WO2020223830A1 - Circuito de convertidor de potencia multinivel - Google Patents

Circuito de convertidor de potencia multinivel Download PDF

Info

Publication number
WO2020223830A1
WO2020223830A1 PCT/CL2019/050038 CL2019050038W WO2020223830A1 WO 2020223830 A1 WO2020223830 A1 WO 2020223830A1 CL 2019050038 W CL2019050038 W CL 2019050038W WO 2020223830 A1 WO2020223830 A1 WO 2020223830A1
Authority
WO
WIPO (PCT)
Prior art keywords
switches
voltage
switch
circuit
output voltage
Prior art date
Application number
PCT/CL2019/050038
Other languages
English (en)
French (fr)
Inventor
Marco Esteban RIVERA ABARCA
Mohammad Ali HOSSEINZADEH
Maryam SARBANZADEH
Original Assignee
Universidad De Talca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73050467&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020223830(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Universidad De Talca filed Critical Universidad De Talca
Priority to CA3137339A priority Critical patent/CA3137339A1/en
Priority to PCT/CL2019/050038 priority patent/WO2020223830A1/es
Priority to CN201980006732.2A priority patent/CN112292807A/zh
Priority to JP2021566578A priority patent/JP7127223B2/ja
Priority to EP19897527.8A priority patent/EP3926810A4/en
Priority to US17/610,133 priority patent/US12003194B2/en
Publication of WO2020223830A1 publication Critical patent/WO2020223830A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to the field of power electronics and non-linear control, and in particular provides a multi-level power circuit of the cascade bridge type.
  • Multi-level converters are widely used in speed regulation and in medium and high voltage applications in addition to clean power generation, due to their low harmonic content of output voltage and current, and low reverse switch voltage.
  • Multi-Level Inverters are the premier power conversion devices of choice in industrial applications. These applications primarily comprise motor units for all voltage and power ranges. Multi-level inverters also have applications in grid-connected systems, uninterruptible power supplies (UPS), electric vehicles, and FACTS devices, among others.
  • UPS uninterruptible power supplies
  • FACTS devices FACTS devices, among others.
  • document CN2768303 describes a utility model that provides a multi-level cascade inverter, which aims to reduce the number of components used, simplify its structure and control in the case of high voltage and high power events, and generate the same level as a conventional cascade inverter.
  • the utility model multi-level cascade inverter is composed of a basic cascade module to form a multi-level inverter.
  • the document CN105450063 provides a multilevel half-bridge cascade type inverter and a control method thereof, with the aim of overcoming the deficiencies of the control strategy and the existing multilevel cascade topology.
  • the control strategy adopts a one-cycle control mode, and the overlapping of output levels to generate a multi-level output.
  • the present invention provides a new power converter configuration comprising a functional block exhibiting the circuit configuration shown in FIG. 1 0:
  • V 1, V 2 , V 3 , V 4 , V 5 are direct current voltage sources
  • D 1 and D 2 are semiconductor diodes.
  • the circuit is characterized in that the switches are complementary devices to each other.
  • the circuit is characterized in that the switch S 3 corresponds to a bidirectional switch.
  • the circuit is characterized in that it comprises a plurality of functional blocks connected in series, each of said functional blocks presenting the circuit configuration shown in FIG. 10.
  • the circuit is characterized in that it comprises two functional blocks connected in series and because the outputs of said functional blocks are asymmetric to each other.
  • FIG. 1 shows a general truth table, with the states of all the switches of a functional block with respect to the voltage output levels of the power converter circuit that is the object of the present invention.
  • FIG. 2 shows a graph with the output voltage for said functional block of the power converter circuit that is the object of the present invention.
  • FIG. 3 shows the cascade arrangement of said functional block of the power converter circuit that is the object of the present invention.
  • FIG. 4 shows an embodiment of the power converter circuit that is the object of the present invention.
  • FIG. 5 shows a graph with the output voltage of the first functional block in said embodiment.
  • FIG. 6 shows a graph with the output voltage of the second functional block in said embodiment.
  • FIG. 7 shows a graph with the output voltage of the circuit in said embodiment.
