determined that the data frame does not meet the data transmission conditions, it is determined that the data frame can enter the regular AC queue for transmission.
  • Figure 9 is a schematic diagram of an embodiment in which a data frame enters the low jitter access category in an embodiment of this application.
  • the site follows the configured LJ
  • the parameter set filters the data frames sent by the upper layer to the MAC layer.
  • EDCA maps the data frames to the corresponding AC according to the user priority field of the upper layer. Only data frames that match the data transmission conditions (such as MSDU) will enter the AC[LJ] queue. Data frames that do not meet the data transmission conditions (such as MSDU) should enter the regular AC according to the existing EDCA rules of the IEEE802.11 protocol.
  • the data transmission condition may include at least one condition, for example, only when the data frame (such as MSDU) sent to the source site reaches the MAC layer of the target site, and the length of the data frame (such as MSDU) is less than the maximum frame length M , It is considered to meet the data transmission conditions. Or only one data frame can be entered in unit time (such as 10 time slots) before AC[LJ] can be entered. Setting the maximum frame length is to restrict the data frame length that is accelerated by AC[LJ] each time, so as not to occupy too much air interface time. This setting can be used in conjunction with TXOP Limit. Taking the mobile game business as an example, the maximum frame length can be set to several hundred bytes.
  • conventional AC includes voice (Voice, VO) AC, video (Video, VI) AC, best effort (Best Effort, BE) AC, and background (BackGround, BK) AC.
  • voice Voice
  • VO video
  • VI Video
  • BE best effort
  • BE background
  • BK Background
  • AIFSN can be set to 2 time slots, and the random backoff waiting time is 0 to 3 time slots.
  • AIFSN can be set to 2 time slots, and the random backoff waiting time is 0 to 7 time slots.
  • BE_AC AIFSN can be set to 3 time slots, and the random back-off waiting time is 0 to 15 time slots.
  • BK_AC AIFSN can be set to 7 time slots, and the random backoff waiting time is 0 to 15 time slots.
  • EDCA defines the upper layer of IEEE 802.1D-based 8 types of service categories (Traffic Category, TC) and the 4 types of ACs and 8 types of TCs in this layer are mapped respectively In the queue of 4 types of AC, that is, each channel defines four different access types AC.
  • the access category can be expressed as AC[0]-AC[3], the priority is from low to high, and each access category has an independent sending queue. The purpose of distinguishing priority is achieved by assigning different competition parameters to each access category.
  • Table 1 is a schematic content of the EDCA parameters corresponding to the AC in the embodiment of the application.
  • a data frame filtering method based on AC[LJ] operation is provided.
  • the station Before the LJ tolerance of the LJ access category is set to the first tolerance count, the station can also receive data frames. If the data frame meets the data transmission conditions, it is determined that the data frame enters the LJ access category. If the data frame does not meet the data transmission conditions, it is determined that the data frame enters the regular access category, where the regular access category includes voice VO access category, At least one of the video VI access category, the best effort BE access category, and the background BK access category.
  • the regular access category includes voice VO access category, At least one of the video VI access category, the best effort BE access category, and the background BK access category.
  • the method for creating an access category in the embodiment of this application includes:
  • a method for creating AC[LJ] is introduced.
  • the site obtains the LJ related parameter set, where the LJ related parameter set includes the LJ control parameter set and the LJ parameter set. It is understandable that the site can be the source site or the target site.
  • S202 Create an LJ access category according to the LJ associated parameter set.
  • the station creates the LJ access category according to the LJ associated parameter set.
  • AC[LJ] can be established in the following way.
  • the source site can initiate the creation of AC[LJ].
  • the source site sends an LJ Service Request frame to the target site, requesting the target site to create an AC[LJ].
  • the AC[LJ] is used to give priority to services sent from the target site to the source site.
  • LJ business data After the target site receives the LJ Service Request frame, it should feed back an LJ Service Response frame to the source site, so that the source site can determine whether the AC has been created currently according to the LJ Service Response frame [LJ], which can be included in the LJ Service Response frame.
  • Carry and operation type fields such as "created successfully" field, or "creation failed" field.
  • the source site can independently initiate the creation of AC[LJ].
  • the source site obtains the AC[LJ] creation request issued by the upper layer, and the AC[LJ] is used to distinguish the LJ service data provided by the target site.
  • the source site needs to send an LJ Service Response frame to the target site to notify the target site that AC[LJ] has been established.
  • the upper layer can decide whether to issue a creation request according to the business currently used by the user. For example, if the current business is detected as an LJ type business, the upper layer can issue an AC[LJ] creation request.
  • the source site can independently initiate the creation of AC[LJ], and the source site can determine whether to actively create AC[LJ] based on local information, and the AC[LJ] is used to distinguish LJ service data provided by the target site.
  • the source site needs to send an LJ Service Response frame to the target site to notify the target site that AC[LJ] has been established.
  • the local information can include network throughput. If the network condition is poor, the AC[LJ] creation request can be triggered actively. Local information can also refer to detecting the sending frequency of the data frame. If the data frame is continuously sent for a period of time, it is considered that the service may be an LJ service. Therefore, the creation request of AC[LJ] can be actively triggered.
  • a method for creating AC[LJ] is provided.
  • a site can obtain a low-jitter LJ associated parameter set, where the LJ associated parameter set is used to indicate the data transmission conditions supported by the LJ access category.
  • the condition is the condition met for transmitting LJ service data, and then the station creates the LJ access category according to the set of LJ related parameters.
  • the LJ association parameter set includes the LJ control parameter set and the LJ parameter set;
  • the LJ control parameter set includes at least one of the identification of the LJ access category, the address of the source site, the address of the target site, the address of the site supporting the LJ access category, the operation type, the reason code, and the service priority field;
  • the LJ parameter set includes at least one of LJ tolerance, survival time, maximum frame length, and maximum frame number.
  • the survival time represents the upper limit of the survival of the LJ access category
  • the maximum frame length represents the data frame length supported by the LJ access category.
  • the upper limit, the maximum number of frames indicates the upper limit of the number of data frames that the LJ access category supports at the same time.
  • a set of LJ control parameter sets and LJ parameter sets are defined.
  • the LJ control parameter set and the LJ parameter set can be carried in the LJ Service Request frame or the LJ Service Response frame, the LJ Service Request frame and the LJ Service The Response frame can use the same frame format, or two different frame formats. They can reuse a defined MAC frame structure, such as a MAC control frame, or a newly defined frame format, and can be an element contained in a MAC frame.
  • the LJ Service Request frame and the LJ Service Response frame include but are not limited to the following LJ control parameter sets: the identification of the LJ access category, the address of the source site, the address of the target site, the address of the site supporting the LJ access category, the operation type, and the reason code , The service priority field. It can be understood that the definition of these LJ control parameter sets can refer to the foregoing embodiment, which is not limited here.
  • the LJ Service Request frame and the LJ Service Response frame include but are not limited to the following LJ parameter sets: LJ tolerance, survival time, maximum frame length, and maximum frame number N. It can be understood that the definition of these LJ parameter sets can refer to the foregoing embodiment, which is not limited here.
  • the LJ service request frame or the LJ service response frame may include the LJ control parameter set and the LJ parameter set, where the LJ control parameter set includes the identification of the LJ access category, the address of the source site, and the target site At least one of address, site address supporting LJ access category, operation type, reason code, and service priority field.
  • the LJ parameter set includes at least one of LJ tolerance, survival time, maximum frame length, and maximum frame number .
  • the LJ association parameter set also includes enhanced distributed channel access EDCA parameters, where the EDCA parameters include the minimum CW of the contention window and the maximum CW. Value, transmission opportunity TXOP limit and inter-frame interval AIFS.
  • a set of EDCA parameters suitable for WiFi scenarios is defined.
  • the EDCA parameters can be carried in the LJ Service Request frame or the LJ Service Response frame.
  • the EDCA parameters include CWmin, CWmax, TXOP limit, and AIFS.
  • the opportunity to access the channel can be obtained through EDCA parameters.
  • CWmin represents the minimum contention window, the smaller the CWmin, the higher the priority.
  • CWmax represents the maximum contention window, the smaller the CWmax, the higher the priority.
  • TXOP limit represents the longest time that the channel is occupied.
  • AIFS represents the channel idle time that must be waited to obtain TXOP.
  • AIFS(AC[LJ]) AIFSN(AC[LJ]) ⁇ aSlotTime ⁇ aSIFSTime;
  • AIFSN (AC[LJ]) represents AIFSN based on AC[LJ]
  • aSIFSTime represents a SIFS time.
  • EDCA parameters should follow the IEEE802.11 mechanism, and when not explicitly specified, they should be set to default values.
  • the default setting should try to make AC[LJ] have a higher priority.
  • TXOP limit of AC[LJ] can be set as small as possible to avoid priority abuse and affect fairness.
  • the EDCA parameters that can be included in the LJ service request frame or the LJ service response frame are provided, that is, the CW minimum value, the CW maximum value, the TXOP limit and the AIFS are provided. Through these parameters, it can be applied to the WiFi environment under the current 802.11 protocol, thereby ensuring the applicability and feasibility of the solution.
  • FIG. 12 is a schematic diagram of a structure of the data transmission device provided by the embodiment of the application.
  • the data transmission device 30 includes :
  • the setting module 301 is configured to set the LJ tolerance of the LJ access category to a first tolerance value when the data frame enters the low jitter LJ access category, where the LJ tolerance represents the LJ access category The upper limit of the transmission delay;
  • the setting module 301 is further configured to set the LJ tolerance to a second tolerance value when the LJ tolerance decreases to 0, and set the backoff count of the LJ access category from the first backoff value to the second A backoff value, wherein the second tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is when the LJ tolerance decreases The backoff value corresponding to 0;
  • the sending module 302 is configured to send the data frame to the target station through the LJ access category when the backoff count is decremented to 0.
  • the setting module 301 when a data frame enters the low-jitter LJ access category, the setting module 301 sets the LJ tolerance of the LJ access category to the first tolerance value, where the LJ tolerance represents the LJ tolerance
  • the setting module 301 sets the LJ tolerance to the second tolerance value, and sets the backoff count of the LJ access category from the first
  • a backoff value is set as a second backoff value, wherein the second tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is The backoff value corresponding to when the LJ tolerance decreases to 0, and when the backoff count decreases to 0, the sending module 302 sends the data frame to the target station through the LJ access category.
  • a data transmission device When a data frame enters the low-jitter LJ access category, the station sets the LJ tolerance of the LJ access category to the first tolerance value, where LJ tolerance represents LJ The upper limit of the transmission delay of the access category.
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff value , Where the second tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0, and when the backoff count decreases to At 0, send data frames to the target station through the LJ access category.
  • the station can dynamically adjust the tolerance value corresponding to the LJ tolerance and dynamically reduce the backoff value corresponding to the backoff count, thereby increasing the flexibility of backoff and speeding up the data transmission efficiency of the LJ service.
  • the setting module 301 is further configured to reset the LJ tolerance to the first when the data frame enters the LJ access category and at least one data frame already exists in the LJ access category Tolerance value, setting the backoff count from the first backoff value to the second backoff value.
  • a data transmission method based on AC[LJ] is also provided.
  • the station can increase the LJ tolerance Set to the first tolerance value, and set the backoff count of the LJ access category from the first backoff value to the second backoff value.
  • FIG. 13 is a schematic diagram of another composition structure of the data transmission device provided by an embodiment of the application. As shown in FIG. 13, the data transmission device 30 further includes a destruction module 303:
  • the destruction module 303 is configured to destroy the LJ access category when X data frames do not appear to enter the LJ access category within the lifetime, where the lifetime represents the upper limit of the lifetime of the LJ access category, and X is greater than Or an integer equal to 1;
  • the LJ access category When the number of data frames in the LJ access category is greater than or equal to the maximum number of frames, the LJ access category is destroyed, where the maximum number of frames represents the number of data frames simultaneously stored in the LJ access category Limit.
  • a way to destroy AC[LJ] is provided.
  • One way is to destroy the LJ access category when no data frame enters the LJ access category within the lifetime, where the lifetime represents The upper limit of survival for the LJ access category.
  • Another way is to destroy the LJ access category when the number of data frames in the LJ access category is greater than or equal to the maximum frame number, where the maximum frame number represents the upper limit of the number of data frames stored at the same time in the LJ access category .
  • the frequency of AC[LJ] can be effectively restricted to accelerate the competition for TXOP, so that AC[LJ] will not occupy air time too frequently, and at the same time, the priority effect of AC[LJ] can be ensured, which is suitable for frequent network collisions or other
  • AC[LJ]’s rapid competition TXOP capability will only further aggravate collisions until the network is paralyzed, so destroying AC[LJ] in time can also help reduce collisions.
  • it will also cause a large increase in collisions, especially the competition between AC[LJ] of multiple sites under the same WiFi network. Therefore, destroying AC[LJ] in this case can let the upper layer and the target site know the Wi-Fi network situation in time, avoiding the intensification of collisions, making the priority effect of AC[LJ] on LJ services more obvious and more flexible.
  • FIG. 14 is a schematic diagram of another composition structure of the data transmission device provided by the embodiment of the application.
  • the data transmission device 30 provided by the embodiment of the application further includes The receiving module 304 and the creating module 305, where:
  • the sending module 302 is further configured to send an LJ service request frame to the target station before the setting module sets the LJ tolerance of the LJ access category to the first tolerance count;
  • the receiving module 304 is configured to receive the LJ service response frame sent by the target station;
  • the creating module 305 is configured to create the LJ access category according to the LJ service response frame received by the receiving module 304.
  • a method of creating AC[LJ] is provided.
  • the source site may also send an LJ service request frame to the target site. Then the source station receives the LJ service response frame sent by the target station, and finally the source station creates an LJ access category based on the LJ service response frame.
  • the target site can establish AC[LJ] according to the request frame sent by the source site, thus providing a feasible way for the creation of AC[LJ].
  • FIG. 15 is a schematic diagram of another composition structure of the data transmission device provided by the embodiment of the application.
