WO2020224269A1 - 运行频率的调节方法和装置 - Google Patents

运行频率的调节方法和装置 Download PDF

Info

Publication number
WO2020224269A1
WO2020224269A1 PCT/CN2019/127435 CN2019127435W WO2020224269A1 WO 2020224269 A1 WO2020224269 A1 WO 2020224269A1 CN 2019127435 W CN2019127435 W CN 2019127435W WO 2020224269 A1 WO2020224269 A1 WO 2020224269A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating frequency
conditioning unit
air conditioning
correction value
current
Prior art date
Application number
PCT/CN2019/127435
Other languages
English (en)
French (fr)
Inventor
苏玉海
张仕强
武连发
朱世强
李立民
冯涛
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020224269A1 publication Critical patent/WO2020224269A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present disclosure relates to the field of air conditioning control, and in particular to a method and device for adjusting the operating frequency.
  • Multi-connected ie, multi-connected air conditioning system
  • Multi-connected air conditioning system has the advantages of independent indoor unit control, flexible use, good scalability, beautiful appearance, small installation area, and no special computer room. It has been used in small and medium-sized buildings and some public buildings. Wide range of applications. Since there is usually no dedicated computer room, the outdoor unit of the multi-line group is usually installed on the roof or the ground, and is close to the area where people work in daily life. Therefore, the multi-line group will generate noise during operation and may also affect the user's work and life. , Rest, etc.
  • the existing multi-connections usually operate according to the initial operating frequency when they are just started, and then adjust the operating frequency according to the high pressure of the system or the exhaust temperature. If the system high pressure or exhaust is maintained within a specific interval, the air conditioning unit maintains the current operating frequency and no longer performs frequency adjustment.
  • the maximum operating frequency of the air conditioning unit can prevent the outdoor fan from increasing the operating frequency without an upper limit, causing damage to the fan blades or motors of the air conditioning unit. Generally, the maximum operating frequency is a fixed value and cannot be changed.
  • a method for adjusting the operating frequency which includes: acquiring the current operating state of the air-conditioning unit; when it is detected that the current operating state matches the historical operating state of the air-conditioning unit within a preset period of time, Determine the noise correction value; determine the current maximum operating frequency of the air-conditioning unit according to the noise correction value and the first highest operating frequency, where the first highest operating frequency is the highest operating frequency of the air-conditioning unit within the preset time period; adjust according to the current highest operating frequency The current operating frequency of the air conditioning unit.
  • the step of determining the noise correction value includes: detecting whether the current operating state satisfies the comfort control condition, where the comfort control condition is the operating parameter of the air conditioning unit that meets the user's comfort requirements; when the current operating state is detected When the comfort control conditions are met, the first correction value is determined according to the ratio of the capacity of the indoor unit shut down within the first preset period of time to the starting capacity, where the capacity of the shut down indoor unit represents the indoor unit that shuts down when the temperature reaches the preset temperature. Machine capacity; when the first correction value is greater than or equal to the first threshold, the first threshold is determined to be the noise correction value; when the first correction value is less than the first threshold, the first correction is determined to be the noise correction value.
  • the step of determining the noise correction value further includes: detecting whether the current operating state meets the comfort control condition, where the comfort control condition is the operating parameter of the air conditioning unit that meets the user's comfort requirements; When the state does not meet the comfort control conditions, the second correction value is determined according to the ratio of the capacity of the indoor unit shut down within the first preset period of time to the start-up capacity, where the capacity of the shut down indoor unit represents shutdown when the temperature reaches the preset temperature The indoor unit capacity; when the second correction value is less than or equal to the first threshold value, the first threshold value is determined to be the noise correction value; when the second correction value is greater than the first threshold value, the second correction value is determined to be the noise correction value .
  • the comfort control conditions include temperature comfort conditions and noise comfort conditions, where the priority of the temperature comfort conditions is greater than the noise comfort conditions.
  • the temperature comfort conditions Including at least one of the following conditions: the system low pressure is within the preset low pressure range, and at least one of the inlet pipe temperature and the outlet pipe temperature of the indoor unit is within the preset temperature range; when the air conditioning unit is in heating mode, The temperature comfort conditions include at least one of the following conditions: the system high pressure is within a preset high pressure range, and at least one of the inlet pipe temperature and the outlet pipe temperature of the indoor unit is within the preset temperature range.
  • the step of determining the current highest operating frequency of the air conditioning unit according to the noise correction value and the first highest operating frequency includes: in the case where it is detected that the current operating state satisfies the comfort control condition, obtaining the first The smaller frequency of the highest operating frequency and the second highest operating frequency is used as the first operating frequency, and the first operating frequency is corrected according to the noise correction value to obtain the current highest operating frequency.
  • the comfort control condition is to meet the user comfort
  • the operating parameters of the required air-conditioning unit, the second highest operating frequency is the highest operating frequency of the air-conditioning unit in the historical optimal operating data; in the case of detecting that the current operating state does not meet the comfort control conditions, the first highest operating frequency is obtained
  • the frequency greater than the second highest operating frequency is used as the second operating frequency, and the second operating frequency is corrected according to the noise correction value to obtain the current highest operating frequency.
  • the step of adjusting the current operating frequency of the air conditioning unit according to the current maximum operating frequency includes: detecting whether the current operating frequency of the air conditioning unit is greater than the current maximum operating frequency; In the case of the current highest operating frequency, control the air conditioning unit to operate at the current highest operating frequency.
  • the step of determining the noise correction value includes: determining the first correction value according to the ratio of the capacity of the shut-down indoor unit within the first preset time period to the power-on capacity, wherein the capacity of the shut-down indoor unit indicates that the temperature reaches the preset temperature The capacity of the indoor unit that shuts down at a time; when the first correction value is greater than or equal to the first threshold value, the first threshold value is determined to be the noise correction value; when the first correction value is less than the first threshold value, the first correction value is determined Noise correction value.
  • the step of determining the current maximum operating frequency of the air conditioning unit according to the noise correction value and the first maximum operating frequency includes: using the noise correction value to correct the first maximum operating frequency to obtain the current maximum operating frequency of the air conditioning unit Maximum operating frequency.
  • the method for adjusting the operating frequency further includes: detecting the current operating state of the air-conditioning unit; when the current operating state meets a preset condition, controlling the fan of the air-conditioning unit to operate normally, wherein the preset condition includes at least the following One: The air-conditioning unit is protected; the air-conditioning unit has protection risks; the operating parameters of the air-conditioning unit reach a preset threshold; the current operating state of the air-conditioning unit does not match the historical operating state of the air-conditioning unit within the preset time period.
  • the method for adjusting the operating frequency further includes: obtaining a first number of start-ups of the air-conditioning units every day in the first preset time period, and a second number of start-ups of the air-conditioning units that have been turned on during the first preset time period; Get the third number of start-ups of the air conditioning units that are turned on every day in the second consecutive preset time period, and the fourth number of start-ups of the air-conditioning units that have been turned on during the second preset time period; calculate the ratio of the first number of starts to the second number of starts , Get the first ratio; calculate the ratio of the third number of start-ups to the fourth number of start-ups, and get the second ratio; determine the history of the air conditioning unit according to the relationship between the first ratio and the third threshold, and the relationship between the second ratio and the fourth threshold Operating status.
  • the method for adjusting the operating frequency before obtaining the current operating state of the air conditioning unit, further includes: obtaining the number of air conditioning units on and the environmental parameters when the air conditioning unit is in the on state; Determine the optimal historical operating data in the historical database; control the air conditioning unit to operate according to the optimal historical operating data.
  • an operating frequency adjustment device including: an acquisition module for acquiring the current operating state of the air conditioning unit; a first determining module for detecting the current operating state and preset Determine the noise correction value when the historical operating status of the air conditioning unit matches within the time period; the second determination module is used to determine the current highest operating frequency of the air conditioning unit based on the noise correction value and the first highest operating frequency, where the first highest operating frequency The operating frequency is the highest operating frequency of the air conditioning unit within the preset time period; the adjustment module is used to adjust the current operating frequency of the air conditioning unit according to the current highest operating frequency.
  • an air conditioning unit including the operating frequency adjustment device of the above-mentioned embodiment.
  • a storage medium including a stored program, wherein when the program is running, the device in which the storage medium is located is controlled to perform an operating frequency adjustment method.
  • a processor for running a program wherein the method for adjusting the operating frequency is executed when the program is running.
  • Fig. 1 is a flowchart of some embodiments of a method for adjusting operating frequency according to the present disclosure
  • Fig. 3 is a flowchart of still other embodiments of the method for adjusting the operating frequency according to the present disclosure.
  • Fig. 4 is a schematic diagram of the composition of some embodiments of the operating frequency adjustment device according to the present disclosure.
  • the highest operating frequency is set for the air-conditioning unit to prevent the outdoor fan from increasing the operating frequency without an upper limit, causing damage to the fan blades or the motor of the air-conditioning unit.
  • the highest operating frequency is a fixed value and cannot be changed.
  • the noise generated when the fan of the air conditioning unit continues to operate at high frequency is one of the main sources of noise from the multi-unit outdoor unit. If the fan continues to operate at high frequency for a long time, the noise generated by it may affect the life and rest of the user.
  • the embodiments of the present disclosure provide a method and device for adjusting the operating frequency, so as to at least solve the technical problem that the air-conditioning unit continues to operate at a high frequency for a long time and generates high noise.
  • the current maximum operating frequency of the air-conditioning unit is corrected. After the current operating state of the air-conditioning unit is acquired, the current operating state and the historical operating state of the air-conditioning unit within a preset time period are detected. In the case of matching, the noise correction value is determined, and then the current maximum operating frequency of the air conditioning unit is determined according to the noise correction value and the first maximum operating frequency, and the current operating frequency of the air conditioning unit is adjusted according to the current maximum operating frequency.
  • the operating frequency of the air conditioning unit is intelligently adjusted according to the user's usage habits to ensure the user's comfort in using the air conditioning unit.
  • the noise correction value is determined according to the user's usage habits, and the current maximum operating frequency of the air conditioning unit is determined according to the correction value, and then the current operating frequency of the air conditioning unit is adjusted according to the current maximum operating frequency, which can reduce the air conditioning unit's current operating frequency. Noise, reduce the impact of noise on users' work and life.
  • the solution provided by the present disclosure achieves the purpose of controlling the operating frequency of the air-conditioning unit, thereby realizing the technical effect of reducing the noise generated by the air-conditioning unit, and further solving the problem that the air-conditioning unit generates high noise due to continuous high-frequency operation for a long time.
  • a method for adjusting the operating frequency is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions. The logical sequence is shown in the flowchart, but in some cases, the steps shown or described may be performed in a different order than here.
  • Fig. 1 is a flowchart of a method for adjusting the operating frequency of an embodiment of the present disclosure. As shown in Fig. 1, the method includes the following steps:
  • Step S102 acquiring the current operating state of the air conditioning unit.
  • the current operating status of the air-conditioning unit includes but is not limited to the operating mode of the air-conditioning unit, the number of air-conditioning units turned on, and the current operating frequency of the air-conditioning unit.
  • the operating mode of the air-conditioning unit includes but not limited to the cooling mode and the system. Thermal mode.
  • the above-mentioned air conditioning unit is an air conditioning unit in a multi-line system
  • the multi-line system has a data collection device
  • the data collection device can obtain the current operating state of the air conditioning unit.
  • the data collection device can detect the operating mode of the air conditioning unit and collect the current operating frequency of the air conditioning unit.
  • Step S104 Determine the noise correction value when it is detected that the current operating state matches the historical operating state of the air conditioning unit within the preset time period.
  • the historical operating state of the air-conditioning unit represents the user's usage habits of using the air-conditioning unit.
  • the preset duration is a time period from the preset duration to the current time, for example, The default duration is 24 hours.
  • the noise correction value is used to correct the current maximum operating frequency of the air conditioning unit, where the current maximum operating frequency is the highest operating frequency the air conditioning unit can operate.
