WO2020223994A1 - 一种憎油自洁防尘绝缘涂料及其制造方法 - Google Patents

一种憎油自洁防尘绝缘涂料及其制造方法 Download PDF

Info

Publication number
WO2020223994A1
WO2020223994A1 PCT/CN2019/087011 CN2019087011W WO2020223994A1 WO 2020223994 A1 WO2020223994 A1 WO 2020223994A1 CN 2019087011 W CN2019087011 W CN 2019087011W WO 2020223994 A1 WO2020223994 A1 WO 2020223994A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
solution
temperature
acetone
aqueous solution
Prior art date
Application number
PCT/CN2019/087011
Other languages
English (en)
French (fr)
Inventor
张敬敏
Original Assignee
山东光韵智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东光韵智能科技有限公司 filed Critical 山东光韵智能科技有限公司
Publication of WO2020223994A1 publication Critical patent/WO2020223994A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the invention relates to the technical field of composite coatings, in particular to an oil-repellent, self-cleaning, dust-proof and insulating coating and a manufacturing method thereof.
  • Insulating paint A paint with excellent electrical insulation. It has good electrical, thermal, mechanical and chemical properties. Usually varnish, but also colored paint.
  • Insulating coatings in conventional technology now generally use inorganic-organic polymer base materials, and some completely use inorganic materials as base materials. The main feature is that they are composed of inorganic crystal materials with high volume resistivity and compact structure, such as alumina and nitrogen. Silicone, etc. are fillers, ceramic particles are used as high-temperature film-forming materials to form high-temperature resistant insulating coatings. This type of insulating coatings can be painted on various materials and cured at room temperature with a curing time of more than 24 hours.
  • General light-curing coatings use ultraviolet light as the coating curing energy source, without heating, and can be quickly cured into a film on flammable substrates such as paper, plastic, leather and wood.
  • the photocurable coatings in the prior art are mainly composed of photosensitive resin, photosensitizer (photoinitiator) and diluent, while adding some additives, such as heat stabilizer, and adding pigments and fillers when preparing color paint.
  • Photosensitive resins are generally low molecular weight resins with unsaturated bonds, such as unsaturated polyesters and acrylic oligomers; photosensitizers are compounds that easily absorb ultraviolet light and generate active free radicals, such as benzophenone and benzoin alkyl ether Class; The main function of the thinner is to reduce the viscosity of the coating, and at the same time, it also participates in the curing and film formation, that is, the reactive thinner, such as styrene, acrylate, etc.
  • the advantages of light-curing coatings are short curing time (a fraction of a second to a few minutes), low curing temperature, and low volatile content. They are energy-saving, resource-saving, pollution-free, and high-efficiency new coatings.
  • the disadvantage is free radical type. The curing process of light-curable coatings is inhibited by oxygen, and the surface curing is poor.
  • the present invention aims to provide an oil-repellent, self-cleaning, dust-proof, and insulating oil-repellent, self-cleaning and dust-proof insulating coating.
  • an oil-repellent, self-cleaning and dust-proof insulating paint which is 12-13 parts by weight of isophorone diisocyanate and dodecyl Sodium benzenesulfonate 2 parts-2.3 parts, polyethylene glycol 400 3 parts-3.5 parts, 2,2-bismethylolpropionic acid 18 parts-20 parts, 2-hydroxyethyl methacrylate 8 parts-10 parts Parts, 5-6 parts of titanyl sulfate, 12-13 parts of hexamethylene diisocyanate, 1-1.2 parts of 2-ethyl-2-hydroxymethyl-1,3-propanediol, hydroxypropyl acrylate Body 8
  • step 1 the titanyl sulfate prepared in step 1) step 1 into sufficient sodium hydroxide aqueous solution, and react until TiO(OH)2 white precipitate is completely precipitated.
  • the solid content is filtered out and rinsed with deionized water to remove soluble impurity ions , To obtain alkaline solid content;
  • step 2 add the sodium dodecylbenzene sulfonate prepared in step 1) in step 1, and stir evenly to convert the sol colloidal particles into a water-increasing aggregate; Add acetone in the same volume as the original colorless and transparent aqueous solution, and use 500W-600W ultrasonic vibration treatment for 25min-30min to transfer the colloidal particles into the organic phase. After centrifugation and layering, the aqueous solution is discarded to obtain a transparent organosol;
  • step 4 Heat the transparent organosol obtained in step 3 to 50°C-55°C, reflux to remove the adsorbed water, and then distill off the organic solvent. After the removal is completed, heat the obtained solid particles at 200°C-220°C, and keep the temperature for 30 minutes -40min, the colorless micro-solid powder is obtained, and the colorless micro-solid powder is mixed with 10-12 times the mass of acetone to obtain the desired sol;
  • step 1 Take 9-10 parts of 2,2-bishydroxymethylpropionic acid, all 2-ethyl-2-hydroxymethyl-1,3-propanediol, all p-toluenesulfonic acid prepared in step 1 , Put it into the protective atmosphere-pressurization reaction kettle prepared in step 2 after mixing uniformly, pour argon into the kettle and pressurize the pressure to 8MPa-10MPa, raise the temperature to 145°C-150°C, and react for 2h-2.5h. Then the pressure is reduced to 4MPa-5MPa, the temperature is maintained, and the reaction is continued for 3.5h-4h. After the temperature is naturally cooled to 60°C-70°C, the reaction product is taken out, and the reaction product is dissolved in acetone whose mass is 100-120 times its mass , To obtain a preformed initial polymerization solution;
  • Step 1 prepare N,N-methylenebisacrylamide, increase the pressure to 4MPa-5MPa, increase the temperature to 120°C-130°C, and keep the temperature for 3h-3.5h.
  • the product is naturally cooled to room temperature and taken out to obtain a complex organic solution.
  • the complex organic solution is evenly mixed into the stage 1)
  • the diaryliodonium salt I-250 prepared in step 1 and stirred evenly, and then distilled Remove or add acetone to adjust the concentration of the obtained complex organic solution to the kinematic viscosity of the mixed solution 20mm2/s-25mm2/s, that is, obtain the required matrix solvent;
  • step 3 Coat the substrate solvent obtained in step 3) step 3 uniformly on the surface of the steel structure to be treated, and dry the brushed surface at room temperature for 2min-2min10s, and then use 0.6MPa-0.8MPa for the sol solution obtained in step 2) step 4
  • the spraying pressure is evenly sprayed on the surface of the cured substrate solvent that has been dried to a semi-cured state, and the time difference between the brushing time of the substrate solvent and the spraying time of the sol liquid is maintained at 2min-2min10s, and the intensity of 600mj/cm2-800mj/cm2 is used after spraying.