  • the data transmission device 30 provided by the embodiment of the application further includes The obtaining module 306 and the creating module 305, where:
  • the obtaining module 306 is configured to obtain the creation request before the setting module 301 sets the LJ tolerance of the LJ access category to the first tolerance count;
  • the creation module 305 is configured to create the LJ access category according to the creation request acquired by the acquisition module 306;
  • the sending module 302 is also configured to send an LJ service response frame to the target station.
  • a method of creating AC[LJ] is provided.
  • the source site Before setting the LJ tolerance of the LJ access category as the first tolerance count, the source site obtains the creation request from the upper layer, and then according to the creation request Create the LJ access category, and finally send the LJ service response frame to the target site.
  • the source site can establish AC[LJ] according to the request of the upper layer, thereby providing another feasible way for the creation of AC[LJ], thereby enhancing the flexibility and feasibility of the scheme.
  • FIG. 16 is a schematic diagram of another composition structure of a data transmission device provided by an embodiment of the application. As shown in FIG. 16, the data transmission device 30 further includes a generating module 307 and Create module 305, where:
  • the generating module 307 is configured to generate a creation request according to the source site information before the setting module 301 sets the LJ tolerance of the LJ access category to the first tolerance count;
  • the creation module 305 is configured to create the LJ access category according to the creation request generated by the generation module 307;
  • the sending module 302 is also configured to send an LJ service response frame to the target station.
  • a method of creating AC[LJ] is provided. Before the LJ tolerance of the LJ access category is set as the first tolerance count, the source site generates a creation request according to its own information, and then generates a creation request according to the creation Request to create the LJ access category, and finally send the LJ service response frame to the target site.
  • the source site can create AC[LJ] based on its own information, which provides another feasible way for the creation of AC[LJ], thereby enhancing the flexibility and feasibility of the program.
  • the LJ service request frame or the LJ service response frame includes a set of LJ control parameters, wherein the The LJ control parameter set includes the identification of the LJ access category, the address of the source site, the address of the target site, the address of the site that supports the LJ access category, operation type, reason code, and service priority fields At least one of
  • the LJ service request frame or the LJ service response frame includes an LJ parameter set, where the LJ parameter set includes at least one of the LJ tolerance, survival time, maximum frame length, and maximum frame number, and
  • the survival time represents the upper limit of survival of the LJ access category
  • the maximum frame length represents the upper limit of the data frame length supported by the LJ access category
  • the maximum number of frames indicates that the LJ access category supports simultaneous The upper limit of the number of stored data frames.
  • the LJ service request frame or the LJ service response frame may include the LJ control parameter set and the LJ parameter set, where the LJ control parameter set includes the identification of the LJ access category, the address of the source site, and the target site At least one of the address, site address supporting LJ access category, operation type, reason code, and service priority field.
  • the LJ parameter set includes at least one of LJ tolerance, survival time, maximum frame length, and maximum frame number item.
  • the LJ service request frame or the LJ service response frame further includes enhanced distributed channel access EDCA parameters
  • the EDCA parameters include the minimum value of the contention window CW, the maximum value of the CW, the transmission opportunity TXOP limit, and the inter-frame interval AIFS.
  • the EDCA parameters that can be included in the LJ service request frame or the LJ service response frame are provided, that is, the CW minimum value, the CW maximum value, the TXOP limit and the AIFS are provided. Through these parameters, it can be applied to the WiFi environment under the current 802.11 protocol, thereby ensuring the applicability and feasibility of the solution.
  • FIG. 17 is a schematic diagram of another composition structure of the data transmission device provided by an embodiment of the application.
  • the data transmission device 30 further includes a receiving module 304 and Determine module 308, where:
  • the receiving module 304 is configured to receive the data frame before the setting module 301 sets the LJ tolerance of the LJ access category to the first tolerance count when the data frame enters the low jitter LJ access category ;
  • the determining module 308 is configured to determine that the data frame enters the LJ access category if the data frame received by the receiving module 304 meets the data transmission condition;
  • the determining module 308 is further configured to determine that the data frame enters a regular access category if the data frame received by the receiving module does not meet the data transmission condition, wherein the regular access category includes voice At least one of VO access category, video VI access category, best effort BE access category, and background BK access category.
  • a data frame filtering method based on AC[LJ] operation is provided.
  • the station Before the LJ tolerance of the LJ access category is set to the first tolerance count, the station can also receive data frames. If the frame meets the data transmission conditions, it is determined that the data frame enters the LJ access category. If the data frame does not meet the data transmission conditions, it is determined that the data frame enters the regular access category.
  • the regular access category includes voice VO access category and video VI At least one of the access category, the best-effort BE access category, and the background BK access category.
  • Figure 18 is a schematic diagram of a composition structure of the access category creation device in the embodiment of the application.
  • the access category creation The device 40 includes:
  • the acquiring module 401 is configured to acquire a low-jitter LJ associated parameter set, where the LJ associated parameter set is used to indicate data transmission conditions supported by the LJ access category, and the data transmission conditions are conditions met for transmitting LJ service data ;
  • the creation module 402 is configured to create the LJ access category according to the associated LJ parameter set acquired by the acquisition module 401.
  • the obtaining module 401 obtains a low-jitter LJ associated parameter set, where the LJ associated parameter set is used to indicate the data transmission condition supported by the LJ access category, and the data transmission condition is the transmission of LJ service data. If the conditions are met, the creation module 402 creates the LJ access category according to the associated LJ parameter set acquired by the acquisition module 401.
  • a method for creating AC[LJ] is provided.
  • a site can obtain an LJ associated parameter set, where the LJ associated parameter set is used to indicate the data transmission conditions supported by the LJ access category, and the data transmission conditions are The conditions satisfied by the transmission of the LJ service data are transmitted, and then the station creates the LJ access category according to the set of LJ correlation parameters.
  • the LJ association parameter set includes an LJ control parameter set and an LJ parameter set
  • the LJ control parameter set includes the identification of the LJ access category, the address of the source site, the address of the target site, the address of the site that supports the LJ access category, operation type, reason code, and service At least one item in the priority field;
  • the LJ parameter set includes at least one of the LJ tolerance, survival time, maximum frame length, and maximum frame number
  • the survival time represents the upper limit of survival of the LJ access category
  • the maximum frame length Represents the upper limit of the length of data frames supported by the LJ access category
  • the maximum number of frames represents the upper limit of the number of data frames supported by the LJ access category at the same time.
  • the LJ service request frame or the LJ service response frame may include the LJ control parameter set and the LJ parameter set, where the LJ control parameter set includes the identification of the LJ access category, the address of the source site, and the target site At least one of address, site address supporting LJ access category, operation type, reason code, and service priority field.
  • the LJ parameter set includes at least one of LJ tolerance, survival time, maximum frame length, and maximum frame number .
  • the LJ association parameter set also includes enhanced distributed channel access EDCA parameters, where the EDCA parameters include the minimum value of the contention window CW , CW maximum value, transmission opportunity TXOP limit and inter-frame interval AIFS.
  • the EDCA parameters that can be included in the LJ service request frame or the LJ service response frame are defined, that is, the CW minimum value, the CW maximum value, the TXOP limit and the AIFS are defined. Through these parameters, it can be applied to the WiFi environment under the current 802.11 protocol, thereby ensuring the applicability and feasibility of the solution.
  • the embodiment of the present application also provides another site, as shown in FIG. 19.
  • the site can be any terminal device including mobile phones, tablet computers, personal digital assistants (PDAs), point of sales (POS), on-board computers, etc. Take the site as a mobile phone as an example:
  • FIG. 19 shows a block diagram of a part of the structure of a mobile phone related to a site provided in an embodiment of the present application.
  • the mobile phone includes: a radio frequency (RF) circuit 510, a memory 520, an input unit 530, a display unit 540, a sensor 550, an audio circuit 560, a WiFi module 570, a processor 580, and a power supply 590.
  • RF radio frequency
  • FIG. 19 shows a block diagram of a part of the structure of a mobile phone related to a site provided in an embodiment of the present application. 19, the mobile phone includes: a radio frequency (RF) circuit 510, a memory 520, an input unit 530, a display unit 540, a sensor 550, an audio circuit 560, a WiFi module 570, a processor 580, and a power supply 590.
  • RF radio frequency
  • the RF circuit 510 can be configured to receive and send signals during information transmission or communication. In particular, after receiving downlink information from the base station, it is processed by the processor 580; in addition, the designed uplink data is sent to the base station.
  • the RF circuit 510 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 510 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • E-mail Short Messaging Service
  • the memory 520 may be configured to store software programs and modules.
  • the processor 580 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 520.
  • the memory 520 may include at least a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 530 may be configured to receive input digital or character information, and generate key signal input related to user settings and function control of the mobile phone.
  • the input unit 530 may include a touch panel 531 and other input devices 532.
  • the touch panel 531 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 531 or near the touch panel 531. Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 531 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 580, and can receive and execute the commands sent by the processor 580.
  • the touch panel 531 may be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 530 may also include other input devices 532.
  • the other input device 532 may include, but is not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, joystick, and the like.
  • the display unit 540 may be configured to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 540 may include a display panel 541.
  • the display panel 541 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the touch panel 531 can cover the display panel 541. When the touch panel 531 detects a touch operation on or near it, it transmits it to the processor 580 to determine the type of the touch event. The type of touch event provides corresponding visual output on the display panel 541.
  • the touch panel 531 and the display panel 541 are used as two independent components to realize the input and input functions of the mobile phone, but in some embodiments, the touch panel 531 and the display panel 541 can be integrated. Realize the input and output functions of mobile phones.
  • the mobile phone may also include at least one sensor 550, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor can include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 541 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 541 and/or when the mobile phone is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify mobile phone posture applications (such as horizontal and vertical screen switching, related Games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; as for the mobile phone can also be equipped with gyroscope, barometer, hygrometer, thermometer, infrared sensor and other sensors.
  • mobile phone posture applications such as horizontal and vertical screen switching, related Games, magnetometer posture calibration
  • vibration recognition related functions such as pedometer, percussion
  • the mobile phone can also be equipped with gyroscope, barometer, hygrometer, thermometer, infrared sensor and other sensors.
  • the audio circuit 560, the speaker 561, and the microphone 562 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 560 can transmit the electric signal converted from the received audio data to the speaker 561, and the speaker 561 converts it into a sound signal for output; on the other hand, the microphone 562 converts the collected sound signal into an electric signal, and the audio circuit 560 After being received, it is converted into audio data, and then processed by the audio data output processor 580, and then sent to another mobile phone via the RF circuit 510, or the audio data is output to the memory 520 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse webpages, and access streaming media through the WiFi module 570. It provides users with wireless broadband Internet access.
  • FIG. 19 shows the WiFi module 570, it can be understood that it is not a necessary component of the mobile phone, and can be omitted as needed without changing the essence of the invention.
  • the processor 580 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone, and executes by running or executing software programs and/or modules stored in the memory 520, and calling data stored in the memory 520. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
  • the processor 580 may include one or more processing units; in one example, the processor 580 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the demodulation processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 580.
  • the mobile phone also includes a power source 590 (such as a battery) for supplying power to various components.
  • the power source can be logically connected to the processor 580 through the power management system, so that functions such as charging, discharging, and power management can be managed through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, and so on.
  • the processor 580 included in the site also has the following functions:
  • the LJ tolerance of the LJ access category is set to the first tolerance value, where the LJ tolerance represents the upper limit of the transmission delay of the LJ access category value;
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff value, where the second The tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0;
  • the data frame is sent to the target station through the LJ access category.
  • the processor 580 included in the site is further configured to perform the following steps:
  • the processor 580 included in the site is further configured to perform the following steps:
  • the LJ access category When the number of data frames in the LJ access category is greater than or equal to the maximum number of frames, the LJ access category is destroyed, where the maximum number of frames represents the number of data frames simultaneously stored in the LJ access category Limit.
  • the processor 580 included in the site is further configured to perform the following steps:
  • the processor 580 included in the site is further configured to perform the following steps:
  • the processor 580 included in the site is further configured to perform the following steps:
  • the processor 580 included in the site is further configured to perform the following steps:
  • the data frame does not meet the data transmission conditions, it is determined that the data frame enters the regular access category, where the regular access category includes voice VO access category, video VI access category, and best effort BE At least one of the access category and the background BK access category.
  • the regular access category includes voice VO access category, video VI access category, and best effort BE At least one of the access category and the background BK access category.
  • the processor 580 included in the site also has the following functions:
  • LJ associated parameter set is used to indicate data transmission conditions supported by the LJ access category, and the data transmission conditions are conditions met for transmitting LJ service data
  • FIG. 20 is a schematic diagram of a site structure provided by an embodiment of the present application.
  • the site 600 may have relatively large differences due to different configurations or performance, and may include one or more Central Processing Units (CPU) 622 (for example, , One or more processors) and a memory 632, and one or more storage media 630 (for example, one or more storage devices) that store application programs 642 or data 644.
  • the memory 632 and the storage medium 630 may be short-term storage or persistent storage.
  • the program stored in the storage medium 630 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations on the site.
  • the central processing unit 622 may be configured to communicate with the storage medium 630, and execute a series of instruction operations in the storage medium 630 on the site 600.
  • the station 600 may also include one or more power supplies 626, one or more wired or wireless network interfaces 650, one or more input and output interfaces 658, and/or one or more operating systems 641, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, etc.
  • operating systems 641 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, etc.
  • the steps performed by the site in the foregoing embodiment may be based on the site structure shown in FIG. 20.
  • the CPU 622 included in the site also has the following functions:
  • the LJ tolerance of the LJ access category is set to the first tolerance value, where the LJ tolerance represents the upper limit of the transmission delay of the LJ access category value;
  • the LJ tolerance When the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second backoff value, where the second The tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is the backoff value corresponding to when the LJ tolerance decreases to 0;
  • the data frame is sent to the target station through the LJ access category.
  • the CPU 622 included in the site is further configured to perform the following steps:
  • the CPU 622 included in the site is further configured to perform the following steps:
  • the LJ access category When the number of data frames in the LJ access category is greater than or equal to the maximum number of frames, the LJ access category is destroyed, where the maximum number of frames represents the number of data frames simultaneously stored in the LJ access category Limit.