  • the processor in the multi-line system calculates the aforementioned noise correction value according to the capacity of the shut-down indoor unit and the startup capacity, where the capacity of the shut-down indoor unit represents the capacity of the shut-down indoor unit when the temperature reaches a preset temperature.
  • determining that the current operating state matches the historical operating state of the air conditioning unit within the preset time period can ensure user comfort.
  • the noise correction value is determined to correct the current maximum operating frequency of the air-conditioning unit, and then the air-conditioning unit's fan operating time is reduced by the correction.
  • the noise generated not only ensures the comfort of users, but also reduces the impact of noise on users.
  • Step S106 Determine the current highest operating frequency of the air conditioning unit according to the noise correction value and the first highest operating frequency.
  • the above-mentioned first highest operating frequency is the highest operating frequency of the air conditioning unit within a preset time period. For example, if the current time is 12 o'clock, the first highest operating frequency is within 24 hours from 12 o'clock yesterday to the current time. , The maximum operating frequency of the fan of the air conditioning unit.
  • Step S108 Adjust the current operating frequency of the air conditioning unit according to the current highest operating frequency.
  • the processor After determining the current maximum operating frequency of the air conditioning unit, the processor adjusts the current operating frequency of the air conditioning unit.
  • the processor detects whether the current operating frequency of the air conditioning unit is greater than the current maximum operating frequency, and if it detects that the current operating frequency of the air conditioning unit is greater than the current maximum operating frequency, it controls the air conditioning unit to operate at the current maximum operating frequency. It can be seen that step S108 can control the current operating frequency of the air-conditioning unit not to exceed the current maximum operating frequency, thereby achieving the purpose of reducing the operating frequency of the fan of the air-conditioning unit, thereby reducing the long-term high-frequency operation of the fan of the air-conditioning unit. The noise generated.
  • the current maximum operating frequency of the air conditioning unit is corrected. After the current operating status of the air conditioning unit is acquired, the current operating status and the preset duration are detected When the historical operating status of the internal air conditioning unit matches, determine the noise correction value, then determine the current maximum operating frequency of the air conditioning unit according to the noise correction value and the first maximum operating frequency, and adjust the current operation of the air conditioning unit according to the current maximum operating frequency frequency.
  • the historical operating state of the air conditioning unit represents the user's usage habits.
  • the embodiments of the present disclosure intelligently adjust the operating frequency of the air-conditioning unit according to the user's usage habits, and ensure the comfort of the user in using the air-conditioning unit.
  • the noise correction value is determined according to the user's usage habits, and the current maximum operating frequency of the air conditioning unit is determined according to the correction value, and then the current operating frequency of the air conditioning unit is adjusted according to the current maximum operating frequency, which can reduce the air conditioning unit's current operating frequency. Noise, reduce the impact of noise on users' work and life.
  • the embodiments of the present disclosure can reduce the noise generated by the air-conditioning unit, thereby solving the technical problem that the air-conditioning unit continues to operate at a high frequency for a long time and generates high noise.
  • the processor of the air conditioning unit before acquiring the current operating state of the air conditioning unit, the processor of the air conditioning unit detects whether the air conditioning unit is turned on, and when the air conditioning unit is detected to be turned on, acquires the number of air conditioning units turned on and the environmental parameters, Then determine the optimal historical operating data in the historical database according to the number of startups and environmental parameters, and control the air conditioning unit to operate in accordance with the optimal historical operating data.
  • the aforementioned environmental parameters include but are not limited to weather parameters, such as environmental temperature, humidity, and wind speed.
  • the optimal historical operating data characterizes that when the air conditioning unit is operated with the operating data, the user's comfort experience is the best. Therefore, when the air-conditioning unit is turned on and running, according to the number of air-conditioning units, weather parameters and other conditions, the optimal historical operating data is first matched in the historical database, so that the air-conditioning unit operates according to the optimal historical operating data, which can improve user comfort Experience.
  • optimal historical operating data can be the operating data obtained by the processor recording and learning the user’s usage habits of air conditioning units, or it can be obtained by machine learning and intelligent analysis of relevant data on the Internet. Operating data of the air conditioning unit.
  • the processor corresponding to the multi-line system also defines the user's usage habits (that is, the historical operating state of the air conditioning unit). Specifically, the processor first obtains the first number of start-ups of the air-conditioning units that are turned on every day during the first preset time period, and the second number of start-ups of the air-conditioning units that have been turned on during the first preset time period, and obtains the second consecutive preset time period The third number of start-ups of the air-conditioning units that are turned on at most each day in the daily, and the fourth number of start-ups of the air-conditioning units that have been turned on during the second preset time period.
  • the ratio of the first number of power-on devices to the second number of power-on devices is calculated to obtain the first ratio
  • the ratio of the third power-on number to the fourth power devices is calculated to obtain the second ratio.
  • the historical operating state of the air conditioning unit is determined according to the relationship between the first ratio and the third threshold, and the relationship between the second ratio and the fourth threshold.
  • user usage habit 1 as: the number of indoor units that will be turned on every day in the same operating mode (for example, cooling mode) for X consecutive days (ie, the first preset duration)
  • the ratio i.e., the first ratio of the number of indoor units that have been turned on (i.e. the number of second startups) within a date (i.e. consecutive X days) is greater than or equal to M (i.e. the third threshold), and for Y consecutive days (i.e.
  • the ratio (i.e., the second ratio) of the number of indoor units that will be turned on every day (i.e. the third number of startups) and the number of indoor units that have been turned on (i.e. the fourth startup number) (i.e. the second ratio) is greater than or equal to N1 (i.e. the fourth Threshold);
  • user habit 2 as: the ratio of the number of indoor units that will be turned on every day in the same operating mode for X consecutive days and the number of indoor units that have been turned on on the same day ⁇ M, and N1 ⁇ the maximum per day for consecutive Y days The ratio of the number of open indoor units to the number of all indoor units ⁇ N2;
  • n the ratio of the number of indoor units that will be turned on every day in the same operating mode for X consecutive days and the number of indoor units that have been turned on on the same day ⁇ M, and Nn-1 ⁇ consecutive Y days The ratio of the maximum number of indoor units turned on every day to the number of all indoor units ⁇ Nn;
  • the processor can define a variety of different user habits according to different conditions.
  • the processor determines the noise correction value when it is detected that the current operating state matches the historical operating state of the air conditioning unit within the preset time period. Specifically, the processor first detects whether the current operating state meets the comfort control condition, where the comfort control condition is the operating parameter of the air conditioning unit that meets the user's comfort requirements, and then detects that the current operating state meets the comfort control condition.
  • the first correction value is determined according to the ratio of the capacity of the indoor unit shut down within the first preset time period to the power-on capacity, and when the first correction value is greater than or equal to the first threshold value, the first threshold value is determined to be the noise correction value, In a case where the first correction value is less than the first threshold value, the first correction value is determined to be the noise correction value, where the capacity of the shut down indoor unit represents the capacity of the shut down indoor unit when the temperature reaches the preset temperature.
  • the second correction value is determined according to the ratio of the capacity of the indoor unit shut down within the first preset time to the power-on capacity, and the second correction value is less than or equal to the first threshold
  • the first threshold value is determined to be the noise correction value
  • the second correction value is determined to be the noise correction value
  • the noise correction value satisfies the following formula:
  • Noise correction value (0.75-the capacity of the indoor unit that shuts down within the first preset time/the capacity of the indoor unit to start up within the first preset time) * the maximum operating frequency of the current unit fan*K
  • the capacity of the indoor unit shut down within the first preset time period can be the total capacity of the indoor unit shut down when the temperature that has occurred in the past 24 hours reaches the preset temperature
  • the boot capacity of the indoor unit within the first preset time period can be Is the total power-on indoor unit capacity in the past 24h
  • K is the coefficient
  • the processor When it is detected that the user's current use status of the air conditioning unit is consistent with the use habits of the past 24 hours, the processor further determines whether the current operating status of the air conditioning unit meets the temperature comfort operating conditions, and if so, further calculates the first correction value; if If it is not satisfied, the second correction value is further calculated.
  • the processor performs a negative optimization on the first correction value, that is, preferentially selects the negative value. For example, if the first correction value is greater than 0, the noise correction value is selected The value is 0; if the first correction value is less than or equal to 0, the noise correction value is the first correction value.
  • the processor performs positive optimization on the second correction value, that is, preferential selection of positive values. For example, if the second correction value is less than 0, the noise correction value is 0; if the second correction value is greater than or equal to 0, then The value of the noise correction value is the second correction value.
  • the negative optimization of the first correction value ensures the user's noise experience
  • the positive optimization of the second correction value ensures the user's comfort experience
  • the comfort control condition includes a temperature comfort condition and a noise comfort condition, wherein the temperature comfort condition has a higher priority than the noise comfort condition.
  • the temperature comfort condition refers to whether the operating parameters of the air conditioning unit meet the user's requirements for temperature comfort
  • the noise comfort condition refers to whether the operating parameters of the air conditioning unit meet the user's requirements for noise comfort.
  • the temperature comfort condition includes at least one of the following conditions: the system low pressure is within a preset low pressure range, and at least one of the inlet pipe temperature and the outlet pipe temperature of the indoor unit is in the preset low pressure range.
  • Set the temperature range for example, when the air conditioning unit is in cooling operation, detect at least one of the system low pressure of the air conditioning unit and the inlet pipe temperature and outlet pipe temperature of the indoor unit. If the system low pressure reaches the preset low pressure range, and the indoor unit’s If the inlet pipe temperature is within the first temperature range and the outlet pipe temperature is within the second temperature range, it is determined that the temperature comfort conditions are met; when the air conditioning unit is in heating mode, the temperature comfort conditions include at least one of the following conditions : The system high pressure is within the preset high pressure range, and at least one of the inlet pipe temperature and the outlet pipe temperature of the indoor unit is within the preset temperature range.
  • the air conditioner when the air conditioner is heating the unit, it detects the system high pressure and the inlet temperature of the indoor unit. At least one of the pipe temperature and the outlet pipe temperature. If the system high pressure reaches the preset high pressure range, and the inlet pipe temperature of the indoor unit is within the first temperature range and the outlet pipe temperature is within the second temperature range, it is determined that the temperature comfort is satisfied sexual conditions.
  • the processor determines the current maximum operating frequency of the air conditioning unit according to the noise correction value and the first maximum operating frequency. Specifically, when it is detected that the current operating state meets the comfort control condition, the smaller of the first highest operating frequency and the second highest operating frequency is acquired as the first operating frequency, and the first operating frequency is adjusted according to the noise correction value. The frequency is corrected to obtain the current highest operating frequency, where the second highest operating frequency is the highest operating frequency of the air conditioning unit in the historical optimal operating data; when it is detected that the current operating state does not meet the comfort control conditions, the second highest operating frequency is obtained. The larger one of the highest operating frequency and the second highest operating frequency is used as the second operating frequency, and the second operating frequency is corrected according to the noise correction value to obtain the current highest operating frequency.
  • the current maximum operating frequency of the air conditioning unit satisfies the following formula:
  • the current highest operating frequency F (the first highest operating frequency, the second highest operating frequency) + noise correction value
  • the first highest operating frequency may be the highest operating frequency of the fan of the air conditioning unit in the past 24 hours, and the second highest operating frequency is the highest operating frequency of the fan in the historical optimal operating data.
  • the value of F is the smaller of the first highest operating frequency and the second highest operating frequency ;
  • the value of F is the larger of the first highest operating frequency and the second highest operating frequency .
  • Figure 2 shows a flow chart of the method for adjusting the operating frequency of the above formula. Specifically, first analyze and summarize the user's use rule of air conditioning unit by means of big data, and determine the use rule according to the use rule. Use habits, that is, get the historical operating status of the air conditioning unit. Then when the air-conditioning unit is turned on, the current operating state of the air-conditioning unit is obtained, and the historical optimal operating data is matched from the database, so that the air-conditioning unit operates according to the historical optimal operating data, thereby ensuring user comfort.
