WO2020224016A1 - 一种新型锂离子电池及电池模组 - Google Patents

一种新型锂离子电池及电池模组 Download PDF

Info

Publication number
WO2020224016A1
WO2020224016A1 PCT/CN2019/088968 CN2019088968W WO2020224016A1 WO 2020224016 A1 WO2020224016 A1 WO 2020224016A1 CN 2019088968 W CN2019088968 W CN 2019088968W WO 2020224016 A1 WO2020224016 A1 WO 2020224016A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
ion battery
new type
lithium
fusible material
Prior art date
Application number
PCT/CN2019/088968
Other languages
English (en)
French (fr)
Inventor
朱洪斌
张晓琴
余翔
Original Assignee
国网江苏省电力有限公司电力科学研究院
江苏省电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司电力科学研究院, 江苏省电力试验研究院有限公司 filed Critical 国网江苏省电力有限公司电力科学研究院
Priority to JP2020541582A priority Critical patent/JP7095099B2/ja
Priority to US17/259,469 priority patent/US12015135B2/en
Publication of WO2020224016A1 publication Critical patent/WO2020224016A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/358External gas exhaust passages located on the battery cover or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of batteries, and relates to a new type of lithium ion battery and battery module, and more specifically to a lithium ion battery and a flame retardant device whose electrolyte can be separated from an electrode.
  • Lithium-ion batteries have become the most widely used battery type for electric energy storage systems because of their high energy density and pollution-free advantages.
  • electrolyte is the primary factor restricting the safety performance of lithium-ion batteries.
  • the solvent used in the electrolyte is usually an organic carbonate compound, which has high activity and is easily combustible. It is equivalent to combustible material.
  • the positive electrode material When the lithium ion battery is in a charged state, the positive electrode material is a strong oxidizing compound, and the negative electrode material is a strong reducing Compounds, in the case of excessive use, the positive electrode material of strong zinc oxide has poor stability and easily releases oxygen. The reaction of carbonate and oxygen will release a large amount of heat and gas, which will further accelerate the decomposition of the positive electrode, resulting in More exothermic reactions proceed. At the same time, the activity of the strongly reducing negative electrode is close to that of metallic lithium. It will burn and ignite the electrolyte and diaphragm immediately when it comes into contact with oxygen, which will lead to thermal runaway of the lithium-ion battery, causing the lithium-ion battery to burn and explode.
  • the present invention proposes a new type of lithium ion battery and battery module, which can effectively prevent the burning and explosion of the single battery, and at the same time, can avoid the chain reaction caused by the abnormally heated single battery to damage other surrounding single batteries.
  • the present invention provides a new type of lithium-ion battery, including a casing in which a positive electrode, a negative electrode and an electrolyte are arranged; a part of the casing is made of fusible material;
  • the temperature in the housing exceeds a set threshold, the area made of the fusible material on the housing is penetrated, and the electrolyte flows out from the penetration point and is separated from the positive electrode and the negative electrode.
  • part of the upper and lower parts of the housing are made of fusible materials
  • the upper part of the shell is made of fusible material and the area is penetrated to form a connecting channel for the passage of flame-retardant gas; the lower part of the shell is made of fusible material.
  • the area made of material is penetrated to form a release channel from which the electrolyte flows out and is separated from the positive electrode and the negative electrode.
  • part of the top and bottom of the housing are made of fusible materials
  • the area on the top of the shell made of fusible material is penetrated to form a connecting channel for the passage of flame-retardant gas; the bottom of the shell is made of fusible material.
  • the area made of material is penetrated to form a release channel, and the electrolyte flows out from the release channel and is separated from the positive electrode and the negative electrode.
  • the housing is divided into a first part and a second part arranged up and down; the connection area between the first part and the second part is made of a fusible material;
  • the connection area made of fusible material is penetrated; the second part is separated from the first part, the electrolyte flows out, and the positive electrode and the negative electrode The electrodes are separated.
  • all or part of the side walls of the housing are made of fusible materials
  • the present invention provides a new type of lithium-ion battery module, including:
  • a new type of lithium ion battery is arranged in the sealed box, which includes a shell, the shell is provided with a positive electrode, a negative electrode and an electrolyte, and there is between the bottom of the shell and the bottom of the sealed box Distance; part of the shell is made of fusible material;
  • the area on the housing made of fusible material is penetrated, and the electrolyte flows into the sealed box from the through point, and interacts with the positive electrode and the negative electrode. The electrodes are separated.
  • part of the upper and lower parts of the housing are made of fusible materials
  • the flame-retardant gas enters the inside of the housing through the connecting channel;
  • the electrolyte flows into the sealed box from the release channel and is separated from the positive electrode and the negative electrode.
  • part of the top and bottom of the housing are made of fusible materials
  • the flame-retardant gas enters the inside of the housing through the connecting channel;
  • the electrolyte flows into the sealed box from the release channel and is separated from the positive electrode and the negative electrode
  • the housing is divided into a first part and a second part arranged up and down; the connection area between the first part and the second part is made of a fusible material;
  • the connection area made of fusible material is penetrated; the second part is separated from the first part, and the second part falls into the sealed box;
  • the electrolyte flows into the sealed box and is separated from the positive electrode and the negative electrode.
  • all or part of the side walls of the housing are made of fusible materials
  • the new-type lithium-ion battery module further includes a gas circulation loop; the gas circulation loop is arranged outside the sealed box;
  • the sealed box body is provided with a first through hole and a second through hole;
  • the two ends of the gas circulation loop are respectively connected with the first through hole and the second through hole to realize the circulation of the flame-retardant gas.
  • a sensor is provided at an area made of fusible material on the housing;
  • an activation signal is sent to the gas circulation circuit immediately to activate the gas circulation circuit.
  • the senor is any one of a temperature sensor, a distance sensor, and a speed sensor.
  • the gas circulation circuit includes a first solenoid valve, a buffer tank, a heat exchanger, a second solenoid valve and a compressor that are arranged in sequence;
  • valve port on the first solenoid valve away from the buffer tank is connected with the first through hole; the valve port on the compressor away from the second solenoid valve is connected with the second through hole.
  • the first through hole is provided in the upper part of the sealed box body, and the second through hole is provided in the lower part of the sealed box body.
  • part of the upper and lower parts of the housing are made of fusible materials