  • the CPU 622 included in the site is further configured to perform the following steps:
  • the CPU 622 included in the site is further configured to perform the following steps:
  • the CPU 622 included in the site is further configured to perform the following steps:
  • the CPU 622 included in the site is further configured to perform the following steps:
  • the data frame does not meet the data transmission conditions, it is determined that the data frame enters the regular access category, where the regular access category includes voice VO access category, video VI access category, and best effort BE At least one of the access category and the background BK access category.
  • the regular access category includes voice VO access category, video VI access category, and best effort BE At least one of the access category and the background BK access category.
  • the CPU 622 included in the site also has the following functions:
  • LJ associated parameter set is used to indicate data transmission conditions supported by the LJ access category, and the data transmission conditions are conditions met for transmitting LJ service data
  • the disclosed system, device, and method may be implemented in other ways.
  • the functional units in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer-readable storage medium stores executable instructions, and when the executable instructions run on a computer, the computer executes the methods provided in the above embodiments.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the LJ tolerance of the LJ access category is set to the first tolerance value, where the LJ tolerance represents the LJ access The upper limit of the transmission delay of the category; when the LJ tolerance decreases to 0, the LJ tolerance is set to the second tolerance value, and the backoff count of the LJ access category is set from the first backoff value to the second A backoff value, wherein the second tolerance value is less than or equal to the first tolerance value, the second backoff value is less than the first backoff value, and the first backoff value is when the LJ tolerance decreases The backoff value corresponding to 0; when the backoff count decreases to 0, the data frame is sent to the target station through the LJ access category, so that the tolerance value corresponding to the LJ tolerance can be dynamically adjusted, and Reduce the backoff value corresponding to the backoff count, thereby increasing the flexibility of backoff and providing more reliable service quality for LJ business.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输的方法,包括:当数据帧进入低抖动LJ接入类别时,站点将LJ接入类别的LJ容忍度设置为第一容忍值,其中,LJ容忍度表示LJ接入类别的传输时延上限值,当LJ容忍度递减至0时,将LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,第二容忍值小于或等于第一容忍值,第二退避值小于第一退避值,且第一退避值是当LJ容忍度递减至0时所对应的退避值,当退避计数递减至0时,向目标站点发送LJ接入类别的数据帧。本申请还公开一种数据传输装置和站点。

Description

数据传输的方法、接入类别创建的方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201910381354.8、申请日为2019年05月08日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输的方法、接入类别创建的方法、装置及计算机可读存储介质。
背景技术
随着互联网的发展,很多业务和应用(例如实时手机游戏)对时延(Latency)提出更高的要求。这些业务和应用不仅要求网络在较低的传输时延内完成传输数据,而且要求在业务时长内,从发送端先后到达接收端的传输延时抖动也较小。如果在这一类低抖动(Low Jitter,LJ)业务的时长内,部分数据满足端时延要求,而部分数据的时延很大,那么就会出现传输时延的抖动,导致LJ业务的用户体验下降。例如,手游用户感觉操作反馈滞后,显示出现卡顿,甚至失去连接等。
发明内容
有鉴于此,本申请实施例提供了一种数据传输的方法、接入类别创建的方法、装置及计算机可读存储介质,能够动态降低退避计数所对应的退避值,从而增加退避的灵活性,加快LJ业务的数据传输效率。
本申请实施例提供一种数据传输的方法,包括:
当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度 设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
本申请实施例提供一种接入类别创建的方法,包括:
获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
根据所述关联LJ参数集合创建所述LJ接入类别。
本申请实施例提供一种数据传输的方法,应用于站点,所述站点包括有一个或多个处理器以及存储器,以及一个或一个以上的程序,其中,所述一个或一个以上的程序存储于存储器中,所述程序可以包括一个或一个以上的每一个对应于一组指令的单元,所述一个或多个处理器被配置为执行指令;所述方法包括:
当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值;
其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所 对应的退避值;
当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
本申请实施例提供一种接入类别创建的方法,应用于站点,所述站点包括有一个或多个处理器以及存储器,以及一个或一个以上的程序,其中,所述一个或一个以上的程序存储于存储器中,所述程序可以包括一个或一个以上的每一个对应于一组指令的单元,所述一个或多个处理器被配置为执行指令;所述方法包括:
获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
根据所述关联LJ参数集合创建所述LJ接入类别。
本申请实施例提供一种数据传输装置,包括:
设置模块,配置为当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
所述设置模块,还配置为当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
发送模块,配置为当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
本申请实施例提供一种接入类别创建装置,包括:
获取模块,配置为获取低抖动LJ关联参数集合,其中,所述LJ关联 参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
创建模块,配置为根据所述获取模块获取的所述关联LJ参数集合创建所述LJ接入类别。
本申请实施例提供一种站点,包括:存储器、收发器、处理器以及总线系统;
其中,所述存储器配置为存储程序;
所述处理器配置为执行所述存储器中的程序,包括如下步骤:
当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧;
所述总线系统配置为连接所述存储器以及所述处理器,以使所述存储器以及所述处理器进行通信。
本申请实施例提供一种站点,包括:存储器、收发器、处理器以及总线系统;
其中,所述存储器配置为存储程序;
所述处理器配置为执行所述存储器中的程序,包括如下步骤:
当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时 延上限值;
当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧;
所述总线系统配置为连接所述存储器以及所述处理器,以使所述存储器以及所述处理器进行通信。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,当所述可执行指令被执行时,实现上述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,提供了一种数据传输的方法,当数据帧进入低抖动LJ接入类别时,站点将LJ接入类别的传输时延上限值设置为第一容忍值,当LJ容忍度递减至0时,降低LJ接入类别的传输时延上限值,并将LJ接入类别的退避计数由第一退避值降低至第二退避值,第一退避值是当LJ容忍度递减至0时所对应的退避值,当退避计数递减至0时,通过LJ接入类别向目标站点发送数据帧;如此站点可以动态调整LJ接入类别的传输时延上限值,并且动态降低退避计数所对应的退避值,从而增加退避的灵活性,加快LJ业务的数据传输效率。
附图说明
图1为本申请实施例中无线局域网络的一个实施例示意图;
图2为本申请实施例中数据传输系统的一个架构示意图;
图3为本申请实施例提供的数据传输的方法一种实现流程示意图;
图4为本申请实施例中基于低抖动接入类别的一个数据传输示意图;
图5为本申请实施例中基于低抖动接入类别的另一个数据传输示意图;
图6为本申请实施例中创建低抖动接入类别的一个实施例示意图;
图7为本申请实施例中创建低抖动接入类别的一个实施例示意图;
图8为本申请实施例中创建低抖动接入类别的一个实施例示意图;
图9为本申请实施例中数据帧进入低抖动接入类别的一个实施例示意图;
图10为本申请实施例中常规接入类别的一个任意帧间间隔示意图;
图11为本申请实施例中接入类别创建的方法另一个实施例示意图;
图12为本申请实施例提供的数据传输装置的一种组成结构示意图;
图13为本申请实施例提供的数据传输装置的另一种组成结构示意图;
图14为本申请实施例提供的数据传输装置的再一种组成结构示意图;
图15为本申请实施例提供的数据传输装置的又一种组成结构示意图;
图16为本申请实施例提供的数据传输装置的另一种组成结构示意图;
图17为本申请实施例提供的数据传输装置的另一种组成结构示意图;
图18为本申请实施例中接入类别创建装置的一种组成结构示意图;
图19为本申请实施例中站点的一个结构示意图;
图20为本申请实施例中站点的另一个结构示意图。
具体实施方式
本申请实施例提供了一种数据传输的方法、接入类别创建的方法及装置,可以动态调整LJ容忍度所对应的容忍值,并且动态降低退避计数所对应的退避值,从而增加退避的灵活性,加快LJ业务的数据传输效率。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里 图示或描述的那些以外的顺序实施。此外,术语“包括”和“对应于”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11中,增强分布式信道接入(Enhanced Distributed Channel Access,EDCA)是针对无线传输的控制信道接入的协议,该协议允许互相兼容的物理层(Physical Layer,PHY)共享无线媒介。分了区分业务的优先级,EDCA定义了4种接入类别(Access Category,AC),每一个AC独立按照退避机制去竞争信道。当多个AC同时退避计时到0时,低优先级的AC会当做一次碰撞,然后加倍竞争窗口(Contention Window,CW),重新开始退避;而高优先级的AC则认为成功竞争到传输机会(Transmission Opportunity,TXOP),于是开始在竞争到的信道上发送数据,从而影响数据传输效率。
由于EDCA会从一定范围内选择一个整数值作为初始的退避时间,那么每次选定整数值之后就固定退避时间,对于LJ业务而言,需要按照要求的时延抖动完成长时间的数据传输。因此,固定的退避时间与复杂多变的无线传输环境的对比会导致对LJ业务的支持缺乏灵活性,降低LJ业务的数据传输效率。
应理解,本申请实施例适用于IEEE802.11协议标准下的无线局域网,在IEEE802.11协议中,EDCA是针对无线传输的控制信道接入协议,且EDCA基于载波侦听多路访问/碰撞避免(Carrier Sensing Multiple Access/Collision Avoidance,CSMA/CA),允许互相兼容的物理层(Physical Layer,PHY)使用无线媒介(Wireless Media)。其中,CSMA/CA有多种实 现方式,比如,无线保真(Wireless Fidelity,WiFi)。
基于CSMA/CA协议,下面将介绍几个相关概念:
一、载波侦听(Carrier Sensing)
站点中的PHY通过在每一个时隙(aSlotTime)执行物理的侦听,从而可以得知共享媒介是否处于空闲状态。
二、退避(Backoff)
支持EDCA的站点会从一定范围内选择一个随机整数值作为初始的退避时间。当PHY在一个时隙内侦听到共享媒介为空闲时,EDCA会开始进行退避,即退避计数减去1。当退避计数为0时,EDCA就判断为竞争信道接入成功,即获得传输机会(Transmission Opportunity,TXOP),并开始发送数据帧。如果在退避过程中,在一个时隙内侦听到共享媒介为忙碌状态时,退避计数会暂时挂起,当再次侦听到空闲时,会继续之前的退避计数。当两个站点(Station,STA)同时退避计时为0时,会发生碰撞。
三、传输机会限制(TXOP limit)
当一个STA获取到TXOP时,就可以立刻发送数据帧,但是占用共享媒介的时间有限制,即具有传输机会限制TXOP limit。
四、竞争窗口(Contention Window,CW)
退避时间的随机选择由竞争窗口参数定义,即从[0,CW]的均匀分布里随机选择一个整数值。CW的取值在CW最小值(CWmin)与CW最大值(CWmax)之间。每一次成功传输,CW都会被重置为Cwmin,而每一次碰撞或者发送失败,CW则会加倍,直到达到CWmax为止。
五、接入类别(Access Category,AC)
分了区分服务的优先级,EDCA定义了多种AC。每个AC包含一个用来存储媒介接入控制层服务数据单元(MAC Service Data Unit,MSDU)的队列和一个用来区分优先级的增强分布式信道接入功能(Enhanced  Distributed Channel Access Function,EDCAF)。当STA收到上层协议下发的MSDU时,EDCA首先会根据上层的用户优先级(User Priority,UP)字段来映射到对应的AC。每一个AC独立按照前述退避机制去竞争信道。同时,每一个AC对应一个EDCAF,负责定义不同的参数值,来实现AC之间优先级的不同。EDCAF定义的参数有CWmin,CWmax,TXOP limit和任意帧间间隔(Arbitration Inter-Frame Space,AIFS)。相比如低优先级AC,高优先级的AC会有更大的概率竞争到TXOP。
当多个AC同时退避计时到0时,低优先级的AC会进行一次碰撞,然后加倍CW,重新开始退避;而高优先级的AC则认为成功竞争到TXOP,开始发送数据帧。