  • the processor of the multi-line system detects the current operating state of the air-conditioning unit, and determines whether the current operating state of the air-conditioning unit conforms to the user's usage habits of the past 24 hours, and if so, further detects the current operating state of the air-conditioning unit Whether the temperature comfort condition is met, if it is satisfied, the first correction value is calculated, and the first correction value is optimized in the negative direction; if not, the second correction value is calculated, and the second correction value is searched in the positive direction excellent.
  • the noise correction value can be obtained by performing negative optimization on the first correction value or positive optimization on the second correction value.
  • the current highest operating frequency is calculated based on the noise correction value and the highest operating frequency in the past 24 hours.
  • the air conditioning unit operates normally according to the control command input by the user.
  • the present disclosure also provides a more concise method for processing the operating frequency of the air conditioning unit.
  • the noise adaptive function when the noise adaptive function is effective, it is determined whether the user's usage habits are the same as the predefined usage habits. To revise the operating frequency of the fan of the air conditioning unit to reduce the noise generated by the outdoor unit during operation. Specifically, the noise adaptive control function of the air conditioning unit set by the user is effective. Then, the method described in the above embodiment is used to define the user's usage habits of using the air conditioning unit, and detect the current operating status of the air conditioning unit, and determine whether the current operating status of the air conditioning unit is consistent with the user's usage habits in the past 24 hours. If it is, the processor of the multi-line system calculates and determines the noise correction value.
  • the processor determines the first correction value according to the ratio of the capacity of the indoor unit shut down within the first preset time period to the power-on capacity, and then determines that the first threshold is the noise correction when the first correction value is greater than or equal to the first threshold Value; in the case where the first correction value is less than the first threshold, the first correction value is determined to be the noise correction value.
  • the processor determines the first correction value according to the ratio of the capacity of the indoor unit shut down within the first preset time period to the power-on capacity, and then determines that the first threshold is the noise correction when the first correction value is greater than or equal to the first threshold Value; in the case where the first correction value is less than the first threshold, the first correction value is determined to be the noise correction value.
  • the noise correction value satisfies the following formula:
  • Noise correction value (0.75-the capacity of the indoor unit that shuts down within the first preset time/the capacity of the indoor unit to start up within the first preset time) * the maximum operating frequency of the current unit fan*F
  • the capacity of the indoor unit shut down within the first preset time period can be the total capacity of the indoor unit shut down when the temperature that has occurred in the past 24 hours reaches the preset temperature
  • the boot capacity of the indoor unit within the first preset time period can be Is the total power-on indoor unit capacity in the past 24h
  • F is a coefficient, which is a preset value determined according to the ambient temperature.
  • the operating frequency of the fan of the above-mentioned air conditioning unit cannot exceed the preset value a at most.
  • the processor calculates the current highest operating frequency based on the noise correction value and the highest operating frequency in the past 24 hours. Among them, the processor uses the noise correction value to correct the first highest operating frequency to obtain the current highest operating frequency of the air conditioning unit. Then, the processor detects the current operating state of the air conditioning unit. When the current operating state meets the preset conditions, the fan that controls the air-conditioning unit operates normally, that is, the air-conditioning unit operates normally according to the control command input by the user and exits the control.
  • the preset conditions include at least one of the following: the air conditioning unit is protected; the air conditioning unit has a protection risk; the operating parameters of the air conditioning unit reach the preset threshold; and the current operating state of the air conditioning unit and the historical operating status of the air conditioning unit within the preset time period Mismatch.
  • the air conditioning unit when the operating parameters of the air conditioning unit are greater than the first threshold, the air conditioning unit will be protected and shut down. For example, if the temperature value corresponding to the high pressure of the air conditioning unit is higher than 65°C, the air conditioning unit will be protected.
  • the air-conditioning unit When the operating parameters of the air-conditioning unit are within the preset range, it is determined that the air-conditioning unit has a protection risk. For example, it is detected that the temperature corresponding to the high pressure of the air-conditioning unit is 63°C, and the first threshold of the air-conditioning unit protection shutdown has not been reached. , It is determined that the air conditioning unit has a protection risk.
  • the aforementioned preset threshold is a parameter that enables the air conditioning unit to operate normally.
  • the above-mentioned solution provided by the present disclosure intelligently adjusts the operating frequency of the fan of the air-conditioning unit according to the user’s usage habits, while ensuring the user’s comfort, reduces the noise generated during the operation of the fan as much as possible, and reduces the noise to the user. Affect their work and life.
  • FIG. 4 is a schematic diagram of the device for adjusting the operating frequency according to the embodiment of the present disclosure.
  • the device includes: an acquisition module 401, a first determination module 403, a second determination module 405, and an adjustment module 407.
  • the obtaining module 401 is used to obtain the current operating state of the air-conditioning unit; the first determining module 403 is used to determine the noise correction when the current operating state is detected to match the historical operating state of the air-conditioning unit within the preset time period.
  • the second determination module 405 is used to determine the current highest operating frequency of the air conditioning unit according to the noise correction value and the first highest operating frequency, where the first highest operating frequency is the highest operating frequency of the air conditioning unit within a preset time period; adjustment
  • the module 407 is used to adjust the current operating frequency of the air conditioning unit according to the current highest operating frequency.
  • the acquisition module 401, the first determination module 403, the second determination module 405, and the adjustment module 407 correspond to the steps S102 to S108 of the foregoing embodiment, and the four modules and the corresponding steps are implemented examples It is the same as the application scenario, but not limited to the content disclosed in the above embodiment.
  • the first determination module includes: a first detection module, a third determination module, a fourth determination module, and a fifth determination module.
  • the first detection module is used to detect whether the current operating state meets the comfort control conditions, where the comfort control conditions are the operating parameters of the air conditioning unit that meets the user's comfort requirements;
  • the third determination module is used to detect the current
  • the first correction value is determined according to the ratio of the capacity of the indoor unit shut down within the first preset period of time to the start-up capacity, where the capacity of the shut down indoor unit represents the shutdown when the temperature reaches the preset temperature The indoor unit capacity;
  • the fourth determining module is used to determine that the first threshold value is the noise correction value when the first correction value is greater than or equal to the first threshold value;
  • the fifth determining module is used to determine that the first correction value is less than the first In the case of the threshold value, the first correction value is determined to be the noise correction value.
  • the first determination module includes: a second detection module, a sixth determination module, a seventh determination module, and an eighth determination module.
  • the second detection module is used to detect whether the current operating state meets the comfort control conditions, where the comfort control conditions are the operating parameters of the air conditioning unit that meets the user's comfort requirements;
  • the sixth determination module is used to detect the current
  • the second correction value is determined according to the ratio of the capacity of the indoor unit shut down within the first preset time to the capacity of the start-up, where the capacity of the shut down indoor unit represents the occurrence when the temperature reaches the preset temperature The capacity of the shut down indoor unit;
  • the seventh determining module is used to determine that the first threshold is the noise correction value when the second correction value is less than or equal to the first threshold;
  • the eighth determining module is used to determine that the second correction value is greater than the first In the case of a threshold value, the second correction value is determined to be the noise correction value.
  • the comfort control conditions include temperature comfort conditions and noise comfort conditions, where the priority of the temperature comfort conditions is greater than the noise comfort conditions.
  • the temperature comfort conditions Including at least one of the following conditions: the system low pressure is within the preset low pressure range, and at least one of the inlet pipe temperature and the outlet pipe temperature of the indoor unit is within the preset temperature range; when the air conditioning unit is in the heating mode, The temperature comfort conditions include that at least one of the system high pressure is within a preset high pressure range, and at least one of the inlet pipe temperature and the outlet pipe temperature of the indoor unit is within the preset temperature range.
  • the second determining module includes: a first acquiring module and a second acquiring module.
  • the first obtaining module is used to obtain the smaller of the first highest operating frequency and the second highest operating frequency as the first operating frequency when it is detected that the current operating state meets the comfort control conditions, and according to the noise
  • the correction value corrects the first operating frequency to obtain the current highest operating frequency, where the second highest operating frequency is the highest operating frequency of the air conditioning unit in the historical optimal operating data
  • the second acquisition module is used to detect the current operating frequency When the state does not meet the comfort control conditions, the larger of the first highest operating frequency and the second highest operating frequency is obtained as the second operating frequency, and the second operating frequency is corrected according to the noise correction value to obtain the current highest Operating frequency.
  • the adjustment module includes: a third detection module and a first control module.
  • the third detection module is used to detect whether the current operating frequency of the air conditioning unit is greater than the current maximum operating frequency; the first control module is used to control the air conditioner when the current operating frequency of the air conditioning unit is detected to be greater than the current maximum operating frequency The unit runs at the highest current operating frequency.
  • the first determining module includes: a ninth determining module, a tenth determining module, and an eleventh determining module.
  • the ninth determining module is used to determine the first correction value according to the ratio of the capacity of the indoor unit shut down within the first preset time to the start-up capacity, where the capacity of the shut down indoor unit represents the indoor unit that shuts down when the temperature reaches the preset temperature.
  • Machine capacity the tenth determining module, used to determine the first threshold value is the noise correction value when the first correction value is greater than or equal to the first threshold
  • the eleventh determining module used to determine the first correction value is less than the first threshold In the case of determining the first correction value, the noise correction value.
  • the second determining module includes: a processing module.
  • the processing module is used to correct the first highest operating frequency using the noise correction value to obtain the current highest operating frequency of the air conditioning unit.
  • the device for adjusting the operating frequency further includes: a fourth detection module and a second control module.
  • the fourth detection module is used to detect the current operating state of the air-conditioning unit;
  • the second control module is used to control the normal operation of the fan of the air-conditioning unit when the current operating state meets preset conditions, where the preset conditions include At least one of the following: the air conditioning unit is protected; the air conditioning unit has a protection risk; the operating parameters of the air conditioning unit reach a preset threshold; the current operating state of the air conditioning unit does not match the historical operating state of the air conditioning unit within the preset time period.
  • the device for adjusting the operating frequency further includes: a third acquisition module, a fourth acquisition module, a first calculation module, a second calculation module, and a twelfth determination module.
  • the third acquisition module is used to acquire the first number of startups of the air conditioning units that are turned on every day during the first preset time period, and the second number of startups of the air conditioning units that have been turned on within the first preset time period;
  • the fourth acquisition module It is used to obtain the third number of start-ups of the air conditioning units that are turned on the most per day during the second consecutive preset time period, and the fourth number of start-ups of the air conditioning units that have been turned on during the second preset time period;
  • the first calculation module is used to calculate the first The ratio of the number of start-ups to the number of second start-ups is used to obtain the first ratio;
  • the second calculation module is used to calculate the ratio of the number of third start-ups to the fourth start-up number to obtain the second ratio;
  • the device for adjusting the operating frequency further includes: a fifth acquisition module, a thirteenth determination module, and a third control module.
  • the fifth obtaining module is used to obtain the number of start-ups and environmental parameters of the air-conditioning unit when the air-conditioning unit is turned on;
  • the thirteenth determining module is used to determine the optimal number in the historical database according to the number of start-ups and environmental parameters Historical operating data;
  • the third control module is used to control the air conditioning unit to operate according to the optimal historical operating data.
  • an air conditioning unit including the frequency adjustment device of the above-mentioned embodiment.
  • a storage medium includes a stored program, wherein when the program runs, the device where the storage medium is located is controlled to execute the operating frequency adjustment method of the foregoing embodiment.
  • a processor which is used to run a program, wherein the method for adjusting the operating frequency of the foregoing embodiment is executed when the program is running.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present disclosure essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种运行频率的调节方法和装置。其中,运行频率的调节方法包括:步骤S102,获取空调机组的当前运行状态;步骤S104,在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,确定噪音修正值;步骤S106,根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率,其中,第一最高运行频率为空调机组在预设时长内的最高运行频率;步骤108,根据当前最高运行频率调节空调机组的当前运行频率。