  • the sealed box is provided with a first through hole and a second through hole, and a gas circulation circuit is arranged outside of the sealed box; both ends of the gas circulation circuit are respectively connected with the first through hole and the second through hole;
  • the housing is also provided with an air supply member, the air supply member is provided between the first through hole and the housing, and includes an air outlet, and the air outlet is similar to the area on the upper part of the housing made of fusible material. correspond;
  • the upper part of the shell is made of fusible material and the area is penetrated to form a connecting channel, and the flame-retardant gas enters the shell after passing through the air outlet and the connecting channel Inside; the area at the lower part of the housing made of fusible material is penetrated to form a release channel, and the electrolyte flows into the sealed box from the release channel, and is separated from the positive electrode and the negative electrode.
  • the present invention cleverly realizes that when the temperature of a single lithium ion battery rises abnormally, the electrolyte in the lithium ion battery is separated in time, which effectively prevents the electrolyte from being ignited or decomposed, and prevents the monomer lithium ion The battery exploded on fire.
  • the present invention introduces a gas circulation loop, and is set to a self-starting mode, which can inhibit the temperature rise of the lithium ion battery from excessively high, prevent thermal runaway of the single lithium ion battery, and avoid the temperature of a single lithium ion battery. Too high causes abnormal temperature rise of the surrounding lithium-ion batteries, which will minimize the impact on the surrounding single-cell lithium-ion batteries and prevent the lithium-ion batteries from causing a chain reaction.
  • the sealed box body is always filled with cooling and flame-retardant gas, which replaces the air filled in the sealed box body in the prior art, which can effectively protect the safety of the entire battery module and avoid burning.
  • the new type of lithium ion battery proposed by the present invention can automatically turn on the battery protection mode through the introduction of temperature-sensitive fusible materials without additional power consumption, which is beneficial to the economy of energy storage batteries.
  • FIG. 1 is a schematic diagram of the structure of a novel lithium-ion battery and battery module according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a novel lithium-ion battery and battery module according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a novel lithium-ion battery and battery module according to a third embodiment of the present invention.
  • the present invention proposes a new type of lithium ion battery and battery module, which realizes the monomer
  • the electrolyte in the new monomer lithium ion battery is separated in time, which effectively prevents the electrolyte from being ignited or decomposed, and prevents the new monomer lithium ion battery from catching fire and exploding.
  • the abnormally warmed single-cell new lithium-ion battery brings chain reaction and damages other single-cell new lithium-ion batteries around, which is of technological significance in ensuring the safe and stable operation of energy storage batteries. Once it is put on the market, the application prospects are immeasurable.
  • the embodiment of the present invention provides a new type of lithium ion battery, including a casing 15 with a positive electrode 401, a negative electrode 402 and an electrolyte 5; part of the casing 15 is made of fusible material
  • the design principles of the positive electrode 401, the negative electrode 402, and the electrolyte 5 are based on the prior art, therefore, the present invention will not repeat them too much; the positive electrode 401 and the negative electrode 402 are connected to the shell The top wall of the body 15 is connected;
  • the set threshold is set according to the actual situation, and the present invention does not make too many limitations;
  • the upper and lower parts of the housing 15 are made of fusible materials.
  • the fusible materials are temperature-sensitive fusible materials, which can be purchased directly from the market. Because the structure and composition of the fusible material itself is not the innovative point of the present invention, therefore, It does not limit its specific structure and composition, as long as the temperature-sensitive fusible materials that can automatically melt when the temperature sensed exceeds the set threshold (that is, when the new lithium-ion battery rises abnormally) are suitable for this A new type of lithium ion battery in an embodiment of the invention.
  • the upper and lower areas of the housing 15 made of fusible materials and the rest of the housing 15 together form a closed space;
  • the upper part of the housing 15 made of fusible material is penetrated (that is, the material automatically melts) to form a connecting channel 12 for the passage of flame-retardant gas;
  • the housing 15 The lower area made of fusible material is penetrated (that is, the material automatically melts) to form a release channel 13 from which the electrolyte 5 flows out and is separated from the positive electrode and the negative electrode.
  • the housing 15 is divided into a first part and a second part arranged up and down; the connection area between the first part and the second part 16 is made of a fusible material; preferably, as shown in Figure 2, the first part is the top wall of the housing 15, and the second part is formed by the side walls of the housing 15 and the bottom wall of the housing 15 section;
  • connection area 16 made of fusible material on the upper part of the housing 15 forms a closed space with the first and second parts; when the housing 15 When the internal temperature exceeds the set threshold (that is, when the new lithium-ion battery has an abnormal temperature rise), the connection area 16 made of fusible material is penetrated (that is, the material automatically melts); the second part is separated from the first part , The electrolyte 5 flows out and is separated from the positive electrode and the negative electrode.
  • the embodiment of the present invention provides a new type of lithium ion battery module, including:
  • the sealed box 1 is filled with flame-retardant gas
  • a new type of lithium ion battery 2 the new type of lithium ion battery 2 is arranged in the sealed box 1, which includes a casing 15 provided with a positive electrode 401, a negative electrode 402 and an electrolyte 5, which There is a distance between the bottom and the bottom of the sealed box 1, which is used as an electrolyte storage area 3 for storing the electrolyte 5 flowing out of the housing 15.
  • the bottom of the new lithium-ion battery 2 and the bottom of the sealed box 1 The distance between the bottoms needs to ensure that the electrolyte 5 flowing out of the casing 15 must be completely separated from the positive electrode 401 and the negative electrode 402; part of the casing 15 is made of fusible material; the new type of lithium ion
  • the number of batteries is not specifically limited, and the specific arrangement of each new-type lithium-ion battery is not specifically limited, as long as the distance between the bottom of each new-type lithium-ion battery 2 and the bottom of the sealed box 1 can be satisfied;
  • the novel lithium-ion battery 2 can be installed in the sealed box 1 using a bracket; the positive electrode 401 and the negative electrode 402 are both connected to the top wall of the casing 15;
  • the area made of fusible material on the housing 15 is penetrated (that is, the material automatically melts), so The electrolyte 5 flows into the sealed box 1 from the penetration point, that is, the electrolyte storage area 3, and is separated from the positive electrode and the negative electrode.