六、AIFS
AIFS是用来定义共享媒介侦听结果从忙变为空闲之后,且开启随机退避过程之前的等待时间。不同AC的AIFS也不同,高优先级的AC会更早开始随机退避,因此也会有更大概率竞争到TXOP。
为了便于理解,本申请实施例提出了一种数据传输的方法,该方法应用于图1所示的无线局域网络,请参阅图1,图1为本申请实施例中无线局域网络的一个实施例示意图,如图1所示,本申请实施例所提供的数据传输方法可以应用于无线局域网(Wireless Local Area Networks,WLAN)中的站点,尤其适用于STA密集的场景,可以满足WiFi标准对高密集用户和高吞吐率的需求。在局域网(Local Area Networks,LAN)中,网络节点包括接入点(Access Point,AP)100和STA 200(在图1中示例性地示出两个STA,分别为STA 200-1和STA 200-2),AP 100为其覆盖范围内的STA提供数据服务,AP 100和其服务的STA 200构成基本服务集(Basic Service Set,BSS)。通常情况下,一个BSS包括若干STA。
基于上述介绍,本申请实施例定义了一种新型AC,用于支持LJ业务, 可以称为AC[LJ]。请参阅图2,图2为本申请实施例中数据传输系统的一个架构示意图,如图2所示,数据传输系统包括AP和STA,AP和STA可通过无线链路进行通信。目前WLAN采用IEEE802.11系列标准中,BSS的网络节点为STA,STA包括接入点(AP)类的STA(图2所示的300)和非接入点(Non-AP)类的STA(图2所示的400),每个BBS可以包含一个AP和多个关联于该AP的Non-AP STA。
AP类站点,也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,一般部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其作用是将各个STA连接到一起,然后将无线网络接入有线网。作为示例,AP可以是带有WiFi芯片的终端设备或者网络设备,例如提供AP功能或者服务的路由设备。AP可以为支持802.11ax制式的设备,在一些实施例中,该AP还可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备。
STA可以是无线通信芯片、无线传感器或无线通信终端。例如:支持WiFi通信功能的移动电话、支持WiFi通信功能的平板电脑、支持WiFi通信功能的机顶盒、支持WiFi通信功能的智能电视、支持WiFi通信功能的智能可穿戴设备、支持WiFi通信功能的车载通信设备和支持WiFi通信功能的计算机。STA可以支持802.11ax制式,该STA还可以支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
可以理解的是,IEEE802.11中定义提供无线连接接入的一端叫做AP,另一端被服务的称为Non-AP,即STA,为了便于说明,本申请实施例中的AP和Non-AP STA统称为STA。
结合上述介绍,为了能够兼容IEEE802.11协议,本申请实施例定义的AC[LJ]以满足对低时延抖动的要求。下面将对本申请实施例基于AC[LJ]的 数据传输方法进行介绍,该数据传输方法应用于STA,并且本申请实施例中的STA能够基于定义的支持LJ业务的AC进行数据传输。请参阅图3,图3为本申请实施例提供的数据传输的方法一种实现流程示意图,如图3所示,所述方法包括:
S101、当数据帧进入LJ接入类别时,将LJ接入类别的LJ容忍度设置为第一容忍值,其中,LJ容忍度表示LJ接入类别的传输时延上限值。
本申请实施例中,介绍一种支持LJ业务的AC(AC[LJ])的数据传输方法。其中,LJ就是传输时延抖动小于时延抖动阈值。时延抖动阈值根据站点设备的运行的业务个性化设置。支持LJ业务的AC是指能够满足传输时延抖动小于时延抖动阈值的AC。
在本申请实施例中,数据帧可以是站点接收或发送的社交动态信息、还可以是站点接收或发送的游戏数据帧。当有数据帧进入站点的AC[LJ]的时候,将LJ容忍度的计数值设置为第一容忍值,其中,LJ容忍度的计数方式与退避计数的计算方式类似,都以时隙(aSlotTime)为单位,即每过一个时隙,LJ容忍度的计数减去1。LJ容忍度表示LJ接入类别的传输时延上限值。
当数据帧进入LJ接入类别时,站点将LJ接入类别的LJ容忍度设置为第一容忍值,其中,第一容忍值为一个正整数,比如T1。可以理解的是,数据帧可以是MSDU,也可以是其他类型的数据单元,此处不做限定。
S102、当LJ容忍度递减至0时,将LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,第二容忍值小于或等于第一容忍值,第二退避值小于第一退避值,且第一退避值是当LJ容忍度递减至0时所对应的退避值;
本申请实施例中,当LJ容忍度递减至0时,站点将LJ容忍度设置为第二容忍值,其中,第二容忍值也为一个正整数,比如T2,且第二容忍值 小于或等于第一容忍值。此外,站点需要将退避计数从第一退避值更新为第二退避值,其中,第一退避值是指LJ容忍度递减至0时所对应的退避值。第一退避值为一个正整数,比如t1。第二退避值也为一个正整数,比如t2,且第二退避值小于第一退避值。
S103、当退避计数递减至0时,通过LJ接入类别向目标站点发送数据帧。
本申请实施例中,当退避计数递减至0时,表示可以发送数据帧,即站点通过LJ接入类别向目标站点发送数据帧。
为了便于理解,请参阅图4,图4为本申请实施例基于低抖动接入类别的一个数据传输示意图,如图4所示,当数据帧A进入AC[LJ]中时,将AC[LJ]的LJ容忍度设置为第一容忍值,比如设置为30,每过一个时隙,LJ容忍度减少1。除了AC[LJ]之外的其他AC也可以发送数据,假设其他AC是常规类型的AC,该常规AC发送数据帧B,那么AC[LJ]上无法发送数据帧A,因此,AC[LJ]会继续根据LJ容忍度进行倒计时。当LJ容忍值为0时,如果还未能够发送数据帧A,那么就需要重新设置LJ容忍值,即设定为第二容忍值,比如第一容忍值为30,第二容忍值为15。
需要说明的是,本申请实施例中的AC发送数据是指站点通过AC发送数据,或者站点在AC上发送数据。
可以理解的是,在一些实施例中,对第二容忍值的设置可以是每次将前一次的容忍值减小一半,即T2=T1/2;或者在比特位右移一位,即T2=T1-1;或者不进行改变,即T2=T1;或者进行随机减小,使得T2<T1即可。后续每次重置LJ容忍度时,可以按照T1/4,T1/8……等方式继续进行设置。也可以每次重置LJ容忍度时,减去一个值。还可以每次重置LJ容忍度时设为一个值。图4以T2=T1/2为例进行介绍,然而这不应理解为对本申请实施例的限定。
与此同时,当LJ容忍度递减至0时,AC[LJ]的退避计数为第一退避值,即如图4所示的8,而常规AC的退避计数已经为0,即可发送数据帧C,于是,AC[LJ]应该将当前队列的退避计数由第一退避值设置为第二退避值,比如第一退避值为8,第二退避值为4。
可以理解的是,每次加速时,可以是将第一退避值的一半设置为第二退避值,即t2=t1/2;或者将第一退避值减去某个值得到第二退避值,即t2=t1-X,X为正整数;或者直接将第二退避值设置为一个值,即t2=X,当X等于1时,表示可以更快获取到TXOP。图4以t2=t1/2为例进行介绍,然而这不应理解为对本申请实施例的限定。
本申请实施例中,提供了一种数据传输的方法,当数据帧进入低抖动LJ接入类别时,站点将LJ接入类别的LJ容忍度设置为第一容忍值,其中,LJ容忍度表示LJ接入类别的传输时延上限值,当LJ容忍度递减至0时,将LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,第二容忍值小于或等于第一容忍值,第二退避值小于第一退避值,且第一退避值是当LJ容忍度递减至0时所对应的退避值,当退避计数递减至0时,站点通过LJ接入类别向目标站点发送数据帧。通过上述方式,站点可以动态调整LJ容忍度所对应的容忍值,并且动态降低退避计数所对应的退避值,从而增加退避的灵活性,加快LJ业务的数据传输效率。
在图3的基础上,本申请实施例提供的数据传输的方法还可以包括:
当数据帧进入LJ接入类别,且LJ接入类别已存在至少一个数据帧时,将LJ容忍度重置为第一容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值。
本申请实施例中,介绍了另一种重置LJ容忍度和退避计数的方法,在同时达到如下两个条件的情况下,可以对LJ容忍度和退避计数进行设置, 即条件之一为AC[LJ]的队列中已经存在至少一个数据帧,条件之二为存在新的数据帧需要进入AC[LJ]的队列中,此时,AC[LJ]的EDCAF应当理解对AC[LJ]的队列执行加速操作,也就是将退避计数的第一退避值设置为第二退避值,与上述实施例一致,第二退避值小于第一退避值。与此同时,AC[LJ]需要将LJ容忍度重新设置为第一容忍值。
为了便于介绍,请参阅图5,图5为本申请实施例中基于低抖动接入类别的另一个数据传输示意图,如图5所示,假设第一容忍值即为30,在AC[LJ]队列中,当LJ容忍度为30时,AC[LJ]的队列进入数据帧A,但是此时退避计数并未递减至0,因此,站点通过AC[LJ]还不能够发送数据帧A。当LJ容忍度为20时,AC[LJ]的队列进入数据帧B,这个时候,AC[LJ]的队列已经存在数据帧A,为了保证AC[LJ]能够正常存储后续入队列的数据帧,可以将LJ容忍度重置为30。在退避计数达到0时,站点可以通过AC[LJ]依次向目标站点发送数据帧A和数据帧B。
本申请实施例中,还提供了一种基于AC[LJ]的数据传输方法,当数据帧进入LJ接入类别,且LJ接入类别已存在至少一个数据帧时,站点可以将LJ容忍度重置为第一容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值。通过上述方式,在AC[LJ]队列中存在至少一个数据帧时,当有新的数据帧进入AC[LJ]的队列,可以重置AC[LJ]的LJ容忍度,由此保证AC[LJ]应用的合理性,而减少退避计数的计数值,能够实现加速。
本申请实施例提供的数据传输的方法还可以包括:
当在生存时间内未出现X个数据帧进入LJ接入类别时,销毁LJ接入类别,其中,生存时间表示LJ接入类别的生存上限值,X为大于或等于1的整数;
当LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁LJ接入类别,其中,最大帧数表示LJ接入类别同时存储的数据帧个数上限值。
本申请实施例中,将介绍两种可以销毁AC[LJ]的方法。
第一种销毁AC[LJ]的方式为,若AC[LJ]的生存时间减至为0时仍然没有X个数据帧进入AC[LJ]的队列,则销毁该AC[LJ],其中,生存时间表示LJ接入类别的生存上限值,X通常可以设置为1,在实际应用中,也可以将X设置为大于1的其他整数。当数据帧进入LJ接入类别,使得LJ接入类别中的数据帧数量等于X时,生存时间计数停止计数。当一个数据帧离开LJ接入类别,使得LJ接入类别中的数据帧数量为(X-1)时,重置生存时间的计数,并开始计数,当生存时间计数为0时,销毁该LJ接入类别。
作为示例,当AC[LJ]的队列为空闲状态时,将AC[LJ]的生存时间的计数重新设置为L,其中,当最后一个数据帧离开AC[LJ]的队列时,表示此刻AC[LJ]的队列开始处于空闲状态。生存时间的计数方式类似于退避计数的计算方式以及LJ容忍度的计数方式,也是以时隙(aSlotTime)为单位,即每过一个时隙,生存时间的计数减去1。当一个数据帧进入AC[LJ]的队列时,生存时间将停止计数。
假设生存时间的初始值L为100,当生存时间减至73时,AC[LJ]队列中进入第一个数据帧,此时生存时间将停止计数,即停留在73,直至最后一个数据帧离开AC[LJ]队列后,可以将该生存时间重新设定为初始值100。
第二种销毁AC[LJ]的方式为,若AC[LJ]的队列中已存在的数据帧数量大于或者等于AC[LJ]所能支持的最大帧数,则销毁该AC[LJ],其中,最大帧数表示LJ接入类别同时存储的数据帧个数上限值。
作为示例,当一个数据帧进入AC[LJ]的队列时,AC[LJ]的LJ帧数量计数加上1,当一个数据帧离开AC[LJ]的队列时,AC[LJ]的LJ帧数量计数减去1。假设AC[LJ]的最大帧数为N,当AC[LJ]队列中的数据帧数量等于N时,EDCAF应当立即销毁该AC[LJ],并且清除该AC[LJ]队列中的所有内容,此外,还需要将AC[LJ]队列中的数据帧按照重传失败的方式进行处理, 并且通知媒介接入控制层(Medium Access Control Layer,MAC)以及上层。比如,可以间隔一段时间后再次发送该数据帧,或者,可以通过其他AC向目标站点发送该数据帧,或者确定不再发送该数据帧。站点通过LJ业务请求帧或者LJ业务响应帧向目标站点发送数据传输失败的通知,比如,在LJ业务请求帧或者LJ业务响应帧中携带相应的操作类型字段(如AC[LJ]销毁的字段)以及AC[LJ]标识(LJ-ID)等内容。
可以理解的是,请求创建AC[LJ]的站点或者上层,也可以发起销毁请求,其中,上层可以是指MAC层与PHY层以上的层,比如应用(Application)层、远程过程调用(Remote Procedure Call,RPC)层、互联网协议地址(Internet Protocol Address,IP)层、传输控制协议(Transmission Control Protocol,TCP)层以及用户数据报协议(User Datagram Protocol,UDP)层等,此处不做限定。
当AC[LJ]被销毁之后,需要通过LJ业务请求帧或者LJ业务响应帧通知用于服务的站点或者上层。如果销毁失败,同样需要通过LJ业务请求帧或者LJ业务响应帧通知用于服务的站点或者上层,并在该通知中携带销毁失败的原因,比如,站点无法找到请求销毁的LJ-ID。
设置AC[LJ]的最大帧数可以约束AC[LJ]加速竞争的TXOP频次,同时,能够保障AC[LJ]的优先级。这是因为当AC[LJ]比其他AC具有更优先的TXOP竞争能力,且每次用于服务的数据帧的长度较短时,很可能会积压大量的数据帧。一旦出现数据帧积压的情况,则认为当前网络出现频繁碰撞或者其他情况,比如信号强度过低,恶意发包攻击,业务需求远远超出了AC[LJ]加速优先的服务能力等情况。出现上述情况,都需要及时销毁AC[LJ]并且通知原因。
再次,本申请实施例中,提供了销毁AC[LJ]的方式,一种方式为,当在生存时间内未出现数据帧进入LJ接入类别时,销毁LJ接入类别,其中, 生存时间表示LJ接入类别的生存上限值。另一种方式为,当LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁LJ接入类别,其中,最大帧数表示LJ接入类别同时存储的数据帧个数上限值。通过上述方式,能够有效地约束AC[LJ]加速竞争TXOP的频次,使得AC[LJ]不会过于频繁地占用空口时间,同时也能保证AC[LJ]的优先效果,对于网络频繁碰撞或者其它恶劣情况,AC[LJ]的快速竞争TXOP能力只会进一步加剧碰撞,直至网络瘫痪,因此及时销毁AC[LJ]还可以帮助减少碰撞。而对于服务需求的短时间大量帧去竞争TXOP,也会造成碰撞大量增加,尤其是同一个WiFi网络下的多个站点的AC[LJ]之间的竞争。所以,这种情况下销毁AC[LJ]可以及时让上层和目标站点了解Wi-Fi网络情况,避免碰撞加剧,使得AC[LJ]对LJ服务的优先效果更加明显,且更加灵活。
在图3的基础上,本申请实施例提供的数据传输的方法中,将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,还可以包括:
向目标站点发送LJ业务请求帧;并接收目标站点发送的LJ业务响应帧,最后根据LJ业务响应帧创建LJ接入类别。
本申请实施例中,介绍了一种建立AC[LJ]的方式,以提供LJ业务的站点为目标站点,以请求LJ业务的站点为源站点,为了便于说明,请参阅图6,图6为本申请实施例中创建低抖动接入类别的一个实施例示意图,如图6所示,站点1可以发起AC[LJ]的创建,首先站点1向站点2发送LJ业务请求(LJ Service Request)帧,请求站点2创建AC[LJ],该AC[LJ]用于优先服务由站点2发给站点1的LJ业务数据。站点2收到LJ Service Request帧之后,应当向站点1反馈一个LJ业务响应(LJ Service Response)帧,由此,使得站点1根据LJ Service Response帧确定当前是否已经创建AC[LJ],即可以在LJ Service Response帧中携带与操作类型字段,比如“创建成功”的字段,或者“创建失败”的字段。
需要说明的是,站点1为源站点,站点2为目标站点,其中,图6中的站点1可以是AP,而站点2可以是关联该AP的某个Non-AP STA,或者,图6中的站点2可以是AP,而站点1可以是关联该AP的某个Non-AP STA,此处不做限定。
本申请实施例中,提供了一种创建AC[LJ]的方法,在将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,源站点还可以向目标站点发送LJ业务请求帧,然后源站点接收目标站点发送的LJ业务响应帧,最后源站点根据LJ业务响应帧创建LJ接入类别。通过上述方式,目标站点可以根据源站点发出的请求帧建立AC[LJ],从而为AC[LJ]的创建提供了一种可行的方式。
在图3的基础上,本申请实施例提供的数据传输的方法中,将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,还可以包括:
获取创建请求,并根据创建请求创建LJ接入类别;进而向目标站点发送的LJ业务响应帧。
本申请实施例中,介绍了另一种建立AC[LJ]的方式,以提供LJ业务的站点为目标站点,以请求LJ业务的站点为源站点,为了便于说明,请参阅图7,图7为本申请实施例中创建低抖动接入类别的一个实施例示意图,如图7所示,站点1可以发起AC[LJ]的创建,首先站点1获取上层下发的AC[LJ]创建请求,该AC[LJ]用于区分站点2提供的LJ业务数据。站点1创建AC[LJ]之后,站点1需要向站点2发送LJ Service Response帧,以此通知站点2已建立AC[LJ]。
其中,上层可以根据用户当前使用的业务决定是否下发创建请求,比如检测到当前业务为LJ类型的业务,则上层可以下发AC[LJ]的创建请求。