  • the density of ultraviolet light is irradiated for 2h-2.5h to complete the coating curing and molding.
  • the present invention has two core innovations that are combined with each other. One is that different components are cross-linked and then cross-linked twice. Compared with the prior art, a polymer system with higher solute content (less solvent required) is formed by the joint structure.
  • the polymer system is based on obvious oil repellency, high mechanical properties, high weather resistance, high temperature cracking resistance, Obtained by complex denaturation polymerization based on the hexafunctional PUA polymer system with strong alkali resistance and high flexibility and the IPDI-PEG-DMPA-HEMA polymer system with oil repellency, high insulation, high dispersion and high internal binding force.
  • a network chain composite polymer system with high insulation, oil repellency, high bonding force, high mechanical properties, and high temperature cracking resistance (2)
  • the second is that the solute obtained by the fine titanyl sulfate-acid-base treatment-acetone dispersion sol is ultrafine titanium dioxide powder with a particle size range of 5nm-50nm, and the light curing coating is used to cure the steel surface slowly.
  • the semi-cured state of the paint where the acetone is not completely volatilized it is pressurized and sprayed on the surface of the light-cured paint.
  • the final harvest surface is evenly and densely distributed and has room temperature insulation (titanium dioxide can be regarded as an insulator at room temperature, and becomes Conductor) and super-hydrophilic titanium dioxide powder.
  • the overall performance of the present invention is a special light-cured waterborne polyurethane/titanium dioxide nano system.
  • the applicant shows through SEM analysis that the titanium dioxide nanoparticle sol of the present invention has better dispersibility in the light-cured waterborne polyurethane matrix; stress-strain Curve analysis shows that the polymer system of the present invention can effectively realize the enhancement of the composite film, that is, increase the storage modulus, tensile strength and Shore hardness of the composite film. Therefore, the present invention has the characteristics of oil repellency, self-cleaning, dustproof and insulation, and has excellent comprehensive performance.
  • Example 1 An oil-repellent, self-cleaning and dust-proof insulating paint, the insulating paint is by weight of isophorone diisocyanate 12.8Kg, sodium dodecylbenzene sulfonate 2.2Kg, polyethylene glycol 400 3.5Kg, 2 , 2-bis(hydroxymethyl)propionic acid 18.4Kg, 2-hydroxyethyl methacrylate 8.8Kg, titanium oxide sulfate 5.3Kg, hexamethylene diisocyanate 12.5Kg, 2-ethyl-2-hydroxymethyl- 1,3-propanediol 1.1Kg, hydroxypropyl acrylate monomer 8.8Kg, N,N-methylenebisacrylamide 2.1Kg, diaryliodonium salt I-250 43.2Kg, sufficient solute mass fraction 10% Sodium hydroxide aqueous solution and 10% hydrochloric acid aqueous solution with sufficient solute mass fraction as raw materials, 0.15Kg triethylenediamine and 0.15
  • the solid content is filtered out and rinsed with deionized water to remove soluble impurity ions ,
  • the aqueous solution is discarded to obtain a transparent organosol; 4 Heat the transparent organosol obtained in step 3 to 50°C-55°C, reflux to remove the adsorbed water, and then distill off the organic solvent.
  • Step 2 prepare the protective atmosphere-pressurization reaction kettle, pass argon gas to the kettle and pressurize the pressure to 8MPa-10MPa, heat up to 145°C-150°C, react for 2h-2.5h, then reduce pressure To 4MPa-5MPa, keep the temperature, continue the reaction for 3.5h-4h, take out the reaction product after naturally cooling to 60°C-70°C, and dissolve the reaction product in acetone whose mass is 100-120 times
  • Step 1 prepare N,N-methylene bisacrylamide, increase the pressure to 4MPa-5MPa, increase the temperature to 120°C-130°C, and keep the temperature for 3h-3.5h. After the cross-linking is completed, the product is naturally cooled to room temperature and taken out to obtain a complex organic solution.
  • the complex organic solution is uniformly mixed into the stage 1) Diaryliodonium salt I-250 prepared in step 1 and stirred evenly, and then passed Distilling off or adding acetone to adjust the concentration of the obtained complex organic solution to the kinematic viscosity of the mixed solution of 20mm2/s-25mm2/s to obtain the required matrix solvent; 4) Final coating and use 1Coat the substrate solvent obtained in step 3) step 3 uniformly on the surface of the steel structure to be treated, and dry the brushed surface at room temperature for 2min-2min10s, and then use 0.6MPa-0.8MPa for the sol solution obtained in step 2) step 4
  • the spraying pressure is evenly sprayed on the surface of the cured substrate solvent that has been dried to a semi-cured state, and the time difference between the brushing time of the substrate solvent and the spraying time of the sol liquid is maintained at 2min-2min10s, and the intensity of 600mj/cm2-800mj/cm2 is used after spraying.
  • the density of ultraviolet light is irradiated for 2h-2.5h to complete the coating curing and molding.
  • the surface can be kept at 95% and 60°C for 5 days without corrosion.
  • the average volume resistivity of the body is 1 ⁇ 1012 ⁇ /m-3 ⁇ 1012 ⁇ /m, and the dielectric strength is 3 ⁇ 103kV/ m-8 ⁇ 103kV/m, can withstand long-term working temperature not higher than 100°C and instantaneous temperature not higher than 150°C, testing flexibility 2.1mm-2.3mm according to JIS K 5600, migration speed at 20mm/min
  • the elongation at the lower breaking point is 6.5%-7.3%, the same below.
  • An oil-repellent, self-cleaning and dust-proof insulating paint which is isophorone diisocyanate 12Kg, sodium dodecylbenzene sulfonate 2Kg, polyethylene glycol 400 3Kg, 2,2- Dimethylolpropionic acid 20Kg, 2-hydroxyethyl methacrylate 10Kg, Titanium oxide sulfate 6Kg, Hexamethylene diisocyanate 13Kg, 2-Ethyl-2-hydroxymethyl-1,3-propanediol 1.2Kg , Hydroxypropyl acrylate monomer 10Kg, N,N-methylenebisacrylamide 2.5Kg, diaryliodonium salt I-250 40Kg, sufficient solute mass fraction 10% sodium hydroxide aqueous solution, sufficient solute mass 10% aqueous hydrochloric acid solution as raw material, 0.15Kg of triethylenediamine, 0.15Kg of p-toluenes
  • the overall performance of the present invention is a special light-curable waterborne polyurethane/titanium dioxide nano system.
  • the applicant shows through SEM analysis that the titanium dioxide nanoparticle sol of the present invention has good dispersibility in the light-cured waterborne polyurethane matrix; stress-strain curve analysis shows that The polymer system of the present invention can effectively realize the enhancement of the composite film, that is, increase the storage modulus, tensile strength and Shore hardness of the composite film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