  • FIG. 8 shows a graph with the output current of the circuit in said embodiment.
  • FIG. 9 shows the mesh distribution in said functional block of the power converter circuit.
  • FIG. 10 shows a circuit configuration of the functional block of the power converter that is the object of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION Essentially, the present invention provides a new configuration of a multilevel power converter comprising; five direct current voltage sources (V 1 , V 2 , V 3 , V 4 , V 5 ), eight one-way semiconductor switches a bidirectional semiconductor switch (S 3 ) and two semiconductor diodes (D 1 and D 2 ).
  • the present invention provides a new power converter configuration comprising a functional block exhibiting the circuit configuration shown in FIG. 10:
  • V 1 , V 2 , V 3 , V 4 , V 5 are direct current voltage sources
  • D t and D 2 are semiconductor diodes.
  • the switches are complementary switches to each other. That is to say,
  • Switch S 3 is a bidirectional switch, thus allowing current to flow in both directions.
  • Mesh I comprises a switch, S 1, connected to another bidirectional switch, S 3 , which, in turn, is then connected to a voltage source V 1 which is subsequently connected to said switch S 4 .
  • Mesh II comprises a switch, connected to a voltage source, V 2 , which
  • Mesh III comprises a switch, T 2 , connected to a voltage source, V 5 , which in turn is connected to a diode, D 1 . Said diode, D 1 in turn, is connected to a switch, which is then connected to said switch, T 2 .
  • Mesh IV comprises the voltage source, V 1 , connected to the voltage source, V 2 , which in turn is connected to a switch, T 1 .
  • Said switch, T 1 is then connected to a voltage source, V 4 , connected to another voltage source, V 3 , then connected to an additional voltage source, V 5 .
  • Said voltage source, V 5 is then connected to the switch, T 2 , which in turn is connected to said voltage source V 4 .
  • Mesh V comprises a switch, with a diode, D 2 , which in turn connects
  • VI mesh comprises the voltage source, V 3 , connected with a switch, the which in turn connects to another switch, S 2 .
  • Said switch, S 2 is then connected to said voltage source V 3 .
  • Switch 7 connects to diode D 2 , which, in turn, connects to
  • diode D 1 connects to diode D 1 .
  • Said diode D 1 is connected to the switch which
  • the output voltage is determined from the voltage difference generated between two nodes; the first node is located between the switches the
  • the output voltage of the functional blocks does not limit the scope of the present invention. In a preferred embodiment, it is in a range from 0 [V] to 1200 [V]
  • the output current of the functional blocks does not limit the scope of the present invention. In a preferred embodiment, it is in the range of 0 [A] to 8 [A] However, higher output currents can be used without limiting the scope of the present invention.
  • the output power of the functional blocks also does not limit the scope of the present invention. In a preferred embodiment, it is in the range of 0 [kW] to 10 [kW]
  • a diode will be understood as an electronic valve with two electrodes that only allows current to pass in one direction, preventing the passage of current in the opposite direction.
  • a semiconductor switch will be understood as that electronic power device provided with semiconductor electronic valves, and whose objective is to open or close the passage of electric current in a circuit.
  • a functional block will be understood as that set of electrical and / or electronic elements that are interconnected in such a way that the set fulfills a specific function.
  • asymmetric outputs will be understood as those configuration whose main blocks generate different levels of output voltage.
  • a serial connection will be understood as a connection configuration in which the devices are connected successively.
  • FIG. 1 shows a general truth table, where the states of the switches are observed in relation to the 23 levels of output voltage of the circuit. These output voltage levels are detailed below:
  • the switches are closed, the switches are open, and the output voltage is (V 4 ).
  • the switches They are closed, the switches are open, and the output voltage is (V 3 ).
  • the switches are closed, switches 5 are open, and the output voltage is (-V 1 - V 2 ).
  • the switches are closed, the switches are open, and the output voltage is (-V 2 - V 5 ).
  • FIG. 2 shows a graph with the output voltage in a particular embodiment of a functional block over time. In this graph it is observed that the voltage value oscillates between -550V and 550V.
  • FIG. 3 shows the generic cascading arrangement for a plurality of functional blocks connected in series with each other, and configured to achieve providing a number of determined output voltage levels.