需要说明的是,图7中的站点1可以是AP,而站点2可以是关联该AP的某个Non-AP STA,或者,图7中的站点2可以是AP,而站点1可以 是关联该AP的某个Non-AP STA,此处不做限定。
本申请实施例中,提供了一种创建AC[LJ]的方法,在将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,源站点获取来自上层的创建请求,然后根据创建请求创建LJ接入类别,最后向目标站点发送的LJ业务响应帧。通过上述方式,源站点可以根据上层请求建立AC[LJ],从而为AC[LJ]的创建提供了另一种可行的方式,由此提升方案的灵活性和可行性。
在图3的基础上,本申请实施例提供的数据传输的方法中,将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,还可以包括:
根据源站点的信息生成创建请求,并根据创建请求创建LJ接入类别,进而向目标站点发送的LJ业务响应帧。
本申请实施例中,介绍了另一种建立AC[LJ]的方式,以提供LJ业务的站点为目标站点,以请求LJ业务的站点为源站点,为了便于说明,请参阅图8,图8为本申请实施例中创建低抖动接入类别的一个实施例示意图,如图8所示,站点1可以基于本地信息判断是否需要主动创建AC[LJ],该AC[LJ]用于区分站点2提供的LJ业务数据。站点1创建AC[LJ]之后,站点1需要向站点2发送LJ Service Response帧,以此通知站点2已建立AC[LJ]。
其中,本地信息可以包括网络吞吐量,如果网络情况较差,则可以主动触发AC[LJ]的创建请求。本地信息还可以是指检测数据帧的发送频率,如果数据帧在一段时间内进行持续发送,则认为该业务可能是LJ业务,因此,可以主动触发AC[LJ]的创建请求。
需要说明的是,图8中的站点1可以是AP,而站点2可以是关联该AP的某个Non-AP STA,或者,图8中的站点2可以是AP,而站点1可以是关联该AP的某个Non-AP STA,此处不做限定。
本申请实施例中,提供了一种创建AC[LJ]的方法,在将LJ接入类别的 LJ容忍度设置为第一容忍度计数之前,源站点根据自身的息生成创建请求,然后根据创建请求创建LJ接入类别,最后向目标站点发送的LJ业务响应帧。通过上述方式,源站点可以根据自身信息创建AC[LJ],从而为AC[LJ]的创建提供了另一种可行的方式,由此提升方案的灵活性和可行性。
在图3的基础上,在本申请实施例提供的数据传输的方法中,LJ业务请求帧或LJ业务响应帧包括LJ控制参数集合,其中,LJ控制参数集合包括LJ接入类别的标识、源站点的地址、目标站点的地址、支持LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
LJ业务请求帧或LJ业务响应帧包括LJ参数集合,其中,LJ参数集合包括LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项,生存时间表示LJ接入类别的生存上限值,最大帧长表示LJ接入类别支持的数据帧长度上限值,最大帧数表示LJ接入类别支持同时存储的数据帧个数上限值。
本申请实施例中,定义了一组LJ控制参数集合以及LJ参数集合,其中,LJ控制参数集合以及LJ参数集合可以携带于LJ Service Request帧或者LJ Service Response帧中,LJ Service Request帧以及LJ Service Response帧可以使用同一种帧格式,也可以使用两种不同的帧格式。它们可以复用已定义MAC帧结构,例如MAC控制帧,也可以是新定义的帧格式,且可以是包含在MAC帧中的元素(Element)。
下面将分别介绍LJ控制参数集合以及LJ参数集合,其中,LJ Service Request帧以及LJ Service Response帧包含但不仅限于如下LJ控制参数集合:
(1)、LJ接入类别的标识,即AC[LJ]的标识(LJ-ID),不同的LJ-ID用于指示不同的AC[LJ];
(2)、源站点的地址,即表示发起请求的站点地址;
(3)、目标站点的地址,即表示用于提供业务的站点地址;
(4)、支持LJ接入类别的站点地址,即表示拥有AC[LJ]的站点地址;
(5)、操作类型,表示当前请求的内容,比如包括“请求创建”、“确认创建”、“创建失败”、“请求销毁”、“确认销毁”、“销毁失败”以及“能力广播”等,其中,操作类型通常是由LJ Service Request帧所携带的;
(6)、原因代码(reason code),用于描述请求的原因,或者请求失败的原因等,其中,原因代码通常是由LJ Service Response帧所携带的;
(7)、服务优先级字段,用于描述AC[LJ]的优先级级别,可以使用IEEE802.11定义的流量识别码(Traffic Identification,TID),可以使用新定义的字段。
LJ Service Request帧以及LJ Service Response帧包含但不仅限于如下LJ参数集合:
(1)、LJ容忍度T,用于描述AC[LJ]对传输时延的忍耐程度,可以遵循退避计数的设置,取整数,且以aSlotTime为单位;
(2)、生存时间L,用于描述AC[LJ]的最长生存时间,如果AC[LJ]的队列处于空的状态超过这个生存时间,则可以触发AC[LJ]拥有者销毁AC[LJ],停止对LJ业务进行优先级的区分;
(3)、最大帧长M,用于描述AC[LJ]所支持最大帧长度,即可以进入AC[LJ]队列的数据帧(比如MSDU)的最大长度;
(4)、最大帧数N,用于描述AC[LJ]队列中最多能够同时存储的数据帧数量,即MSDU的个数。
目标站点接收到源站点发送的AC[LJ]创建请求时,可以根据自身能力是否匹配LJ参数集合来决定是否创建AC[LJ]。如果目标站点无法按照请求的参数值创建AC[LJ],则可以在LJ Service Response帧中指示支持或者推荐的LJ参数集合,反馈给源站点,在源站点收到LJ Service Response帧之 后,可以重新设置LJ参数集合,从而再次发起AC[LJ]创建请求。
在一些实施例中,定义了LJ业务请求帧或LJ业务响应帧可以包括LJ控制参数集合以及LJ参数集合,其中,LJ控制参数集合包括LJ接入类别的标识、源站点的地址、目标站点的地址、支持LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项,LJ参数集合包括LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项。通过上述参数,定义了新机制,可以实现业务优先级的区分,并且利用这些参数能够获取比现有AC更高的优先级,也就是能够更快且更大概率地让LJ业务竞争到TXOP。
在图3的基础上,在本申请实施例提供的数据传输的方法中,LJ业务请求帧或LJ业务响应帧还包括增强分布式信道接入EDCA参数,其中,EDCA参数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
本申请实施例中,定义了一组适用于WiFi场景的EDCA参数,其中,EDCA参数可以携带于LJ Service Request帧或者LJ Service Response帧中,EDCA参数包括CW最小值(CWmin)、CW最大值(CWmax)、TXOP限制(TXOP limit)以及帧间间隔(AIFS)。
作为示例,通过EDCA参数可以获取访问信道的机会。其中,CWmin表示最小竞争窗口,越小的CWmin其优先级越高。CWmax表示最大竞争窗口,越小的CWmax其优先级越高。TXOP limit表示代表占用信道最长时间。AIFS表示要获得TXOP时,必须等待的信道空闲时间。
AIFS(AC[LJ])=AIFSN(AC[LJ])×aSlotTime×aSIFSTime;
其中,AIFSN(AC[LJ])表示基于AC[LJ]的仲裁帧间隙数(Arbitration Inter Frame Spacing Number,AIFSN),aSIFSTime表示一个短帧间间隔(Short interframe space,SIFS)时间。
可以理解的是,这些EDCA参数的设置应当遵循IEEE802.11机制,当没有明确指明时,应当设为默认值。默认值的设置应当尽量使AC[LJ]具有较高的优先级。为了保证公平性,AC[LJ]的TXOP limit默认值可以尽量设置得较小,避免优先级滥用,影响公平性。一种基于AC[LJ]的EDCA参数默认值示例为:CWmin=3,CWmax=7,AIFSN=2,TXOP limit=0.5毫秒(ms),在实际应用中,还可以根据情况对EDCA参数进行调整。
本申请实施例中,定义了LJ业务请求帧或LJ业务响应帧可以包括的EDCA参数,即具有CW最小值、CW最大值、TXOP限制以及AIFS。通过这些参数,能够适用于当前802.11协议下的WiFi环境,从而保证了方案的适用性和可行性。
在图3的基础上,在本申请实施例提供的数据传输的方法中,在当数据帧进入LJ接入类别时,将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,还可以包括:
接收数据帧,若数据帧满足数据传输条件,则确定数据帧进入LJ接入类别;若数据帧未满足数据传输条件,则确定数据帧进入常规接入类别,其中,常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。
本申请实施例中,介绍了一种基于AC[LJ]操作的数据帧过滤方法。站点需要先接收数据帧,然后对该数据帧所对应的信息进行判断,如果判断得到该数据帧满足数据传输条件,则确定该数据帧可以进入AC[LJ]的队列进行加速操作。反之,如果判断得到该数据帧不满足数据传输条件,则确定该数据帧可以进入常规AC的队列进行传输。
为了便于说明,请参阅图9,图9为本申请实施例中数据帧进入低抖动接入类别的一个实施例示意图,如图9所示,当AC[LJ]创建之后,站点按照配置的LJ参数集合对上层下发到MAC层数据帧进行过滤,EDCA根据 上层的用户优先级字段将数据帧映射到对应的AC。匹配符合数据传输条件的数据帧(比如MSDU)才会进入AC[LJ]队列中。而不符合数据传输条件的数据帧(比如MSDU)应当按照现有的IEEE802.11协议的EDCA规则进入常规AC。
可以理解的是,数据传输条件可以包括至少一个条件,例如,只有当发送至源站点的数据帧(比如MSDU)到达目标站点的MAC层,且该数据帧(比如MSDU)长度小于最大帧长M,才认为符合数据传输条件。或者单位时间(比如10个时隙)内只能进入一个数据帧,才可以进入AC[LJ]。设置最大帧长是为了约束每次通过AC[LJ]来加速的数据帧长度,不至于过多地占用空口时间。这一设置可以和TXOP Limit配合使用。以手机游戏业务为例,最大帧长可以设为几百字节。
其中,常规AC包括语音(Voice,VO)AC、视频(Video,VI)AC、尽力而为(Best Effort,BE)AC以及背景(BackGround,BK)AC,请参阅图10,图10为本申请实施例中常规接入类别的一个任意帧间间隔示意图,如图10所示,不同的AC通过设置不同的EDCA参数来体现优先级别。在802.11协议中,空闲等待时长(Distributed Inter-frame Spacing,DIFS)为固定值,不同AC可以配置不同的空闲等待时长,AIFSN数值越大,用户的空闲等待时间越长。对于VO_AC而言,AIFSN可以设置为2个时隙,随机退避等待时间为0至3个时隙。对于VI_AC而言,AIFSN可以设置为2个时隙,随机退避等待时间为0至7个时隙。对于BE_AC而言,AIFSN可以设置为3个时隙,随机退避等待时间为0至15个时隙。对于BK_AC而言,AIFSN可以设置为7个时隙,随机退避等待时间为0至15个时隙。
为保证不同业务的不同服务质量(Quality of Service,QoS)要求,EDCA定义了上层基于IEEE 802.1D的8类业务类别(Traffic Category,TC)和本层的4类的AC,8类TC分别映射至4类AC的队列中,即每个信道定义 了四个不同的访问类别AC。访问类别可以表示为AC[0]-AC[3],优先级从低到高,每个访问类别都有一个独立的发送队列。通过为每个访问类别分配不同的竞争参数达到区分优先级高低的目的。
基于图10以及对AC[LJ]的描述,下面将比对这几类AC的EDCA参数,请参阅表1,表1为本申请实施例中AC所对应的EDCA参数一个示意内容。
表1
Figure PCTCN2020084984-appb-000001
由此可见,AC[LJ]具有更小的TXOP limit、CWmin以及CWmax。
其次,本申请实施例中,提供了一种基于AC[LJ]操作的数据帧过滤方法,在将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,站点还可以接收数据帧,若数据帧满足数据传输条件,则确定数据帧进入LJ接入类别,若数据帧未满足数据传输条件,则确定数据帧进入常规接入类别,其中,常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。通过上述方式,仅对符合数据传输条件的数据帧进行加速操作,而不会对任意类型的数据帧均进行加速操作,因此,充分考虑到公平性原则,对AC[LJ]的使用进行约束,从而避免优先级机制的滥用。
结合上述介绍,下面将对本申请实施例建立AC[LJ]的方法进行介绍, 请参阅图11,本申请实施例中接入类别创建的方法包括:
S201、获取低抖动LJ关联参数集合,其中,LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,数据传输条件为传输LJ业务数据所满足的条件;
本申请实施例中,介绍了一种AC[LJ]的创建方法,站点获取LJ关联参数集合,其中,LJ关联参数集合包括LJ控制参数集合以及LJ参数集合。可以理解的是,该站点可以是源站点,也可以是目标站点。
S202、根据LJ关联参数集合创建LJ接入类别。
本申请实施例中,站点根据LJ关联参数集合创建LJ接入类别。作为示例,当该站点为源站点时,可以通过如下方式建立AC[LJ]。首先,源站点可以发起AC[LJ]的创建,源站点向目标站点发送LJ Service Request帧,请求目标站点创建AC[LJ],该AC[LJ]用于优先服务由目标站点发给源站点的LJ业务数据。目标站点收到LJ Service Request帧之后,应当向源站点反馈一个LJ Service Response帧,由此,使得源站点根据LJ Service Response帧确定当前是否已经创建AC[LJ],即可以在LJ Service Response帧中携带与操作类型字段,比如“创建成功”的字段,或者“创建失败”的字段。
在一些实施例中,源站点可以自主发起AC[LJ]的创建,首先源站点获取上层下发的AC[LJ]创建请求,该AC[LJ]用于区分目标站点提供的LJ业务数据。源站点创建AC[LJ]之后,源站点需要向目标站点发送LJ Service Response帧,以此通知目标站点已建立AC[LJ]。其中,上层可以根据用户当前使用的业务决定是否下发创建请求,比如检测到当前业务为LJ类型的业务,则上层可以下发AC[LJ]的创建请求。
在一些实施例中,源站点可以自主发起AC[LJ]的创建,源站点可以基于本地信息判断是否需要主动创建AC[LJ],该AC[LJ]用于区分目标站点提供的LJ业务数据。源站点创建AC[LJ]之后,源站点需要向目标站点发送 LJ Service Response帧,以此通知目标站点已建立AC[LJ]。其中,本地信息可以包括网络吞吐量,如果网络情况较差,则可以主动触发AC[LJ]的创建请求。本地信息还可以是指检测数据帧的发送频率,如果数据帧在一段时间内进行持续发送,则认为该业务可能是LJ业务,因此,可以主动触发AC[LJ]的创建请求。
本申请实施例中,提供了一种创建AC[LJ]的方法,站点可以获取低抖动LJ关联参数集合,其中,LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,数据传输条件为传输LJ业务数据所满足的条件,然后站点根据LJ关联参数集合创建LJ接入类别。通过上述方式,为AC[LJ]的创建提供了一种可行的方式,从而提升方案的可行性和可操作性。
在图11的基础上,在本申请实施例提供的接入类别创建的方法中,LJ关联参数集合包括LJ控制参数集合以及LJ参数集合;
其中,LJ控制参数集合包括LJ接入类别的标识、源站点的地址、目标站点的地址、支持LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
LJ参数集合包括LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项,生存时间表示LJ接入类别的生存上限值,最大帧长表示LJ接入类别支持的数据帧长度上限值,最大帧数表示LJ接入类别支持同时存储的数据帧个数上限值。
本申请实施例中,定义了一组LJ控制参数集合以及LJ参数集合,其中,LJ控制参数集合以及LJ参数集合可以携带于LJ Service Request帧或者LJ Service Response帧中,LJ Service Request帧以及LJ Service Response帧可以使用同一种帧格式,也可以使用两种不同的帧格式。它们可以复用已定义MAC帧结构,例如MAC控制帧,也可以是新定义的帧格式,且可以是包含在MAC帧中的Element。
LJ Service Request帧以及LJ Service Response帧包含但不仅限于如下LJ控制参数集合:LJ接入类别的标识,源站点的地址,目标站点的地址,支持LJ接入类别的站点地址,操作类型,原因代码,服务优先级字段。可以理解的是,这些LJ控制参数集合定义可以参阅前述实施例,此处不做限定。
LJ Service Request帧以及LJ Service Response帧包含但不仅限于如下LJ参数集合:LJ容忍度,生存时间,最大帧长,最大帧数N。可以理解的是,这些LJ参数集合定义可以参阅前述实施例,此处不做限定。
本申请实施例中,定义了LJ业务请求帧或LJ业务响应帧可以包括LJ控制参数集合以及LJ参数集合,其中,LJ控制参数集合包括LJ接入类别的标识、源站点的地址、目标站点的地址、支持LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项,LJ参数集合包括LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项。通过上述参数,定义了新机制,可以实现业务优先级的区分,并且利用这些参数能够获取比现有AC更高的优先级,也就是能够更快且更大概率地让LJ业务竞争到TXOP。
