WO2020224288A1 - 样品运输检测装置及系统 - Google Patents

样品运输检测装置及系统 Download PDF

Info

Publication number
WO2020224288A1
WO2020224288A1 PCT/CN2020/070467 CN2020070467W WO2020224288A1 WO 2020224288 A1 WO2020224288 A1 WO 2020224288A1 CN 2020070467 W CN2020070467 W CN 2020070467W WO 2020224288 A1 WO2020224288 A1 WO 2020224288A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
track
tested
rail
detection device
Prior art date
Application number
PCT/CN2020/070467
Other languages
English (en)
French (fr)
Inventor
梁征
孙尚民
宗春光
胡煜
周合军
傅冰
王强强
孟辉
何远
李营
Original Assignee
同方威视技术股份有限公司
同方威视科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 同方威视科技(北京)有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2020224288A1 publication Critical patent/WO2020224288A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/08Control devices operated by article or material being fed, conveyed or discharged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/82Rotary or reciprocating members for direct action on articles or materials, e.g. pushers, rakes, shovels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/901Devices for picking-up and depositing articles or materials provided with drive systems with rectilinear movements only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0235Containers
    • B65G2201/025Boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors

Definitions

  • This application relates to the technical field of detection equipment, and in particular to a sample transportation detection device and system.
  • the sample in order to perform refined analysis on the sample, after the sample is irradiated with high-energy X-rays, the sample needs to be further detected after it leaves the shielding body of the irradiation test.
  • the irradiated sample will enter the detector again, but the irradiating instrument and the detecting instrument in the prior art are far away from each other and have a large volume, which brings inconvenience to comprehensive detection.
  • the embodiments of the present application provide a sample transportation detection device and system, aiming at achieving simple and convenient simultaneous irradiation and detection of samples.
  • the embodiments of the application provide a sample transportation detection device.
  • the sample transportation detection device is used in conjunction with the irradiation device.
  • the sample transportation detection device includes a feed port, a discharge port, and is arranged between the feed port and the discharge port.
  • It includes a feed rail connected between the feed port and the detection part, and a feed rail connected between the feed port and the irradiation bearing part.
  • the feed rail and the discharge rail intersect to form a cross area to make the test
  • the sample can be moved to any one of the irradiation carrying part, the discharge port and the detection part in the intersection area.
  • a sample transportation detection system including: an irradiation device, including a shielding body, an irradiation cavity formed by the shielding body, a shielding opening communicating with the irradiation cavity, and an irradiation cavity The radiation source inside; the above-mentioned sample transportation detection device, wherein the radiation bearing part is located in the radiation cavity by a shielded opening.
  • the sample transportation detection device of the present application includes a feed port, a discharge port, an irradiation bearing part arranged between the feed port and the discharge port, a detection part and a transport track, an irradiation bearing part and an irradiation device
  • the detection unit can detect the sample to be tested.
  • the transportation track includes a feeding track and a discharging track, and the crossing of the feeding track and the discharging track forms an intersection area. After the sample to be tested is transported to the intersection area, the sample to be tested can be transported to the irradiation bearing part and the output Either the inlet and the detection part.
  • the sample to be tested when the sample to be tested is irradiated, you can continue to the detection part after returning to the intersection area for detection, or when the sample to be tested is detected, you can continue to the irradiation carrying part for irradiation after returning to the intersection area , Or shipped out directly.
  • the sample to be tested can be irradiated and/or detected simply and conveniently through the crossing area on the transportation track, and the sample transportation detection device of the present application has a simple structure and convenient operation, and can simultaneously irradiate or detect the sample to be tested.
  • FIG. 1 is a schematic structural diagram of a sample transportation detection device according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a manipulator of a sample transportation detection device according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a transport component of a sample transport detection device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a loading gripper of a sample transportation detection device according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of the structure of a sample box and a reference sample of a sample transportation detection device according to an embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a discharging mechanism of a sample transportation detection device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a reprinting component of a sample transportation detection device according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a screen door of a sample transportation detection device in a second position according to an embodiment of the present application
  • FIG. 9 is a schematic structural diagram of a screen door of a sample transportation detection device in a first position according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a bridge of a sample transportation detection device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a bridge of a sample transportation detection device according to another embodiment of the present application.
  • Feeding port 111. Feeding support plate; 112. Shunt rod; 113. Feeding push plate; 113a. Pushing groove; 114. Feeding sensor;
  • Feeding rail 411, first rail; 411a, relief groove; 411b, through hole; 411c, telescopic rod; 411d, sample waiting area; 411e, second positioning sensor; 412, second rail;
  • Re-inspection track 441. Separation groove; 442. Third positioning sensor; 443. Fourth positioning sensor;
  • Front material tray 511. First stop arm;
  • Figure 1 is a schematic structural diagram of a sample transportation detection device provided by an embodiment of the application.
  • the sample transportation detection device is used in conjunction with an irradiation device.
  • the sample transportation detection device includes a feed port 110, a discharge port 120, and is arranged at the feed port 110
  • the transportation track includes a feed rail 410 connected between the feed port 110 and the detection part 200, and a discharge rail connected between the discharge port 120 and the irradiation carrying part 300 420, the feeding rail 410 and the discharging rail 420 intersect to form a crossing area 430, so that the sample to be tested can move to any one of the irradiation carrying part 300, the discharge port 120 and the detecting part 200 in the crossing area 430.
  • the irradiation carrying part 300 includes a shielding body, an irradiation cavity formed by the shielding body, a shielding opening connected to the irradiation cavity, and an irradiation cavity.
  • the radiation bearing part 300 can enter the irradiation cavity through the shielding opening, and the sample to be tested is transported to the irradiation bearing part 300 on the transportation track to receive the irradiation of the irradiation source in the irradiation cavity.
  • the sample to be tested can be transported on the transportation track in various forms.
  • the sample to be tested is placed in the sample box 830, and the sample box 830 is transported on the transportation track.
  • the transportation track includes a feeding track 410 and a discharging track 420, and the feeding track 410 and the discharging track 420 intersect to form an intersection area 430.
  • the sample to be tested can be transported to any one of the irradiation carrying part 300, the discharge port 120 and the detecting part 200 according to the needs of the test. Therefore, in this application, when the sample to be tested is irradiated, you can continue to the detection unit 200 after returning to the intersection area 430 for detection, or when the sample to be tested is detected, you can continue to the irradiation carrier after returning to the intersection area 430 300 is irradiated or shipped directly.
  • the sample to be tested can be irradiated and/or detected simply and conveniently through the intersection area 430 on the transportation track, and the sample transportation detection device of the present application has a simple structure and convenient operation, and can simultaneously irradiate or detect the sample to be tested.
  • the sample transportation detection device further includes a box body, and the irradiation bearing part 300 extends from the box body to cooperate with the irradiation device.
  • the detection part 200 is located in the box to improve the shielding effect.
  • the inlet 110 and the outlet 120 are correspondingly provided with a box opening, so that the sample to be tested can enter the box through the box opening or be discharged from the box.
  • the transportation track is located inside the box to complete the transportation of the sample to be tested.
  • the feed rail 410 and the discharge rail 420 intersect to form the intersection area 430.
  • the feed rail 410 and the discharge track 420 cross to form the intersection area 430.
  • the feed rail 410 in order to reduce the volume of the sample transport detection device, includes a first rail 411 and a second rail 412 that are successively distributed between the feed port 110 and the detection part 200.
  • the rail 411 is extended and formed in the first direction
  • the second rail 412 is extended and formed in the second direction, and the first direction and the second direction intersect
  • the discharging rail 420 is formed by extending in the first direction
  • the discharging rail 420 and the first rail 411 They are arranged side by side in the second direction and cross the second track 412 to form an intersection area 430.
  • first direction and the second direction are perpendicularly intersected.
  • the first direction may be the Y direction in FIG. 1 and the second direction may be the X direction in FIG. 1.
  • the second rail 412 and the discharging rail 420 intersect to form a cross region 430, the first rail 411 and the discharging rail 420 both extend in the first direction, and the first rail 411 and the discharging rail 420
  • the parallel arrangement in the second direction can effectively reduce the volume of the sample transportation detection device.
  • a second positioning sensor 411e is provided at one end of the first track 411 for detecting whether the sample to be tested exists at a set position on the first track 411.
  • the positions of the feeding port 110, the discharging port 120, the detecting portion 200 and the irradiation carrying portion 300 are not limited here, as long as the feeding rail 410 is connected between the feeding port 110 and the detecting portion 200, the discharging rail 420 It only needs to be connected between the irradiation bearing part 300 and the discharge port 120.
  • the inlet 110 and the outlet 120 are located on the same side of the second rail 412 in the first direction, and the irradiation carrier 300 and the outlet 120 are separately provided on the second rail 412 in the first direction.
  • the detection portion 200 and the discharge port 120 are located on the same side of the discharge rail 420 in the second direction, and the inlet 110 and the detection portion 200 are separately provided on two sides of the discharge rail 420 in the second direction. side.
  • the feeding port 110 and the discharging port 120 are also located on both sides of the discharging track 420 in the second direction.
  • the first rail 411 and the detection part 200 are also located on both sides of the discharge rail 420 in the second direction.
  • the detection part 200 and the discharging port 120 are located on the same side of the discharging track 420 instead of being separately arranged on both sides of the discharging track 420, which can further reduce the volume of the sample transportation detection device.
  • the inlet 110 and the outlet 120 are located on the same side of the second track 412, which can further reduce the volume of the sample transportation detection device.
  • the transportation track further includes a re-inspection track 440, which extends in the second direction and is formed and connected between the inlet 110 and the outlet 120.
  • the outlet of the outlet track 420 is connected Between the two opposite ends of the reinspection rail 440, the sample assembly sent from the discharging rail 420 can enter the inlet 110 or the outlet 120 through the reinspection rail 440.
  • the transportation track further includes a re-inspection track 440.
  • the sample to be tested can be sent into the inlet 110 through the re-inspection track 440. Re-irradiate or detect.
  • the sample to be tested does not need to be rechecked after being irradiated or probed, it can be directly discharged from the discharge port 120.
  • the relative positions of the re-inspection rail 440 and the discharging rail 420 are not limited here, as long as the sample to be tested discharged from the discharging rail 420 can enter the re-inspection rail 440.
  • the exit of the discharging track 420 is set close to the middle of the reinspection track 440 in the second direction, that is, the entrance of the reinspection track 440 is set close to the middle of the reinspection track 440 in the second direction, so that the sample to be tested enters the reinspection After the rail 440, it can enter the feed port 110 to the left in FIG. 1 or enter the discharge port 120 to the right.
  • the sample transportation detection device also includes a transportation component, which drives the sample to be tested to move on the transportation track as required.
  • a transportation component which drives the sample to be tested to move on the transportation track as required.
  • the transport components include a feeding pusher 600 set corresponding to the first rail 411, a detection transport member 900 set corresponding to the second rail 412, a transfer assembly 500 set corresponding to the discharge rail 420, and a corresponding recheck rail 440 set Loading gripper 700.
  • the feeding pusher 600 is arranged on the side of the reinspection track 440 away from the first track 411 and is arranged corresponding to the first track 411.
  • the feeding pusher 600 is movably arranged along the first track 411 to push the sample to be tested on the first track 411. Move on a track 411.
  • the feeding pusher 600 is arranged on the side of the re-inspection track 440 away from the first track 411, so that the feeding pusher 600 can transport the sample to be tested on the re-inspection track 440 to the first track 411.
  • the feeding pusher 600 moves along the first track 411.
  • a guide rod is provided on the first track 411, and a sliding block is arranged at the bottom of the feeding pusher 600.
  • the sliding block moves along the guide rod to make the feeding pusher 600 move along the first track.
  • a track 411 moves.
  • the shape of the feeding pusher 600 matches the shape of the sample box 830, so that when the feeding pusher 600 moves the sample box 830, the sample box 830 and The stability of the relative position between the feeding pusher 600.
  • the feeding pusher 600 has a semicircular ring-like wall, and the opening of the feeding pusher 600 faces the first track 411, so that the feeding pusher 600 drives the sample box 830 to move on the first track 411.
  • the detection transport member 900 includes a manipulator 900a movable along the second track 412.
  • the manipulator 900a can hold the sample to be tested and drive the sample to be tested by The entrance of the second track 412 moves to the intersection area 430 or moves from the intersection area 430 to the detection part 200.
  • the manipulator 900a can be movable along the second rail 412.
  • a guide is provided on the second rail 412, and the manipulator 900a is movably provided on the second rail 412 along the guide.
  • the detection transport member 900 further includes a support member, the support member is extended and formed in the second direction, and the support member and the second rail 412 are spaced apart in the vertical direction, and the manipulator 900a is disposed between the support member and the second rail 412, and The manipulator 900a is movably arranged along the support.