  • the number of levels that each functional block is capable of generating is detailed in the truth table of FIG. 1 .
  • FIG. 4 shows an example of embodiment of the power converter circuit that is the object of the present invention.
  • a circuit of a power converter with an output phase is illustrated, which generates 45 voltage levels.
  • the proposed structure comprises two functional blocks connected in series.
  • the values for said DC voltage sources that are illustrated in FIG. 5 are:
  • the peak output voltage is 1100V having a step voltage of 50V with an output frequency of 50Hz, and the peak current is 7.3A.
  • FIG. 5 shows a graph with the output voltage of the first functional block in said embodiment.
  • the output voltage of said first functional block describes a step function ranging from -550V to 550V.
  • FIG. 6 shows a graph with the output voltage of the second functional block in said embodiment.
  • the output voltage of said second functional block describes a sinusoidal function that oscillates between -550V and 550V, presenting a step at zero.
  • FIG. 7 shows a graph with the output voltage of the circuit in said embodiment.
  • the output voltage of said circuit describes a sinusoidal function that oscillates between -1 100V and 1 100V and that is the sum of the output voltage of the first functional block with the output voltage of the second functional block.
  • FIG. 8 shows a graph with the output current of the circuit in said embodiment.
  • the output current of this circuit describes a sinusoidal function ranging from -7.3A to 7.3A.
  • FIG. 9 shows an enumeration of meshes that make up a functional block of the power converter circuit.
  • the enumeration referring to each mesh described in this detailed description is indicated. Said enumeration was made in order to give a better understanding of the present invention, but does not limit the scope of the protection requested.
  • Example 1 Realization of the circuit of a power converter that is the object of the present invention.
  • FIG. 4 illustrates a circuit of a single phase power converter generating 45 voltage levels.
  • the proposed structure comprises two functional blocks connected in series.
  • the peak output voltage is 1100V, having a step voltage of 50V with an output frequency of 50Hz, and the peak current is 7.3A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

La presente invención se relaciona, sin limitarse a estos, al campo de la electrónica de potencia y el control no lineal, y en particular a una estructura de topología de un convertidor de potencia multinivel de tipo puente en cascada. La presente invención provee una nueva configuración de convertidor de potencia que comprende un bloque funcional y se compone de una baja cantidad de dispositivos; cinco fuentes de voltaje de corriente continua, nueve interruptores semiconductores y dos diodos semiconductores. Donde los interruptores (1) y (2) son dispositivos complementarios entre sí. Por otra parte, el interruptor S3 corresponde a un interruptor bidireccional. La presente invención presenta, además, una pluralidad de bloques funcionales conectados en serie, cada uno de dichos bloques funcionales que presenta la configuración del circuito.

Description

CIRCUITO DE CONVERTIDOR DE POTENCIA MULTINIVEL
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con el campo de la electrónica de potencia y el control no lineal, y en particular proporciona un circuito de potencia multinivel de tipo puente en cascada.
ANTECEDENTES DE LA INVENCIÓN
Con el avance de la tecnología de electrónica de potencia, la aplicación de convertidores de potencia se ha vuelto cada vez más amplia. Los convertidores multinivel se utilizan ampliamente en la regulación de velocidad y en aplicaciones de media y alta tensión además de la generación de energía limpias, debido a su bajo contenido armónico de tensión y corriente de salida, y baja tensión inversa del interruptor.
Los inversores multinivel (MLI) son los principales dispositivos de conversión de potencia seleccionados en aplicaciones industriales. Estas aplicaciones comprenden fundamentalmente unidades de motor para todos los rangos de voltaje y potencia. Los inversores multinivel también tienen aplicaciones en sistemas conectados a la red, sistemas de alimentación ininterrumpida (UPS), vehículos eléctricos y dispositivos FACTS, entre otros. En el estado de la técnica existen antecedentes de diferentes topologías para inversores multinivel. Por ejemplo, el documento CN2768303 describe un modelo de utilidad que proporciona un inversor en cascada de varios niveles, que tiene como objetivo reducir el número de componentes utilizados, simplificar su estructura y control en el caso de eventos de alta tensión y alta potencia, y generar el mismo nivel que un inversor en cascada convencional. El inversor en cascada de varios niveles del modelo de utilidad está compuesto por un módulo básico en cascada para formar un inversor de múltiples niveles. Por otra parte, el documento CN105450063 proporciona un inversor multinivel de tipo cascada de medio puente y un método de control de este, con el objetivo de superar las deficiencias de la estrategia de control y la topología multinivel en cascada existente. La estrategia de control adopta un modo de control de un ciclo, y la superposición de niveles de salida para generar una salida de niveles múltiples.