在图11的基础上,在本申请实施例提供的接入类别创建的方法中,LJ关联参数集合还包括增强分布式信道接入EDCA参数,其中,EDCA参数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
本申请实施例中,定义了一组适用于WiFi场景的EDCA参数,其中,EDCA参数可以携带于LJ Service Request帧或者LJ Service Response帧中,EDCA参数包括CWmin、CWmax、TXOP limit以及AIFS。
作为示例,通过EDCA参数可以获取访问信道的机会。其中,CWmin表示最小竞争窗口,越小的CWmin其优先级越高。CWmax表示最大竞争 窗口,越小的CWmax其优先级越高。TXOP limit表示代表占用信道最长时间。AIFS表示要获得TXOP时,必须等待的信道空闲时间。
AIFS(AC[LJ])=AIFSN(AC[LJ])×aSlotTime×aSIFSTime;
其中,AIFSN(AC[LJ])表示基于AC[LJ]的AIFSN,aSIFSTime表示一个SIFS时间。
可以理解的是,这些EDCA参数的设置应当遵循IEEE802.11机制,当没有明确指明时,应当设为默认值。默认值的设置应当尽量使AC[LJ]具有较高的优先级。为了保证公平性,AC[LJ]的TXOP limit默认值可以尽量设置得较小,避免优先级滥用,影响公平性。一种基于AC[LJ]的EDCA参数默认值示例为:CWmin=3,CWmax=7,AIFSN=2,TXOP limit=0.5毫秒(ms),在实际应用中,还可以根据情况对EDCA参数进行调整。
本申请实施例中,提供了LJ业务请求帧或LJ业务响应帧可以包括的EDCA参数,即具有CW最小值、CW最大值、TXOP限制以及AIFS。通过这些参数,能够适用于当前802.11协议下的WiFi环境,从而保证了方案的适用性和可行性。
下面对本申请实施例中的数据传输装置进行描述,请参阅图12,图12为本申请实施例提供的数据传输装置的一种组成结构示意图,如图12所示,所述数据传输装置30包括:
设置模块301,配置为当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
所述设置模块301,还配置为当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减 至0时所对应的退避值;
发送模块302,配置为当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
本申请实施例中,当数据帧进入低抖动LJ接入类别时,设置模块301将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值,当所述LJ容忍度递减至0时,所述设置模块301将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值,当所述退避计数递减至0时,发送模块302通过所述LJ接入类别向目标站点发送所述数据帧。
本申请实施例中,提供了一种数据传输装置,当数据帧进入低抖动LJ接入类别时,站点将LJ接入类别的LJ容忍度设置为第一容忍值,其中,LJ容忍度表示LJ接入类别的传输时延上限值,当LJ容忍度递减至0时,将LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,第二容忍值小于或等于第一容忍值,第二退避值小于第一退避值,且第一退避值是当LJ容忍度递减至0时所对应的退避值,当退避计数递减至0时,通过LJ接入类别向目标站点发送数据帧。通过上述方式,站点可以动态调整LJ容忍度所对应的容忍值,并且动态降低退避计数所对应的退避值,从而增加退避的灵活性,加快LJ业务的数据传输效率。
在图12的基础上,在本申请实施例提供的数据传输装置30中:
所述设置模块301,还配置为当所述数据帧进入所述LJ接入类别,且所述LJ接入类别已存在至少一个数据帧时,将所述LJ容忍度重置为所述第一容忍值,将所述退避计数由所述第一退避值设置为所述第二退避值。
本申请实施例中,还提供了一种基于AC[LJ]的数据传输方法,当数据帧进入LJ接入类别,且LJ接入类别已存在至少一个数据帧时,站点可以将LJ容忍度重置为第一容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值。通过上述方式,在AC[LJ]队列中存在至少一个数据帧时,当有新的数据帧进入AC[LJ]的队列,可以重置AC[LJ]的LJ容忍度,由此保证AC[LJ]应用的合理性,而减少退避计数的计数值,能够实现加速。
在图12的基础上,请参阅图13,图13为本申请实施例提供的数据传输装置的另一种组成结构示意图,如图13所示,所述数据传输装置30还包括销毁模块303:
所述销毁模块303,配置为当在生存时间内未出现X个数据帧进入LJ接入类别时,销毁LJ接入类别,其中,生存时间表示LJ接入类别的生存上限值,X为大于或等于1的整数;
当所述LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁所述LJ接入类别,其中,所述最大帧数表示所述LJ接入类别同时存储的数据帧个数上限值。
再次,本申请实施例中,提供了销毁AC[LJ]的方式,一种方式为,当在生存时间内未出现数据帧进入LJ接入类别时,销毁LJ接入类别,其中,生存时间表示LJ接入类别的生存上限值。另一种方式为,当LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁LJ接入类别,其中,最大帧数表示LJ接入类别同时存储的数据帧个数上限值。通过上述方式,能够有效地约束AC[LJ]加速竞争TXOP的频次,使得AC[LJ]不会过于频繁地占用空口时间,同时也能保证AC[LJ]的优先效果,对于网络频繁碰撞或者其它恶劣情况,AC[LJ]的快速竞争TXOP能力只会进一步加剧碰撞,直至网络瘫痪,因此及时销毁AC[LJ]还可以帮助减少碰撞。而对于服务需求的短时间大量帧去竞争TXOP,也会造成碰撞大量增加,尤其是同一个WiFi网络 下的多个站点的AC[LJ]之间的竞争。所以,这种情况下销毁AC[LJ]可以及时让上层和目标站点了解Wi-Fi网络情况,避免碰撞加剧,使得AC[LJ]对LJ服务的优先效果更加明显,且更加灵活。
在图12的基础上,请参阅图14,图14为本申请实施例提供的数据传输装置的再一种组成结构示意图,如图14所示,本申请实施例提供的数据传输装置30还包括接收模块304以及创建模块305,其中:
所述发送模块302,还配置为所述设置模块将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,向所述目标站点发送LJ业务请求帧;
所述接收模块304,配置为接收所述目标站点发送的LJ业务响应帧;
所述创建模块305,配置为根据所述接收模块304接收的所述LJ业务响应帧创建所述LJ接入类别。
本申请实施例中,提供了一种创建AC[LJ]的方法,在将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,源站点还可以向目标站点发送LJ业务请求帧,然后源站点接收目标站点发送的LJ业务响应帧,最后源站点根据LJ业务响应帧创建LJ接入类别。通过上述方式,目标站点可以根据源站点发出的请求帧建立AC[LJ],从而为AC[LJ]的创建提供了一种可行的方式。
在图12的基础上,请参阅图15,图15为本申请实施例提供的数据传输装置的又一种组成结构示意图,如图15所示,本申请实施例提供的数据传输装置30还包括获取模块306以及创建模块305,其中:
所述获取模块306,配置为所述设置模块301将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,获取创建请求;
所述创建模块305,配置为根据所述获取模块306获取的所述创建请求创建所述LJ接入类别;
所述发送模块302,还配置为向所述目标站点发送的LJ业务响应帧。
本申请实施例中,提供了一种创建AC[LJ]的方法,在将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,源站点获取来自上层的创建请求,然后根据创建请求创建LJ接入类别,最后向目标站点发送的LJ业务响应帧。通过上述方式,源站点可以根据上层请求建立AC[LJ],从而为AC[LJ]的创建提供了另一种可行的方式,由此提升方案的灵活性和可行性。
在图12的基础上,请参阅图16,图16为本申请实施例提供的数据传输装置的另一种组成结构示意图,如图16所示,所述数据传输装置30还包括生成模块307以及创建模块305,其中:
所述生成模块307,配置为所述设置模块301将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,根据源站点的信息生成创建请求;
所述创建模块305,配置为根据所述生成模块307生成的所述创建请求创建所述LJ接入类别;
所述发送模块302,还配置为向所述目标站点发送的LJ业务响应帧。
本申请实施例中,提供了一种创建AC[LJ]的方法,在将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,源站点根据自身的息生成创建请求,然后根据创建请求创建LJ接入类别,最后向目标站点发送的LJ业务响应帧。通过上述方式,源站点可以根据自身信息创建AC[LJ],从而为AC[LJ]的创建提供了另一种可行的方式,由此提升方案的灵活性和可行性。
在图12至图16的基础上,本申请实施例提供的数据传输装置30的另一实施例中,所述LJ业务请求帧或所述LJ业务响应帧包括LJ控制参数集合,其中,所述LJ控制参数集合包括所述LJ接入类别的标识、所述源站点的地址、所述目标站点的地址、支持所述LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
所述LJ业务请求帧或所述LJ业务响应帧包括LJ参数集合,其中,所述LJ参数集合包括所述LJ容忍度、生存时间、最大帧长以及最大帧数中 的至少一项,所述生存时间表示所述LJ接入类别的生存上限值,所述最大帧长表示所述LJ接入类别支持的数据帧长度上限值,所述最大帧数表示所述LJ接入类别支持同时存储的数据帧个数上限值。
在本申请实施例中,定义了LJ业务请求帧或LJ业务响应帧可以包括LJ控制参数集合以及LJ参数集合,其中,LJ控制参数集合包括LJ接入类别的标识、源站点的地址、目标站点的地址、支持LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项,LJ参数集合包括LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项。通过上述参数,定义了新机制,可以实现业务优先级的区分,并且利用这些参数能够获取比现有AC更高的优先级,也就是能够更快且更大概率地让LJ业务竞争到TXOP。
在图12至图16的基础上,本申请实施例提供的数据传输装置30的另一实施例中,所述LJ业务请求帧或所述LJ业务响应帧还包括增强分布式信道接入EDCA参数,其中,所述EDCA参数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
在本申请实施例中,提供了LJ业务请求帧或LJ业务响应帧可以包括的EDCA参数,即具有CW最小值、CW最大值、TXOP限制以及AIFS。通过这些参数,能够适用于当前802.11协议下的WiFi环境,从而保证了方案的适用性和可行性。
在图12的基础上,请参阅图17,图17为本申请实施例提供的数据传输装置的另一种组成结构示意图,如图17所示,所述数据传输装置30还包括接收模块304以及确定模块308,其中:
所述接收模块304,配置为当数据帧进入低抖动LJ接入类别时,所述设置模块301将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,接收所述数据帧;
所述确定模块308,配置为若所述接收模块304接收的所述数据帧满足所述数据传输条件,则确定所述数据帧进入所述LJ接入类别;
所述确定模块308,还配置为若所述接收模块接收的所述数据帧未满足所述数据传输条件,则确定所述数据帧进入常规接入类别,其中,所述常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。
本申请实施例中,提供了一种基于AC[LJ]操作的数据帧过滤方法,在将LJ接入类别的LJ容忍度设置为第一容忍度计数之前,站点还可以接收数据帧,若数据帧满足数据传输条件,则确定数据帧进入LJ接入类别,若数据帧未满足数据传输条件,则确定数据帧进入常规接入类别,其中,常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。通过上述方式,仅对符合数据传输条件的数据帧进行加速操作,而不会对任意类型的数据帧均进行加速操作,因此,充分考虑到公平性原则,对AC[LJ]的使用进行约束,从而避免优先级机制的滥用。
下面对本申请实施例中的接入类别创建装置进行说明,请参阅图18,图18为本申请实施例中接入类别创建装置的一种组成结构示意图,如图18所示,接入类别创建装置40包括:
获取模块401,配置为获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
创建模块402,配置为根据所述获取模块401获取的所述关联LJ参数集合创建所述LJ接入类别。
本申请实施例中,获取模块401获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述 数据传输条件为传输LJ业务数据所满足的条件,创建模块402根据所述获取模块401获取的所述关联LJ参数集合创建所述LJ接入类别。
本申请实施例中,提供了一种创建AC[LJ]的方法,站点可以获取LJ关联参数集合,其中,LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,数据传输条件为传输LJ业务数据所满足的条件,然后站点根据LJ关联参数集合创建LJ接入类别。通过上述方式,为AC[LJ]的创建提供了一种可行的方式,从而提升方案的可行性和可操作性。
在图18的基础上,本申请实施例提供的接入类别创建装置40中,所述LJ关联参数集合包括LJ控制参数集合以及LJ参数集合;
其中,所述LJ控制参数集合包括所述LJ接入类别的标识、所述源站点的地址、所述目标站点的地址、支持所述LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
所述LJ参数集合包括所述LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项,所述生存时间表示所述LJ接入类别的生存上限值,所述最大帧长表示所述LJ接入类别支持的数据帧长度上限值,所述最大帧数表示所述LJ接入类别支持同时存储的数据帧个数上限值。
本申请实施例中,定义了LJ业务请求帧或LJ业务响应帧可以包括LJ控制参数集合以及LJ参数集合,其中,LJ控制参数集合包括LJ接入类别的标识、源站点的地址、目标站点的地址、支持LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项,LJ参数集合包括LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项。通过上述参数,定义了新机制,可以实现业务优先级的区分,并且利用这些参数能够获取比现有AC更高的优先级,也就是能够更快且更大概率地让LJ业务竞争到TXOP。
在图18的基础上,本申请实施例提供的接入类别创建装置40中,所 述LJ关联参数集合还包括增强分布式信道接入EDCA参数,其中,所述EDCA参数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
本申请实施例中,定义了LJ业务请求帧或LJ业务响应帧可以包括的EDCA参数,即具有CW最小值、CW最大值、TXOP限制以及AIFS。通过这些参数,能够适用于当前802.11协议下的WiFi环境,从而保证了方案的适用性和可行性。
本申请实施例还提供了另一种站点,如图19所示,为了便于说明,仅示出了与本申请实施例相关的部分,未揭示的技术细节请参照本申请实施例方法部分。该站点可以为包括手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、销售站点(Point of Sales,POS)、车载电脑等任意终端设备,以站点为手机为例:
图19示出的是与本申请实施例提供的站点相关的手机的部分结构的框图。参考图19,手机包括:射频(Radio Frequency,RF)电路510、存储器520、输入单元530、显示单元540、传感器550、音频电路560、WiFi模块570、处理器580、以及电源590等部件。本领域技术人员可以理解,图19中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图19对手机的各个构成部件进行介绍:
RF电路510可配置为收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器580处理;另外,将设计上行的数据发送给基站。通常,RF电路510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路510还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯 系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器520可配置为存储软件程序以及模块,处理器580通过运行存储在存储器520的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器520可至少包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元530可配置为接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。作为示例,输入单元530可包括触控面板531以及其他输入设备532。触控面板531,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板531上或在触控面板531附近的操作),并根据预先设定的程式驱动相应的连接装置。在一些实施例中,触控面板531可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器580,并能接收处理器580发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板531。除了触控面板531,输入单元530还可以包括其他输入设备532。在一个示例 中,其他输入设备532可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元540可配置为显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元540可包括显示面板541,例如,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板541。在一些实施例中,触控面板531可覆盖显示面板541,当触控面板531检测到在其上或附近的触摸操作后,传送给处理器580以确定触摸事件的类型,随后处理器580根据触摸事件的类型在显示面板541上提供相应的视觉输出。虽然在图19中,触控面板531与显示面板541是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板531与显示面板541集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器550,比如光传感器、运动传感器以及其他传感器。作为示例,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板541的亮度,接近传感器可在手机移动到耳边时,关闭显示面板541和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器。
音频电路560、扬声器561、传声器562可提供用户与手机之间的音频接口。音频电路560可将接收到的音频数据转换后的电信号,传输到扬声器561,由扬声器561转换为声音信号输出;另一方面,传声器562将收集的声音信号转换为电信号,由音频电路560接收后转换为音频数据,再将 音频数据输出处理器580处理后,经RF电路510以发送给比如另一手机,或者将音频数据输出至存储器520以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块570可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图19示出了WiFi模块570,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器580是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器520内的软件程序和/或模块,以及调用存储在存储器520内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。处理器580可包括一个或多个处理单元;在一个示例中,处理器580可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器580中。
手机还包括给各个部件供电的电源590(比如电池),电源可以通过电源管理系统与处理器580逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等。
在本申请实施例中,该站点所包括的处理器580还具有以下功能:
当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第 二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
在一些实施例中,该站点所包括的处理器580还配置为执行如下步骤:
当所述数据帧进入所述LJ接入类别,且所述LJ接入类别已存在至少一个数据帧时,将所述LJ容忍度重置为所述第一容忍值,将所述退避计数由所述第一退避值设置为所述第二退避值。
在一些实施例中,该站点所包括的处理器580还配置为执行如下步骤:
当在生存时间内未出现X个数据帧进入LJ接入类别时,销毁LJ接入类别,其中,生存时间表示LJ接入类别的生存上限值,X为大于或等于1的整数;
当所述LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁所述LJ接入类别,其中,所述最大帧数表示所述LJ接入类别同时存储的数据帧个数上限值。
在一些实施例中,该站点所包括的处理器580还配置为执行如下步骤:
向所述目标站点发送LJ业务请求帧;
接收所述目标站点发送的LJ业务响应帧;
根据所述LJ业务响应帧创建所述LJ接入类别。
在一些实施例中,该站点所包括的处理器580还配置为执行如下步骤:
获取创建请求;
根据所述创建请求创建所述LJ接入类别;
向所述目标站点发送的LJ业务响应帧。
在一些实施例中,该站点所包括的处理器580还配置为执行如下步骤:
根据源站点的信息生成创建请求;
根据所述创建请求创建所述LJ接入类别;
向所述目标站点发送的LJ业务响应帧。
在一些实施例中,该站点所包括的处理器580还配置为执行如下步骤:
接收所述数据帧;
若所述数据帧满足所述数据传输条件,则确定所述数据帧进入所述LJ接入类别;
若所述数据帧未满足所述数据传输条件,则确定所述数据帧进入常规接入类别,其中,所述常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。
在本申请实施例中,该站点所包括的处理器580还具有以下功能:
获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
根据所述关联LJ参数集合创建所述LJ接入类别。
图20是本申请实施例提供的一种站点结构示意图,该站点600可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(Central Processing Units,CPU)622(例如,一个或一个以上处理器)和存储器632,一个或一个以上存储应用程序642或数据644的存储介质630(例如一个或一个以上海量存储设备)。其中,存储器632和存储介质630可以是短暂存储或持久存储。存储在存储介质630的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对站点中的一系列指令操作。在本申请一些实施例中,中央处理器622可以设置为与存储介质630通信,在站点600上执行存储介质630中的一系列指令操作。
站点600还可以包括一个或一个以上电源626,一个或一个以上有线或无线网络接口650,一个或一个以上输入输出接口658,和/或,一个或一 个以上操作系统641,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由站点所执行的步骤可以基于该图20所示的站点结构。
在本申请实施例中,该站点所包括的CPU 622还具有以下功能:
当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
在一些实施例中,该站点所包括的CPU 622还配置为执行如下步骤:
当所述数据帧进入所述LJ接入类别,且所述LJ接入类别已存在至少一个数据帧时,将所述LJ容忍度重置为所述第一容忍值,将所述退避计数由所述第一退避值设置为所述第二退避值。
在一些实施例中,该站点所包括的CPU 622还配置为执行如下步骤:
当在生存时间内未出现数据帧进入所述LJ接入类别时,销毁所述LJ接入类别,其中,所述生存时间表示所述LJ接入类别的生存上限值;
当所述LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁所述LJ接入类别,其中,所述最大帧数表示所述LJ接入类别同时存储的数据帧个数上限值。
在一些实施例中,该站点所包括的CPU 622还配置为执行如下步骤:
向所述目标站点发送LJ业务请求帧;
接收所述目标站点发送的LJ业务响应帧;
根据所述LJ业务响应帧创建所述LJ接入类别。
在一些实施例中,该站点所包括的CPU 622还配置为执行如下步骤:
获取创建请求;
根据所述创建请求创建所述LJ接入类别;
向所述目标站点发送的LJ业务响应帧。
在一些实施例中,该站点所包括的CPU 622还配置为执行如下步骤:
根据源站点的信息生成创建请求;
根据所述创建请求创建所述LJ接入类别;
向所述目标站点发送的LJ业务响应帧。
在一些实施例中,该站点所包括的CPU 622还配置为执行如下步骤:
接收所述数据帧;
若所述数据帧满足所述数据传输条件,则确定所述数据帧进入所述LJ接入类别;
若所述数据帧未满足所述数据传输条件,则确定所述数据帧进入常规接入类别,其中,所述常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。
在本申请实施例中,该站点所包括的CPU 622还具有以下功能:
获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
根据所述关联LJ参数集合创建所述LJ接入类别。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的工作过程,可以参考前述方法实施例中的对应过程。
在本申请所提供的几个实施例中,所揭露的系统,装置和方法,可以通过其它的方式实现。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。所述计算机可读存储介质中存储有可执行指令,当所述可执行指令在计算机上运行时,使得计算机执行以上实施例提供的方法。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
工业实用性
在本申请实施例中,当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧,如此能够动态调整LJ容忍度所对应的容忍 值,并且动态降低退避计数所对应的退避值,从而增加退避的灵活性,为LJ业务提供更可靠的服务质量。

Claims (28)

  1. 一种数据传输的方法,包括:
    当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
    当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值;
    其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
    当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    当所述数据帧进入所述LJ接入类别,且在所述LJ接入类别中已存在至少一个数据帧时,将所述LJ容忍度重置为所述第一容忍值,将所述退避计数由所述第一退避值设置为所述第二退避值。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    当在生存时间内未出现X个数据帧进入所述LJ接入类别时,销毁所述LJ接入类别,其中,所述生存时间表示所述LJ接入类别的生存上限值,所述X为大于或等于1的整数;
    当所述LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁所述LJ接入类别,其中,所述最大帧数表示所述LJ接入类别同时存储的数据帧个数上限值。
  4. 根据权利要求1所述的方法,其中,所述将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    向所述目标站点发送LJ业务请求帧;
    接收所述目标站点发送的LJ业务响应帧;
    根据所述LJ业务响应帧创建所述LJ接入类别。
  5. 根据权利要求1所述的方法,其中,所述将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    获取创建请求;
    根据所述创建请求创建所述LJ接入类别;
    向所述目标站点发送的LJ业务响应帧。
  6. 根据权利要求1所述的方法,其中,所述将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    根据源站点的信息生成创建请求;
    根据所述创建请求创建所述LJ接入类别;
    向所述目标站点发送的LJ业务响应帧。
  7. 根据权利要求4至6中任一项所述的方法,其中,所述LJ业务请求帧或所述LJ业务响应帧包括LJ控制参数集合,其中,所述LJ控制参数集合包括所述LJ接入类别的标识、所述源站点的地址、所述目标站点的地址、支持所述LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
    所述LJ业务请求帧或所述LJ业务响应帧包括LJ参数集合,其中,所述LJ参数集合包括所述LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项,所述生存时间表示所述LJ接入类别的生存上限值,所述最大帧长表示所述LJ接入类别支持的数据帧长度上限值,所述最大帧数表示所述LJ接入类别支持同时存储的数据帧个数上限值。
  8. 根据权利要求7所述的方法,其中,所述LJ业务请求帧或所述LJ业务响应帧还包括增强分布式信道接入EDCA参数,其中,所述EDCA参 数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
  9. 根据权利要求1所述的方法,其中,所述当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    接收所述数据帧;
    当所述数据帧满足所述数据传输条件时,确定所述数据帧进入所述LJ接入类别;
    当所述数据帧未满足所述数据传输条件时,确定所述数据帧进入常规接入类别,其中,所述常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。
  10. 一种接入类别创建的方法,包括:
    获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
    根据所述关联LJ参数集合创建所述LJ接入类别。
  11. 根据权利要求10所述的方法,其中,所述LJ关联参数集合包括LJ控制参数集合以及LJ参数集合;
    其中,所述LJ控制参数集合包括所述LJ接入类别的标识、所述源站点的地址、所述目标站点的地址、支持所述LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
    所述LJ参数集合包括所述LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项,所述生存时间表示所述LJ接入类别的生存上限值,所述最大帧长表示所述LJ接入类别支持的数据帧长度上限值,所述最大帧数表示所述LJ接入类别支持同时存储的数据帧个数上限值。
  12. 根据权利要求11所述的方法,其中,所述LJ关联参数集合还包括增强分布式信道接入EDCA参数,其中,所述EDCA参数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
  13. 一种数据传输的方法,应用于站点,所述站点包括有一个或多个处理器以及存储器,以及一个或一个以上的程序,其中,所述一个或一个以上的程序存储于存储器中,所述程序可以包括一个或一个以上的每一个对应于一组指令的单元,所述一个或多个处理器被配置为执行指令;所述方法包括:
    当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
    当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值;
    其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
    当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    当所述数据帧进入所述LJ接入类别,且在所述LJ接入类别中已存在至少一个数据帧时,将所述LJ容忍度重置为所述第一容忍值,将所述退避计数由所述第一退避值设置为所述第二退避值。
  15. 根据权利要求13或14所述的方法,其中,所述方法还包括:
    当在生存时间内未出现X个数据帧进入所述LJ接入类别时,销毁所述LJ接入类别,其中,所述生存时间表示所述LJ接入类别的生存上限值,所 述X为大于或等于1的整数;
    当所述LJ接入类别中的数据帧数量大于或等于最大帧数时,销毁所述LJ接入类别,其中,所述最大帧数表示所述LJ接入类别同时存储的数据帧个数上限值。
  16. 根据权利要求13所述的方法,其中,所述将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    向所述目标站点发送LJ业务请求帧;
    接收所述目标站点发送的LJ业务响应帧;
    根据所述LJ业务响应帧创建所述LJ接入类别。
  17. 根据权利要求13所述的方法,其中,所述将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    获取创建请求;
    根据所述创建请求创建所述LJ接入类别;
    向所述目标站点发送的LJ业务响应帧。
  18. 根据权利要求13所述的方法,其中,所述将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    根据源站点的信息生成创建请求;
    根据所述创建请求创建所述LJ接入类别;
    向所述目标站点发送的LJ业务响应帧。