  • the second rail 412 extends in the second direction and extends beyond the first rail 411 to be disposed, and the detection carrier 900 is disposed on the side of the second rail 412 away from the first rail 411, so that The detection carrier 900 can directly drive the sample to be tested transported from the first rail 411 to the second rail 412 to move along the second rail 412.
  • the manipulator 900a includes a connecting portion 910, a base 920, and a grip 930 disposed on the base 920.
  • the base 920 is connected to the support or the second through the connecting portion 910.
  • the rail 412 and the base 920 are movably disposed along the second rail 412, and the gripper 930 is disposed on the base 920 to drive the sample to be tested to move on the second rail 412 through the gripper 930.
  • the gripper 930 includes: a telescopic part 931 arranged on the base 920 and movable along the base 920; the gripper assembly includes a rotating rod 932, a supporting rod 933 and an arc-shaped rod 934 One end of the rotating rod 932 is rotatably connected to the telescopic part 931, the other end is rotatably connected between the two ends of the support rod 933, one end of the support rod 933 is rotatably connected to the base 920, and the other end is rotatably connected to the base 920.
  • one end of the arc-shaped rod 934 is rotatably connected to the support rod 933, and the arc-shaped rod 934 is rotatably connected to the base 920; wherein, there are two sets of gripper components, and two sets of grippers
  • the openings of the arc-shaped rods 934 of the assembly are arranged opposite to each other, so that the movement of the telescopic part 931 drives the rotating rod 932 and the supporting rod 933 to move to change the distance between the two arc-shaped rods 934.
  • the rotating rod 932 and the supporting rod 933 can be driven to move, thereby changing the distance between the two arc-shaped rods 934, and realizing the clamping and releasing of the manipulator 900a.
  • the arc-shaped rod 934 is connected between the support rod 933 and the arc-shaped rod 934 through an L-shaped connecting rod 935, and the connecting rod 935 is rotatably arranged relative to the support rod 933. 935 can also be rotated relative to the arc-shaped rod 934.
  • the transfer assembly 500 is disposed on the discharge track 420 and passes through the intersection area 430.
  • the transfer assembly 500 includes a front tray 510 and a rear tray 520 spaced apart along the first direction.
  • the transfer assembly 500 runs along the discharge track.
  • 420 is movably arranged so that when the front tray 510 moves from the irradiation carrier 300 to the crossing area 430, the rear tray 520 can move from the crossing area 430 to the entrance of the recheck track 440, or the front tray 510 moves from the crossing area
  • the rear tray 520 can move from the entrance of the recheck track 440 to the intersection area 430.
  • the transfer assembly 500 can move on the discharge track 420, and the transfer assembly 500 has a front tray 510 and a rear tray 520 for carrying the sample to be tested.
  • the current tray 510 is irradiated
  • the rear tray 520 can move from the crossing area 430 to the entrance of the reinspection track 440, or when the front tray 510 moves from the crossing area 430 to the irradiation carrying part 300, the rear tray 520 It can move to the intersection area 430 from the entrance of the recheck track 440.
  • the transport assembly 500 moves once, the sample to be tested in the front tray 510 can be transported to the irradiation carrying part 300, and the sample to be tested in the rear tray 520 can also be transported to the retest track 440, or the transport assembly 500
  • the sample to be tested after being detected at the intersection area 430 can also be transported to the re-inspection track 440, which can greatly improve the working efficiency of the transportation track and improve the sample transportation detection The working efficiency of the device.
  • the front tray 510 is provided with a first stop arm 511 and a first opening enclosed by the first stop arm 511.
  • the disk 510 can be rotated so that the opening faces the first track 411 or the detection part 200.
  • the front tray 510 is provided with a first stop arm 511, which can provide a limit for the sample to be tested on the front tray 510, and ensure the stability of the relative position of the sample to be tested and the front tray 510.
  • the front tray 510 can be rotated so that the first opening can face different directions, so that the front tray 510 can accept samples to be tested from different directions.
  • the front tray 510 can rotate. Make each surface of the sample to be tested uniformly receive irradiation.
  • the arrangement of the rear tray 520 can be the same.
  • the rear tray 520 is provided with a second stop arm 521 and an opening enclosed by the second stop arm 521, and the rear tray 520 can be rotatably arranged .
  • the arrangement of the rear tray 520 and the front tray 510 are inconsistent.
  • the rear tray 520 is provided with a clamping mechanism, which is movably arranged relative to the rear tray 520 to pass The clamping mechanism clamps and fixes the sample to be tested on the rear tray 520.
  • the arrangement of the clamping mechanism is not limited here, as long as the clamping mechanism can clamp the sample to be tested on the rear tray 520 to ensure the stability of the relative position of the sample to be tested and the rear tray 520.
  • the setting of the loading gripper 700 can be the same as or different from the manipulator 900a, as long as the loading gripper 700 can drive the sample to be tested on the recheck track 440 Just move.
  • the transportation track further includes a feeding passage 450, the feeding port 110 is located on the side of the feeding track 410 away from the discharging port 120, and the feeding passage 450 and the rechecking track 440 are successively connected to the feeding track 410. Between the port 110 and the discharge port 120.
  • the feeding channel 450 By setting the feeding channel 450, there will be no interference between the feeding port 110 and the retest track 440.
  • the sample to be tested at the feeding port 110 enters the first track 411 on the left side of the first track 411 in FIG.
  • the sample to be tested on the inspection track 440 enters the first track 411 on the right side of the first track 411 in FIG. 1.
  • the feeding channel 450 and the re-inspection track 440 are successively distributed, so that the feeding gripper 700 can drive the sample to be tested to move on the feeding channel 450 and the re-inspection track 440.
  • the loading gripper 700 includes a carrying frame 710 and a clamping portion 720 connected to the carrying frame 710.
  • the carrying frame 710 extends in the second direction and is arranged on the reinspection rail.
  • 440 and the feeding channel 450 are above the vertical direction
  • the clamping portion 720 is movably arranged on the carrier 710 along the second direction
  • the clamping portion 720 can be extended from the carrier 710
  • the clamping portion 720 drives the test The sample moves on the recheck track 440 and the loading channel 450.
  • the loading gripper 700 further includes a telescopic cylinder 730, and the clamping portion 720 is connected to the upper carrier 710 through the telescopic cylinder 730, so that the clamping portion 720 is arranged telescopically in a vertical direction relative to the carrier 710.
  • the clamping portion 720 moves to the sample to be tested idle, the clamping portion 720 rises, so it will not cause bumps to other parts during the movement.
  • the clamping portion 720 descends and clamps After holding the sample to be tested stable, drive the sample to be tested to move.
  • the arrangement of the clamping portion 720 is not limited herein.
  • the shape of the clamping portion 720 matches the sample box 830.
  • the clamping portion 720 includes an arc-shaped pusher, and the arc-shaped pusher has an arc-shaped opening. By adjusting the direction of the arc-shaped opening, the sample to be tested is pushed on the retest rail 440 and the feeding channel 450 Move in different directions.
  • the feeding port 110 is provided with a feeding support plate 111, which extends in the first direction and is formed on one side of the feeding channel 450 in the second direction, so that The test sample can be moved along the second direction from the feeding support plate 111 to the feeding channel 450; a plurality of shunt rods 112, the shunt rod 112 extends in the first direction, and the plural shunt rods 112 are distributed in the feed at intervals along the second direction
  • the support plate 111 is used to form a shunt track between two adjacent shunt rods 112, so that more than two samples to be tested can move along the shunt track;
  • the feed push plate 113 is arranged on the feed support plate 111 in the first
  • the feeding push plate 113 is movably arranged in the first direction, and has a plurality of push grooves 113a arranged at intervals in the second direction, so as to pass through
  • the feeding efficiency can be improved, and multiple samples to be tested can be driven to move along multiple shunt tracks at one time.
  • the manner in which the sample to be tested moves on the feeding support plate 111 is not limited herein.
  • a conveyor belt is provided on the feeding support plate 111, and the sample to be tested is driven to move on the feeding support plate 111 in the first direction through the conveyor belt.
  • the feeding support plate 111 is arranged on one side of the feeding channel 450 in the second direction, so the sample to be tested can be moved from the feeding support plate 111 to the feeding channel 450 in the second direction.
  • the sample to be tested is at the feeding position of the feeding support plate 111, and the feeding push plate 133 is moved in the first direction and through the action of the pushing groove 113a to limit the sample to be tested to the feeding position of the feeding support plate 111.
  • the feeding position allows the sample to be tested to move to the feeding channel 450 by continuing to move along the second direction at the feeding position.
  • the relative positions of the feed push plate 113 and the feed support plate 111 are not limited here.
  • the feed push plate 113 is arranged on the opposite side of the moving direction of the sample to be tested on the feed support plate 111, for example, When the sample moves upward on the feeding support plate 111 in FIG. 1, the feeding push plate 113 is arranged on the opposite side of the feeding support plate 111, and the feeding push plate 113 moves downward to stop the sample to be tested from the feeding The feeding position on the support plate 111.
  • the shape of the pushing groove 113a is not limited here, as long as the pushing groove 113a can ensure the stability of the relative position between the sample to be tested and the feed pushing plate 113.
  • the shape of the pushing groove 113a matches the sample box 830 and has an arc-shaped pushing surface.
  • the number of the splitter rods 112 is not limited here. As shown in FIG. 1, there are four splitter rods 112, and the four splitter rods 112 divide the support plate into five splitter tracks. Correspondingly, the feeding push plate 113 is provided with five push grooves 113a, and each push groove 113a is set corresponding to a shunt track, so that the sample to be tested is limited to the feed of the feeding support plate 111 through the push groove 113a. position.
  • the feed port 110 further includes a plurality of feed sensors 114, which are arranged on a side of the feed push plate 113 away from the feed support plate 111, and the multiple feed sensors 114 and a plurality of shunt rails are correspondingly arranged to detect whether the sample to be tested is located at the feeding position of the feeding support plate 111.
  • the sample transportation detection device further includes a matching component, the matching component includes a code scanner 810 and a picking mechanism 820.
  • the code scanner 810 is set corresponding to the first track 411 and is used to obtain
  • the picking mechanism 820 is used to pick up the corresponding reference sample 840 according to the parameter information on the parameter information of the sample to be tested, and move the reference sample 840 to the first track 411 so that the sample to be tested and the reference sample 840 are combined to form a sample assembly.
  • the setting position of the reference sample 840 is not limited here.
  • the sample detection device further includes a picture bearing part, the picture bearing part includes a plurality of bearing spaces, and the plurality of reference samples 840 are respectively arranged in different bearing spaces.
  • the picking mechanism 820 picks up the reference sample 840 in the corresponding carrying space according to the parameter information.
  • the pickup mechanism 820 picks up the reference sample 840.
  • a suction member is provided at the end of the pickup mechanism 820, and the suction member can suck the reference sample 840 in the carrying space.
  • the sample box 830 when the sample to be tested is placed in the sample box 830, the sample box 830 is provided with a barcode or two-dimensional code, etc., and the code scanner 810 can scan the barcode or two-dimensional code on the sample box 830. After obtaining the parameter information, the picking mechanism 820 picks up the corresponding reference sample 840.
  • the code scanner 810 of the pairing device is set corresponding to the first track 411, so that the sample to be tested entering the feed inlet 110 and the sample to be tested on the recheck track 440 can be scanned by the code scanner 810, and the position of the pairing device is set More reasonable.
  • the sample transportation detection device further includes a waste track (not shown in the figure), which is connected to the first track 411, so that the code scanner 810 cannot obtain the parameter information of the sample to be tested, or the pickup mechanism 820 When the parameter information cannot select the reference photo, the sample to be tested can be moved from the first track 411 to the waste track.
  • a waste track (not shown in the figure), which is connected to the first track 411, so that the code scanner 810 cannot obtain the parameter information of the sample to be tested, or the pickup mechanism 820 When the parameter information cannot select the reference photo, the sample to be tested can be moved from the first track 411 to the waste track.
  • the barcode scanner 810 cannot obtain the parameter information of the sample to be tested, or the pickup mechanism 820 cannot select the reference photo based on the parameter information, the sample to be tested can be The track 411 moves to the waste track to ensure the accurate and reliable operation of the sample transportation detection device.
  • a relief groove 411a is provided on the first track 411, and the relief groove 411a is located near the barcode scanner 810.
  • the pickup mechanism 820 is used to move the reference sample 840 to the relief groove 411a.
  • the relief groove 411a is formed by the surface depression of the first track 411, and the depth of the relief groove 411a is greater than or equal to that of the reference sample 840 The thickness is such that when the reference sample 840 is located in the relief groove 411a, the sample to be tested can move to the relief groove 411a.
  • the pickup mechanism 820 puts the reference sample 840 into the relief groove 411a, because the relief groove 411a is formed by the surface of the first track 411 recessed, and The depth of the relief groove 411a is greater than or equal to the thickness of the reference sample 840, so that the reference sample 840 will not protrude from the surface of the first track 411, and the scanned sample can still be moved to the relief groove 411a and combined with the reference sample 840 Combine to form a sample assembly.
  • the sample assembly there are many ways for the sample assembly to continue to move along the first track 411 from the relief groove 411a.
  • the relief groove 411a is provided with a through hole 411b extending in the vertical direction.
  • a telescopic rod 411c is provided outside the vertically placed bottom of the groove 411a, and the telescopic rod 411c is movably arranged in the through hole 411b, so that the sample to be tested and the reference sample 840 are combined to form a sample assembly, and the telescopic rod 411c drives the sample assembly Protruding from the recess 411a, the sample assembly continues to move along the first track 411.
  • the vertical direction is the direction perpendicular to the paper as shown in Figure 1.