Sin embargo, por lo general los circuitos convertidores de potencia presentan una configuración compleja y con un gran número de componentes. Por lo tanto, se requiere de una nueva configuración que logre optimizar dicha topología, logrando la cantidad de niveles deseados con la menor cantidad de componentes posibles.
En consecuencia, se requiere una nueva estructura para un circuito convertidor de potencia que logre la cantidad de niveles requeridos, presentando una configuración simplificada y reduciendo la cantidad de componentes utilizados.
SUMARIO DE LA INVENCIÓN
La presente invención proporciona una nueva configuración de convertidor de potencia que comprende un bloque funcional que presenta la configuración del circuito que se presenta en la FIG. 1 0:
- donde V1, V2, V3, V4, V5 son fuentes de voltaje de corriente continua;
- donde
Figure imgf000004_0001
son interruptores semiconductores; y
- donde D1y D2 son diodos semiconductores.
En una realización preferida, el circuito se caracteriza porque los interruptores son dispositivos complementarios entre sí.
Figure imgf000004_0002
En otra realización preferida, el circuito se caracteriza porque el interruptor S3 corresponde a un interruptor bidireccional.
En otra realización preferida, el circuito se caracteriza porque comprende una pluralidad de bloques funcionales conectados en serie, cada uno de dichos bloques funcionales que presenta la configuración del circuito que se muestra en la FIG. 10. En una realización más preferida, el circuito se caracteriza porque comprende dos bloques funcionales conectados en serie y porque las salidas de dichos bloques funcionales son asimétricas entre sí.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La FIG. 1 muestra una tabla de verdad general, con los estados de todos los interruptores de un bloque funcional con respecto a los niveles de salida de voltaje del circuito convertidor de potencia que es objeto de la presente invención.
La FIG. 2 muestra una gráfica con el voltaje de salida para dicho bloque funcional del circuito convertidor de potencia que es objeto de la presente invención.
La FIG. 3 muestra la disposición en cascada de dicho bloque funcional del circuito convertidor de potencia que es objeto de la presente invención.
La FIG. 4 muestra un ejemplo de realización del circuito convertidor de potencia que es objeto de la presente invención.
La FIG. 5 muestra una gráfica con el voltaje de salida del primer bloque funcional en dicho ejemplo de realización. La FIG. 6 muestra una gráfica con el voltaje de salida del segundo bloque funcional en dicho ejemplo de realización.
La FIG. 7 muestra una gráfica con el voltaje de salida del circuito en dicho ejemplo de realización.
La FIG. 8 muestra una gráfica con la corriente de salida del circuito en dicho ejemplo de realización.
La FIG. 9 muestra la distribución de mallas en dicho bloque funcional del circuito convertidor de potencia.
La FIG. 10 muestra una configuración del circuito del bloque funcional del convertidor de potencia que es objeto de la presente invención. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN De manera esencial, la presente invención proporciona una nueva configuración de un convertidor de potencia multinivel que comprende; cinco fuentes de voltaje de corriente continua (V1, V2, V3, V4, V5 ), ocho interruptores de semiconductores unidireccionales
Figure imgf000006_0001
un interruptor de semiconductor bidireccional (S3) y dos diodos semiconductores (D1y D2 ).
La presente invención provee una nueva configuración de convertidor de potencia que comprende un bloque funcional que presenta la configuración del circuito que se presenta en la FIG. 10:
- donde V1, V2, V3, V4, V5 son fuentes de voltaje de corriente continua;
- donde son interruptores semiconductores; y
Figure imgf000006_0002
- donde Dty D2 son diodos semiconductores.