  • the upper and lower parts of the housing 15 are made of fusible materials.
  • both the top and the bottom of the housing 15 are Some areas are made of fusible materials;
  • the upper and lower areas of the housing 15 made of fusible materials and the rest of the housing 15 together form a closed space; when the temperature in the housing 15 exceeds a set threshold, the upper part of the housing 15 The area made of fusible material is penetrated to form the connecting channel 12; the area made of fusible material at the lower part of the housing 15 is penetrated to form the release channel 13;
  • the flame-retardant gas enters the inside of the housing 15 through the connecting channel 12, which can further achieve flame-retardant;
  • the electrolyte 5 flows into the sealed box 1 from the release channel 13 and is separated from the positive electrode and the negative electrode.
  • the housing 15 is divided into a first part and a second part arranged up and down; a connecting area 16 between the first part and the second part Made of fusible material; preferably, as shown in Figure 2, the first part is the top wall of the housing, and the second part is formed by the side walls (1501, 1502) of the housing and the bottom wall of the housing part;
  • connection area 16 made of fusible material on the upper part of the housing 15 forms a closed space with the first and second parts; when the housing 15 When the temperature inside exceeds a set threshold, the connection area 16 made of fusible material is penetrated; the second part is separated from the first part, and the second part falls into the sealed box 1;
  • the electrolyte 5 flows into the sealed box 1 and is separated from the positive electrode and the negative electrode.
  • all the side walls (1501, 1502) or part of the side walls of the housing 15 are made of fusible materials;
  • Embodiment 2 Based on Embodiment 2, the difference between this embodiment of the present invention and Embodiment 2 lies in:
  • the new lithium-ion battery module also includes a gas circulation circuit; the gas circulation The circuit is arranged on the outside of the sealed box 1;
  • the sealed box body 1 is provided with a first through hole 6 and a second through hole 7.
  • the first through hole 6 is provided on the upper part of the sealed box body 1, and the second through hole 7 Located at the lower part of the sealed box 1;
  • the gas circulation loop It includes a first solenoid valve 801, a buffer tank 9, a heat exchanger 10, a second solenoid valve 802 and a compressor 11 arranged in sequence; the valve port of the first solenoid valve 801 away from the buffer tank 9 and the first through hole 6 is connected; the valve port of the compressor 11 away from the second solenoid valve 802 is connected to the second through hole 7; in other implementations of the embodiment of the present invention, the gas circulation circuit may also be of other structures , As long as it can realize the circulation and cooling of the flame-retardant gas in the sealed gas;
  • a sensor is provided at the area made of the fusible material on the housing 15, and when the sensor detects that the area made of the fusible material is penetrated, it sends The start signal is sent to the gas circulation circuit, the gas circulation circuit is started, and the flame-retardant gas is circulated spontaneously.
  • the sensor can be a temperature sensor, a distance sensor or a speed sensor.
  • the specific working process of the flame-retardant device in the embodiment of the present invention is:
  • the flame-retardant gas in the buffer tank 9 passes through the pipeline and the first through hole on the sealed box 1 6 enters the sealed box 1, and then exits from the sealed box 1 through the second through hole 7 on the sealed box 1, enters the compressor 11 and is compressed, and the compressed flame-retardant gas enters the heat exchanger 10 and is compressed After cooling, it is sent to the buffer tank 9 to start the next cycle and repeat. Because the new lithium-ion battery with abnormal temperature rise is gradually cooled by the gas circulation circuit, when the temperature drops to the normal operating temperature range of the new lithium ion battery, a shutdown signal is sent to the gas circulation circuit to close the first gas circulation circuit.
  • Embodiment 2 Based on Embodiment 2, the difference between this embodiment of the present invention and Embodiment 2 lies in:
  • Both the upper and lower parts of the shell 15 are made of fusible materials.
  • both the top and bottom of the shell 15 are made of fusible materials;
  • the sealed box body 1 is provided with a first through hole 6 and a second through hole 7, and a gas circulation loop is arranged outside of it; both ends of the gas circulation loop are respectively connected with the first through hole 6 and the second through hole 6 Holes 7 are connected;
  • the housing 15 is also provided with an air supply member, the air supply member is provided between the first through hole 6 and the housing 15 and includes an air outlet 14 which can be connected to the upper part of the housing 15
  • the area made of the molten material corresponds to that for forcing the flame-retardant gas from the connection channel 12 of the lithium-ion battery into the casing 15, and at the same time, the electrolyte release channel 13 comes out, so that the lithium-ion battery can fully participate in the gas circulation In the loop, it can effectively cool the lithium ion battery and achieve flame retardancy;
  • the upper part of the housing 15 made of fusible material is penetrated to form a connecting channel 12, and the flame-retardant gas passes through the air outlet 14 and the connection After the channel 12 enters the inside of the housing 15; the lower part of the housing 15 is made of fusible material and the area is penetrated to form a release channel 13.
  • the electrolyte 5 flows from the release channel 13 into the sealed box 1, and The positive electrode and the negative electrode are separated.
  • the present invention cleverly realizes that when the temperature of a single lithium ion battery rises abnormally, the electrolyte in the lithium ion battery is separated in time, which effectively prevents the electrolyte from being ignited or decomposed, and prevents the monomer lithium ion The battery exploded on fire.
  • the present invention introduces a gas circulation loop, and is set to a self-starting mode, which can inhibit the temperature rise of the lithium ion battery from excessively high, prevent thermal runaway of the single lithium ion battery, and avoid the temperature of a single lithium ion battery. Too high causes abnormal temperature rise of the surrounding lithium-ion batteries, which will minimize the impact on the surrounding single-cell lithium-ion batteries and prevent the lithium-ion batteries from causing a chain reaction.
  • the sealed box body is always filled with cooling and flame-retardant gas, which replaces the air filled in the sealed box body in the prior art, which can effectively protect the safety of the entire battery module and avoid burning.
  • the new type of lithium ion battery proposed by the present invention can automatically turn on the battery protection mode through the introduction of temperature-sensitive fusible materials without additional power consumption, which is beneficial to the economy of energy storage batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明公开了一种新型锂离子电池及电池模组,包括壳体,所述壳体内设有正电极、负电极和电解液;所述壳体的部分区域由可熔材料制成;当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的区域被贯通,所述电解液从所述贯通处流出,与正电极和负电极分离。本发明实现了单体新型锂离子电池温度异常升高时,及时将单体新型锂离子电池中的电解液分离出来,有效避免了电解液被引燃或发生分解,防止了单体新型锂离子电池发生着火爆炸,以及避免异常升温的单体新型锂离子电池带来连锁反应损坏周围其他单体新型锂离子电池。