Description

运行频率的调节方法和装置
本公开是以申请号为 201910376953.0,申请日为 2019年5月7日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空调控制领域,具体而言,涉及一种运行频率的调节方法和装置。
背景技术
多联机(即多联式空调系统)具有室内机独立控制、使用灵活、扩展性好、外形美观、占用安装面积小、可不设专用机房等优点,其在中小型建筑和部分公共建筑中得到了广泛的应用。由于通常不设置专用机房,多联机组室外机通常安装在楼顶或者地面,与人们日常生活工作的区域距离较近,因此,多联机在运行时会产生噪音,还可能影响用户的工作、生活、休息等。
现有的多联机通常在刚开机时,按照初始的运行频率运行,然后再根据系统高压或者排气温度来对运行频率进行调节。如果系统高压或者排气维持在特定区间内,则空调机组维持当前运行频率,不再进行频率调节。另外,空调机组的最高运行频率可防止室外风机无上限的增大运行频率,导致空调机组的风叶或者电机损坏。通常,最高运行频率为固定值,不可改变。
发明内容
根据本公开的一个方面,提供了一种运行频率的调节方法,包括:获取空调机组的当前运行状态;在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,确定噪音修正值;根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率,其中,第一最高运行频率为空调机组在预设时长内的最高运行频率;根据当前最高运行频率调节空调机组的当前运行频率。
在一些实施例中,确定噪音修正值的步骤包括:检测当前运行状态是否满足舒适性控制条件,其中,舒适性控制条件为满足用户舒适性需求的空调机组的运行参数;在检测到当前运行状态满足舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,其中,停机的室内机容量表征温度达到 预设温度时出现停机的室内机容量;在第一修正值大于等于第一阈值的情况下,确定第一阈值为噪音修正值;在第一修正值小于第一阈值的情况下,确定第一修正值为噪音修正值。
在一些实施例中,确定噪音修正值的步骤还包括:检测当前运行状态是否满足舒适性控制条件,其中,舒适性控制条件为满足用户舒适性需求的空调机组的运行参数;在检测到当前运行状态不满足舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第二修正值,其中,停机的室内机容量表征温度达到预设温度时出现停机的室内机容量;在第二修正值小于等于第一阈值的情况下,确定第一阈值为噪音修正值;在第二修正值大于第一阈值的情况下,确定第二修正值为噪音修正值。
在一些实施例中,舒适性控制条件包括温度舒适性条件和噪音舒适性条件,其中,温度舒适性条件的优先级大于噪音舒适性条件,在空调机组处于制冷模式的情况下,温度舒适性条件包括如下条件中的至少一个:系统低压处于预设低压范围内,以及室内机的进管温度和出管温度中的至少一个处于预设温度范围内;在空调机组处于制热模式的情况下,温度舒适性条件包括如下条件中的至少一个:系统高压处于预设高压范围内,以及室内机的进管温度和出管温度中的至少一个处于预设温度范围内。
在一些实施例中,根据所述噪音修正值以及第一最高运行频率确定所述空调机组的当前最高运行频率的步骤包括:在检测到当前运行状态满足舒适性控制条件的情况下,获取第一最高运行频率与第二最高运行频率中较小的频率作为第一运行频率,并根据噪音修正值对第一运行频率进行修正,得到当前最高运行频率,其中,舒适性控制条件为满足用户舒适性需求的空调机组的运行参数,第二最高运行频率为空调机组在历史最优运行数据中的最高运行频率;在检测到当前运行状态不满足舒适性控制条件的情况下,获取第一最高运行频率与第二最高运行频率中较大的频率作为第二运行频率,并根据噪音修正值对第二运行频率进行修正,得到当前最高运行频率。
在一些实施例中,根据所述当前最高运行频率调节所述空调机组的当前运行频率的步骤包括:检测空调机组的当前运行频率是否大于当前最高运行频率;在检测到空调机组的当前运行频率大于当前最高运行频率的情况下,控制空调机组按照当前最高运行频率运行。
在一些实施例中,确定噪音修正值的步骤包括:根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,其中,停机的室内机容量表征温度达到预 设温度时出现停机的室内机容量;在第一修正值大于等于第一阈值的情况下,确定第一阈值为噪音修正值;在第一修正值小于第一阈值的情况下,确定第一修正值为噪音修正值。
在一些实施例中,根据所述噪音修正值以及第一最高运行频率确定所述空调机组的当前最高运行频率的步骤包括:使用噪音修正值对第一最高运行频率进行修正,得到空调机组的当前最高运行频率。
在一些实施例中,运行频率的调节方法还包括:检测空调机组的当前运行状态;在当前运行状态满足预设条件的情况下,控制空调机组的风机正常运行,其中,预设条件包括如下至少之一:空调机组出现保护;空调机组存在保护风险;空调机组的运行参数达到预设阈值;空调机组的当前运行状态与预设时长内空调机组的历史运行状态不匹配。
在一些实施例中,运行频率的调节方法还包括:获取第一预设时长内空调机组每天都开机的第一开机数量,以及第一预设时长内开启过的空调机组的第二开机数量;获取连续第二预设时长内每天都开启的空调机组的第三开机数量,以及第二预设时长内开启过的空调机组的第四开机数量;计算第一开机数量与第二开机数量的比值,得到第一比值;计算第三开机数量与第四开机数量的比值,得到第二比值;根据第一比值与第三阈值的关系,以及第二比值与第四阈值的关系确定空调机组的历史运行状态。
在一些实施例中,在获取空调机组的当前运行状态之前,运行频率的调节方法还包括:在空调机组处于开机状态的情况下,获取空调机组的开机数量以及环境参数;根据开机数量以及环境参数在历史数据库中确定最优历史运行数据;控制空调机组按照最优历史运行数据运行。
根据本公开的另一方面,还提供了一种运行频率的调节装置,包括:获取模块,用于获取空调机组的当前运行状态;第一确定模块,用于在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,确定噪音修正值;第二确定模块,用于根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率,其中,第一最高运行频率为空调机组在预设时长内的最高运行频率;调节模块,用于根据当前最高运行频率调节空调机组的当前运行频率。
根据本公开的另一方面,还提供了一种空调机组,包括上述实施例的运行频率的调节装置。
根据本公开的另一方面,还提供了一种存储介质,该存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行运行频率的调节方法。
根据本公开的另一方面,还提供了一种处理器,该处理器用于运行程序,其中,程序运行时执行运行频率的调节方法。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开运行频率的调节方法的一些实施例的流程图;
图2是根据本公开运行频率的调节方法的另一些实施例的流程图;
图3是根据本公开运行频率的调节方法的再一些实施例的流程图;以及
图4是根据本公开运行频率的调节装置的一些实施例的组成示意图。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
发明人所知晓的相关技术中,为空调机组设置了最高运行频率,以防止室外风机无上限的增大运行频率,导致空调机组的风叶或者电机损坏。通常最高运行频率为固定值,不可改变。然而,在空调机组的风机持续高频运行时产生的噪音是多联室外机 噪音的主要来源之一。风机长时间的持续高频运行,其产生的噪音可能会对用户的生活、休息等造成影响。
有鉴于此,本公开的实施例提供了一种运行频率的调节方法和装置,以至少解决空调机组长时间持续高频运行产生噪音较大的技术问题。
在本公开的实施例中,采用对空调机组的当前最高运行频率进行修正的方式,在获取到空调机组的当前运行状态之后,在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,确定噪音修正值,然后根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率,并根据当前最高运行频率调节空调机组的当前运行频率。
容易注意到的是,空调机组的历史运行状态表征了用户的使用习惯。在本公开中,根据用户的使用习惯来智能化调节空调机组的运行频率,保证了用户使用空调机组的舒适性。另外,根据用户的使用习惯来确定噪音修正值,并根据修正值来确定空调机组的当前最高运行频率,进而根据当前最高运行频率调节空调机组的当前运行频率,可以降低空调机组运行时所产生的噪音,减少噪音对用户的工作、生活等的影响。
由此可见,本公开所提供的方案达到了控制空调机组的运行频率的目的,从而实现了降低空调机组所产生的噪音的技术效果,进而解决了空调机组长时间持续高频运行产生噪音较大的技术问题。
根据本公开实施例,提供了一种运行频率的调节方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是本公开实施例的运行频率的调节方法流程图,如图1所示,该方法包括如下步骤:
步骤S102,获取空调机组的当前运行状态。
需要说明的是,空调机组的当前运行状态包括但不限于空调机组的运行模式、空调机组的开机数量以及空调机组的当前运行频率等,其中,空调机组的运行模式包括但不限于制冷模式和制热模式。
在一些实施例中,上述空调机组为多联机系统中的空调机组,多联机系统具有数据采集设备,数据采集设备可获取到空调机组的当前运行状态。例如,数据采集设备可以检测空调机组的运行模式,并采集空调机组的当前运行频率。
步骤S104,在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,确定噪音修正值。
在步骤S104中,空调机组的历史运行状态表征了用户使用空调机组的使用习惯,在一些实施例中,预设时长为与当前时间相差预设时长的时间点到当前时间的时间段,例如,预设时长为24小时。