一种憎油自洁防尘绝缘涂料,该涂料以异佛尔酮二异氰酸酯、十二烷基苯磺酸钠、聚乙二醇400、2,2-双羟甲基丙酸、甲基丙烯酸-2-羟基乙酯、硫酸氧钛、六亚甲基二异氰酸酯、2-乙基-2-羟甲基-1,3-丙二醇、丙烯酸羟丙基单体、N,N-亚甲基双丙烯酰胺、二芳基碘盐I-250、氢氧化钠水溶液、盐酸水溶液为原料,三亚乙基二胺、对甲基苯磺酸为催化剂,丙酮为反应介质及固体颗粒胶溶介质,通过丙酮内氩气保护加压加热聚合反应-一次复杂交联聚合-二次固化交联聚合-原位引入纳米固态颗粒而获得。

Description

一种憎油自洁防尘绝缘涂料及其制造方法 技术领域
本发明涉及复合涂料技术领域,尤其涉及一种憎油自洁防尘绝缘涂料及其制造方法。
背景技术
绝缘涂料具有优良电绝缘性的涂料。有良好的电性能、热性能、机械性能和化学性能。多为清漆,也有色漆。现在常规技术中的绝缘涂料一般采用无机-有机聚合物基料,也有完全采用无机物为基料的,主要特点是都由体积电阻率高、结构紧密的无机晶体材料组成,如氧化铝、氮化硅等为填料,以陶瓷微粒为高温成膜物为主,组成耐高温绝缘涂料,这类绝缘涂料可以涂刷各种材质上,常温固化,固化时间在24小时以上。
发明概述
技术问题
一般的光固化涂料是以紫外光为涂料固化能源,不需加热,可在纸张、塑料、皮革和木材等易燃底材上迅速固化成膜。现有技术中的光固化涂料主要由光敏树脂、光敏剂(光引发剂)和稀释剂组成,同时加入一些添加剂,如热稳定剂,制备色漆时加入颜料和填料。光敏树脂一般是带有不饱和键的低分子量树脂,如不饱和聚酯、丙烯酸系低聚物;光敏剂为易吸收紫外光产生活性自由基的化合物,如二苯甲酮、安息香烷基醚类;稀释剂的主要作用是降低涂料粘度,同时也参加固化成膜,即为活性稀释剂,如苯乙烯、丙烯酸酯等。光固化涂料优点是固化时间短(几分之一秒到几分钟)、固化温度低、挥发分低,为省能源、省资源、无公害、高效率的涂料新品种;其缺点是自由基型光固化涂料固化过程受氧气阻抑,表面固化不良。
问题的解决方案
技术解决方案
但目前现有技术中所有的绝缘涂料均没有自洁、防油污、防尘的功能,而所有光固化涂料均单纯应用于墙面、木器等简单表面,目前还没有应用于钢质结构表面的光固化涂料(钢质材料表面吸水性差,固化慢,这是其未应用光固化涂料的根本原因),同时目前所有光固化涂料的绝缘性均较差。现实的情况中,我国所有化工厂变电站配电室的粉尘含碳元素或其他导电元素含量均较高,在电气结构的表面容易吸附一层灰尘,这个灰尘易导电,时间长易诱发电击穿,加上化工厂本身的空气结构,容易引起爆炸,非常危险。而现在还没有针对这一痛点研发的现有技术。
因此市场上需要一种憎油、自洁、防尘、绝缘的憎油自洁防尘绝缘涂料。
发明的有益效果
有益效果
为解决现有技术中存在的上述缺陷,本发明旨在提供憎油、自洁、防尘、绝缘的憎油自洁防尘绝缘涂料。为了实现上述发明目的,本发明采用以下技术方案:一种憎油自洁防尘绝缘涂料,该绝缘涂料为以按重量份计的异佛尔酮二异氰酸酯12份-13份、十二烷基苯磺酸钠2份-2.3份、聚乙二醇400 3份-3.5份、2,2-双羟甲基丙酸18份-20份、甲基丙烯酸-2-羟基乙酯8份-10份、硫酸氧钛5份-6份、六亚甲基二异氰酸酯12份-13份、2-乙基-2-羟甲基-1,3-丙二醇1份-1.2份、丙烯酸羟丙酯单体8份-10份、N,N-亚甲基双丙烯酰胺2份-2.5份、二芳基碘盐I-250 40份-45份、足量溶质质量分数10%的氢氧化钠水溶液、足量溶质质量分数10%的盐酸水溶液为原料,三亚乙基二胺0.1份-0.15份、对甲基苯磺酸0.1份-0.15份为催化剂,丙酮为反应介质及固体颗粒胶溶介质,通过丙酮内氩气保护加压加热聚合反应-一次复杂交联聚合-二次固化交联聚合-原位引入纳米固态颗粒而最终获得;
其具体制造过程如下:
1)预准备
①原材料准备:按上述原料及辅材所对应的重量份备齐待用;
②设备准备:保护气氛-加压反应釜;
2)溶胶液制备