Description

一种新型锂离子电池及电池模组 技术领域
本发明属于电池技术领域,涉及一种新型锂离子电池及电池模组,更具体地涉及一种电解液可与电极分离的锂离子电池及阻燃装置。
背景技术
电力行业发电、输电和用电系统重要的特点就是无法进行电能储存,为此引入大规模储能系统用于协调电力负载和发电之间的平衡,使得电网运行获得最佳的经济效率。锂离子电池因其能量密度高、无污染等优点,成为了目前电力储能系统应用最广泛的电池类型。电解液作为锂离子电池的血液,其热稳定性是制约锂离子电池安全性能的首要因素。电解液使用的溶剂通常为有机碳酸酯类化合物,活性高,极易燃烧,本身相当于可燃物,当锂离子电池处于充电状态时,正极材料为强氧化性化合物,而负极材料为强还原性化合物,在过分使用的情况下,强氧化锌的正极材料稳定性较差,很容易释放出氧气,碳酸酯与氧气反应,会释放出大量的热和气体,从而进一步加速了正极的分解,导致更多放热反应的进行。同时,强还原性负极的活泼性接近于金属锂,其与氧气接触会立即燃烧并引燃电解液、隔膜等,从而导致锂离子电池的热失控,使得锂离子电池发生燃烧和爆炸。因此,为了避免锂离子电池发生热失控,提高电池的安全稳定性能对电力系统大规模储能电池的使用至关重要。现有技术中为了解决该问题,大多通过监测锂离子电池内部的气体浓度、含量以及电池温度等,并对锂离子电池进行灭火降温处理,但是无法从源头上解决锂离子电池热失控的问题。
发明内容
针对上述问题,本发明提出一种新型锂离子电池及电池模组,能够有效避免单体电池发生燃烧和爆炸,同时能够避免异常升温的单体电池带来连锁反应损坏周围其他单体电池。
为了实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
第一方面,本发明提供了一种新型锂离子电池,包括壳体,所述壳体内设有正电极、负电极和电解液;所述壳体的部分区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的区域被贯通,所述电解液从所述贯通处流出,与所述正电极和负电极分离。
优选地,所述壳体上部和下部均有部分区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体上部由可熔材料制成的区域被贯通, 形成连接通道,用于供阻燃气体通入;所述壳体下部由可熔材料制成的区域被贯通,形成释放通道,所述电解液从所述释放通道流出,与正电极和负电极分离。
优选地,所述壳体顶部和底部均有部分区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体顶部由可熔材料制成的区域被贯通,形成连接通道,用于供阻燃气体通入;所述壳体底部由可熔材料制成的区域被贯通,形成释放通道,所述电解液从所述释放通道流出,与所述正电极和负电极分离。
优选地,所述壳体分为上下设置的第一部分和第二部分;所述第一部分与第二部分之间的连接区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述由可熔材料制成的连接区域被贯通;所述第二部分与第一部分分离,所述电解液流出,与所述正电极和负电极分离。
优选地,所述壳体的全部侧壁或者部分侧壁由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的全部侧壁或者部分侧壁区域自动碎裂,所述电解液流出,与所述正电极和负电极分离。
第二部分,本发明提供了一种新型锂离子电池模组,包括:
密封箱体,所述密封箱体内充满阻燃气体;
新型锂离子电池,所述新型锂离子电池设于所述密封箱体内,其包括壳体,所述壳体内设有正电极、负电极和电解液,其底部与密封箱体的底部之间存在距离;所述壳体的部分区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的区域被贯通,所述电解液从所述贯通处流入密封箱体内,与所述正电极和负电极分离。
优选地,所述壳体上部和下部均有部分区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体上部由可熔材料制成的区域被贯通,形成连接通道;所述壳体下部由可熔材料制成的区域被贯通,形成释放通道;
所述阻燃气体经所述连接通道进入壳体内部;
所述电解液从所述释放通道流入密封箱体内,与正电极和负电极分离。
优选地,所述壳体顶部和底部均有部分区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体顶部由可熔材料制成的区域被贯通,形成连接通道;所述壳体底部由可熔材料制成的区域被贯通,形成释放通道;
所述阻燃气体经所述连接通道进入壳体内部;
所述电解液从所述释放通道流入密封箱体内,与所述正电极和负电极分离
优选地,所述壳体分为上下设置的第一部分和第二部分;所述第一部分与第二部分之 间的连接区域由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述由可熔材料制成的连接区域被贯通;所述第二部分与第一部分分离,且所述第二部分落入密封箱体内;
所述电解液流入密封箱体内,与正电极和负电极分离。
优选地,所述壳体的全部侧壁或者部分侧壁由可熔材料制成;
当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的全部侧壁或者部分侧壁区域自动碎裂,并掉入密封箱体内,所述电解液流入密封箱体内,与正电极和负电极分离。
优选地,所述新型锂离子电池模组还包括气体循环回路;所述气体循环回路设于所述密封箱体的外侧;
所述密封箱体上设有第一通孔和第二通孔;
所述气体循环回路的两端分别与所述第一通孔和第二通孔相连,实现阻燃气体的循环。
优选地,所述壳体上由可熔材料制成的区域处设有传感器;
当检测到壳体上由可熔材料制成的区域被贯通后,则立即发送启动信号至气体循环回路,启动所述气体循环回路。
优选地,所述传感器为温度传感器、测距传感器、测速传感器中的任意一种。
优选地,所述气体循环回路包括顺次设置的第一电磁阀、缓冲罐、换热器、第二电磁阀和压缩机;
所述第一电磁阀上远离缓冲罐的阀口与第一通孔相连;所述压缩机上远离第二电磁阀的阀口与所述第二通孔相连。
优选地,所述第一通孔设于所述密封箱体的上部,所述第二通孔设于所述密封箱体的下部。
优选地,所述壳体上部和下部均有部分区域由可熔材料制成;