另外,噪音修正值用于对空调机组的当前最高运行频率进行修正,其中,当前最高运行频率为空调机组可运行的最高运行频率。例如,多联机系统中的处理器根据停机的室内机容量以及开机容量来计算上述噪音修正值,其中,停机的室内机容量表征温度达到预设温度时出现停机的室内机容量。
此外,还需要说明的是,确定当前运行状态与预设时长内空调机组的历史运行状态相匹配,可以保证用户的舒适性。而在确定当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,才确定噪音修正值对空调机组的当前最高运行频率进行修正,进而通过修正降低空调机组的风机运行时所产生的噪音,不仅保证了用户的舒适性,还减少了噪音对用户的影响。
步骤S106,根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率。
在一些实施例中,上述第一最高运行频率为空调机组在预设时长内的最高运行频率,例如,当前时间为12点,则第一最高运行频率为昨天12点至当前时间的24小时内,空调机组的风机的最高运行频率。
步骤S108,根据当前最高运行频率调节空调机组的当前运行频率。
在确定了空调机组的当前最高运行频率之后,处理器根据对空调机组的当前运行频率进行调节。
具体的,处理器检测空调机组的当前运行频率是否大于当前最高运行频率,如果检测到空调机组的当前运行频率大于当前最高运行频率,则控制空调机组按照当前最高运行频率运行。由此可见,步骤S108可以控制空调机组的当前运行频率不会超过当前最高运行频率,从而达到了降低空调机组的风机的运行频率的目的,进而实现了减少空调机组的风机长时间高频运行所产生的噪音。
基于上述步骤S102至步骤S108所限定的方案,可以获知,采用对空调机组的当前最高运行频率进行修正的方式,在获取到空调机组的当前运行状态之后,在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,确定噪音修正 值,然后根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率,并根据当前最高运行频率调节空调机组的当前运行频率。
容易注意到的是,空调机组的历史运行状态表征了用户的使用习惯。本公开的实施例根据用户的使用习惯智能化调节空调机组的运行频率,保证了用户使用空调机组的舒适性。另外,根据用户的使用习惯来确定噪音修正值,并根据修正值来确定空调机组的当前最高运行频率,进而根据当前最高运行频率调节空调机组的当前运行频率,可以降低空调机组运行时所产生的噪音,减少噪音对用户的工作、生活等的影响。
由此可见,本公开的实施例通过控制空调机组的运行频率的目的,能够降低空调机组所产生的噪音,从而解决了空调机组长时间持续高频运行产生噪音较大的技术问题。
在一些实施例中,在获取空调机组的当前运行状态之前,空调机组的处理器检测空调机组是否开机,并在检测到空调机组处于开机状态的情况下,获取空调机组的开机数量以及环境参数,然后根据开机数量以及环境参数在历史数据库中确定最优历史运行数据,并控制空调机组按照最优历史运行数据运行。其中,上述环境参数包括但不限于天气参数,例如,环境温度、湿度和风速等。
容易注意到的是,最优历史运行数据表征了空调机组以该运行数据运行时,用户的舒适度体验效果最好。因此,当空调机组开机运行时,根据空调机组的开机数量、天气参数等条件,首先在历史数据库中匹配最优历史运行数据,使得空调机组按照历史运行最优数据运行,可以提高用户的舒适度体验。
需要说明的是,上述最优历史运行数据可以为处理器对用户使用空调机组的使用习惯进行记录学习所得到的运行数据,也可以为对互联网中的相关数据进行机器学习以及智能分析所得到的空调机组的运行数据。
在一些实施例中,多联机系统对应的处理器还对用户的使用习惯(即空调机组的历史运行状态)进行定义。具体的,处理器首先获取第一预设时长内空调机组每天都开机的第一开机数量,以及第一预设时长内开启过的空调机组的第二开机数量,并获取连续第二预设时长内每天最多开启的空调机组的第三开机数量,以及第二预设时长内开启过的空调机组的第四开机数量。然后计算第一开机数量与第二开机数量的比值,得到第一比值,以及计算第三开机数量与第四开机数量的比值,得到第二比值。最后根据第一比值与第三阈值的关系,以及第二比值与第四阈值的关系确定空调机组的历史运行状态。
例如,定义用户使用习惯1为:连续X天(即第一预设时长)内在同一种运行模式(例如,制冷模式)下每天都会开机的室内机的数量(即第一开机数量)和在相同日期(即连续X天)内所有开启过的室内机的数量(即第二开机数量)的比值(即第一比值)大于等于M(即第三阈值),且连续Y天(即第二预设时长)内每天都会开启的室内机的开启数量(即第三开机数量)与开启过的室内机的数量(即第四开机数量)的比值(即第二比值)大于等于N1(即第四阈值);
定义用户使用习惯2为:连续X天内在同一种运行模式下每天都会开机的室内机的数量和在相同日期内所有开启过的室内机的数量的比值≥M,且N1≥连续Y天内每天最多的内机开启数量与所有室内机的数量比值≥N2;
定义用户使用习惯n为:连续X天内在同一种运行模式下每天都会开机的室内机的数量和在相同日期内所有开启过的室内机的数量的比值≥M,且Nn-1≥连续Y天内每天最多的内机开启数量与所有室内机的数量比值≥Nn;
如上述举例所示,处理器可根据不同的条件,定义多种不同的用户使用习惯。
在一些实施例中,在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,处理器确定噪音修正值。具体的,处理器首先检测当前运行状态是否满足舒适性控制条件,其中,舒适性控制条件为满足用户舒适性需求的空调机组的运行参数,然后,在检测到当前运行状态满足舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,并在第一修正值大于等于第一阈值的情况下,确定第一阈值为噪音修正值,在第一修正值小于第一阈值的情况下,确定第一修正值为噪音修正值,其中,停机的室内机容量表征温度达到预设温度时出现停机的室内机容量。
在检测到当前运行状态不满足舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第二修正值,并在第二修正值小于等于第一阈值的情况下,确定第一阈值为噪音修正值;在第二修正值大于第一阈值的情况下,确定第二修正值为噪音修正值。
在一些实施例中,噪音修正值满足下式:
噪音修正值=(0.75-第一预设时长内停机的室内机容量/第一预设时长内室内机的开机容量)*当前机组风机最高运行频率*K
在上式中,第一预设时长内停机的室内机容量可以为过去24小时内出现过的温度达到预设温度时室内机停机的总容量,第一预设时长内室内机的开机容量可以为过 去24h内总开机室内机容量,K为系数。
在检测到用户对空调机组的当前使用状态和过去24h的使用习惯相符时,处理器进一步判断空调机组的当前运行状态是否满足温度舒适性运行条件,如果满足,则进一步计算第一修正值;如果不满足,则进一步计算第二修正值。
在一些实施例中,在计算得到噪音修正值之后,处理器对第一修正值进行负向寻优,即对负值优先选取,例如,如果第一修正值大于0,则噪音修正值的取值为0;如果第一修正值小于等于0,则噪音修正值的取值为第一修正值。处理器对第二修正值进行正向寻优,即对正值优先选取,例如,如果第二修正值小于0,则噪音修正值的取值为0;如果第二修正值大于等于0,则噪音修正值的取值为第二修正值。
通过对第一修正值进行负向寻优保证了用户的噪音体验,对第二修正值进行正向寻优保证了用户的舒适性体验。
在一种可选的实施例中,舒适性控制条件包括温度舒适性条件和噪音舒适性条件,其中,温度舒适性条件的优先级大于噪音舒适性条件。需要说明的是,温度舒适性条件是指空调机组的运行参数是否满足用户对温度舒适性的要求,噪音舒适性条件是指空调机组的运行参数是否满足用户对噪音舒适性的要求。其中,在空调机组处于制冷模式的情况下,温度舒适性条件包括如下条件中的至少一个:系统低压处于预设低压范围内,以及室内机的进管温度和出管温度中的至少一个处于预设温度范围内,例如,当空调机组制冷运行时,检测空调机组的系统低压以及室内机的进管温度和出管温度中的至少一个,如果系统低压达到预设低压范围,并且,室内机的进管温度处于第一温度范围内,出管温度处于第二温度范围内,则确定满足温度舒适性条件;在空调机组处于制热模式的情况下,温度舒适性条件包括如下条件中的至少一个:系统高压处于预设高压范围内,以及室内机的进管温度和出管温度中的至少一个处于预设温度范围内,例如,空调当机组制热运行时,检测系统高压以及室内机的进管温度和出管温度中的至少一个,若系统高压达到预设高压范围,并且,室内机的进管温度处于第一温度范围内,出管温度处于第二温度范围内,则确定满足温度舒适性条件。
在一些实施例中,在确定了噪音修正值之后,处理器根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率。具体的,在检测到当前运行状态满足舒适性控制条件的情况下,获取第一最高运行频率与第二最高运行频率中较小的频率作为第一运行频率,并根据噪音修正值对第一运行频率进行修正,得到当前最高运行频率,其中,第二最高运行频率为空调机组在历史最优运行数据中的最高运行频率; 在检测到当前运行状态不满足舒适性控制条件的情况下,获取第一最高运行频率与第二最高运行频率中较大的频率作为第二运行频率,并根据噪音修正值对第二运行频率进行修正,得到当前最高运行频率。
在一些实施例中,空调机组的当前最高运行频率满足下式:
当前最高运行频率=F(第一最高运行频率,第二最高运行频率)+噪音修正值
在上式中,第一最高运行频率可以为过去24小时内空调机组的风机的最高运行频率,第二最高运行频率为历史最优运行数据中风机的最高运行频率。其中,在检测到当前运行状态满足舒适性控制条件的情况下,F(第一最高运行频率,第二最高运行频率)的值取第一最高运行频率和第二最高运行频率中的较小值;在检测到当前运行状态不满足舒适性控制条件的情况下,F(第一最高运行频率,第二最高运行频率)的值取第一最高运行频率和第二最高运行频率中的较大值。