①将阶段1)步骤①准备的硫酸氧钛投入足量氢氧化钠水溶液内,反应至TiO(O H)2白色沉淀完全析出,滤出固含物并采用去离子水漂洗除去可溶液性杂质离子,获得碱性固含物;
②将步骤①获得的碱性固含物加热至65℃-70℃,保持温度并缓慢滴加盐酸水溶液至混合溶液PH值5.5-6,停止滴加盐酸水溶液并保持温度,采用200W-250W超声波震荡处理15min-18min,得到无色透明水溶液;
③在步骤②获得的无色透明水溶液中,加入阶段1)步骤①准备的十二烷基苯磺酸钠,搅拌均匀,使溶胶胶粒转化成增水性凝聚体;然后在获得的增水性凝聚体内加入与原无色透明水溶液同体积的丙酮,采用500W-600W超声波震荡处理25min-30min,使胶体粒子转入有机相中,离心分层后舍去水溶液部分,得到透明有机溶胶;
④将步骤③获得的透明有机溶胶升温至50℃-55℃,回流除去吸附水后,再蒸馏除去有机溶剂,去除完成后,对获得的固体颗粒采用200℃-220℃进行加热处理,保温30min-40min,即得无色微固体粉末,将获得的无色微固体粉末与其质量10-12倍的丙酮混合均匀,即获得所需溶胶液;
3)基体溶剂制备
①取阶段1)步骤①准备的2,2-双羟甲基丙酸9份-10份、全部2-乙基-2-羟甲基-1,3-丙二醇、全部对甲基苯磺酸,混合均匀后投入阶段1)步骤②准备的保护气氛-加压反应釜中,通入氩气至釜内气压增压至8MPa-10MPa,升温至145℃-150℃,反应2h-2.5h,然后减压至4MPa-5MPa,保持温度,继续反应3.5h-4h,自然降温至60℃-70℃后将反应产物取出,并将反应产物溶于质量为其质量100倍-120倍的丙酮中,获得预制初聚溶液;
②在步骤①获得的预制初聚溶液中投入阶段1)步骤①准备的剩余2,2-双羟甲基丙酸、全部异佛尔酮二异氰酸酯、十二烷基苯磺酸钠、聚乙二醇400、甲基丙烯酸-2-羟基乙酯、六亚甲基二异氰酸酯、丙烯酸羟丙酯单体、三亚乙基二胺,混合均匀后投入阶段1)步骤②准备的保护气氛-加压反应釜中,通入氩气至釜内气压增压至2MPa-2.5MPa,升温至100℃-115℃,反应1h-1.5h,获得部分聚合产物;
③在步骤②获得的部分聚合产物中加入阶段1)步骤①准备N,N-亚甲基双丙烯酰 胺,升压至4MPa-5MPa、升温至120℃-130℃、保温3h-3.5h进行二次交联,交联完成后待产物自然冷却至室温取出,获得复杂有机溶液,在复杂有机溶液内均匀混入阶段1)步骤①准备的二芳基碘盐I-250并搅拌均匀,再通过蒸馏去除或加入丙酮对所获得的复杂有机溶液的浓度进行调节至混合溶液的运动粘度20mm2/s-25mm2/s,即获得所需基体溶剂;
4)涂料终制及使用
①将阶段3)步骤③获得的基体溶剂均匀涂覆在待处理钢质结构表面,刷涂面在室温下晾干2min-2min10s后将阶段2)步骤④获得的溶胶液采用0.6MPa-0.8MPa的喷涂压力均匀喷涂在已晾干至半固化状态的基体溶剂固化物表面,保持基体溶剂刷涂时间和溶胶液喷涂时间的时间差为2min-2min10s,喷涂完成后采用600mj/cm2-800mj/cm2强度密度的紫外光照射2h-2.5h,即完成涂料刷涂固化成型。
与现有技术相比较,由于采用了上述技术方案,本发明具有以下优点:(1)本发明有两个相互结合的核心创新点,其一是不同组份互相交联后再经二次交联构建成的相较于现有技术更高溶质含量(所需溶剂更少)的聚合物体系,该聚合物体系是以具明显憎油性、高机械性能、高耐侯性、耐高温开裂性、耐强碱性、高柔韧性的六官能PUA聚合物体系和憎油、高绝缘性、高分散性、高内结合力的IPDI-PEG-DMPA-HEMA聚合物体系为基础进行的复杂变性聚合获得的兼具高绝缘性、憎油性、高结合力、高机械性能、防高温开裂的网链状复合聚合体系。