  • the through hole 411b and the telescopic rod 411c located in the through hole 411b are provided. After the reference sample 840 and the sample to be tested are combined to form a sample assembly, the telescopic rod 411c moves along the through hole 411b to move the sample The top of the assembly protrudes from the recess 411a, and then the feeding pusher 600 drives the sample assembly to continue to move on the first track 411.
  • the bottom of the sample box 830 is provided with a mounting groove, and the shape of the reference sample 840 matches the shape of the mounting groove, so that the reference sample 840 can be located in the mounting groove
  • the feeding pusher 600 only pushes the sample box 830 to push the sample to be tested and the reference sample 840 at the same time.
  • the first track 411 is also provided with a sample waiting area 411d (denoted by a dotted line in FIG. 1), and the sample waiting area 411d is located on the side of the relief groove 411a close to the second track 412 .
  • a sample waiting area 411d (denoted by a dotted line in FIG. 1)
  • the sample assembly can be made to wait here, and when the second track 412 or the discharge track 420 is idle, the sample assembly can be directly transferred from here. Transport to the intersection area 430, saving time and improving the working efficiency of the sample transport detection device.
  • a separation groove 441 is provided on the re-inspection track 440, and the separation groove 441 is formed by recessing the surface of the re-inspection track 440, so that the sample to be tested and the reference sample 840 in the sample assembly can pass through When the separation tank 441 is separated.
  • the separation groove 441 the reference sample 840 in the sample component can fall into the separation groove 441, thereby completing the separation of the sample to be tested and the reference sample 840.
  • the number of separation grooves 441 is not limited here. There may be one separation groove 441, one separation groove 441 is located on the side of the outlet of the discharge track 420 close to the inlet 110, or one separation groove 441 is located on the The outlet of the discharging track 420 is close to the side of the discharging port 120. Preferably, there are two separation grooves 441, and the two separation grooves 441 are respectively located on both sides of the entrance of the reinspection track 440 in the second direction, so that the sample to be tested that is re-inspected or discharged can be separated from the reference sample 840.
  • the discharging port 120 is not limited here.
  • the discharging port 120 is provided with a transfer track 121, and the transfer track 121 is located on the side of the reinspection track 440 close to the detection part 200, and the transfer The rail 121 is located on the side of the discharging rail 420 away from the first rail 411; wherein the samples to be tested are discharged in a single row on the recheck rail 440, and the orthographic projections of the recheck rail 440 and the transfer rail 121 in the first direction are at least partially overlapped. , So that the sample to be tested can move from the re-inspection track 440 to the transfer track 121 in the first direction.
  • the extension width of the transfer track 121 in the first direction is greater than the extension width of the re-inspection track 440 in the first direction. Multiple rows of samples to be tested arranged in one direction can move along the transfer track 121.
  • the sample to be tested is discharged in a single row on the retest track 440, and then the sample to be tested moves to the transfer track 121 in the first direction, and is discharged in multiple rows along the second direction by the transfer track 121, which can be Improve the discharge efficiency of the sample to be tested, and when the number of samples to be tested on the transfer track 121 is insufficient, it will wait for other samples to be tested, which can increase the residence time of the sample to be tested on the transfer track 121, so that the irradiation or detection is completed.
  • the sample to be tested fully releases radioactive elements to reduce the radiation hazard of the sample to be tested.
  • the transport component further includes a push plate assembly 123 (shown as a dashed line in FIG. 1).
  • the push plate assembly 123 pushes the sample to be tested along the first One direction moves from the recheck track 440 to the transfer track 121 and is located in the first row on the transfer track 121.
  • a third positioning sensor 442 is further provided on the side of the recheck track 440 far away from the transfer track 121 for detecting whether there is a sample to be tested on the transfer track 121, if the sample to be tested on the transfer track 121 is full , First move the sample to be tested on the transfer track 121 in the second direction to vacate the space in the first row, and then the push plate assembly 123 moves the sample to be tested to the transfer track 121.
  • a second row of positions is also provided on the transfer track 121, the second row of positions and the first row of positions are juxtaposed in the second direction, and the second row of positions is located on the side of the first row of positions away from the discharge rail 420.
  • the transfer track 121 is provided with a fourth position sensor 443 at a position corresponding to the second row position in the first direction for detecting whether there is a sample to be tested in the second row position, and when there is a sample to be tested in the second row position When, control the sample to be tested to continue to move in the second direction, keep the second row position always free, thereby further improving the transportation efficiency.
  • a discharge rail 122 is also provided at the discharge port 120.
  • the discharge rail 122 is connected to an end of the transfer rail 121 away from the discharge rail 420.
  • the discharge rail 122 extends in the first direction to form a shape, and the discharge rail 122 and The transfer track 121 is projected at least partially overlapped in the second direction, so that the sample to be tested can move along the second direction to the discharge track 122; wherein, at one end of the transfer track 121 close to the discharge track 122, more than two Detector 121a.
  • Two or more detectors 121a are separately arranged on both sides of the transfer track 121 in the first direction to detect whether the sample to be tested is in place, so that the sample to be tested is transported to the discharge track 122 and passed through the discharge The track 122 is discharged.
  • the discharge rail 122 is transported through the transfer rail 121, so that the tested sample can stay on the transfer rail 121 for a period of time, so that the irradiated or detected sample to be tested can fully release radioactivity Element, reduce the radiation hazard of the discharged sample to be tested.
  • the sample to be tested there are multiple ways for the sample to be tested to move on the transfer track 121 and the discharge track 122.
  • a conveyor belt is provided on the transfer track 121 and the discharge track 122 to make the sample to be tested Driven by the conveyor belt to move.
  • the transport component also includes a discharging mechanism.
  • the discharging mechanism includes a fixing frame 124 and a transfer assembly 125 arranged on the fixing frame 124, as shown in Figure 1 and As shown in FIG. 6, FIG. 6 is a side view of the discharging mechanism.
  • the fixing frame 124 extends in the second direction and is formed across the transfer rail 121 and the discharge rail 122.
  • multiple reloading components 125 there are multiple reloading components 125, and multiple reloading components 125 is arranged side by side along the first direction on the fixing frame 124, and the transfer assembly 125 is movably arranged on the fixing frame 124 along the second direction to drive the sample to be tested to move from the transfer track 121 to the discharge track 122 in the second direction.
  • the transfer component 125 includes a suction cup 125a, and the sample to be tested is sucked by the suction cup 125a to drive the sample to be tested to move, or as shown in Figure 7, the transfer component 125 includes a stop rod 125b, which passes through The stop rod 125b pushes the sample to be tested to move.
  • the detection portion 200 has a shielding wall 210, a detection cavity 220 enclosed by the shielding wall 210, and In the opening communicating with the detection cavity 220, the detection element 230 is located in the detection cavity 220; the second track 412 is provided with a shield door 240, which is correspondingly provided at the opening, and the shield door 240 is movably arranged in the vertical direction to shield The door 240 can move between a first position that blocks the opening and a second position that is flush with the second rail 412.
  • a stop block 260 and a first positioning sensor 270 are provided in the detection cavity 220, and the stop block 260 is used to direct the test sample located in the detection cavity 220.
  • the sample provides a limit
  • the first position sensor 270 is used to detect the position of the sample to be tested in the detection cavity 220, so as to ensure that the sample to be tested can be located in the preset position in the detection cavity 220 and to ensure that the sample to be tested can be detected by the detection radiation.
  • the stability of the relative position of the sample to be tested and the detection cavity 220 can be ensured.
  • the screen door 240 on the second rail 412 can move in the vertical direction, so that the screen door 240 can be flush with the second rail 412, and the sample to be tested is along the second rail 412 and the screen door 240. It can be moved to the detection part 200 or sent out by the detection part 200, and the shield door 240 can also block the opening of the detection cavity 220, thereby preventing radiation leakage in the detection cavity 220 and improving the safety performance of the sample transportation detection device.
  • the screen door 240 can be arranged in many ways, for example, it includes a first part 241 and a second part 242 connected at an angle.
  • the first part 241 extends in the second direction and the second part 242 extends in the vertical direction.
  • the extension is formed so that when the screen door 240 is in the first position, the second part 242 blocks the opening, and when the screen door 240 is in the second position, the first part 241 and the second rail 412 are flush.
  • the arrangement of the shield door 240 is not limited to this, as long as the shield door 240 can move between the first position blocking the opening and the second position flush with the second rail 412.
  • a bridge 250 is also provided on the second track 412, and the bridge 250 and the screen door 240 are arranged at an interval.
  • the bridge 250 is movably arranged in the vertical direction, so that the bridge 250 is flush with the second rail 412 or at least part of the bridge 250 is higher than the second rail 412.
  • the bridge 250 moves in the vertical direction and is higher than the second track 412 to prevent the detection of the transporting piece 900 from moving Move on the second track 412.
  • the bridge 250 moves in the vertical direction and is flush with the second track 412, so that the test carrier 900 can drive the sample to be tested to move on the second track 412.
  • the bridge 250 includes a driving mechanism, a guide rail 251 extending in the vertical direction, a pressure rod 252, and a bridge plate 253.
  • the bridge plate 253 The drive mechanism is connected to the drive mechanism through the pressing rod 252, which is used to drive the pressing rod 252 to drive the bridge plate 253 to move along the guide rail 251, so that the bridge plate 253 is flush with the second rail 412 or higher than the second rail 412; or,
  • the bridge 250 includes a rotating mechanism 254 and a rotating bridge plate 255.
  • the rotating bridge plate 255 is rotatably connected to the rotating mechanism 254, so that the bridge plate 253 and the second rail 412 are flush or at least part of the rotating bridge plate 255 is higher than the second Orbit 412.
  • the sample to be tested enters the feed rail 410 from the feed port 110.
  • the sample to be tested is arranged in 5 rows in the shunt rail of the feed support plate 111.
  • the conveyor belt on the feed support plate 111 drives the sample to be tested.
  • the feeding push plate 113 moves downward to limit the sample to be tested to the feeding position of the feeding support plate 111, when the feeding sensor 114 detects that 5 samples to be tested are delivered to the feeding position.
  • the loading gripper 700 sequentially transports 5 samples to be tested to the entrance of the first rail 411.
  • the feeding pusher 600 pushes the sample to be tested to move on the first track 411.
  • the code scanner 810 obtains the parameter information of the sample to be tested, and the picking mechanism 820 picks it up Corresponding to the reference sample 840, and place the reference sample 840 in the recess 411a.
  • the sample to be tested continues to move to the relief slot 411a and the reference sample 840 to form a sample assembly.
  • the telescopic rod 411c moves to push the sample assembly out of the relief slot 411a, and the feeding pusher 600 pushes the sample assembly to continue moving along the first track 411.
  • the sample assembly moves to the sample waiting area 411d, it is determined whether to continue forwarding to the second track 412 according to the working status of the second track 412 and the transport assembly 500.
  • the feeding pusher 600 pushes the sample assembly to the second track 412.
  • the robot 900a transports the sample assembly to the intersection area 430, and the transport assembly 500 transports the sample assembly to the irradiation carrier 300 to receive the irradiation.
  • the irradiation is completed
  • the time transfer assembly 500 moves along the discharge track 420 to transport the sample assembly to the intersection area 430, and the manipulator 900a transports the sample assembly to the detection part 200 for detection. Pay attention to the control of the bridge 250 and the screen door 240 during this period.
  • the robot 900a transports the sample assembly to the intersection area 430, and the transfer assembly 500 transports the sample assembly to the re-inspection track 440.
  • the transport assembly 500 when the transport assembly 500 moves along the discharge track 420 and transports the sample assembly of the front tray 510 to the intersection area 430, the sample assembly of the rear tray 520 can also be transported to the recheck track 440 at the same time, so the transport assembly 500 One movement can complete the transmission of two different sample components, which improves the transportation efficiency.
  • the sample assembly When the sample assembly is located on the re-inspection track 440, if the sample assembly needs to be re-inspected, it continues to move to the first track 411 for re-inspection, and when the sample assembly does not need to be re-inspected, it continues to move to the discharge port 120 for discharge.
  • the irradiation experiment and the detection experiment can be organically combined through the transportation track, which can not only realize the automatic detection of the sample, but also can improve the transportation efficiency by the arrangement of the transport assembly 500.
  • the reasonable arrangement can effectively reduce the volume of the sample transportation detection device. Therefore, the sample transportation detection device of the present application has simple structure, convenient operation, small size, and high detection and transportation efficiency.
  • the second embodiment of the present application also provides a sample transportation detection system, including an irradiation device, including a shielding body, an irradiation cavity enclosed by the shielding body, a shielding opening communicating with the irradiation cavity, and an irradiation cavity Radiation source; the above-mentioned sample transportation detection device, wherein the irradiation carrying portion 300 is located in the irradiation cavity by a shielding opening.
  • sample transportation detection system of the present application includes the above-mentioned sample transportation detection device, it has the beneficial effects of the above-mentioned sample transportation detection device, which will not be repeated here.
  • all movable parts such as the feed push plate 113, the push plate assembly 123, the transfer assembly 125, the screen door 240, the bridge 250, the telescopic rod 411c, the transfer assembly 500, and the front tray 510 , Rear tray 520, feeding pusher 600, feeding gripper 700, picking mechanism 820, manipulator 900a, etc.
  • the driving mode of these movable parts is not limited here, for example, servo motors, reducers, timing belts, etc. Any of the transmission modes such as gear rack and ball screw.