在一些实施例中,图2示出了上式的运行频率的调节方法的流程图,具体的,首先通过大数据手段分析并总结出用户使用空调机组的使用规律,并根据使用规律确定用的使用习惯,即得到空调机组的历史运行状态。然后在空调机组开机时,获取空调机组的当前运行状态,并从数据库中匹配到历史最优运行数据,使空调机组按照历史最优运行数据运行,进而保证了用户的舒适度。在一些实施例中,多联机系统的处理器检测空调机组的当前运行状态,并判断空调机组的当前运行状态是否符合过去24小时的用户使用习惯,如果符合,则进一步检测空调机组的当前运行状态是否满足温度舒适性条件,如果满足,则计算第一修正值,并对第一修正值进行负向寻优;如果不满足,则计算第二修正值,并对第二修正值进行正向寻优。通过对第一修正值进行负向寻优,或对第二修正值进行正向寻优,可以得到噪音修正值。最后,根据噪音修正值以及过去24小时的最高运行频率计算出当前最高运行频率。
需要说明的是,在上述过程中,如果空调机组的当前运行状态不符合过去24小时的用户使用习惯,则空调机组按照用户输入的控制指令正常运行。
在一些实施例中,本公开还提供了更加简洁的空调机组的运行频率的处理方法,如图3所示,当噪音自适应功能有效时,通过判断用户的使用习惯与预定义使用习惯是否相同来对空调机组的风机的运行频率进行修正,以降低室外机运行时产生的噪音。具体的,用户设置空调机组的噪音自适应控制功能有效。然后采用上述实施例所介绍的方法定义用户使用空调机组的使用习惯,并检测空调机组当前的运行状态,并判断空调机组当前的运行状态是否和过去24小时内用户的使用习惯相符。如果是, 则多联机系统的处理器计算确定噪音修正值。
具体的,处理器根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,然后在第一修正值大于等于第一阈值的情况下,确定第一阈值为噪音修正值;在第一修正值小于第一阈值的情况下,确定第一修正值为噪音修正值。可选的,
噪音修正值满足下式:
噪音修正值=(0.75-第一预设时长内停机的室内机容量/第一预设时长内室内机的开机容量)*当前机组风机最高运行频率*F
在上式中,第一预设时长内停机的室内机容量可以为过去24小时内出现过的温度达到预设温度时室内机停机的总容量,第一预设时长内室内机的开机容量可以为过去24h内总开机室内机容量,F为系数,该系数为根据环境温度所确定的预设值。另外,上述空调机组的风机的运行频率最大不能超过预设值a。
在一些实施例中,如图3所示,在确定了噪音修正值之后,处理器根据噪音修正值以及过去24小时的最高运行频率计算出当前最高运行频率。其中,处理器使用噪音修正值对第一最高运行频率进行修正,得到空调机组的当前最高运行频率。然后,处理器检测空调机组的当前运行状态。在当前运行状态满足预设条件的情况下,控制空调机组的风机正常运行,即空调机组按照用户输入的控制指令正常运行,退出该控制。其中,预设条件包括如下至少之一:空调机组出现保护;空调机组存在保护风险;空调机组的运行参数达到预设阈值;和空调机组的当前运行状态与预设时长内空调机组的历史运行状态不匹配。
需要说明的是,当空调机组的运行参数大于第一阈值时,空调机组出现保护而停机,例如,空调机组的系统高压对应的温度值高于65℃,则空调机组出现保护。当空调机组的运行参数处于预设范围内时,则确定空调机组存在保护风险,例如,检测到空调机组的系统高压对应的温度值为63℃,还未达到空调机组保护停机的第一阈值时,则确定空调机组出现保护风险。另外,上述预设阈值为能够使空调机组正常运行的参数。
由上可知,本公开所提供的上述方案根据用户使用习惯,智能化调节空调机组的风机的运行频率,在保证用户使用舒适性的同时,尽可能降低风机运行时产生的噪音,减少噪音对用户的工作、生活等造成影响。
根据本公开实施例,还提供了一种运行频率的调节装置,该装置可执行上述实施例的运行频率的调节方法,其中,图4是根据本公开实施例的运行频率的调节装置示 意图,该装置包括:获取模块401、第一确定模块403、第二确定模块405以及调节模块407。
其中,获取模块401,用于获取空调机组的当前运行状态;第一确定模块403,用于在检测到当前运行状态与预设时长内空调机组的历史运行状态相匹配的情况下,确定噪音修正值;第二确定模块405,用于根据噪音修正值以及第一最高运行频率确定空调机组的当前最高运行频率,其中,第一最高运行频率为空调机组在预设时长内的最高运行频率;调节模块407,用于根据当前最高运行频率调节空调机组的当前运行频率。
此处需要说明的是,上述获取模块401、第一确定模块403、第二确定模块405以及调节模块407对应于上述实施例的步骤S102至步骤S108,四个模块与对应的步骤所实现的实例和应用场景相同,但不限于上述实施例所公开的内容。
在一些实施例中,第一确定模块包括:第一检测模块、第三确定模块、第四确定模块以及第五确定模块。其中,第一检测模块,用于检测当前运行状态是否满足舒适性控制条件,其中,舒适性控制条件为满足用户舒适性需求的空调机组的运行参数;第三确定模块,用于在检测到当前运行状态满足舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,其中,停机的室内机容量表征温度达到预设温度时出现停机的室内机容量;第四确定模块,用于在第一修正值大于等于第一阈值的情况下,确定第一阈值为噪音修正值;第五确定模块,用于在第一修正值小于第一阈值的情况下,确定第一修正值为噪音修正值。
在一些实施例中,第一确定模块包括:第二检测模块、第六确定模块、第七确定模块以及第八确定模块。其中,第二检测模块,用于检测当前运行状态是否满足舒适性控制条件,其中,舒适性控制条件为满足用户舒适性需求的空调机组的运行参数;第六确定模块,用于在检测到当前运行状态不满足舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第二修正值,其中,停机的室内机容量表征温度达到预设温度时出现停机的室内机容量;第七确定模块,用于在第二修正值小于等于第一阈值的情况下,确定第一阈值为噪音修正值;第八确定模块,用于在第二修正值大于第一阈值的情况下,确定第二修正值为噪音修正值。
在一些实施例中,舒适性控制条件包括温度舒适性条件和噪音舒适性条件,其中,温度舒适性条件的优先级大于噪音舒适性条件,在空调机组处于制冷模式的情况下,温度舒适性条件包括如下条件中的至少一个:系统低压处于预设低压范围内,和室内 机的进管温度和出管温度中的至少一个处于预设温度范围内;在空调机组处于制热模式的情况下,温度舒适性条件包括如下条件中的至少一个系统高压处于预设高压范围内,和室内机的进管温度和出管温度中的至少一个处于预设温度范围内。
在一种些实施例中,第二确定模块包括:第一获取模块以及第二获取模块。其中,第一获取模块,用于在检测到当前运行状态满足舒适性控制条件的情况下,获取第一最高运行频率与第二最高运行频率中较小的频率作为第一运行频率,并根据噪音修正值对第一运行频率进行修正,得到当前最高运行频率,其中,第二最高运行频率为空调机组在历史最优运行数据中的最高运行频率;第二获取模块,用于在检测到当前运行状态不满足舒适性控制条件的情况下,获取第一最高运行频率与第二最高运行频率中较大的频率作为第二运行频率,并根据噪音修正值对第二运行频率进行修正,得到当前最高运行频率。
在一些实施例中,调节模块包括:第三检测模块以及第一控制模块。其中,第三检测模块,用于检测空调机组的当前运行频率是否大于当前最高运行频率;第一控制模块,用于在检测到空调机组的当前运行频率大于当前最高运行频率的情况下,控制空调机组按照当前最高运行频率运行。
在一些实施例中,第一确定模块包括:第九确定模块、第十确定模块以及第十一确定模块。其中,第九确定模块,用于根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,其中,停机的室内机容量表征温度达到预设温度时出现停机的室内机容量;第十确定模块,用于在第一修正值大于等于第一阈值的情况下,确定第一阈值为噪音修正值;第十一确定模块,用于在第一修正值小于第一阈值的情况下,确定第一修正值为噪音修正值。
在一些实施例中,第二确定模块包括:处理模块。其中,处理模块,用于使用噪音修正值对第一最高运行频率进行修正,得到空调机组的当前最高运行频率。
在一些实施例中,运行频率的调节装置还包括:第四检测模块以及第二控制模块。其中,第四检测模块,用于检测空调机组的当前运行状态;第二控制模块,用于在当前运行状态满足预设条件的情况下,控制空调机组的风机正常运行,其中,预设条件包括如下至少之一:空调机组出现保护;空调机组存在保护风险;空调机组的运行参数达到预设阈值;空调机组的当前运行状态与预设时长内空调机组的历史运行状态不匹配。
在一些实施例中,运行频率的调节装置还包括:第三获取模块、第四获取模块、 第一计算模块、第二计算模块以及第十二确定模块。其中,第三获取模块,用于获取第一预设时长内空调机组每天都开机的第一开机数量,以及第一预设时长内开启过的空调机组的第二开机数量;第四获取模块,用于获取连续第二预设时长内每天最多开启的空调机组的第三开机数量,以及第二预设时长内开启过的空调机组的第四开机数量;第一计算模块,用于计算第一开机数量与第二开机数量的比值,得到第一比值;第二计算模块,用于计算第三开机数量与第四开机数量的比值,得到第二比值;第十二确定模块,用于根据第一比值与第三阈值的关系,以及第二比值与第四阈值的关系确定空调机组的历史运行状态。
在一些实施例中,运行频率的调节装置还包括:第五获取模块、第十三确定模块以及第三控制模块。其中,第五获取模块,用于在空调机组处于开机状态的情况下,获取空调机组的开机数量以及环境参数;第十三确定模块,用于根据开机数量以及环境参数在历史数据库中确定最优历史运行数据;第三控制模块,用于控制空调机组按照最优历史运行数据运行。
根据本公开实施例的另一方面,还提供了一种空调机组,包括上述实施例的频率的调节装置。
根据本公开实施例的另一方面,还提供了一种存储介质,该存储介质包括存储的程序,其中,在程序运行时控制存储介质所在设备执行上述实施例的运行频率的调节方法。
根据本公开实施例的另一方面,还提供了一种处理器,该处理器用于运行程序,其中,程序运行时执行上述实施例的运行频率的调节方法。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
在本公开的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本公开所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显 示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (15)