所述密封箱体上设有第一通孔和第二通孔,其外部设有气体循环回路;所述气体循环回路的两端分别与所述第一通孔和第二通孔相连;
所述壳体内还设有送气件,所述送气件设于所述第一通孔与壳体之间,其包括出气孔,所述出气孔与壳体上部由可熔材料制成的区域相对应;
当所述壳体内的温度超过设定阈值时,所述壳体上部由可熔材料制成的区域被贯通,形成连接通道,所述阻燃气体经过所述出气孔以及连接通道后进入壳体内部;所述壳体下部由可熔材料制成的区域被贯通,形成释放通道,所述电解液从所述释放通道流入密封箱 体内,与正电极和负电极分离。
与现有技术相比,本发明的有益效果:
(1)本发明巧妙的实现了单体锂离子电池温度异常升高时,及时将锂离子电池中的电解液分离出来,有效避免了电解液被引燃或发生分解,防止了单体锂离子电池发生着火爆炸。
(2)本发明引入气体循环回路,并设置为自启动模式,可抑制锂离子电池温度升的过高,防止单体锂离子电池发生热失控,同时避免了由于某个单体锂离子电池温度过高造成周围锂离子电池异常温升,将对周围其余单体锂离子电池的影响降到最低,防止造成锂离子电池发生连锁反应。
(3)本发明中密封箱体内始终充满降温阻燃气体,取代了现有技术中在密封箱体内充满的空气,可有效保护整个电池模组的安全,避免发生燃烧。
(4)本发明提出的新型锂离子电池通过温度敏感型可熔材料的引入,可自动开启电池防护模式,无需额外消耗电能,有益于储能电池储能的经济性。
附图说明
图1为本发明一种实施例的新型锂离子电池及电池模组的结构示意图;
图2为本发明另一种实施例的新型锂离子电池及电池模组的结构示意图;
图3为本发明第三种实施例的新型锂离子电池及电池模组的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明的保护范围。
下面结合附图对本发明的应用原理作详细的描述。
现有技术中为了避免锂离子电池发生热失控,提高电池的安全稳定性能对电力系统大规模储能电池的使用至关重要,大多通过监测锂离子电池内部的气体浓度、含量以及电池温度等,并对锂离子电池进行灭火降温处理,可见,这类方法无法从源头上解决锂离子电池热失控的问题,为此,本发明提出了一种新型锂离子电池及电池模组,实现了单体新型锂离子电池温度异常升高时,及时将单体新型锂离子电池中的电解液分离出来,有效避免了电解液被引燃或发生分解,防止了单体新型锂离子电池发生着火爆炸,避免异常升温的单体新型锂离子电池带来连锁反应损坏周围其他单体新型锂离子电池,对保证储能电池的安全稳定运行具有开创性意义,一旦投入市场,应用前景不可估量。
实施例1
本发明实施例提供了一种新型锂离子电池,包括壳体15,所述壳体15内设有正电极401、负电极402和电解液5;所述壳体15的部分区域由可熔材料制成;所述正电极401、负电极402和电解液5的设计原理采用的是现有技术,因此,本发明中不做过多的赘述;所述正电极401和负电极402均与壳体15的顶壁相连;
当所述壳体15内的温度超过设定阈值时,所述壳体15上由可熔材料制成的区域被贯通,所述电解液5从所述贯通处流出,与所述正电极401和负电极402完全分离,在降温阻燃气体的隔离下,电解液5不会发生分解反应产生H 2,也不会由于温度过高被引燃,有效避免了电解液5被引燃或发生分解,防止了单体电池发生着火爆炸。所述设定阈值根据实际情况去设定,本发明不做过多的限定;
在本发明实施例的一种具体实施方式中,如图1所示,所述壳体15上部和下部均有部分区域由可熔材料制成,优选地,所述壳体15顶部和底部均有部分区域由可熔材料制成;所述的可熔材料为温度敏感型可熔材料,可以直接从市面上采购得到,由于可熔材料本身结构和组成并非本发明的创新点所在,因此,不对其具体结构和组成做限定,只要能够实现当其感应到的温度超过设定阈值时(即新型锂离子电池发生异常升温时),就能够自动熔化的温度敏感型可熔材料均适用于本发明实施例中的新型锂离子电池。
当所述壳体15内的温度处于正常范围时,所述壳体15上部和下部由可熔材料制成的区域与壳体15上的其余部分共同形成密闭空间;当所述壳体15内的温度超过设定阈值时,所述壳体15上部由可熔材料制成的区域被贯通(即材料自动熔化),形成连接通道12,用于供阻燃气体通入;所述壳体15下部由可熔材料制成的区域被贯通(即材料自动熔化),形成释放通道13,所述电解液5从所述释放通道13流出,与正电极和负电极分离。
在本发明实施例的另一种具体实施方式中,如图2所示,所述壳体15分为上下设置的第一部分和第二部分;所述第一部分与第二部分之间的连接区域16由可熔材料制成;优选地,如图2所示,所述第一部分为壳体15的顶壁,所述第二部分为壳体15的侧壁以及壳体15的底壁形成的部分;
当所述壳体15内的温度处于正常范围时,所述壳体15上部由可熔材料制成的连接区域16与所述第一部分和第二部分共同形成密闭空间;当所述壳体15内的温度超过设定阈值时(即新型锂离子电池发生异常升温时),所述由可熔材料制成的连接区域16被贯通(即材料自动熔化);所述第二部分与第一部分分离,所述电解液5流出,与正电极和负电极分离。
在本发明实施例的第三种具体实施方式中,如图3所示,所述壳体15的全部侧壁或者部分侧壁由可熔材料制成;
当所述壳体15内的温度处于正常范围时,所述壳体15上部由可熔材料制成的全部侧壁(1501、1502)或者部分侧壁与壳体15上的其余部分共同形成密闭空间;当所述壳体15内的温度超过设定阈值时(即新型锂离子电池发生异常升温时),所述壳体15上由可熔材料制成的全部侧壁(1501、1502)或者部分侧壁区域自动碎裂,所述电解液5流出,与正电极和负电极分离。
实施例2
基于与实施例1相同的发明构思,本发明实施例提供了一种新型锂离子电池模组,包括:
密封箱体1,所述密封箱体1内充满阻燃气体;
新型锂离子电池2,所述新型锂离子电池2设于所述密封箱体1内,其包括壳体15,所述壳体15内设有正电极401、负电极402和电解液5,其底部与密封箱体1的底部之间存在距离,用作电解液存储区3,用于存储从壳体15内流出的电解液5,所述新型锂离子电池2的底部与密封箱体1的底部之间的距离需要确保从壳体15内流出的电解液5,必须完全与正电极401、负电极402分离;所述壳体15的部分区域由可熔材料制成;所述新型锂离子电池的数量不做具体限制,各新型锂离子电池的具体排布也不做具体限定,只要能够满足各新型锂离子电池2的底部均与密封箱体1的底部之间存在距离即可;在具体实施时,所述新型锂离子电池2可以利用支架安装在所述密封箱体1内;所述正电极401和负电极402均与壳体15的顶壁相连;