(2)其二是通过精细的硫酸氧钛-酸碱处理-丙酮分散溶胶而获得的溶质为粒径范围5nm-50nm的超微二氧化钛微粉,反向利用光固化涂料在钢质表面固化较慢的缺陷,在丙酮未挥发完全的涂料半固化状态下加压喷射在光固化涂料的表面,最终收获表面均匀密排分布的同时具有常温绝缘性(二氧化钛常温下可视为绝缘体,400℃左右成为导电体)和超亲水特性的超微二氧化钛微粉,而这种材料除了光触媒除尘清毒的作用外,还具有超亲水自洁功能。(3)本发明的整体性能是特殊的光固化水性聚氨酯/二氧化钛纳米体系,申请人通过SEM分析表明本发明的二氧化钛纳米微粒溶胶在光固化水性聚氨酯基体中有较好的分散性;应力-应变曲线分析表明本发明的聚合物体系能有效实现对复合膜的增强,即提高复合膜储存模量、拉伸强度和邵氏硬度。因此本发明具有憎油、自 洁、防尘、绝缘的特性,有着优良的综合性能。
实施该发明的最佳实施例
实施例1 一种憎油自洁防尘绝缘涂料,该绝缘涂料为以按重量份计的异佛尔酮二异氰酸酯12.8Kg、十二烷基苯磺酸钠2.2Kg、聚乙二醇400 3.5Kg、2,2-双羟甲基丙酸18.4Kg、甲基丙烯酸-2-羟基乙酯8.8Kg、硫酸氧钛5.3Kg、六亚甲基二异氰酸酯12.5Kg、2-乙基-2-羟甲基-1,3-丙二醇1.1Kg、丙烯酸羟丙酯单体8.8Kg、N,N-亚甲基双丙烯酰胺2.1Kg、二芳基碘鎓盐I-250 43.2Kg、足量溶质质量分数10%的氢氧化钠水溶液、足量溶质质量分数10%的盐酸水溶液为原料,三亚乙基二胺 0.15Kg、对甲基苯磺酸0.15Kg为催化剂,丙酮为反应介质及固体颗粒胶溶介质,通过丙酮内氩气保护加压加热聚合反应-一次复杂交联聚合-二次固化交联聚合-原位引入纳米固态颗粒而最终获得; 其具体制造过程如下: 1)预准备 ①原材料准备:按上述原料及辅材所对应的重量份备齐待用; ②设备准备:保护气氛-加压反应釜; 2)溶胶液制备 ①将阶段1)步骤①准备的硫酸氧钛投入足量氢氧化钠水溶液内,反应至TiO(OH)2白色沉淀完全析出,滤出固含物并采用去离子水漂洗除去可溶液性杂质离子,获得碱性固含物; ②将步骤①获得的碱性固含物加热至65℃-70℃,保持温度并缓慢滴加盐酸水溶液至混合溶液PH值5.5-6,停止滴加盐酸水溶液并保持温度,采用200W-250W超声波震荡处理15min-18min,得到无色透明水溶液; ③在步骤②获得的无色透明水溶液中,加入阶段1)步骤①准备的十二烷基苯磺酸钠,搅拌均匀,使溶胶胶粒转化成增水性凝聚体;然后在获得的增水性凝聚体内加入与原无色透明水溶液同体积的丙酮,采用500W-600W超声波震荡处理25min-30min,使胶体粒子转入有机相中,离心分层后舍去水溶液部分,得到透明有机溶胶; ④将步骤③获得的透明有机溶胶升温至50℃-55℃,回流除去吸附水后,再蒸馏除去有机溶剂,去除完成后,对获得的固体颗粒采用200℃-220℃进行加热处理,保温30min-40min,即得无色微固体粉末,将获得的无色微固体粉末与其质量10-12倍的丙酮混合均匀,即获得所需溶胶液; 3)基体溶剂制备 ①取阶段1)步骤①准备的2,2-双羟甲基丙酸9.2Kg、全部2-乙基-2-羟甲基-1,3-丙二醇、全部对甲基苯磺酸,混合均匀后投入阶段1)步骤②准备的保护气氛-加压反应釜中,通入氩气至釜内气压增压至8MPa-10MPa,升温至145℃-150℃,反应2h-2.5h,然后减压至4MPa-5MPa,保持温度,继续反应3.5h-4h,自然降温至60℃-70℃后将反应产物取出,并将反应产物溶于质量为其质量100倍-120倍的丙酮中,获得预制初聚溶液; ②在步骤①获得的预制初聚溶液中投入阶段1)步骤①准备的剩余2,2-双羟甲基丙酸、全部异佛尔酮二异氰酸酯、十二烷基苯磺酸钠、聚乙二醇400、甲基丙烯酸-2-羟基乙酯、六亚甲基二异氰酸酯、丙烯酸羟丙酯单体、三亚乙基二胺,混合均匀后投入阶段1)步骤②准备的保护气氛-加压反应釜中,通入氩气至釜内气压增压至2MPa-2.5MPa,升温至100℃-115℃,反应1h-1.5h,获得部分聚合产物; ③在步骤②获得的部分聚合产物中加入阶段1)步骤①准备N,N-亚甲基双丙烯酰胺,升压至4MPa-5MPa、升温至120℃-130℃、保温3h-3.5h进行二次交联,交联完成后待产物自然冷却至室温取出,获得复杂有机溶液,在复杂有机溶液内均匀混入阶段1)步骤①准备的二芳基碘鎓盐I-250并搅拌均匀,再通过蒸馏去除或加入丙酮对所获得的复杂有机溶液的浓度进行调节至混合溶液的运动粘度20mm2/s-25mm2/s,即获得所需基体溶剂; 