Abstract

本申请实施例提供一种样品运输检测装置及系统,样品运输检测装置与辐照装置配合使用,样品运输检测装置包括进料口、出料口、设置于进料口和出料口之间的辐照承载部、探测部和运输轨道;其中,辐照承载部用于与辐照装置配合以使待测样品接收辐照,探测部包括用于对待测样品进行探测的探测元件,运输轨道包括连接于进料口和探测部之间的进料轨道,以及连接于出料口和辐照承载部之间的出料轨道,进料轨道和出料轨道交叉形成交叉区域,以使待测样品在交叉区域能够移动至辐照承载部、出料口和探测部中的任一者。运输轨道上形成交叉区域能够简单方便地对待测样品进行辐照和/或探测,样品运输检测装置结构简单,操作方便。

Description

样品运输检测装置及系统
相关申请的交叉引用
本申请要求享有于2019年5月9日提交的名称为“样品运输检测装置及系统”的中国专利申请第201910384949.9号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及检测设备技术领域,尤其涉及一种样品运输检测装置及系统。
背景技术
现有技术中,为了对样品进行精细化分析,当使用高能X射线对样品进行辐照检测后,样品离开辐照检测的屏蔽体后还需要进行进一步的探测。被辐照完的样品会再次进入探测器,但是现有技术中的辐照仪器和探测仪器距离较远,且体积较大,为综合检测带来了不便。
因此,亟需一种新的样品运输检测装置及系统。
发明内容
本申请实施例提供一种样品运输检测装置及系统,旨在实现能够简单方便地同时对样品进行辐照和探测。
本申请实施例一方面提供了一种样品运输检测装置,样品运输检测装置与辐照装置配合使用,样品运输检测装置包括进料口、出料口、设置于进料口和出料口之间的辐照承载部、探测部和运输轨道;其中,辐照承载部用于与辐照装置配合以使待测样品接收辐照,探测部包括用于对待测样品进行探测的探测元件,运输轨道包括连接于进料口和探测部之间的进料轨道,以及连接于出料口和辐照承载部之间的出料轨道,进料轨道和出料轨道交叉形成交叉区域,以使待测样品在交叉区域能够移动至辐照承载部、出料口和探测部中的任一者。
本申请实施例另一方面提供了一种样品运输检测系统,包括:辐照装置,包括屏蔽体、由屏蔽体围合形成的辐照腔、与辐照腔连通的屏蔽开口及位于辐照腔内的射线源;上述的样品运输检测装置,其中辐照承载部由屏蔽开口位于辐照腔内。
在本申请的样品运输检测装置中,包括进料口、出料口、设置于进料口和出料口之间的辐照承载部、探测部和运输轨道,辐照承载部和辐照装置配合能够对待测样品进行辐照,探测部能够对待测样品进行探测。运输轨道包括进料轨道和出料轨道,且进料轨道和出料轨道交叉形成交叉区域,将待测样品运输至交叉区域后,可以根据检测需要将待测样品运输至辐照承载部、出料口和探测部中的任一者。因此本申请中当待测样品辐照完毕时,回到交叉区域后可以继续前往探测部进行探测,或者当待测样品进行探测完毕,回到交叉区域后可以继续前往辐照承载部进行辐照,或者直接运出。通过运输轨道上的交叉区域能够简单方便地对待测样品进行辐照和/或探测,且本申请的样品运输检测装置结构简单,操作方便,能够同时对待测样品进行辐照或探测。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例的一种样品运输检测装置的结构示意图;
图2是本申请实施例的一种样品运输检测装置的机械手的结构示意图
图3是本申请实施例的一种样品运输检测装置的转运组件的结构示意图;
图4是本申请实施例的一种样品运输检测装置的上料抓手的结构示意图;
图5是本申请实施例的一种样品运输检测装置的样品盒及参照样片的结构示意图;
图6是本申请实施例的一种样品运输检测装置的出料机构的结构示意图;
图7是本申请另一实施例的一种样品运输检测装置的转载组件的结构示意图;
图8是本申请实施例的一种样品运输检测装置的屏蔽门在第二位置的结构示意图;
图9是本申请实施例的一种样品运输检测装置的屏蔽门在第一位置的结构示意图;
图10是本申请实施例的一种样品运输检测装置的过桥的结构示意图;
图11是本申请另一实施例的一种样品运输检测装置的过桥的结构示意图。
附图标记说明:
110、进料口;111、进料支撑板;112、分流杆;113、进料推板;113a、推料槽;114、进料传感器;
120、出料口;121、转运轨道;121a、检测器;122、排料轨道;123、推板组件;124、固定架;125、转载组件;125a、吸盘;125b、止挡杆;
200、探测部;
210、屏蔽壁体;220、探测腔;230、探测元件;240、屏蔽门;241、第一分部;242、第二分部;250、过桥;251、导轨;252、压杆;253、过桥板;254、转动机构;255、转动桥板;260、止挡块;270、第一测位传感器;
300、辐照承载部;
410、进料轨道;411、第一轨道;411a、让位槽;411b、通孔;411c、伸缩杆;411d、样品等待区;411e、第二测位传感器;412、第二轨道;
420、出料轨道;
430、交叉区域;
440、复检轨道;441、分离槽;442、第三测位传感器;443、第四测位传感器;
450、上料通道;
500、转运组件;
510、前料盘;511、第一止挡臂;
520、后料盘;521、第二止挡臂;
600、送料推手;
700、上料抓手;710、承载架;720、夹持部;730、伸缩缸;
810、扫码器;820、拾取机构;830、样品盒;840、参照样片;
900、检测运送件;900a、机械手;910、连接部;920、基座;930、抓手;931、伸缩部;932、转动杆;933、支撑杆;934、弧形杆;935、连杆。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的实施例的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图11根据本申请实施例的样品运输检测装置及系统进行详细描述。
图1为本申请实施例提供的一种样品运输检测装置结构示意图,样品运输检测装置与辐照装置配合使用,样品运输检测装置包括进料口110、出料口120、设置于进料口110和出料口120之间的辐照承载部300、探测部200和运输轨道;其中,辐照承载部300用于与辐照装置配合以使待测样品接收辐照,探测部200包括用于对待测样品进行探测的探测元件230,运输轨道包括连接于进料口110和探测部200之间的进料轨道410,以及连接于出料口120和辐照承载部300之间的出料轨道420,进料轨道410和出料轨道420交叉形成交叉区域430,以使待测样品在交叉区域430能够移动至辐照承载部300、出料口120和探测部200中的任一者。
其中,待测样品沿图1中虚线箭头所示方向移动。
辐照承载部300和辐照装置进行配合的方式有多种,例如辐照装置,包括屏蔽体、由屏蔽体围合形成的辐照腔、与辐照腔连通的屏蔽开口及位于辐照腔内的射线源;辐照承载部300能够由屏蔽开口进入辐照腔体内,待测样品在运输轨道上被运送至辐照承载部300,接收辐照腔体内辐照射线源的辐照。
待测样品在运输轨道上被运送的形式有多种,为了保护待测样品外观不被破坏, 待测样品置于样品盒830内,样品盒830在运输轨道上被运送。
在本申请的样品运输检测装置中,运输轨道包括进料轨道410和出料轨道420,且进料轨道410和出料轨道420交叉形成交叉区域430,将待测样品运输至交叉区域430后,可以根据检测需要将待测样品运输至辐照承载部300、出料口120和探测部200中的任一者。因此本申请中当待测样品辐照完毕时,回到交叉区域430后可以继续前往探测部200进行探测,或者当待测样品进行探测完毕,回到交叉区域430后可以继续前往辐照承载部300进行辐照,或者直接运出。通过运输轨道上的交叉区域430能够简单方便地对待测样品进行辐照和/或探测,且本申请的样品运输检测装置结构简单,操作方便,能够同时对待测样品进行辐照或探测。
为了保证待测样品不被破坏且不会对外界造成辐射污染,样品运输检测装置还包括箱体,辐照承载部300由箱体伸出以与辐照装置相互配合。探测部200位于箱体内,以提高屏蔽效果。进料口110和出料口120处对应设置有箱体开口,以使待测样品能够由箱体开口进入箱体内部或由箱体内部排出。运输轨道位于箱体内部,完成待测样品的运输。
进料轨道410和出料轨道420交叉形成交叉区域430的方式有多种,例如进料轨道410和出料轨道420十字交叉形成交叉区域430。
在一些可选的实施例中,为了减小样品运输检测装置的体积,进料轨道410包括在进料口110和探测部200之间相继分布的第一轨道411和第二轨道412,第一轨道411沿第一方向延伸成型,第二轨道412沿第二方向延伸成型,且第一方向和第二方向相交;出料轨道420沿第一方向延伸形成,出料轨道420和第一轨道411在第二方向上并列设置,并与第二轨道412交叉形成交叉区域430。
第一方向和第二方向的设置方式有多种,只要第一方向和第二方向相交,令第二轨道412和出料轨道420能够交叉形成交叉区域430即可。为了进一步减小样品运输检测装置的体积,第一方向和第二方向垂直相交设置,第一方向可以为图1中的Y方向,第二方向为图1中的X方向。
在这些可选的实施例中,第二轨道412和出料轨道420相交形成交叉区域430,第一轨道411和出料轨道420均沿第一方向延伸,且第一轨道411和出料轨道420在第二方向上并列设置,能够有效减小样品运输检测装置的体积。
其中,为了获取第一轨道411上待测样品的位置信息,第一轨道411的一端设置有第二测位传感器411e,用于检测第一轨道411上设定位置是否存在待测样品。
进料口110、出料口120、探测部200和辐照承载部300的设置位置在此不做限定,只要进料轨道410连接在进料口110和探测部200之间,出料轨道420连接在辐照承载部300和出料口120之间即可。
在一些可选的实施例中,进料口110和出料口120位于第二轨道412在第一方向上的同侧,辐照承载部300和出料口120分设于第二轨道412在第一方向上的两侧;探测部200和出料口120位于出料轨道420在第二方向上的同侧,进料口110和探测部200分设于出料轨道420在第二方向上的两侧。
进一步的,进料口110和出料口120也位于出料轨道420在第二方向上的两侧。 第一轨道411和探测部200也位于出料轨道420在第二方向上的两侧。
在这些可选的实施例中,探测部200和出料口120位于出料轨道420的同侧而不是分设在出料轨道420的两侧,能够进一步减小样品运输检测装置的体积。同样的,进料口110和出料口120位于第二轨道412的同侧,也能够进一步减小样品运输检测装置的体积。
在一些可选的实施例中,运输轨道还包括复检轨道440,复检轨道440沿第二方向延伸成型并连接于进料口110和出料口120之间,出料轨道420的出口连接于复检轨道440相对的两端之间,以使由出料轨道420送出的样品组件能够通过复检轨道440进入进料口110或出料口120。
在这些可选的实施例中,运输轨道还包括复检轨道440,当待测样品经过辐照或探测后还需要复检时,可以通过复检轨道440将待测样品送入进料口110重新进行辐照或探测。当待测样品经过辐照或探测后无需进行复检时,可以直接从出料口120排出。
其中,复检轨道440和出料轨道420的相对位置在此不做限定,只要由出料轨道420排出的待测样品能够进入复检轨道440即可。例如,出料轨道420的出口靠近复检轨道440在第二方向上的中部设置,即复检轨道440的入口靠近复检轨道440在第二方向上的中部设置,令待测样品进入复检轨道440后可以沿图1中向左进入进料口110,或者向右进入出料口120。
样品运输检测装置还包括运送部件,运送部件带动待测样品在运输轨道上按照要求进行移动。运送部件可以只有一个,一个运送部件带动待测样品沿整个运输轨道移动。为了提高工作效率,运送部件包括分别对应第一轨道411设置的送料推手600、对应第二轨道412设置的检测运送件900、对应出料轨道420设置的转运组件500以及对应复检轨道440设置的上料抓手700。
可选的,送料推手600设置于复检轨道440远离第一轨道411的一侧,并和第一轨道411对应设置,送料推手600沿第一轨道411可移动设置,以推动待测样品在第一轨道411上移动。
在这些可选的实施例中,将送料推手600设置于复检轨道440远离第一轨道411的一侧,令送料推手600能够将复检轨道440上的待测样品运送至第一轨道411。
送料推手600沿第一轨道411可移动的方式有多种,例如第一轨道411上设置有导向杆,送料推手600的底部设置有滑块,通过滑块沿导向杆移动令送料推手600沿第一轨道411移动。