当所述壳体15内的温度超过设定阈值时(即新型锂离子电池发生异常升温时),所述壳体15上由可熔材料制成的区域被贯通(即材料自动熔化),所述电解液5从所述贯通处流入密封箱体1内,即电解液存储区3内,与正电极和负电极分离。
在本发明实施例的一种具体实施方式中,如图1所示,所述壳体15上部和下部均有部分区域由可熔材料制成,优选地,所述壳体15顶部和底部均有部分区域由可熔材料制成;
所述壳体15上部和下部由可熔材料制成的区域与壳体15上的其余部分共同形成密闭空间;当所述壳体15内的温度超过设定阈值时,所述壳体15上部由可熔材料制成的区域被贯通,形成连接通道12;所述壳体15下部由可熔材料制成的区域被贯通,形成释放通道13;
所述阻燃气体经所述连接通道12进入壳体15内部,能够进一步地实现阻燃;
所述电解液5从所述释放通道13流入密封箱体1内,与正电极和负电极分离。
在本发明实施例的一种具体实施方式中,如图2所示,所述壳体15分为上下设置的 第一部分和第二部分;所述第一部分与第二部分之间的连接区域16由可熔材料制成;优选地,如图2所示,所述第一部分为壳体的顶壁,所述第二部分为壳体的侧壁(1501、1502)以及壳体的底壁形成的部分;
当所述壳体15内的温度处于正常范围时,所述壳体15上部由可熔材料制成的连接区域16与所述第一部分和第二部分共同形成密闭空间;当所述壳体15内的温度超过设定阈值时,所述由可熔材料制成的连接区域16被贯通;所述第二部分与第一部分分离,且所述第二部分落入密封箱体1内;
所述电解液5流入密封箱体1内,与正电极和负电极分离。
在本发明实施例的一种具体实施方式中,如图3所示,所述壳体15的全部侧壁(1501、1502)或者部分侧壁由可熔材料制成;
当所述壳体15内的温度处于正常范围时,所述壳体15上部由可熔材料制成的全部侧壁(1501、1502)或者部分侧壁与壳体15上的其余部分共同形成密闭空间;当所述壳体15内的温度超过设定阈值时,所述壳体15上由可熔材料制成的全部侧壁或者部分侧壁区域自动碎裂,并掉入密封箱体1内,所述电解液5流入密封箱体1内,与正电极和负电极分离。
实施例3
基于实施例2,本发明实施例与实施例2的区别在于:
为了实现阻燃气体不断在密封箱体1内循环,能够更好地降低新型锂离子电池及密封箱体1内的温度,所述新型锂离子电池模组还包括气体循环回路;所述气体循环回路设于所述密封箱体1的外侧;
所述密封箱体1上设有第一通孔6和第二通孔7,作为优选地,所述第一通孔6设于所述密封箱体1的上部,所述第二通孔7设于所述密封箱体1的下部;
所述气体循环回路的两端分别与所述第一通孔6和第二通孔7相连,实现阻燃气体的循环;在本发明实施例的一种具体实施方式中,所述气体循环回路包括顺次设置的第一电磁阀801、缓冲罐9、换热器10、第二电磁阀802和压缩机11;所述第一电磁阀801上远离缓冲罐9的阀口与第一通孔6相连;所述压缩机11上远离第二电磁阀802的阀口与所述第二通孔7相连;在本发明实施例的其他实施方式中,所述气体循环回路还可以是其他的结构,只要能够实现密封气体内的阻燃气体的循环及降温即可;
在本发明实施例的优选实施方式中,所述壳体15上由可熔材料制成的区域处设有传感器,当所述传感器检测到由可熔材料制成的区域被贯通后,则发送启动信号至气体循环回路,启动所述气体循环回路,自发进行阻燃气体的循环。在实际应用过程中,所述传感 器可以是温度传感器、测距传感器或者测速传感器。
综上所述,本发明实施例中的阻燃装置的具体工作过程为:
当模组内的某一新型锂离子电池内部温度升高至温度T时,该新型锂离子电池的壳体15上由温度敏感型的可熔材料制成的区域发生熔化或碎裂,使得电解液5与正负电极完全分离,同时设于所述可熔材料上的传感器发送触发信号至气体循环回路,缓冲罐9内的阻燃气体经由管路以及密封箱体1上的第一通孔6进入所述密封箱体1中,再经过密封箱体1上的第二通孔7从密封箱体1内出来,进入压缩机11被压缩,压缩后的阻燃气体进入换热器10被降温后送入缓冲罐9,开始下一轮循环,不断重复。由于该发生异常升温的新型锂离子电池由气体循环回路进行逐步降温,因此,当温度降至新型锂离子电池的正常工作温度区间时,发送关闭信号至气体循环回路,关闭气体循环回路中的第一电磁阀801、第二电磁阀802、换热器10和压缩机11。
实施例4
基于实施例2,本发明实施例与实施例2的区别在于:
所述壳体15上部和下部均有部分区域由可熔材料制成,优选地,所述壳体15顶部和底部均有部分区域由可熔材料制成;
所述密封箱体1上设有第一通孔6和第二通孔7,其外部设有气体循环回路;所述气体循环回路的两端分别与所述第一通孔6和第二通孔7相连;
所述壳体15内还设有送气件,所述送气件设于所述第一通孔6与壳体15之间,其包括出气孔14,所述出气孔14与壳体15上部由可熔材料制成的区域相对应,用于迫使阻燃气体从锂离子电池的连接通道12进入壳体15内,同时,电解液释放通道13出来,这样,锂离子电池就能够充分参与到气体循环回路中,可有效对锂离子电池实现降温阻燃;
当所述壳体15内的温度超过设定阈值时,所述壳体15上部由可熔材料制成的区域被贯通,形成连接通道12,所述阻燃气体经过所述出气孔14以及连接通道12后进入壳体15内部;所述壳体15下部由可熔材料制成的区域被贯通,形成释放通道13,所述电解液5从所述释放通道13流入密封箱体1内,与正电极和负电极分离。
综上所述:
(1)本发明巧妙的实现了单体锂离子电池温度异常升高时,及时将锂离子电池中的电解液分离出来,有效避免了电解液被引燃或发生分解,防止了单体锂离子电池发生着火爆炸。
(2)本发明引入气体循环回路,并设置为自启动模式,可抑制锂离子电池温度升的过高,防止单体锂离子电池发生热失控,同时避免了由于某个单体锂离子电池温度过高造 成周围锂离子电池异常温升,将对周围其余单体锂离子电池的影响降到最低,防止造成锂离子电池发生连锁反应。
(3)本发明中密封箱体内始终充满降温阻燃气体,取代了现有技术中在密封箱体内充满的空气,可有效保护整个电池模组的安全,避免发生燃烧。
(4)本发明提出的新型锂离子电池通过温度敏感型可熔材料的引入,可自动开启电池防护模式,无需额外消耗电能,有益于储能电池储能的经济性。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (16)