Los interruptores son switches complementarios entre sí. Es decir,
Figure imgf000006_0003
cuando uno está abierto, el otro necesariamente está cerrado. Lo anterior tiene por objetivo evitar el cortocircuito de las fuentes de voltaje V1, V2 y V3 respectivamente.
El interruptor S3 es un interruptor bidireccional, por lo cual permite el paso de corriente en ambas direcciones.
Para una mejor comprensión, sin que esto limite el alcance de la presente invención, se presenta, a continuación, una descripción de dicho bloque funcional. Dicho bloque funcional se divide en 7 mallas, sin que esto limite el alcance de la presente invención. La descripción de los componentes de cada malla se hará en sentido horario, sin que esto limite el alcance de la presente invención:
Malla I: comprende un interruptor, S1 , conectado a otro interruptor bidireccional, S3, el cual, a su vez, se conecta a continuación a una fuente de voltaje V1 la cual posteriormente se conecta con dicho interruptor S4.
Malla II: comprende un interruptor, conectado a una fuente de voltaje, V2, la cual
Figure imgf000006_0005
a su vez se conecta a continuación al interruptor bidireccional, S3, el cual luego se conecta con dicho interruptor,
Figure imgf000006_0004
Malla III: comprende un interruptor, T2, conectado a una fuente de voltaje, V5, la cual se conecta a su vez a un diodo, D1. Dicho diodo, D1 a su vez, se conecta a un interruptor, el cual luego se conecta con dicho interruptor , T2.
Figure imgf000007_0001
Malla IV: comprende la fuente de voltaje, V1, conectada con la fuente de voltaje, V2, la cual a su vez se conecta a un interruptor, T1. Dicho interruptor, T1, se conecta luego con una fuente de voltaje, V4 , conectada con otra fuente de voltaje, V3 , conectada luego con una fuente de voltaje adicional, V5. Dicha fuente de voltaje, V5, se conecta luego con el interruptor, T2, el cual a su vez se conecta con dicha fuente de voltaje V4.
Malla V: comprende un interruptor, con un diodo, D2 , el cual a su vez se conecta
Figure imgf000007_0002
con la fuente de voltaje, V4. Dicha fuente de voltaje, V4, se conecta luego a un un interruptor, T1, el cual a su vez se encuentra conectado a dicho interruptor,
Figure imgf000007_0003
Malla VI: comprende la fuente de voltaje, V3, conectada con un interruptor, el
Figure imgf000007_0004
cual se conecta a su vez con otro interruptor, S2. Dicho interruptor, S2, se conecta luego a dicha fuente de voltaje V3.
Malla Vil (externa): comprende el interruptor S4 conectado con el interruptor
Figure imgf000007_0005
Dicho interruptor se conecta con el interruptor A continuación, dicho
Figure imgf000007_0006
Figure imgf000007_0007
interruptor 7 se conecta con el diodo D2 , el cual, a su vez, se conecta con el
Figure imgf000007_0008
interruptor El interruptor se conecta luego con el interruptor S2, que, a su vez
Figure imgf000007_0009
Figure imgf000007_0010
se conecta al diodo D1 . Dicho diodo D1 se conecta al interruptor el cual
Figure imgf000007_0011
finalmente se conecta al interruptor S4.
El voltaje de salida se determina a partir de la diferencia de voltaje generada entre dos nodos; el primer nodo está ubicado entre los interruptores el
Figure imgf000007_0012
segundo nodo está ubicado entre los interruptores
Figure imgf000007_0013
Tanto el valor de voltaje de las fuentes, como la naturaleza de los componentes del circuito no limitan el alcance de la presente invención y dependerán, por ejemplo, de la aplicación para la cual está destinado el convertidor de potencia. Por otra parte, el voltaje de salida de los bloques funcionales no limita el alcance de la presente invención. En una realización preferida, se encuentra en un rango de entre 0 [V] y 1200 [V]
Adicionalmente, la corriente de salida de los bloques funcionales no limita el alcance de la presente invención. En una realización preferida, se encuentra en un rango de entre 0 [A] y 8 [A] Sin embargo, pueden utilizarse corriente de salida mayores sin que esto limite el alcance de la presente invención.