特别的,当待测样品置于样品盒830内被运输时,送料推手600的形状和样品盒830的形状相适配,以使送料推手600在推动样品盒830移动时,保证样品盒830和送料推手600之间相对位置的稳定性。例如,样品盒830呈圆柱状时,送料推手600具有类半圆环状壁部,且送料推手600的开口朝向第一轨道411,从而令送料推手600带动样品盒830在第一轨道411上移动。
检测运送件900的设置方式有多种,在一些可选的实施例中,检测运送件900包 括沿第二轨道412可移动的机械手900a,机械手900a能够夹持待测样品,带动待测样品由第二轨道412的入口移动至交叉区域430,或由交叉区域430移动至探测部200。
机械手900a沿第二轨道412可移动的方式有多种,例如第二轨道412上设置有导向件,机械手900a在第二轨道412上沿导向件可移动设置。或者,检测运送件900还包括支撑件,支撑件沿第二方向延伸成型,且支撑件和第二轨道412沿竖直方向间隔设置,机械手900a设置于支撑件和第二轨道412之间,且机械手900a沿支撑件可移动设置。
其中,为了给检测运送件900提供设置位,第二轨道412沿第二方向延伸并伸出第一轨道411设置,检测运送件900设置于第二轨道412远离第一轨道411的一侧,令检测运送件900可以直接带动由第一轨道411运送至第二轨道412的待测样品沿第二轨道412移动。
机械手900a的设置方式有多种,如图2所示,机械手900a包括连接部910、基座920及设置于基座920的抓手930,基座920通过连接部910连接于支撑件或第二轨道412,且基座920沿第二轨道412可移动设置,抓手930设置于基座920,以通过抓手930带动待测样品在第二轨道412移动。
抓手930的设置方式有多种,例如抓手930包括:设置于基座920并沿基座920可移动的伸缩部931;抓手组件,包括转动杆932、支撑杆933和弧形杆934,转动杆932的一端可转动地连接于伸缩部931,另一端可转动地连接于支撑杆933的两端之间,支撑杆933的一端可转动地连接于基座920,另一端可转动地连接于弧形杆934,弧形杆934的一端可转动地连接于支撑杆933,且弧形杆934可转动地连接于基座920;其中,抓手组件为两组,且两组抓手组件的弧形杆934的开口相对设置,以通过伸缩部931的移动带动转动杆932和支撑杆933移动进而改变两个弧形杆934之间的距离。
在这些可选的实施例中,当伸缩部931移动时,能够带动转动杆932、支撑杆933移动,从而改变两个弧形杆934之间的距离,实现机械手900a的夹持和放开。
进一步的,为了提高弧形杆934的自由度,弧形杆934通过L形连杆935连接于支撑杆933和弧形杆934之间,且连杆935相对支撑杆933可转动设置,连杆935相对弧形杆934也可转动设置。
请一并参阅图3,转运组件500设置于出料轨道420并经过交叉区域430,转运组件500包括沿第一方向间隔分布的前料盘510和后料盘520,转运组件500沿出料轨道420可移动设置,以使前料盘510由辐照承载部300移动至交叉区域430时,后料盘520能够由交叉区域430移动至复检轨道440的入口,或者前料盘510由交叉区域430移动至辐照承载部300时,后料盘520能够由复检轨道440的入口移动至交叉区域430。
在这些可选的实施例中,转运组件500能够在出料轨道420上移动,且转运组件500具有用于承载待测样品的前料盘510和后料盘520,当前料盘510由辐照承载部300移动至交叉区域430时,后料盘520能够由交叉区域430移动至复检轨道440的入口,或者前料盘510由交叉区域430移动至辐照承载部300时,后料盘520能够由复 检轨道440的入口移动至交叉区域430。因此当转运组件500移动一次时,既能够将前料盘510的待测样品运送至辐照承载部300,还能够将后料盘520的待测样品运输至复检轨道440,或者转运组件500将接受完辐照的待测样品运输至交叉区域430时,还能够将交叉区域430处接受完探测的待测样品运输至复检轨道440,能够大大提高运输轨道的工作效率,提高样品运输检测装置的工作效率。
前料盘510和后料盘520的具体设置方式有多种,例如,前料盘510上设置有第一止挡臂511和由第一止挡臂511围合形成的第一开口,前料盘510可转动设置,以使开口朝向第一轨道411或探测部200。前料盘510上设置有第一止挡臂511,能够向位于前料盘510上的待测样品提供限位,保证待测样品和前料盘510相对位置的稳定性。前料盘510可转动设置,令第一开口可以朝向不同方向,从而令前料盘510可以接受来自不同方向的待测样品,同时当待测样品接受辐照时,前料盘510转动还能够令待测样品的各个表面均匀接受辐照。
后料盘520的设置方式可以同一样,例如,后料盘520设置有第二止挡臂521和由所述第二止挡臂521围合形成的开口,所述后料盘520可转动设置。
或者后料盘520和前料盘510的设置方式不一致,例如在另一些可选的实施例中,后料盘520设置有夹持机构,夹持机构相对后料盘520可移动设置,以通过夹持机构夹持固定位于后料盘520上的待测样品。
其中,夹持机构的设置方式在此不做限定,只要夹持机构能够夹持住位于后料盘520上的待测样品,保证待测样品和后料盘520相对位置的稳定性即可。
上料抓手700的设置方式有多种,在此不做限定,上料抓手700的设置可以同机械手900a相同或不同,只要上料抓手700能够带动待测样品在复检轨道440上移动即可。
在一些可选的实施例中,运输轨道还包括上料通道450,进料口110位于进料轨道410远离出料口120的一侧,上料通道450和复检轨道440相继连接于进料口110和出料口120之间。
通过设置上料通道450,令进料口110和复检轨道440之间不会发生干涉,进料口110的待测样品在图1中第一轨道411的左侧进入第一轨道411,复检轨道440上的待测样品在图1中第一轨道411的右侧进入第一轨道411。此外上料通道450和复检轨道440相继分布,令上料抓手700能够带动待测样品在上料通道450和复检轨道440上移动。
如图4所示,在一些可选的实施例中,上料抓手700包括承载架710和连接于承载架710的夹持部720,承载架710沿第二方向延伸并设置于复检轨道440和上料通道450在竖直方向的上方,夹持部720在承载架710上沿第二方向可移动设置,夹持部720能够由承载架710伸出,通过夹持部720带动待测样品在复检轨道440和上料通道450上移动。优选的,上料抓手700还包括伸缩缸730,夹持部720通过伸缩缸730连接于上承载架710,令夹持部720相对承载架710沿竖直方向可伸缩设置。当夹持部720空闲移动至待测样品时,夹持部720上升,因此移动过程中不会对其他部件造成磕碰,当夹持部720移动至待测样品时,夹持部720下降,夹持待测样品稳定后带动待 测样品移动。
夹持部720的设置方式在此不做限定,当待测样品位于样品盒830内时,夹持部720的形状和样品盒830相适配。例如当样品盒830呈圆柱状时,夹持部720包括弧形推手,弧形推手具有弧形开口,通过调整弧形开口的朝向,推动待测样品在复检轨道440和上料通道450上沿不同方向移动。
进料口110的设置方式有多种,只要待测样品能够由进料口110进料即可。在一些可选的实施例中,进料口110设置有进料支撑板111,进料支撑板111沿第一方向延伸成型并位于上料通道450在第二方向上的一侧,以使待测样品能够沿第二方向由进料支撑板111移动上料通道450;多个分流杆112,分流杆112沿第一方向延伸成型,且多个分流杆112沿第二方向间隔分布于进料支撑板111,以在相邻的两个分流杆112之间形成分流轨道,使两个以上的待测样品能够沿分流轨道移动;进料推板113,设置于进料支撑板111在第一方向上的一侧,且进料推板113沿第一方向可移动设置,具有沿第二方向间隔排布的多个推料槽113a,以通过所述推料槽以通过推料槽113a将待测样品限位于进料支撑板111的进料位置,令待测样品能够由进料位置沿第二方向移动至上料通道450。
在这些可选的实施例中,通过设置进料支撑板111和多个分流杆112,能够提高上料效率,一次能够带动多个待测样品沿多个分流轨道移动。待测样品在进料支撑板111上移动的方式在此不做限定,例如进料支撑板111上设置有传送带,通过传送带带动待测样品在进料支撑板111上沿第一方向移动。进料支撑板111设置于上料通道450在第二方向上的一侧,因此待测样品沿第二方向能由进料支撑板111移动至上料通道450。此时要求待测样品在进料支撑板111的进料位置,通过进料推板133沿第一方向移动并通过推料槽113a的作用,能够将待测样品限位于进料支撑板111的进料位置,令待测样品在进料位置继续沿着第二方向移动即可移动至上料通道450。
进料推板113和进料支撑板111的相对位置在此不做限定,优选的,进料推板113设置于待测样品在进料支撑板111上移动方向的对侧,例如当待测样品在图1中在进料支撑板111上向上移动时,进料推板113设置于进料支撑板111的对侧,进料推板113向下移动从而将待测样品止挡于进料支撑板111上的进料位置。
其中,推料槽113a的形状在此不做限定,只要通过推料槽113a能够保证待测样品和进料推板113之间相对位置的稳定性即可。例如,当待测样品置于圆柱状的样品盒830时,推料槽113a的形状和样品盒830相适配,具有圆弧形推料面。
分流杆112的个数在此不做限定,如图1所示,分流杆112为4个,4个分流杆112将支撑板分隔为5个分流轨道。对应的,进料推板113上设置有5个推料槽113a,每一个推料槽113a对应一个分流轨道设置,以通过推料槽113a将待测样品限位于进料支撑板111的进料位置。
进一步可选的,在一些可选的实施例中,进料口110还包括多个进料传感器114,设置于进料推板113远离进料支撑板111的一侧,且多个进料传感器114和多个分流轨道对应设置,用于检测待测样品是否位于进料支撑板111的进料位置。
在这些可选的实施例中,通过设置进料传感器114,能够检测待测样品是否已经准 确运送至进料支撑板111的进料位置,保证装置的稳定运行。
通常的,在样品检测的过程中,需要结合待测样品及其参照样片840进行分析。因此在一些可选的实施例中,样品运输检测装置还包括配对部件,配对部件包括扫码器810和拾取机构820,扫码器810对应于第一轨道411设置并用于获取位于第一轨道411上的待测样品的参数信息,拾取机构820用于根据参数信息拾取对应的参照样片840,并将参照样片840移动至第一轨道411令待测样品和参照样片840相互结合形成样品组件。
其中,参照样片840的设置位置在此不做限定,例如,样品检测装置还包括图片承载部,图片承载部包括多个承载空间,多个参照样片840分别设置于不同的承载空间内。拾取机构820根据参数信息拾取对应的承载空间内的参照样片840。拾取机构820拾取参照样片840的方式有多种,例如拾取机构820的末端设置有吸附部件,吸附部件能够吸附承载空间内的参照样片840。
在这些可选的实施例中,当待测样品置于样品盒830时,样品盒830上设置有条形码或二维码等,扫码器810通过扫描样品盒830上的条形码或二维码可以获得参数信息,拾取机构820拾取相应的参照样片840。配对装置的扫码器810对应第一轨道411设置,令进料口110进入的待测样品和复检轨道440上的待测样品均能够经过扫码器810被扫码,配对装置的位置设置更加合理。
进一步可选的,样品运输检测装置还包括废料轨道(图中未示出),废料轨道连接于第一轨道411,以使扫码器810无法获取待测样品的参数信息,或者拾取机构820根据参数信息无法选取参照照片时,待测样品能够由第一轨道411移动至废料轨道。
在这些可选的实施例中,当其他样品混入待测样品,扫码器810无法获取待测样品的参数信息,或者拾取机构820根据参数信息无法选取参照照片时,待测样品能够由第一轨道411移动至废料轨道,保证样品运输检测装置的准确可靠运行。
待测样品和参照样片840进行结合形成样品组件的方式有多种,在一些可选的实施例中,第一轨道411上设置有让位槽411a,让位槽411a位于扫码器810靠近第二轨道412的一侧,拾取机构820用于将参照样片840移动至让位槽411a,让位槽411a由第一轨道411表面凹陷形成,且让位槽411a的深度大于或等于参照样片840的厚度,以使参照样片840位于让位槽411a时,待测样品能够移动至让位槽411a。
在这些可选的实施例中,当扫码器810获取到参数信息时,拾取机构820将参照样片840放至让位槽411a内,由于让位槽411a由第一轨道411表面凹陷形成,且让位槽411a的深度大于或等于参照样片840的厚度,令参照样片840不会凸出于第一轨道411的表面,扫描完毕的待测样品依然能够移动至让位槽411a并与参照样片840进行结合形成样品组件。