  1. 一种新型锂离子电池,其特征在于:包括壳体,所述壳体内设有正电极、负电极和电解液;所述壳体的部分区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的区域被贯通,所述电解液从所述贯通处流出,与所述正电极和负电极分离。
  2. 根据权利要求1所述的一种新型锂离子电池,其特征在于:所述壳体上部和下部均有部分区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体上部由可熔材料制成的区域被贯通,形成连接通道,用于供阻燃气体通入;所述壳体下部由可熔材料制成的区域被贯通,形成释放通道,所述电解液从所述释放通道流出,与正电极和负电极分离。
  3. 根据权利要求2所述的一种新型锂离子电池,其特征在于:所述壳体顶部和底部均有部分区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体顶部由可熔材料制成的区域被贯通,形成连接通道,用于供阻燃气体通入;所述壳体底部由可熔材料制成的区域被贯通,形成释放通道,所述电解液从所述释放通道流出,与所述正电极和负电极分离。
  4. 根据权利要求1所述的一种新型锂离子电池,其特征在于:所述壳体分为上下设置的第一部分和第二部分;所述第一部分与第二部分之间的连接区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述由可熔材料制成的连接区域被贯通;所述第二部分与第一部分分离,所述电解液流出,与所述正电极和负电极分离。
  5. 根据权利要求1所述的一种新型锂离子电池,其特征在于:所述壳体的全部侧壁或者部分侧壁由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的全部侧壁或者部分侧壁区域自动碎裂,所述电解液流出,与所述正电极和负电极分离。
  6. 一种新型锂离子电池模组,其特征在于,包括:
    密封箱体,所述密封箱体内充满阻燃气体;
    新型锂离子电池,所述新型锂离子电池设于所述密封箱体内,其包括壳体,所述壳体内设有正电极、负电极和电解液,其底部与密封箱体的底部之间存在距离;所述壳体的部分区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的区域被贯通,所述电解液从所述贯通处流入密封箱体内,与所述正电极和负电极分离。
  7. 根据权利要求6所述的一种新型锂离子电池模组,其特征在于:所述壳体上部和下部均有部分区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体上部由可熔材料制成的区域被贯通,形成连接通道;所述壳体下部由可熔材料制成的区域被贯通,形成释放通道;
    所述阻燃气体经所述连接通道进入壳体内部;
    所述电解液从所述释放通道流入密封箱体内,与正电极和负电极分离。
  8. 根据权利要求7所述的一种新型锂离子电池模组,其特征在于:所述壳体顶部和底部均有部分区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体顶部由可熔材料制成的区域被贯通,形成连接通道;所述壳体底部由可熔材料制成的区域被贯通,形成释放通道;
    所述阻燃气体经所述连接通道进入壳体内部;
    所述电解液从所述释放通道流入密封箱体内,与所述正电极和负电极分离
  9. 根据权利要求6所述的一种新型锂离子电池模组,其特征在于:所述壳体分为上下设置的第一部分和第二部分;所述第一部分与第二部分之间的连接区域由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述由可熔材料制成的连接区域被贯通;所述第二部分与第一部分分离,且所述第二部分落入密封箱体内;
    所述电解液流入密封箱体内,与正电极和负电极分离。
  10. 根据权利要求6所述的一种新型锂离子电池模组,其特征在于:所述壳体的全部侧壁或者部分侧壁由可熔材料制成;
    当所述壳体内的温度超过设定阈值时,所述壳体上由可熔材料制成的全部侧壁或者部分侧壁区域自动碎裂,并掉入密封箱体内,所述电解液流入密封箱体内,与正电极和负电极分离。
  11. 根据权利要求6-10中任一项所述的一种新型锂离子电池模组,其特征在于:所述新型锂离子电池模组还包括气体循环回路;所述气体循环回路设于所述密封箱体的外侧;
    所述密封箱体上设有第一通孔和第二通孔;
    所述气体循环回路的两端分别与所述第一通孔和第二通孔相连,实现阻燃气体的循环。
  12. 根据权利要求11所述的一种新型锂离子电池模组,其特征在于:所述壳体上由可熔材料制成的区域处设有传感器;
    当检测到壳体上由可熔材料制成的区域被贯通后,则立即发送启动信号至气体循环回路,启动所述气体循环回路。
  13. 根据权利要求12所述的一种新型锂离子电池模组,其特征在于:所述传感器为温度传感器、测距传感器、测速传感器中的任意一种。
  14. 根据权利要求11所述的一种新型锂离子电池模组,其特征在于:所述气体循环回路包 括顺次设置的第一电磁阀、缓冲罐、换热器、第二电磁阀和压缩机;
    所述第一电磁阀上远离缓冲罐的阀口与第一通孔相连;所述压缩机上远离第二电磁阀的阀口与所述第二通孔相连。
  15. 根据权利要求11所述的一种新型锂离子电池模组,其特征在于:所述第一通孔设于所述密封箱体的上部,所述第二通孔设于所述密封箱体的下部。
  16. 根据权利要求6所述的一种新型锂离子电池模组,其特征在于:所述壳体上部和下部均有部分区域由可熔材料制成;
    所述密封箱体上设有第一通孔和第二通孔,其外部设有气体循环回路;所述气体循环回路的两端分别与所述第一通孔和第二通孔相连;
    所述壳体内还设有送气件,所述送气件设于所述第一通孔与壳体之间,其包括出气孔,所述出气孔与壳体上部由可熔材料制成的区域相对应;
    当所述壳体内的温度超过设定阈值时,所述壳体上部由可熔材料制成的区域被贯通,形成连接通道,所述阻燃气体经过所述出气孔以及连接通道后进入壳体内部;所述壳体下部由可熔材料制成的区域被贯通,形成释放通道,所述电解液从所述释放通道流入密封箱体内,与正电极和负电极分离。
PCT/CN2019/088968 2019-05-07 2019-05-29 一种新型锂离子电池及电池模组 WO2020224016A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020541582A JP7095099B2 (ja) 2019-05-07 2019-05-29 新規なリチウムイオン電池モジュール
US17/259,469 US12015135B2 (en) 2019-05-07 2019-05-29 Lithium ion batteries and battery modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910373491.7A CN110112329B (zh) 2019-05-07 2019-05-07 一种锂离子电池及电池模组
CN201910373491.7 2019-05-07