4)涂料终制及使用 ①将阶段3)步骤③获得的基体溶剂均匀涂覆在待处理钢质结构表面,刷涂面在室温下晾干2min-2min10s后将阶段2)步骤④获得的溶胶液采用0.6MPa-0.8MPa的喷涂压力均匀喷涂在已晾干至半固化状态的基体溶剂固化物表面,保持基体溶剂刷涂时间和溶胶液喷涂时间的时间差为2min-2min10s,喷涂完成后采用600mj/cm2-800mj/cm2强度密度的紫外光照射2h-2.5h,即完成涂料刷涂固化成型。 根据本实施例生产的涂料,其可在95%、60℃的环境下保持5天表面不剥蚀,本体平均体积电阻率1×1012Ω/m-3×1012Ω/m,介电强度3×103kV/m-8×103kV/m,可耐受不高于100℃的长时工作温度和不超过150℃的瞬时温度,按JIS K 5600检测柔韧性2.1mm-2.3mm,在20mm/min的迁移速度下破断点伸长率6.5%-7.3%,下同。
本发明的最佳实施方式
整体与实施例1相同,差异之处在于: 一种憎油自洁防尘绝缘涂料,该绝缘涂料为以按重量份计的异佛尔酮二异氰酸酯12Kg、十二烷基苯磺酸钠2Kg、聚乙二醇400 3Kg、2,2-双羟甲基丙酸20Kg、甲基丙烯酸-2-羟基乙酯10Kg、硫酸氧钛6Kg、六亚甲基二异氰酸酯13Kg、2-乙基-2-羟甲基-1,3-丙二醇1.2Kg、丙烯酸羟丙酯单体10Kg、N,N-亚甲基双丙烯 酰胺2.5Kg、二芳基碘鎓盐I-250 40Kg、足量溶质质量分数10%的氢氧化钠水溶液、足量溶质质量分数10%的盐酸水溶液为原料,三亚乙基二胺0.15Kg、对甲基苯磺酸0.15Kg为催化剂,丙酮为反应介质及固体颗粒胶溶介质,通过丙酮内氩气保护加压加热聚合反应-一次复杂交联聚合-二次固化交联聚合-原位引入纳米固态颗粒而最终获得; 3)基体溶剂制备 ①取阶段1)步骤①准备的2,2-双羟甲基丙酸9Kg; 实施例3 整体与实施例1相同,差异之处在于: 一种憎油自洁防尘绝缘涂料,该绝缘涂料为以按重量份计的异佛尔酮二异氰酸酯13Kg、十二烷基苯磺酸钠2.3Kg、聚乙二醇400 3.5Kg、2,2-双羟甲基丙酸18Kg、甲基丙烯酸-2-羟基乙酯8Kg、硫酸氧钛5Kg、六亚甲基二异氰酸酯12Kg、2-乙基-2-羟甲基-1,3-丙二醇1Kg、丙烯酸羟丙酯单体8Kg、N,N-亚甲基双丙烯酰胺2Kg、二芳基碘鎓盐I-250 45Kg、足量溶质质量分数10%的氢氧化钠水溶液、足量溶质质量分数10%的盐酸水溶液为原料,三亚乙基二胺0.1Kg、对甲基苯磺酸0.1Kg为催化剂,丙酮为反应介质及固体颗粒胶溶介质,通过丙酮内氩气保护加压加热聚合反应-一次复杂交联聚合-二次固化交联聚合-原位引入纳米固态颗粒而最终获得; 3)基体溶剂制备 ①取阶段1)步骤①准备的2,2-双羟甲基丙酸10Kg;
工业实用性
本发明的整体性能是特殊的光固化水性聚氨酯/二氧化钛纳米体系,申请人通过SEM分析表明本发明的二氧化钛纳米微粒溶胶在光固化水性聚氨酯基体中有较好的分散性;应力-应变曲线分析表明本发明的聚合物体系能有效实现对复合膜的增强,即提高复合膜储存模量、拉伸强度和邵氏硬度。
序列表自由内容
对所公开的实施例的上述说明,仅为了使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而 是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (1)