样品组件由让位槽411a沿第一轨道411继续移动的设置方式有多种,在一些可选的实施例中,让位槽411a内贯穿设置有沿竖直方向延伸的通孔411b,让位槽411a在竖直放上的底部外设置有伸缩杆411c,伸缩杆411c在通孔411b内可移动设置,以使待测样品和参照样片840结合形成样品组件后,通过伸缩杆411c驱动样品组件凸出于让位槽411a,令样品组件沿第一轨道411继续移动。
其中竖直方向为图1所示垂直于纸面的方向。在这些可选的实施例中,通过设置通孔411b和位于通孔411b内的伸缩杆411c,当参照样片840和待测样品结合形成样品组件后,伸缩杆411c沿通孔411b移动,将样品组件顶凸出于让位槽411a,然后送料推手600带动样品组件继续在第一轨道411上移动。
其中,如图5所示,当待测样品置于样品盒830内时,样品盒830的底部设置有安装槽,参照样片840和安装槽的形状相适配,令参照样片840能够位于安装槽内,送料推手600仅推动样品盒830既能够同时推动待测样品和参照样片840。
当样品组件沿第一轨道411继续移动时,第一轨道411上还设置有样品等待区411d(图1中以虚线区分),样品等待区411d位于让位槽411a靠近第二轨道412的一侧。通过设置样品等待区411d,当第二轨道412或者出料轨道420正在运行时,可以令样品组件在此处等待,当第二轨道412或出料轨道420空闲时,样品组件可以由此处直接运送至交叉区域430,节省时间,提高样品运输检测装置的工作效率。
当样品组件辐照或者探测完进入复检轨道440时,为了便于对样品组件中的待测样品进行复检或者排出,还需要将样品组件中的待测样品和参照样片840分离。因此,在一些可选的实施例中,复检轨道440上设置有分离槽441,分离槽441由复检轨道440的表面凹陷形成,以使样品组件中的待测样品和参照样片840能够经过分离槽441时分离。当样品组件经过分离槽441时,样品组件中的参照样片840能够跌落至分离槽441内,从而完成待测样品和参照样片840的分离。
分离槽441的个数在此不做限定,分离槽441可以为一个,一个分离槽441位于所述出料轨道420出口靠近所述进料口110的一侧,或者一个分离槽441位于所述出料轨道420出口靠近所述出料口120的一侧。优选的,分离槽441为两个,两个分离槽441分别位于复检轨道440入口在第二方向上的两侧,令重新进行复检或者排出的待测样品均能够和参照样片840分离。
出料口120的设置方式在此不做限定,在一些可选的实施例中,出料口120设置有转运轨道121,转运轨道121位于复检轨道440靠近探测部200的一侧,且转运轨道121位于出料轨道420远离第一轨道411的一侧;其中,待测样品在复检轨道440单排排出,复检轨道440和转运轨道121在第一方向上的正投影至少部分重合设置,以使待测样品能够由复检轨道440沿第一方向移动至转运轨道121,转运轨道121沿第一方向的延伸宽度大于复检轨道440在第一方向上的延伸宽度,以使沿第一方向并列的多排待测样品能够沿转运轨道121移动。
在这些可选的实施例中,待测样品在复检轨道440上单排排出,然后待测样品沿第一方向移动至转运轨道121,并由转运轨道121沿第二方向多排排出,能够提高待测样品的排出效率,且当转运轨道121上待测样品数量不足时,会等待其他待测样品,能够增加待测样品在转运轨道121上的停留时间,从而令辐照或者探测完的待测样品充分释放放射性元素,降低排出的待测样品的辐射危害。
将待测样品由复检轨道440移动至转运轨道121的方式有多种,例如运送部件还包括推板组件123(在图1中以虚线示出),推板组件123推动待测样品沿第一方向由复检轨道440移动至转运轨道121,并位于转运轨道121上第一排的位置。
可选的,复检轨道440远离转运轨道121的一侧还设置有第三测位传感器442,用于检测转运轨道121上是否存在待测样品,如果转运轨道121上的待测样品已经排满,则先将转运轨道121上的待测样品沿第二方向移动空出第一排位置的空间,然后推板组件123将待测样品移动至转运轨道121。
进一步的,转运轨道121上还设置有第二排位置,第二排位置和第一排位置沿第二方向并列,且第二排位置位于第一排位置远离出料轨道420的一侧。转运轨道121在第一方向上与第二排位置对应的位置设置有第四测位传感器443,用于检测第二排位置上是否有待测样品,当第二排位置上设置有待测样品时,控制待测样品沿第二方向继续移动,保持第二排位置始终空闲,从而进一步提高运输效率。
进一步的,出料口120处还设置有排料轨道122,排料轨道122连接于转运轨道121远离出料轨道420的一端,排料轨道122沿第一方向延伸成型,且排料轨道122和转运轨道121在第二方向上投影至少部分重合设置,以使待测样品能够沿第二方向移动至排料轨道122;其中,转运轨道121的靠近排料轨道122的一端设置有两个以上的检测器121a,两个以上的检测器121a分设于转运轨道121在第一方向上的两侧,以检测待测样品是否到位,令待测样品到位后被运送至排料轨道122并通过排料轨道122排出。
在这些可选的实施例中,排料轨道122通过转运轨道121转运,令检测完的待测样品能够在转运轨道121上停留一段时间,从而令辐照或者探测完的待测样品充分释放放射性元素,降低排出的待测样品的辐射危害。
在一些可选的实施例中,待测样品在转运轨道121和排料轨道122上移动的方式有多种,例如转运轨道121和排料轨道122上分别设置有传送带,以使待测样品在传送带的带动下移动。
待测样品由转运轨道121移动至排料轨道122的方式有多种,例如运送部件还包括出料机构,出料机构包括固定架124和设置于固定架124的转载组件125,如图1和图6所示,图6为出料机构的侧视图,固定架124沿第二方向延伸成型并跨设于转运轨道121和排料轨道122之间,转载组件125为多个,多个转载组件125在固定架124上沿第一方向并排设置,且转载组件125在固定架124上沿第二方向可移动设置,以带动待测样品沿第二方向由转运轨道121移动至排料轨道122。
转载组件125的设置方式有多种,例如转载组件125包括吸盘125a,通过吸盘125a吸附待测样品而带动待测样品移动,或者如图7所示,转载组件125包括止挡杆125b,通过止挡杆125b推动待测样品移动。
探测部200的设置方式有多种,如图8和图9所示,在一些可选的实施例中,探测部200具有屏蔽壁体210、由屏蔽壁体210围合形成的探测腔220以及与探测腔220连通的开口,探测元件230位于探测腔220;第二轨道412上设置有屏蔽门240,屏蔽门240对应设置于开口处,屏蔽门240沿竖直方向可移动设置,以使屏蔽门240能够在遮挡开口的第一位置和与第二轨道412平齐的第二位置之间移动。
其中,为了保证待测样品在探测腔220内位置的稳定性,探测腔220内设置有止挡块260和第一测位传感器270,止挡块260用于向位于探测腔220内的待测样品提供 限位,第一测位传感器270用于检测待测样品在探测腔220内的位置,从而保证待测样品在探测腔220内能位于预设位置并确保待测样品能够被探测射线探测,同时还能够保证待测样品和探测腔220相对位置的稳定性。
在这些可选的实施例中,第二轨道412上的屏蔽门240能够在竖直方向移动,令屏蔽门240能够与第二轨道412平齐,待测样品沿第二轨道412和屏蔽门240能够移动至探测部200或由探测部200送出,屏蔽门240还能够遮挡探测腔220的开口,从而防止探测腔220内的射线泄漏,提高样品运输检测装置的安全性能。
屏蔽门240的设置方式有多种,例如,包括呈角度连接的第一分部241和第二分部242,第一分部241沿第二方向延伸成型,第二分部242沿竖直方向延伸成型,以使屏蔽门240位于第一位置时第二分部242遮挡开口,屏蔽门240位于第二位置时,第一分部241和第二轨道412平齐。屏蔽门240的设置方式不仅限于此,只要屏蔽门240能够在遮挡开口的第一位置和与第二轨道412平齐的第二位置之间移动即可。
当转运组件500沿出料轨道420移动时,为了防止转运组件500和检测运送件900之间相互干涉,第二轨道412上还设置有过桥250,过桥250和屏蔽门240间隔设置于交叉区域430的两侧,过桥250沿竖直方向上可移动设置,以使过桥250和第二轨道412平齐或至少部分过桥250高于第二轨道412。
在这些可选的实施例中,当转运组件500在出料轨道420上移动并经过交叉区域430时,过桥250沿竖直方向移动并高于第二轨道412,以阻止检测运送件900在第二轨道412上移动。当转运组件500停止运行或不位于交叉区域430时,过桥250沿竖直方向移动并和第二轨道412平齐,令检测运送件900能够带动待测样品在第二轨道412上移动。
过桥250的设置方式有多种,例如,如图10和图11所示,过桥250包括驱动机构、沿竖直方向延伸的导轨251、压杆252和过桥板253,过桥板253通过压杆252连接于驱动机构,驱动机构用于驱动压杆252带动过桥板253沿导轨251移动,以使过桥板253与第二轨道412平齐或高于第二轨道412;或者,过桥250包括转动机构254和转动桥板255,转动桥板255可转动地连接于转动机构254,以使过桥板253和第二轨道412平齐或至少部分转动桥板255高于第二轨道412。
下面以图1为例,简述样品运输检测装置上待测样品的运输路径及待测样品的运输方法。
首先,待测样品由进料口110进入进料轨道410,待测样品在进料支撑板111的分流轨道内排成5排,进料支撑板111上的传送带带动待测样品在图1中向上移动,进料推板113向下移动将待测样品限位于进料支撑板111的进料位置,当进料传感器114检测到5个待测样品送达至进料位置时。上料抓手700依次将5个待测样品运送至第一轨道411的入口。
此时,送料推手600推动待测样品在第一轨道411上移动,当待测样品运送至和扫码器810对应的位置时,扫码器810获取待测样品的参数信息,拾取机构820拾取相应的参照样片840,并将参照样片840放至让位槽411a。待测样品继续移动至让位槽411a和参照样片840组成样品组件,伸缩杆411c移动将样品组件推出让位槽 411a,送料推手600推动样品组件继续沿第一轨道411移动。
当样品组件移动至样品等待区411d时,根据第二轨道412和转运组件500的工作状态确定是否继续向前运送至第二轨道412。当第二轨道412或转运组件500空闲时,送料推手600将样品组件推送至第二轨道412。
此时,当转运组件500停止且前料盘510位于交叉区域430时,机械手900a将样品组件运送至交叉区域430,转运组件500将样品组件运送至辐照承载部300接收辐照,辐照完毕时转运组件500沿出料轨道420移动将样品组件运送至交叉区域430,机械手900a将样品组件运送至探测部200接收探测。期间注意过桥250和屏蔽门240的控制。
样品组件被探测完毕,且转运组件500的后料盘520位于交叉区域430时,机械手900a将样品组件运送至交叉区域430,转运组件500将样品组件运送至复检轨道440。
其中,当转运组件500沿出料轨道420移动并将前料盘510的样品组件运送至交叉区域430时,同时还能够将后料盘520的样品组件运送至复检轨道440,因此转运组件500移动一次能够完成两个不同样品组件的传输,提高了运送效率。
当样品组件位于复检轨道440时,如果样品组件需要复检,则继续移动至第一轨道411进行复检,当样品组件不需要复检时,继续移动至出料口120排出。
在本申请实施例的样品运输检测装置中,通过运输轨道能够将辐照实验和探测实验进行有机结合,不仅能够实现样品的自动化检测,转运组件500的设置还能够提高运送效率,且各零部件的排布合理,能够有效减小样品运输检测装置的体积。因此本申请的样品运输检测装置结构简单,操作方便,体积小,检测运输效率高。
本申请第二实施例还提供一种样品运输检测系统,包括辐照装置,包括屏蔽体、由屏蔽体围合形成的辐照腔、与辐照腔连通的屏蔽开口及位于辐照腔内的射线源;上述的样品运输检测装置,其中辐照承载部300由屏蔽开口位于辐照腔内。
由于本申请的样品运输检测系统包括上述的样品运输检测装置,因此具有上述样品运输检测装置的有益效果,在此不再赘述。
在上述任一实施例中,所有可以运动的部件,例如进料推板113、推板组件123、转载组件125、屏蔽门240、过桥250、伸缩杆411c、转运组件500、前料盘510、后料盘520、送料推手600、上料抓手700、拾取机构820、机械手900a等,这些可以运动的部件的驱动方式在此不做限定,例如可以采用伺服电机、减速机、同步带、齿轮齿条、滚珠丝杠等传动方式中任一种。
本申请可以以其他的具体形式实现,而不脱离其精神和本质特征。例如,特定实施例中所描述的算法可以被修改,而系统体系结构并不脱离本申请的基本精神。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本申请的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变从而都被包括在本申请的范围之中。