En consecuencia, la potencia de salida de los bloques funcionales tampoco limita el alcance de la presente invención. En una realización preferida, se encuentra en un rango de entre 0 [kW] y 10 [kW]
En el contexto de la presente invención, sin que esto limite el alcance de la protección solicitada, se entenderá como diodo a una válvula electrónica de dos electrodos que solo deja pasar la corriente en un sentido, impidiendo el paso de corriente en el sentido contrario.
En el contexto de la presente invención, sin que esto limite el alcance de la protección solicitada, se entenderá como interruptor semiconductor a aquel dispositivo electrónico de potencia provisto de válvulas electrónicas semiconductoras, y que tiene como objetivo abrir o cerrar el paso de la corriente eléctrica en un circuito.
En el contexto de la presente invención, sin que esto limite el alcance de la protección solicitada, se entenderá como bloque funcional a aquel conjunto de elementos eléctricos y/o electrónicos que se interconectan de manera tal que el conjunto cumple una función específica.
En el contexto de la presente invención, sin que esto limite el alcance de la protección solicitada, se entenderá como salidas asimétricas, a aquella configuración cuyos bloques principales generan distintos niveles de voltaje de salida. En el contexto de la presente invención, se entenderá como conexión en serie a una configuración de conexión en la que los dispositivos se conectan sucesivamente.
En la FIG. 1 se muestra una tabla de verdad general, donde se observan los estados de los interruptores con relación a los 23 niveles de voltaje de salida del circuito. Dichos niveles de voltaje de salida se detallan a continuación:
En el primer nivel de voltaje, los interruptores S1,S2 y T1 están cerrados, los interruptores están abiertos, y el voltaje de salida es (V4 + V2 +
Figure imgf000009_0002
V3 + V4). En el segundo nivel de voltaje los interruptores están cerrados, los
Figure imgf000009_0003
interruptores están abiertos, y el voltaje de salida es (V2 + V3 + V4).
Figure imgf000009_0004
En el tercer nivel de voltaje, los interruptores están cerrados, los
Figure imgf000009_0005
interruptores están abiertos, y el voltaje de salida es (V3 + V4).
Figure imgf000009_0006
En el cuarto nivel de voltaje, los interruptores
Figure imgf000009_0007
están cerrados, los interruptores están abiertos, y el voltaje de salida es (V4 + V2 +
Figure imgf000009_0008
V4
En el quinto nivel de voltaje, los interruptores están cerrados, los
Figure imgf000009_0009
interruptores están abiertos, y el voltaje de salida es (V2 + V4).
Figure imgf000009_0010
En el sexto nivel de voltaje, los interruptores
Figure imgf000009_0001
están cerrados, los interruptores están abiertos, y el voltaje de salida es (V4).
Figure imgf000009_0011
En el séptimo nivel de voltaje, los interruptores están cerrados, los
Figure imgf000009_0012
interruptores están abiertos, y el voltaje de salida es (V4 + V2 +
Figure imgf000009_0013
v3).
En el octavo nivel de voltaje, los interruptores están cerrados, los
Figure imgf000009_0014
interruptores están abiertos, y el voltaje de salida es (V2 + V3).
Figure imgf000009_0015
En el noveno nivel de voltaje, los interruptores
Figure imgf000010_0001
están cerrados, los interruptores están abiertos, y el voltaje de salida es (V3).
Figure imgf000010_0002
En el décimo nivel de voltaje, los interruptores están cerrados, los
Figure imgf000010_0003
interruptores están abiertos, y el voltaje de salida es (V1 + V2).
Figure imgf000010_0004
En el decimoprimer nivel de voltaje, los interruptores están cerrados, los
Figure imgf000010_0005
interruptores están abiertos, y el voltaje de salida es (V2).
Figure imgf000010_0006
En el decimosegundo nivel de voltaje, los interruptores están cerrados, los
Figure imgf000010_0007
interruptores están abiertos, y el voltaje de salida es (0).
Figure imgf000010_0008
En el decimotercer nivel de voltaje, los interruptores están cerrados, los
Figure imgf000010_0009
interruptores están abiertos, y el voltaje de salida es (-V2).