  1. 一种运行频率的调节方法,包括:
    获取空调机组的当前运行状态;
    在检测到所述当前运行状态与预设时长内所述空调机组的历史运行状态相匹配的情况下,确定噪音修正值;
    根据所述噪音修正值以及第一最高运行频率确定所述空调机组的当前最高运行频率,其中,所述第一最高运行频率为所述空调机组在预设时长内的最高运行频率;
    根据所述当前最高运行频率调节所述空调机组的当前运行频率。
  2. 根据权利要求1所述的运行频率的调节方法,其中确定噪音修正值的步骤包括:
    检测所述当前运行状态是否满足舒适性控制条件,其中,所述舒适性控制条件为满足用户舒适性需求的空调机组的运行参数;
    在检测到所述当前运行状态满足所述舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,其中,所述停机的室内机容量表征温度达到预设温度时出现停机的室内机容量;
    在所述第一修正值大于等于第一阈值的情况下,确定所述第一阈值为所述噪音修正值;
    在所述第一修正值小于所述第一阈值的情况下,确定所述第一修正值为所述噪音修正值。
  3. 根据权利要求1所述的运行频率的调节方法,其中确定噪音修正值的步骤包括:
    检测所述当前运行状态是否满足舒适性控制条件,其中,所述舒适性控制条件为满足用户舒适性需求的空调机组的运行参数;
    在检测到所述当前运行状态不满足所述舒适性控制条件的情况下,根据第一预设时长内停机的室内机容量与开机容量的比值确定第二修正值,其中,所述停机的室内机容量表征温度达到预设温度时出现停机的室内机容量;
    在所述第二修正值小于等于第一阈值的情况下,确定所述第一阈值为所述噪音修正值;
    在所述第二修正值大于所述第一阈值的情况下,确定所述第二修正值为所述噪音 修正值。
  4. 根据权利要求2或3所述的运行频率的调节方法,其中所述舒适性控制条件包括温度舒适性条件和噪音舒适性条件,其中,所述温度舒适性条件的优先级大于所述噪音舒适性条件,
    在所述空调机组处于制冷模式的情况下,所述温度舒适性条件包括如下条件中的至少一个:系统低压处于预设低压范围内,以及室内机的进管温度和出管温度中的至少一个处于预设温度范围内;和
    在所述空调机组处于制热模式的情况下,所述温度舒适性条件包括如下条件中的至少一个:系统高压处于预设高压范围内,以及室内机的进管温度和出管温度中的至少一个处于所述预设温度范围内。
  5. 根据权利要求1或4所述的运行频率的调节方法,其中根据所述噪音修正值以及第一最高运行频率确定所述空调机组的当前最高运行频率的步骤包括:
    在检测到所述当前运行状态满足舒适性控制条件的情况下,获取所述第一最高运行频率与第二最高运行频率中较小的频率作为第一运行频率,并根据所述噪音修正值对所述第一运行频率进行修正,得到所述当前最高运行频率,其中,所述舒适性控制条件为满足用户舒适性需求的空调机组的运行参数,所述第二最高运行频率为所述空调机组在历史最优运行数据中的最高运行频率;和
    在检测到所述当前运行状态不满足舒适性控制条件的情况下,获取所述第一最高运行频率与所述第二最高运行频率中较大的频率作为第二运行频率,并根据所述噪音修正值对所述第二运行频率进行修正,得到所述当前最高运行频率。
  6. 根据权利要求1所述的运行频率的调节方法,其中根据所述当前最高运行频率调节所述空调机组的当前运行频率的步骤包括:
    检测所述空调机组的当前运行频率是否大于所述当前最高运行频率;
    在检测到所述空调机组的当前运行频率大于所述当前最高运行频率的情况下,控制所述空调机组按照所述当前最高运行频率运行。
  7. 根据权利要求1所述的运行频率的调节方法,其中确定噪音修正值的步骤包括:
    根据第一预设时长内停机的室内机容量与开机容量的比值确定第一修正值,其中,所述停机的室内机容量表征温度达到预设温度时出现停机的室内机容量;
    在所述第一修正值大于等于第一阈值的情况下,确定所述第一阈值为所述噪音修 正值;
    在所述第一修正值小于所述第一阈值的情况下,确定所述第一修正值为所述噪音修正值。
  8. 根据权利要求7所述的运行频率的调节方法,其中根据所述噪音修正值以及第一最高运行频率确定所述空调机组的当前最高运行频率的步骤包括:
    使用所述噪音修正值对所述第一最高运行频率进行修正,得到所述空调机组的当前最高运行频率。
  9. 根据权利要求1所述的运行频率的调节方法,还包括:
    检测所述空调机组的当前运行状态;
    在所述当前运行状态满足预设条件的情况下,控制所述空调机组的风机正常运行,其中,所述预设条件包括如下至少之一:所述空调机组出现保护;所述空调机组存在保护风险;所述空调机组的运行参数达到预设阈值;所述空调机组的当前运行状态与所述预设时长内所述空调机组的历史运行状态不匹配。
  10. 根据权利要求1所述的运行频率的调节方法,还包括:
    获取第一预设时长内所述空调机组每天都开机的第一开机数量,以及所述第一预设时长内开启过的空调机组的第二开机数量;
    获取连续第二预设时长内每天都开启的空调机组的第三开机数量,以及所述第二预设时长内开启过的空调机组的第四开机数量;
    计算所述第一开机数量与所述第二开机数量的比值,得到第一比值;
    计算所述第三开机数量与所述第四开机数量的比值,得到第二比值;
    根据所述第一比值与第三阈值的关系,以及所述第二比值与第四阈值的关系确定所述空调机组的历史运行状态。
  11. 根据权利要求1所述的运行频率的调节方法,其中在获取空调机组的当前运行状态之前,所述运行频率的调节方法还包括:
    在所述空调机组处于开机状态的情况下,获取所述空调机组的开机数量以及环境参数;
    根据所述开机数量以及所述环境参数在历史数据库中确定最优历史运行数据;
    控制所述空调机组按照所述最优历史运行数据运行。
  12. 一种运行频率的调节装置,包括:
    获取模块,被配置为获取空调机组的当前运行状态;
    第一确定模块,被配置为在检测到所述当前运行状态与预设时长内所述空调机组的历史运行状态相匹配的情况下,确定噪音修正值;
    第二确定模块,被配置为根据所述噪音修正值以及第一最高运行频率确定所述空调机组的当前最高运行频率,其中,所述第一最高运行频率为所述空调机组在预设时长内的最高运行频率;和
    调节模块,被配置为根据所述当前最高运行频率调节所述空调机组的当前运行频率。
  13. 一种空调机组,包括权利要求12所述的运行频率的调节装置。
  14. 一种存储介质,包括存储的程序,其中,在所述程序运行时控制所述存储介质所在设备执行权利要求1至11中任意一项所述的运行频率的调节方法。
  15. 一种处理器,用于运行程序,其中,所述程序运行时执行权利要求1至11中任意一项所述的运行频率的调节方法。
PCT/CN2019/127435 2019-05-07 2019-12-23 运行频率的调节方法和装置 WO2020224269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910376953.0 2019-05-07
CN201910376953.0A CN110081553B (zh) 2019-05-07 2019-05-07 运行频率的调节方法和装置