Publications (1)

Publication Number Publication Date
WO2020224016A1 true WO2020224016A1 (zh) 2020-11-12

Family

ID=67488448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088968 WO2020224016A1 (zh) 2019-05-07 2019-05-29 一种新型锂离子电池及电池模组

Country Status (4)

Country Link
US (1) US12015135B2 (zh)
JP (1) JP7095099B2 (zh)
CN (1) CN110112329B (zh)
WO (1) WO2020224016A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759309A (zh) * 2021-10-15 2022-07-15 杰锋汽车动力系统股份有限公司 一种动力电池热失控被动安全系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421159A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统
CN112421160A (zh) * 2020-12-04 2021-02-26 澳大利亚国家电力储能控股有限公司 高能量锂电池及包括该锂电池的大型储能系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150975A (ja) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> 非水電解液二次電池
CN104347840A (zh) * 2013-07-25 2015-02-11 深圳市沃特玛电池有限公司 一种锂离子电池组的漏液阻燃结构
CN207834423U (zh) * 2018-01-07 2018-09-07 合肥国轩高科动力能源有限公司 一种锂电池防爆壳体
US20180323420A1 (en) * 2017-05-08 2018-11-08 Lg Chem, Ltd. Battery explosion prevention apparatus, battery pack, and method for operating the same
CN109585730A (zh) * 2018-11-08 2019-04-05 同济大学 一种适用于新能源汽车的充保护气电池包

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039727U (zh) * 1973-08-09 1975-04-23
JPS6124955U (ja) * 1984-07-19 1986-02-14 富士電気化学株式会社 密閉式電池
JP3281057B2 (ja) * 1992-09-14 2002-05-13 株式会社東芝 二次電池
JP5039727B2 (ja) 2009-02-17 2012-10-03 京楽産業.株式会社 遊技機
JPWO2012153865A1 (ja) * 2011-05-11 2014-07-31 日本電気株式会社 非水系二次電池、実装体および非水系二次電池の製造方法
US9869026B2 (en) 2014-07-15 2018-01-16 Rohm And Haas Electronic Materials Llc Electroless copper plating compositions
CN207977236U (zh) * 2017-12-26 2018-10-16 江苏宿海电子科技有限公司 一种自熔断型电解电容器
CN208423051U (zh) * 2018-06-28 2019-01-22 江苏天钧精密技术有限公司 一种断电保护装置
CN208706799U (zh) * 2018-07-27 2019-04-05 清华大学 安全电池
US11296386B2 (en) * 2019-02-06 2022-04-05 GS Yuasa Lithium Power Inc. Expandable electrochemical cell effluent containment device and corresponding systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150975A (ja) * 1992-11-04 1994-05-31 Nippon Telegr & Teleph Corp <Ntt> 非水電解液二次電池
CN104347840A (zh) * 2013-07-25 2015-02-11 深圳市沃特玛电池有限公司 一种锂离子电池组的漏液阻燃结构
US20180323420A1 (en) * 2017-05-08 2018-11-08 Lg Chem, Ltd. Battery explosion prevention apparatus, battery pack, and method for operating the same
CN207834423U (zh) * 2018-01-07 2018-09-07 合肥国轩高科动力能源有限公司 一种锂电池防爆壳体
CN109585730A (zh) * 2018-11-08 2019-04-05 同济大学 一种适用于新能源汽车的充保护气电池包

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759309A (zh) * 2021-10-15 2022-07-15 杰锋汽车动力系统股份有限公司 一种动力电池热失控被动安全系统
CN114759309B (zh) * 2021-10-15 2024-05-03 杰锋汽车动力系统股份有限公司 一种动力电池热失控被动安全系统

Also Published As

Publication number Publication date
CN110112329B (zh) 2020-05-22
JP2021525434A (ja) 2021-09-24
US20220052393A1 (en) 2022-02-17
US12015135B2 (en) 2024-06-18
JP7095099B2 (ja) 2022-07-04
CN110112329A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020224016A1 (zh) 一种新型锂离子电池及电池模组
WO2021138947A1 (zh) 一种锂离子电池箱抑爆装置及方法
WO2022116908A1 (zh) 高能量锂电池及包括该锂电池的大型储能系统
CN204946962U (zh) 一种带有阻燃装置的电池包
CN210723159U (zh) 一种灭火动力电池模组及电池包
CN106469794A (zh) 一种高比能电池包内部阻燃降温的方法
CN218299895U (zh) 电池及用电装置
CN112768819A (zh) 一种高消防安全的储能电池包与储能电池集装箱
CN112421160A (zh) 高能量锂电池及包括该锂电池的大型储能系统
CN211024884U (zh) 一种电池储能系统
CN205882034U (zh) 一种锂电池的防爆阻燃装置
WO2019161574A1 (zh) 一种电池储能模块的安全防控方法及器件
CN210136955U (zh) 一种储能电池的灭火装置
CN219106451U (zh) 一种可主动抽排烟气的阻燃电池簇放置架
CN216436054U (zh) 一种气体保护式锂电池储能集装箱
KR101312102B1 (ko) 리튬 이차 전지
CN114221085A (zh) 大容量电池的热失控安全保护结构
WO2022198347A1 (zh) 一种在动力电池的外壳上设置易熔塞的办法
CN210074085U (zh) 一种安全性能高的电池箱
CN217114674U (zh) 大容量电池的热失控安全保护结构
CN114914519B (zh) 一种新能源车用锂离子电池制备方法
CN217983467U (zh) 锂电池组锂电池包安全预警控制模块
CN219545392U (zh) 一种锂电池充电储存箱
Zhang Spontaneous combustion of lithium batteries and its preventive measures
CN111948543B (zh) 一种储能电池组热失控连锁反应判断系统及方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020541582

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927833

Country of ref document: EP

Kind code of ref document: A1