  1. 一种憎油自洁防尘绝缘涂料,其特征在于:该绝缘涂料为以按重量份计的异佛尔酮二异氰酸酯12份-13份、十二烷基苯磺酸钠2份-2.3份、聚乙二醇400 3份-3.5份、2,2-双羟甲基丙酸18份-20份、甲基丙烯酸-2-羟基乙酯8份-10份、硫酸氧钛5份-6份、六亚甲基二异氰酸酯12份-13份、2-乙基-2-羟甲基-1,3-丙二醇1份-1.2份、丙烯酸羟丙酯单体8份-10份、N,N-亚甲基双丙烯酰胺2份-2.5份、二芳基碘鎓盐I-250 40份-45份、足量溶质质量分数10%的氢氧化钠水溶液、足量溶质质量分数10%的盐酸水溶液为原料,三亚乙基二胺0.1份-0.15份、对甲基苯磺酸0.1份-0.15份为催化剂,丙酮为反应介质及固体颗粒胶溶介质,通过丙酮内氩气保护加压加热聚合反应-一次复杂交联聚合-二次固化交联聚合-原位引入纳米固态颗粒而最终获得;
    其具体制造过程如下:
    1)预准备
    ①原材料准备:按上述原料及辅材所对应的重量份备齐待用;
    ②设备准备:保护气氛-加压反应釜;
    2)溶胶液制备
    ①将阶段1)步骤①准备的硫酸氧钛投入足量氢氧化钠水溶液内,反应至TiO(OH)2白色沉淀完全析出,滤出固含物并采用去离子水漂洗除去可溶液性杂质离子,获得碱性固含物;
    ②将步骤①获得的碱性固含物加热至65℃-70℃,保持温度并缓慢滴加盐酸水溶液至混合溶液PH值5.5-6,停止滴加盐酸水溶液并保持温度,采用200W-250W超声波震荡处理15min-18min,得到无色透明水溶液;
    ③在步骤②获得的无色透明水溶液中,加入阶段1)步骤①准备的十二烷基苯磺酸钠,搅拌均匀,使溶胶胶粒转化成增水性凝聚体;然后在获得的增水性凝聚体内加入与原无色透明水溶液同体积的丙酮,采用500W-600W超声波震荡处理25min-30min,使胶体粒子转入有机相中,离心分层后舍去水溶液部分,得到透明有机溶胶;
    ④将步骤③获得的透明有机溶胶升温至50℃-55℃,回流除去吸附水后,再蒸馏除去有机溶剂,去除完成后,对获得的固体颗粒采用200℃-220℃进行加热处理,保温30min-40min,即得无色微固体粉末,将获得的无色微固体粉末与其质量10-12倍的丙酮混合均匀,即获得所需溶胶液;
    3)基体溶剂制备
    ①取阶段1)步骤①准备的2,2-双羟甲基丙酸9份-10份、全部2-乙基-2-羟甲基-1,3-丙二醇、全部对甲基苯磺酸,混合均匀后投入阶段1)步骤②准备的保护气氛-加压反应釜中,通入氩气至釜内气压增压至8MPa-10MPa,升温至145℃-150℃,反应2h-2.5h,然后减压至4MPa-5MPa,保持温度,继续反应3.5h-4h,自然降温至60℃-70℃后将反应产物取出,并将反应产物溶于质量为其质量100倍-120倍的丙酮中,获得预制初聚溶液;
    ②在步骤①获得的预制初聚溶液中投入阶段1)步骤①准备的剩余2,2-双羟甲基丙酸、全部异佛尔酮二异氰酸酯、十二烷基苯磺酸钠、聚乙二醇400、甲基丙烯酸-2-羟基乙酯、六亚甲基二异氰酸酯、丙烯酸羟丙酯单体、三亚乙基二胺,混合均匀后投入阶段1)步骤②准备的保护气氛-加压反应釜中,通入氩气至釜内气压增压至2MPa-2.5MPa,升温至100℃-115℃,反应1h-1.5h,获得部分聚合产物;
    ③在步骤②获得的部分聚合产物中加入阶段1)步骤①准备N,N-亚甲基双丙烯酰胺,升压至4MPa-5MPa、升温至120℃-130℃、保温3h-3.5h进行二次交联,交联完成后待产物自然冷却至室温取出,获得复杂有机溶液,在复杂有机溶液内均匀混入阶段1)步骤①准备的二芳基碘鎓盐I-250并搅拌均匀,再通过蒸馏去除或加入丙酮对所获得的复杂有机溶液的浓度进行调节至混合溶液的运动粘度20mm2/s-25mm2/s,即获得所需基体溶剂;
    4)涂料终制及使用
    ①将阶段3)步骤③获得的基体溶剂均匀涂覆在待处理钢质结构表面,刷涂面在室温下晾干2min-2min10s后将阶段2)步骤④获得的溶胶液采用0.6MPa-0.8MPa的喷涂压力均匀喷涂在已晾干至半固化状态的基体溶剂固化物表面,保持基体溶剂刷涂时间和溶胶液喷涂时间的时间差为2min-2min10s,喷涂完成后采用600mj/cm2-800mj/cm2强度密度的紫外光照射2h-2.5h,即完成涂料刷涂固化成型。
PCT/CN2019/087011 2019-05-09 2019-06-06 一种憎油自洁防尘绝缘涂料及其制造方法 WO2020223994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910382664.1A CN110054983A (zh) 2019-05-09 2019-05-09 一种憎油自洁防尘绝缘涂料及其制造方法
CN201910382664.1 2019-05-09