Claims (23)

  1. 一种样品运输检测装置,所述样品运输检测装置与辐照装置配合使用,其中,所述样品运输检测装置包括进料口、出料口、设置于所述进料口和所述出料口之间的辐照承载部、探测部和运输轨道;
    其中,所述辐照承载部用于与所述辐照装置配合以使待测样品接收辐照,所述探测部包括用于对所述待测样品进行探测的探测元件,所述运输轨道包括连接于所述进料口和所述探测部之间的进料轨道,以及连接于所述出料口和所述辐照承载部之间的出料轨道,所述进料轨道和所述出料轨道交叉形成交叉区域,以使待测样品在所述交叉区域能够移动至所述辐照承载部、所述出料口和所述探测部中的任一者。
  2. 根据权利要求1所述的样品运输检测装置,其中,
    所述进料轨道包括在所述进料口和所述探测部之间相继分布的第一轨道和第二轨道,所述第一轨道沿第一方向延伸成型,所述第二轨道沿第二方向延伸成型,且所述第一方向和所述第二方向相交;
    所述出料轨道和所述第一轨道在所述第二方向上并列设置,并与所述第二轨道交叉形成所述交叉区域。
  3. 根据权利要求2所述的样品运输检测装置,其中,
    所述进料口和所述出料口位于所述第二轨道在所述第一方向上的同侧,所述辐照承载部和所述出料口分设于所述第二轨道在所述第一方向上的两侧;
    所述探测部和所述出料口位于所述出料轨道在所述第二方向上的同侧,所述进料口和所述探测部分设于所述出料轨道在所述第二方向上的两侧。
  4. 根据权利要求3所述的样品运输检测装置,其中,所述运输轨道还包括复检轨道,所述复检轨道沿第二方向延伸成型并连接于所述进料口和所述出料口之间,所述出料轨道的出口连接于所述复检轨道相对的两端之间,以使由所述出料轨道送出的所述待测样品能够通过所述复检轨道进入所述进料口或所述出料口。
  5. 根据权利要求4所述的样品运输检测装置,其中,还包括转运组件,设置于所述出料轨道并经过所述交叉区域,所述转运组件包括沿第一方向间隔分布的前料盘和后料盘,所述转运组件沿所述出料轨道可移动设置,以使所述前料盘由所述辐照承载部移动至所述交叉区域时,所述后料盘能够由所述交叉区域移动至所述复检轨道的入口,或者所述前料盘由所述交叉区域移动至所述辐照承载部时,所述后料盘能够由所述复检轨道的入口移动至所述交叉区域。
  6. 根据权利要求5所述的样品运输检测装置,其中,所述前料盘上设置有第一止挡臂和由所述第一止挡臂围合形成的第一开口,所述前料盘可转动设置,以使所述开口朝向所述第一轨道或所述探测部。
  7. 根据权利要求5所述的样品运输检测装置,其中,
    所述后料盘设置有第二止挡臂和由所述第二止挡臂围合形成的开口,所述后料盘可转动设置;
    或者,所述后料盘设置有夹持机构,所述夹持机构相对所述后料盘可移动设置,以通过所述夹持机构夹持固定位于所述后料盘上的所述待测样品。
  8. 根据权利要求4所述的样品运输检测装置,其中,
    所述运输轨道还包括上料通道,所述进料口位于所述进料轨道远离所述出料口的一侧,所述上料通道和所述复检轨道相继连接于所述进料口和所述出料口之间;
    所述进料口设置有进料支撑板,所述进料支撑板沿第一方向延伸成型并位于所述上料通道在所述第二方向上的一侧,以使所述待测样品能够沿所述第二方向由所述进料支撑板移动至所述上料通道;
    多个分流杆,所述分流杆沿第一方向延伸成型,且多个所述分流杆沿第二方向间隔分布于所述进料支撑板,以在相邻的两个所述分流杆之间形成分流轨道,使两个以上的所述待测样品能够沿所述分流轨道移动;
    进料推板,设置于所述进料支撑板在第一方向上的一侧,且所述进料推板沿所述第一方向可移动设置,所述进料推板具有沿第二方向间隔排布的多个推料槽,以通过所述推料槽将所述待测样品限位于所述进料支撑板的进料位置,令所述待测样品能够由所述进料位置沿所述第二方向移动至所述上料通道。
  9. 根据权利要求8所述的样品运输检测装置,其中,所述进料口还包括多个进料传感器,设置于所述进料推板远离所述进料支撑板的一侧,且多个所述进料传感器和多个所述分流轨道对应设置,用于检测所述待测样品是否位于所述上料通道的预设位置。
  10. 根据权利要求4所述的样品运输检测装置,其中,还包括配对部件,所述配对部件包括扫码器和拾取机构,所述扫码器对应于所述第一轨道设置并用于获取位于所述第一轨道上的所述待测样品的参数信息,所述拾取机构用于根据所述参数信息拾取对应的参照样片,并将所述参照样片移动至所述第一轨道令所述待测样品和所述参照样片相互结合形成样品组件。
  11. 根据权利要求10所述的样品运输检测装置,其中,所述第一轨道上设置有让位槽,所述让位槽位于所述扫码器靠近所述第二轨道的一侧,所述拾取机构用于将所述参照样片移动至所述让位槽,所述让位槽由所述第一轨道表面凹陷形成,且所述让位槽的深度大于或等于所述参照样片的厚度,以使所述参照样片位于所述让位槽时,所述待测样品能够移动至所述让位槽。
  12. 根据权利要求11所述的样品运输检测装置,其特征子在于,所述让位槽内贯穿设置有沿竖直方向延伸的通孔,所述让位槽在竖直方向上的底部外设置有伸缩杆,所述伸缩杆在所述通孔内可移动设置,以使所述待测样品和所述参照样片结合形成所述样品组件后,通过所述伸缩杆驱动所述样品组件凸出于所述让位槽,令所述样品组件沿所述第一轨道继续移动。
  13. 根据权利要求10所述的样品运输检测装置,其中,所述待测样品置于样品盒内,所述样品盒的底部设置有安装槽,所述参照样片和所述安装槽的形状相适配,以令所述参照样片能够位于所述安装槽内。
  14. 根据权利要求10所述的样品运输检测装置,其中,
    所述复检轨道上设置有分离槽,所述分离槽由所述复检轨道的表面凹陷形成,以使所述样品组件中的所述待测样品和所述参照样片能够经过所述分离槽时分离;
    其中,所述分离槽位于所述出料轨道出口靠近所述进料口的一侧,和/或,所述分离槽位于所述出料轨道出口靠近所述出料口的一侧。
  15. 根据权利要求4所述的样品运输检测装置,其中,所述出料口设置有转运轨道,所述转运轨道位于所述复检轨道靠近所述探测部的一侧,且所述转运轨道位于所述出料轨道远离所述第一轨道的一侧;
    其中,所述待测样品在所述复检轨道单排排出,所述复检轨道和所述转运轨道在所述第一方向上的正投影至少部分重合设置,以使所述待测样品能够由所述复检轨道沿所述第一方向移动至所述转运轨道,所述转运轨道沿所述第一方向的延伸宽度大于所述复检轨道在所述第一方向上的延伸宽度,以使沿所述第一方向并列的多排所述待测样品能够沿所述转运轨道移动。
  16. 根据权利要求15所述的样品运输检测装置,其中,还包括排料轨道,连接于所述转运轨道远离所述出料轨道的一端,所述排料轨道沿第一方向延伸成型,且所述排料轨道和所述转运轨道在所述第二方向上投影至少部分重合设置,以使所述待测样品能够沿所述第二方向移动至所述排料轨道;
    其中,所述转运轨道的靠近所述排料轨道的一端设置有两个以上的检测器,两个以上的所述检测器分设于所述转运轨道在所述第一方向上的两侧,以检测所述待测样品是否到位,令所述待测样品到位后被运送至所述排料轨道并通过所述排料轨道排出。
  17. 根据权利要求2所述的样品运输检测装置,其中,还包括:
    检测运送件,包括支撑件以及沿所述支撑件可移动的机械手,以通过所述机械手带动所述待测样品在所述第二轨道运动,令所述待测样品由第第二轨道的入口移动至交叉区域,或由所述交叉区域移动至所述探测部;
    所述机械手包括连接部、基座及设置于所述基座的抓手,所述基座通过所述连接部连接于所述支撑件并相对所述支撑件可移动设置,所述抓手设置于所述基座,以通过所述抓手带动所述待测样品在所述第二轨道移动。
  18. 根据权利要求17所述的样品运输检测装置,其中,所述抓手包括:
    设置于所述基座并沿所述基座可移动的伸缩部;
    抓手组件,包括转动杆、支撑杆和弧形杆,所述转动杆的一端可转动地连接于所述伸缩部,另一端可转动地连接于所述支撑杆的两端之间,所述支撑杆的一端可转动地连接于所述基座,另一端可转动地连接于所述弧形杆,所述弧形杆的一端可转动地连接于所述支撑杆,且所述弧形杆可转动地连接于所述基座;
    其中,所述抓手组件为两组,且两组所述抓手组件的所述弧形杆的开口相对设置,以通过伸缩部的移动带动所述转动杆和所述支撑杆移动进而改变两个所述弧形杆之间的距离。
  19. 根据权利要求2所述的样品运输检测装置,其中,
    所述探测部具有屏蔽壁体、由所述屏蔽壁体围合形成的探测腔以及与所述探测腔 连通的开口,所述探测元件位于所述探测腔;
    所述第二轨道上设置有屏蔽门,所述屏蔽门对应设置于所述开口处,所述屏蔽门沿竖直方向可移动设置,以使所述屏蔽门能够在遮挡所述开口的第一位置和与所述第二轨道平齐的第二位置之间移动。
  20. 根据权利要求19所述的样品运输检测装置,其中,所述屏蔽门包括呈角度连接的第一分部和第二分部,所述第一分部沿第二方向延伸成型,所述第二分部沿高度方向延伸成型,以使所述屏蔽门位于所述第一位置时所述第二分部遮挡所述开口,所述屏蔽门位于所述第二位置时,所述第一分部和所述第二轨道平齐。
  21. 根据权利要求19所述的样品运输检测装置,其中,还包括过桥,所述过桥和所述屏蔽门间隔设置于所述交叉区域的两侧,所述过桥沿竖直方向上可移动设置,以使所述过桥和所述第二轨道平齐或至少部分高于所述第二轨道。
  22. 根据权利要求19所述的样品运输检测装置,其中,所述探测腔内设置有止挡块和第一测位传感器,所述止挡块用于向位于所述探测腔内的所述待测样品提供限位,所述第一测位传感器用于检测所述待测样品在所述探测腔内的位置。
  23. 一种样品运输检测系统,其中,包括:
    辐照装置,包括屏蔽体、由所述屏蔽体围合形成的辐照腔、与所述辐照腔连通的屏蔽开口及位于所述辐照腔内的射线源;
    权利要求1-22任一项所述的样品运输检测装置,其中所述辐照承载部由所述屏蔽开口位于所述辐照腔内。
PCT/CN2020/070467 2019-05-09 2020-01-06 样品运输检测装置及系统 WO2020224288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910384949.9A CN110092148A (zh) 2019-05-09 2019-05-09 样品运输检测装置及系统
CN201910384949.9 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020224288A1 true WO2020224288A1 (zh) 2020-11-12