Publications (1)

Publication Number Publication Date
WO2020224269A1 true WO2020224269A1 (zh) 2020-11-12

Family

ID=67419001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127435 WO2020224269A1 (zh) 2019-05-07 2019-12-23 运行频率的调节方法和装置

Country Status (2)

Country Link
CN (1) CN110081553B (zh)
WO (1) WO2020224269A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081553B (zh) * 2019-05-07 2020-08-11 珠海格力电器股份有限公司 运行频率的调节方法和装置
CN112484272B (zh) * 2020-11-30 2022-03-11 珠海格力电器股份有限公司 空调控制方法及装置、空调机组
CN112797617B (zh) * 2021-01-07 2022-02-01 珠海格力电器股份有限公司 空调的噪音优化方法、装置、设备和空调系统
CN113074433B (zh) * 2021-04-29 2022-03-18 珠海格力电器股份有限公司 空调的控制方法、装置、设备及存储介质
CN114413440B (zh) * 2022-01-04 2023-07-04 宁波奥克斯电气股份有限公司 一种空调器的控制方法、空调器及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277024A (ja) * 2001-03-19 2002-09-25 Fujitsu General Ltd 空気調和機の制御方法
CN103216908A (zh) * 2013-04-01 2013-07-24 宁波奥克斯电气有限公司 变频多联式空调机组制冷时室外风机的控制方法
CN108592239A (zh) * 2018-05-16 2018-09-28 珠海格力电器股份有限公司 空调压缩机运行频率的调整方法及装置
CN108644969A (zh) * 2018-05-16 2018-10-12 珠海格力电器股份有限公司 控制压缩机的方法、装置及系统、空调
CN108759033A (zh) * 2018-07-27 2018-11-06 山东朗进科技股份有限公司 一种空调机组冷凝风机的控制方法
CN109556223A (zh) * 2018-10-26 2019-04-02 珠海格力电器股份有限公司 一种机组及控制其运行的方法
CN109631246A (zh) * 2018-11-08 2019-04-16 青岛海尔空调器有限总公司 空调器的室外侧风机的控制方法
CN110081553A (zh) * 2019-05-07 2019-08-02 珠海格力电器股份有限公司 运行频率的调节方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066382A (zh) * 2015-09-16 2015-11-18 重庆泽青巨科技发展有限公司 一种空调用电控制方法及装置
CN106196420B (zh) * 2016-06-24 2019-07-30 珠海格力电器股份有限公司 一种用于空调系统的冷媒检测方法、装置及空调系统
JP2018136038A (ja) * 2017-02-20 2018-08-30 シャープ株式会社 空気調和機
CN107388474A (zh) * 2017-06-06 2017-11-24 珠海格力电器股份有限公司 空调系统的控制方法、装置和控制器及存储介质和处理器
CN108168169B (zh) * 2017-12-01 2020-09-18 青岛海尔空调电子有限公司 多联式空调系统的噪音控制方法
CN108534320B (zh) * 2018-03-29 2021-03-19 广东美的制冷设备有限公司 空调器制冷启动控制方法、空调器及存储介质
CN109357374B (zh) * 2018-10-25 2020-12-11 宁波奥克斯电气股份有限公司 一种制热控制方法、装置及多联机空调系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277024A (ja) * 2001-03-19 2002-09-25 Fujitsu General Ltd 空気調和機の制御方法
CN103216908A (zh) * 2013-04-01 2013-07-24 宁波奥克斯电气有限公司 变频多联式空调机组制冷时室外风机的控制方法
CN108592239A (zh) * 2018-05-16 2018-09-28 珠海格力电器股份有限公司 空调压缩机运行频率的调整方法及装置
CN108644969A (zh) * 2018-05-16 2018-10-12 珠海格力电器股份有限公司 控制压缩机的方法、装置及系统、空调
CN108759033A (zh) * 2018-07-27 2018-11-06 山东朗进科技股份有限公司 一种空调机组冷凝风机的控制方法
CN109556223A (zh) * 2018-10-26 2019-04-02 珠海格力电器股份有限公司 一种机组及控制其运行的方法
CN109631246A (zh) * 2018-11-08 2019-04-16 青岛海尔空调器有限总公司 空调器的室外侧风机的控制方法
CN110081553A (zh) * 2019-05-07 2019-08-02 珠海格力电器股份有限公司 运行频率的调节方法和装置

Also Published As

Publication number Publication date
CN110081553B (zh) 2020-08-11
CN110081553A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020224269A1 (zh) 运行频率的调节方法和装置
WO2019042042A1 (zh) 一种空调的控制方法及装置
US10527304B2 (en) Demand response based air conditioning management systems and method
CN107894065B (zh) 空调器及其控制方法、控制装置和计算机可读存储介质
WO2019223301A1 (zh) 空调控制方法、控制装置及采用该方法的空调
CN111121220A (zh) 空调器控制方法、装置、设备及存储介质
CN108592239B (zh) 空调压缩机运行频率的调整方法及装置
CN113531818B (zh) 用于空调的运行模式推送方法及装置、空调
CN111578458B (zh) 空调器的控制方法、空调器及计算机存储介质
CN110715421B (zh) 空调器及其控制方法与装置
CN113251614B (zh) 空调温度控制方法、装置、电子设备和存储介质
CN110736270A (zh) 电子膨胀阀的开度控制方法及装置
CN108534322B (zh) 空调的开机控制方法
CN108758998B (zh) 空调的控制方法
CN112696798A (zh) 空调的参数设置方法、空调设备以及计算机可读存储介质
WO2022198979A1 (zh) 用于空调的控制方法、装置及空调
CN109827306B (zh) 一种机组运行的智能控制方法及机组
CN112747514B (zh) 用于控制空调压缩机运行频率的方法、装置及空调
CN108548301B (zh) 空调的开机控制方法
CN108548304B (zh) 空调的控制方法
CN113357753B (zh) 变频空调的制热控制方法和变频空调
WO2023159955A1 (zh) 空调的控制方法、控制装置和空调
CN108361934B (zh) 空调的开机控制方法
WO2019196492A1 (zh) 一种空调及其控制方法、装置、存储介质和服务器
WO2022267474A1 (zh) 用于空调的控制方法及装置、空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927911

Country of ref document: EP

Kind code of ref document: A1