Publications (1)

Publication Number Publication Date
WO2020223994A1 true WO2020223994A1 (zh) 2020-11-12

Family

ID=67322591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087011 WO2020223994A1 (zh) 2019-05-09 2019-06-06 一种憎油自洁防尘绝缘涂料及其制造方法

Country Status (2)

Country Link
CN (1) CN110054983A (zh)
WO (1) WO2020223994A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759707A (zh) * 2019-09-16 2020-02-07 山东光韵智能科技有限公司 一种外墙用多孔耐侯耐磨隔音涂料的制造方法
CN110932054A (zh) * 2019-12-14 2020-03-27 山东光韵智能科技有限公司 一种抗温升致微动磨蚀电磁导电触头的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597461A (zh) * 2009-07-10 2009-12-09 浙江东化实业有限公司 一种可多重固化水性超支化聚氨酯无机纳米材料杂化涂饰剂及其制备方法
CN102120612A (zh) * 2011-01-27 2011-07-13 洛阳师范学院 一种锐钛矿型二氧化钛纳米粒子的制备方法
WO2013059400A1 (en) * 2011-10-19 2013-04-25 E. I. Du Pont De Nemours And Company Nonfluorinated soil resist, repellency, and stain resist compositions
CN104693994A (zh) * 2015-03-11 2015-06-10 江苏兰陵高分子材料有限公司 一种含无机颜填料的紫外光固化涂料及其制备方法
CN107759757A (zh) * 2017-10-30 2018-03-06 北京理工大学 一种超支化聚氨酯丙烯酸酯的制备方法及紫外光固化涂料
CN107987216A (zh) * 2017-11-12 2018-05-04 江门职业技术学院 一种光敏三维打印的结构色材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261359C (zh) * 2004-12-02 2006-06-28 攀钢集团攀枝花钢铁研究院 一种纳米介孔二氧化钛粉体的制备方法
CN101747521B (zh) * 2010-01-14 2012-02-29 同济大学 一种tpu输送带用自清洁涂层的制备方法
CN102241943B (zh) * 2011-06-01 2013-01-23 东北林业大学 一种可见光响应光敏剂负载纳米TiO2改性水性聚氨酯亚光漆的制备
CN105885656A (zh) * 2016-04-27 2016-08-24 安徽荣程玻璃制品有限公司 一种防变色透明隔热纳米玻璃涂料及其制备方法
CN106263432A (zh) * 2016-08-30 2017-01-04 韦广 自洁型文具袋

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101597461A (zh) * 2009-07-10 2009-12-09 浙江东化实业有限公司 一种可多重固化水性超支化聚氨酯无机纳米材料杂化涂饰剂及其制备方法
CN102120612A (zh) * 2011-01-27 2011-07-13 洛阳师范学院 一种锐钛矿型二氧化钛纳米粒子的制备方法
WO2013059400A1 (en) * 2011-10-19 2013-04-25 E. I. Du Pont De Nemours And Company Nonfluorinated soil resist, repellency, and stain resist compositions
CN104693994A (zh) * 2015-03-11 2015-06-10 江苏兰陵高分子材料有限公司 一种含无机颜填料的紫外光固化涂料及其制备方法
CN107759757A (zh) * 2017-10-30 2018-03-06 北京理工大学 一种超支化聚氨酯丙烯酸酯的制备方法及紫外光固化涂料
CN107987216A (zh) * 2017-11-12 2018-05-04 江门职业技术学院 一种光敏三维打印的结构色材料及其制备方法

Also Published As

Publication number Publication date
CN110054983A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
AU2016204613B2 (en) An inorganic coating composition which can be cured at low temperature and a preparation method thereof
CN101314696B (zh) 纳米SiO2改性铝型材高耐候聚酯粉末涂料及制备方法
TWI447136B (zh) Organic and inorganic composite film
CN107384195B (zh) 一种有机硅耐候型拉毛装饰涂料
WO2020223994A1 (zh) 一种憎油自洁防尘绝缘涂料及其制造方法
CN114539888B (zh) 一种可剥离双重固化涂层及其制备方法
CN110964416B (zh) 一种耐候耐磨聚酯树脂与粉末涂料及其制备方法
DE3439880C1 (de) Lack und Verfahren zur Herstellung von Korrosionsschutzbeschichtungen
KR102046145B1 (ko) 폴리우레아 방수층 상도 코팅용 차열 도료
DE4011867A1 (de) Leitfaehige, strahlenhaertbare lacke
EP3845618A1 (en) Powder coating used for household appliance coiled material and preparation method therefor
CN108727970A (zh) 紫外光固化涂料
CN115304993A (zh) 一种增韧耐候eb固化涂料的制备方法
CN105400377B (zh) 一种具有自我修复功能的环氧粉末涂料及其制备方法
CN104910756A (zh) 一种改性纳米二氧化钛紫外光固化涂料
CN109468047A (zh) 一种可剥离保护涂料、涂层及涂料的制备方法
CN105505143B (zh) 一种纳米复合材料改性的抗老化建筑涂料及其制备方法
Guo Research advances in UV-curable self-healing coatings
CN108517171B (zh) 红外固化用粉末涂料、其红外吸收剂及制备方法
KR20150022049A (ko) 내오존성 및 내산화성이 우수한 콘코리트 구조물의 표면 도장공법
WO2015127794A1 (zh) 一种光固化涂料及其制备方法
CN103881439A (zh) 一种添加合金粉末的led散热涂料及其制备方法
CN111303826A (zh) 一种用于3.5d高拉伸uv转印胶及其应用
CN111410907A (zh) 一种自修复型耐温耐磨聚天门冬氨酸酯涂料及其制备方法
KR20130091593A (ko) 투명성이 양호한 실리카 미립자와 아크릴 폴리머의 하이브리드 수지 및 이를 이용한 자외선 경화용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927996

Country of ref document: EP

Kind code of ref document: A1