Family

ID=67447505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070467 WO2020224288A1 (zh) 2019-05-09 2020-01-06 样品运输检测装置及系统

Country Status (2)

Country Link
CN (1) CN110092148A (zh)
WO (1) WO2020224288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092148A (zh) * 2019-05-09 2019-08-06 同方威视技术股份有限公司 样品运输检测装置及系统
US11420829B2 (en) * 2019-01-31 2022-08-23 TE Connectivity Services Gmbh Device and method for transferring components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849684B (zh) * 2019-11-19 2022-04-01 中国核动力研究设计院 一种用于制备放射性样品的装置
CN113501315B (zh) * 2021-07-16 2022-08-26 山东泉港辐射科技发展有限公司 一种控制辐照时间的定时装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922815B2 (ja) * 1979-11-12 1984-05-29 東レ株式会社 起毛編地の製造方法
KR101000432B1 (ko) * 2010-01-12 2010-12-13 주식회사 한성엔지니어링 과일 트레이 이송기의 과일 적재 트레이 정지 및 빈 트레이 자동반출방법 및 장치
CN103466325A (zh) * 2012-06-08 2013-12-25 中国原子能科学研究院 样品辐照与传输系统以及用于该系统的正负压转换装置
US20140014469A1 (en) * 2012-01-04 2014-01-16 Douglas Machine Inc. Article orienter & attendant orientation operations
CN104749020A (zh) * 2013-12-30 2015-07-01 同方威视技术股份有限公司 一种利用加速器进行口岸水果检疫辐照处理的方法和装置
CN105923339A (zh) * 2016-07-12 2016-09-07 中国科学院合肥物质科学研究院 一种用于辐照作业的自动化物品传输装置
CN110092148A (zh) * 2019-05-09 2019-08-06 同方威视技术股份有限公司 样品运输检测装置及系统
CN210126851U (zh) * 2019-05-09 2020-03-06 同方威视技术股份有限公司 样品运输检测装置及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB699801A (en) * 1950-06-09 1953-11-18 Donald Mayer King A loading and unloading device for use with overhead conveyors
JP3039980B2 (ja) * 1990-11-05 2000-05-08 株式会社日立製作所 臨床検査用検体搬送システム
CN2614803Y (zh) * 2003-04-02 2004-05-12 贵阳普天万向物流技术股份有限公司 分拣装置使用的直行、转弯道岔
CN103312634B (zh) * 2013-06-17 2016-08-10 同济大学 基于交叉节点主动控制的实体输送系统
ES2882303T3 (es) * 2013-12-10 2021-12-01 Hoffmann La Roche Dispositivo de transferencia de gradillas para tubos e instrumento de diagnóstico
CN105645107B (zh) * 2014-11-13 2019-10-18 中国科学院苏州纳米技术与纳米仿生研究所 应用于超高真空环境的样品传输系统及方法
CN205204192U (zh) * 2015-11-30 2016-05-04 江苏先锋食品股份有限公司 原料框轨道转换装置
KR101741637B1 (ko) * 2016-03-24 2017-05-30 한국해양과학기술원 컨테이너 검색 시스템
CN205701357U (zh) * 2016-06-03 2016-11-23 中山易必固新材料科技有限公司 一种用于电子束固化的双转角式防辐射自屏蔽输送通道
CN205998503U (zh) * 2016-08-31 2017-03-08 无锡智航控制技术有限公司 输送装置用十字轨道
JP6620707B2 (ja) * 2016-09-09 2019-12-18 株式会社ダイフク 物品搬送設備
CN107515427A (zh) * 2017-08-25 2017-12-26 清华大学 射线照射装置以及安全检测设备
CN107490704B (zh) * 2017-09-06 2019-06-18 清华大学 交叉传样装置及具有该交叉传样装置的超高真空测量系统
CN107934418B (zh) * 2017-11-01 2019-03-19 骆骏踔 一种智能运输机器人
CN207473100U (zh) * 2017-12-04 2018-06-08 江苏久瑞高能电子有限公司 一种电子加速器辐照均匀性自动在线监测装置
CN208541595U (zh) * 2017-12-07 2019-02-26 湖南湘华华大生物科技有限公司 一种烟草的电子束杀虫杀菌装置
CN208377843U (zh) * 2018-05-31 2019-01-15 苏州映真智能科技有限公司 交叉输送组件及交叉输送装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922815B2 (ja) * 1979-11-12 1984-05-29 東レ株式会社 起毛編地の製造方法
KR101000432B1 (ko) * 2010-01-12 2010-12-13 주식회사 한성엔지니어링 과일 트레이 이송기의 과일 적재 트레이 정지 및 빈 트레이 자동반출방법 및 장치
US20140014469A1 (en) * 2012-01-04 2014-01-16 Douglas Machine Inc. Article orienter & attendant orientation operations
CN103466325A (zh) * 2012-06-08 2013-12-25 中国原子能科学研究院 样品辐照与传输系统以及用于该系统的正负压转换装置
CN104749020A (zh) * 2013-12-30 2015-07-01 同方威视技术股份有限公司 一种利用加速器进行口岸水果检疫辐照处理的方法和装置
CN105923339A (zh) * 2016-07-12 2016-09-07 中国科学院合肥物质科学研究院 一种用于辐照作业的自动化物品传输装置
CN110092148A (zh) * 2019-05-09 2019-08-06 同方威视技术股份有限公司 样品运输检测装置及系统
CN210126851U (zh) * 2019-05-09 2020-03-06 同方威视技术股份有限公司 样品运输检测装置及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11420829B2 (en) * 2019-01-31 2022-08-23 TE Connectivity Services Gmbh Device and method for transferring components
CN110092148A (zh) * 2019-05-09 2019-08-06 同方威视技术股份有限公司 样品运输检测装置及系统

Also Published As

Publication number Publication date
CN110092148A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020224288A1 (zh) 样品运输检测装置及系统
KR101707220B1 (ko) 배터리 검사용 엑스레이 검사 장치 및 그에 의한 배터리 검사 방법
JP5000750B2 (ja) 多機器臨床作業セルのための検体−搬送モジュール
US7028831B2 (en) Magnetic specimen-transport system for automated clinical instrument
US20050196320A1 (en) Specimen-transport module for a multi-instrument clinical workcell
KR900000654B1 (ko) 반도체 웨이퍼 표면검사장치의 이송기구
KR20120046957A (ko) 레이저 가공 장치 및 이를 이용한 레이저 가공 방법
JP6323816B2 (ja) 自動分析装置、分析システム及び自動分析装置の動作方法
KR20150118492A (ko) 이송 제어 구조 방식의 자동 검사를 위한 엑스레이 검사 장치
CN209858595U (zh) 全自动化学发光分析仪的轨道进样系统
KR102049429B1 (ko) 이송 제어 구조 방식의 자동 검사를 위한 엑스레이 검사 장치
CN112246663A (zh) 产品点数装置及芯片测试设备
CN210676002U (zh) 一种uled屏幕基板检测/测量设备
CN209264568U (zh) 一种竖直定位升降式多通道干式荧光检测仪
CN210126851U (zh) 样品运输检测装置及系统
CN209772785U (zh) 半导体元件封装缺陷检查机
TW200908078A (en) Vision inspection system for semiconductor devices
KR100251527B1 (ko) 디스크형 방사선원 계측 분류 장전자동화장치
CN113188443A (zh) 一种多功能检测装置
US20200209269A1 (en) Cuvette box Conveying Device, Cuvette box Conveying Method, and Sample Analyzer
JP2012073261A (ja) 光学特性測定装置
TWM512575U (zh) 晶片測試機台
JP3920267B2 (ja) 小片の品質分析のために小片を照射する装置および方法
CN216350740U (zh) 一种多通道荧光免疫分析装置
US20240103028A1 (en) Analyzer and method for reading detection result of test apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802431

Country of ref document: EP

Kind code of ref document: A1