  19. 根据权利要求16至18中任一项所述的方法,其中,所述LJ业务请求帧或所述LJ业务响应帧包括LJ控制参数集合,其中,所述LJ控制参数集合包括所述LJ接入类别的标识、所述源站点的地址、所述目标站点的地址、支持所述LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
    所述LJ业务请求帧或所述LJ业务响应帧包括LJ参数集合,其中,所 述LJ参数集合包括所述LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项,所述生存时间表示所述LJ接入类别的生存上限值,所述最大帧长表示所述LJ接入类别支持的数据帧长度上限值,所述最大帧数表示所述LJ接入类别支持同时存储的数据帧个数上限值。
  20. 根据权利要求19所述的方法,其中,所述LJ业务请求帧或所述LJ业务响应帧还包括增强分布式信道接入EDCA参数,其中,所述EDCA参数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
  21. 根据权利要求13所述的方法,其中,所述当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍度计数之前,所述方法还包括:
    接收所述数据帧;
    当所述数据帧满足所述数据传输条件时,确定所述数据帧进入所述LJ接入类别;
    当所述数据帧未满足所述数据传输条件时,确定所述数据帧进入常规接入类别,其中,所述常规接入类别包括语音VO接入类别、视频VI接入类别、尽力而为BE接入类别以及背景BK接入类别中的至少一项。
  22. 一种接入类别创建的方法,应用于站点,所述站点包括有一个或多个处理器以及存储器,以及一个或一个以上的程序,其中,所述一个或一个以上的程序存储于存储器中,所述程序可以包括一个或一个以上的每一个对应于一组指令的单元,所述一个或多个处理器被配置为执行指令;所述方法包括:
    获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
    根据所述关联LJ参数集合创建所述LJ接入类别。
  23. 根据权利要求22所述的方法,其中,所述LJ关联参数集合包括LJ控制参数集合以及LJ参数集合;
    其中,所述LJ控制参数集合包括所述LJ接入类别的标识、所述源站点的地址、所述目标站点的地址、支持所述LJ接入类别的站点地址、操作类型、原因代码以及服务优先级字段中的至少一项;
    所述LJ参数集合包括所述LJ容忍度、生存时间、最大帧长以及最大帧数中的至少一项,所述生存时间表示所述LJ接入类别的生存上限值,所述最大帧长表示所述LJ接入类别支持的数据帧长度上限值,所述最大帧数表示所述LJ接入类别支持同时存储的数据帧个数上限值。
  24. 根据权利要求23所述的方法,其中,所述LJ关联参数集合还包括增强分布式信道接入EDCA参数,其中,所述EDCA参数包括竞争窗口CW最小值、CW最大值、传输机会TXOP限制以及帧间间隔AIFS。
  25. 一种数据传输装置,包括:
    设置模块,配置为当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
    所述设置模块,还配置为当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
    发送模块,配置为当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧。
  26. 一种接入类别创建装置,包括:
    获取模块,配置为获取低抖动LJ关联参数集合,其中,所述LJ关联参数集合用于指示LJ接入类别所支持的数据传输条件,所述数据传输条件为传输LJ业务数据所满足的条件;
    创建模块,配置为根据所述获取模块获取的所述关联LJ参数集合创建所述LJ接入类别。
  27. 一种站点,包括:存储器、收发器、处理器以及总线系统;
    其中,所述存储器配置为存储程序;
    所述处理器配置为执行所述存储器中的程序,包括如下步骤:
    当数据帧进入低抖动LJ接入类别时,将所述LJ接入类别的LJ容忍度设置为第一容忍值,其中,所述LJ容忍度表示所述LJ接入类别的传输时延上限值;
    当所述LJ容忍度递减至0时,将所述LJ容忍度设置为第二容忍值,将LJ接入类别的退避计数由第一退避值设置为第二退避值,其中,所述第二容忍值小于或等于所述第一容忍值,所述第二退避值小于所述第一退避值,且所述第一退避值是当所述LJ容忍度递减至0时所对应的退避值;
    当所述退避计数递减至0时,通过所述LJ接入类别向目标站点发送所述数据帧;
    所述总线系统配置为连接所述存储器以及所述处理器,以使所述存储器以及所述处理器进行通信。
  28. 一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,当所述可执行指令被执行时,实现权利要求1至9或权利要求10至12任一项所述的方法。
PCT/CN2020/084984 2019-05-08 2020-04-15 数据传输的方法、接入类别创建的方法、装置及存储介质 WO2020224402A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20802977.7A EP3968725A4 (en) 2019-05-08 2020-04-15 DATA TRANSMISSION METHOD, ACCESS CATEGORY CREATION METHOD, APPARATUS AND INFORMATION MEDIA
JP2021542118A JP7204932B2 (ja) 2019-05-08 2020-04-15 データ伝送方法、アクセスカテゴリ作成方法、装置及びコンピュータプログラム
US17/358,204 US20210321454A1 (en) 2019-05-08 2021-06-25 Data transmission method and apparatus, method and apparatus for creating access category, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910381354.8A CN110234172B (zh) 2019-05-08 2019-05-08 一种数据传输的方法、接入类别创建的方法及装置
CN201910381354.8 2019-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/358,204 Continuation US20210321454A1 (en) 2019-05-08 2021-06-25 Data transmission method and apparatus, method and apparatus for creating access category, and storage medium

Publications (1)

Publication Number Publication Date
WO2020224402A1 true WO2020224402A1 (zh) 2020-11-12

Family

ID=67860444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084984 WO2020224402A1 (zh) 2019-05-08 2020-04-15 数据传输的方法、接入类别创建的方法、装置及存储介质

Country Status (5)

Country Link
US (1) US20210321454A1 (zh)
EP (1) EP3968725A4 (zh)
JP (1) JP7204932B2 (zh)
CN (1) CN110234172B (zh)
WO (1) WO2020224402A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343729B (zh) * 2020-02-28 2022-04-22 展讯通信(上海)有限公司 无线数据传输方法及装置、存储介质、站点
JP7347653B2 (ja) * 2020-03-17 2023-09-20 日本電信電話株式会社 端末、通信方法及び通信プログラム
CN112698967A (zh) * 2020-12-29 2021-04-23 厦门德威智联科技有限公司 一种远程过程调用方法及工作站
CN116723586B (zh) * 2023-08-10 2023-11-07 中国电信股份有限公司 信道接入方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114955A (zh) * 2007-09-14 2008-01-30 武汉烽火网络有限责任公司 城域以太网中基于抖动检测的拥塞控制方法
US8276035B1 (en) * 2008-07-28 2012-09-25 Netmotion Wireless, Inc. High performance digital communications resiliency in a roamable virtual private network
CN103379102A (zh) * 2012-04-20 2013-10-30 中兴通讯股份有限公司 一种媒体访问控制层的竞争型时隙退避方法及装置
CN103797885A (zh) * 2011-06-24 2014-05-14 奥林奇公司 发送数据分组的方法、以及对应的站和计算机程序
CN106714208A (zh) * 2016-12-12 2017-05-24 南京理工大学 一种网络固定分组传输投递率半盲自适应优化方法
CN107659997A (zh) * 2017-09-12 2018-02-02 华中科技大学 一种ieee 802.11 dcf协议的接入机制选择方法和系统
CN108966361A (zh) * 2018-07-23 2018-12-07 西安电子科技大学 基于WiFi网状网络信标帧广播的动态退避方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338125A2 (en) 2000-11-03 2003-08-27 AT & T Corp. Tiered contention multiple access (tcma): a method for priority-based shared channel access
CN101741918B (zh) * 2008-11-25 2012-11-21 中国移动通信集团公司 一种mac接入管理方法及管理单元
US9521694B2 (en) * 2012-06-18 2016-12-13 Lg Electronics Inc. Method and apparatus for initial access distribution over wireless LAN
US9264986B2 (en) * 2012-06-25 2016-02-16 Qualcomm Incorporated System and method for reducing power consumption in a wireless communication system
US10727922B2 (en) * 2016-06-23 2020-07-28 Zte Corporation Integrated OFDMA and EDCA channel access mechanism
GB2558584B (en) * 2017-01-06 2019-04-10 Canon Kk QoS management for multi-user and single user EDCA transmission mode in wireless networks
CN107295566B (zh) * 2017-07-19 2020-01-03 北京航空航天大学 天临空地车网络中带冲突避免的分级多址接入方法和装置
US11291042B2 (en) * 2017-09-29 2022-03-29 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for configuring random access
GB2582027B (en) * 2019-03-08 2021-06-09 Canon Kk Backoff management for EDCA transmission in 802.11AX networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114955A (zh) * 2007-09-14 2008-01-30 武汉烽火网络有限责任公司 城域以太网中基于抖动检测的拥塞控制方法
US8276035B1 (en) * 2008-07-28 2012-09-25 Netmotion Wireless, Inc. High performance digital communications resiliency in a roamable virtual private network
CN103797885A (zh) * 2011-06-24 2014-05-14 奥林奇公司 发送数据分组的方法、以及对应的站和计算机程序
CN103379102A (zh) * 2012-04-20 2013-10-30 中兴通讯股份有限公司 一种媒体访问控制层的竞争型时隙退避方法及装置
CN106714208A (zh) * 2016-12-12 2017-05-24 南京理工大学 一种网络固定分组传输投递率半盲自适应优化方法
CN107659997A (zh) * 2017-09-12 2018-02-02 华中科技大学 一种ieee 802.11 dcf协议的接入机制选择方法和系统
CN108966361A (zh) * 2018-07-23 2018-12-07 西安电子科技大学 基于WiFi网状网络信标帧广播的动态退避方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3968725A4 *

Also Published As

Publication number Publication date
CN115087044A (zh) 2022-09-20
CN110234172A (zh) 2019-09-13
JP7204932B2 (ja) 2023-01-16
US20210321454A1 (en) 2021-10-14
EP3968725A4 (en) 2022-10-05
EP3968725A1 (en) 2022-03-16
JP2022531752A (ja) 2022-07-11
CN110234172B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2020224402A1 (zh) 数据传输的方法、接入类别创建的方法、装置及存储介质
US20210298015A1 (en) Resource exclusion method and terminal
CN109246806B (zh) 在WiFi网络中提供差异化关联服务的系统和方法
WO2019184787A1 (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
US20210250802A1 (en) Sidelink connection control method, terminal, and network side device
US10588133B2 (en) Data transmission method and station
US11800400B2 (en) Transmission collision processing method, terminal, and control node
WO2021092734A1 (zh) 随机接入方法及装置、终端及存储介质
CN112996050B (zh) 数据传输方法、装置、存储介质及无线节点
US11601822B2 (en) Random access method and communications device
WO2018196504A1 (zh) 物联网数据传输方法、物联网终端及计算机可读存储介质
WO2020237679A1 (zh) 随机接入方法及装置、通信设备及存储介质
WO2021237624A1 (zh) 非授权信道的检测方法、装置、通信设备及存储介质
CN108990156B (zh) 一种无线局域网通信方法、终端
WO2021030979A1 (zh) 数据处理方法及装置、通信设备及存储介质
JP7250124B2 (ja) データ処理方法及び機器
WO2021087914A1 (zh) 被调度载波的激活时刻确定方法及装置、设备及介质
US20230007689A1 (en) Frame transmission method and apparatus, communication end, and storage medium
WO2019242466A1 (zh) 一种随机接入方法、终端及网络设备
CN115087044B (zh) 一种数据传输的方法、接入类别创建的方法及装置
CN112654097A (zh) 资源共享方法、终端及网络设备
AU2020342206B2 (en) Message transmission method and terminal
CN112654098B (zh) 随机接入、信息发送方法、终端及网络设备
CN111757530B (zh) 一种随机接入方法及通信设备
WO2020252643A1 (zh) 一种信息处理方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020802977

Country of ref document: EP

Effective date: 20211208