Figure imgf000010_0010
En el decimocuarto nivel de voltaje, los interruptores
Figure imgf000010_0011
están cerrados, los interruptores 5 están abiertos, y el voltaje de salida es (-V1 - V2).
Figure imgf000010_0012
En el decimoquinto nivel de voltaje, los interruptores están cerrados, los
Figure imgf000010_0013
interruptores
Figure imgf000010_0014
están abiertos, y el voltaje de salida es (-V3). En el decimosexto nivel de voltaje, los interruptores están cerrados, los
Figure imgf000010_0015
interruptores
Figure imgf000010_0016
están abiertos, y el voltaje de salida es (-V2 - V3).
En el decimoséptimo nivel de voltaje, los interruptores están abiertos, los
Figure imgf000010_0017
interruptores están cerrados, y el voltaje de salida es (-V1 - V2 -
Figure imgf000010_0018
v3). En el decimoctavo nivel de voltaje, los interruptores S1,S2, T2 están cerrados, los interruptores están abiertos, y el voltaje de salida es (-V3).
Figure imgf000010_0019
En el decimonoveno nivel de voltaje, los interruptores
Figure imgf000010_0020
están cerrados, los interruptores están abiertos, y el voltaje de salida es (-V2 - V5).
Figure imgf000010_0021
En el vigésimo nivel de voltaje, los interruptores están cerrados, los
Figure imgf000010_0022
interruptores están abiertos, y el voltaje de salida es (-V1 - V2 -
Figure imgf000010_0023
v5) En el vigesimoprimer nivel de voltaje, los interruptores
Figure imgf000011_0001
están cerrados, los interruptores están abiertos, y el voltaje de salida es (-V3 - V5 ).
Figure imgf000011_0002
En el vigesimosegundo nivel de voltaje, los interruptores están
Figure imgf000011_0003
cerrados, los interruptores están abiertos, y el voltaje de salida es
Figure imgf000011_0004
(-V2 - V3 - V5).
En el vigesimotercer nivel de voltaje, los interruptores están cerrados, los
Figure imgf000011_0005
interruptores están abiertos, y el voltaje de salida es (V1 + V2 +
Figure imgf000011_0006
V3 + V5).
En la FIG. 2 se muestra una gráfica con el voltaje de salida en una realización particular de un bloque funcional a través del tiempo. En dicha gráfica se observa que el valor de voltaje oscila entre -550V y 550V.
En la FIG. 3 se muestra la disposición en cascada genérica para una pluralidad de bloques funcionales conectados en serie entre sí, y configurados para lograr proporcionar una cantidad de niveles de voltajes de salida determinados. La cantidad de niveles que es capaz de generar cada bloque funcional se detalla en la tabla de verdad de la FIG. 1 .
En la FIG. 4 se muestra un ejemplo de realización del circuito convetidor de potencia que es objeto de la presente invención. En dicho ejemplo de realización, sin que esto limite el alcance de la protección solicitada, se ilustra un circuito de un convertidor de potencia de una fase de salida, que genera 45 niveles de voltaje. En la FIG. 4 se observa que la estructura propuesta comprende dos bloques funcionales conectados en serie.
En una realización más preferida, sin que esto limite el alcance de la presente invención, los valores para dichas fuentes de voltaje CC que se ilustran en la FIG. 5 son:
V1,1 = V2,1 = V1,2 = V2,2 = 50V V3,1 = V3,2 = 150V V4,1 = V5,2 = 300V
El peak de voltaje de salida es 1100V teniendo un voltaje de paso de 50V con frecuencia de salida de 50Hz, y el peak de corriente es 7.3A.
En la FIG. 5 se muestra una gráfica con el voltaje de salida del primer bloque funcional en dicho ejemplo de realización. El voltaje de salida de dicho primer bloque funcional describe una función escalonada que oscila entre -550V y 550V.
En la FIG. 6 se muestra una gráfica con el voltaje de salida del segundo bloque funcional en dicho ejemplo de realización. El voltaje de salida de dicho segundo bloque funcional describe una función sinusoidal que oscila entre -550V y 550V, presentando un escalón en cero.
En la FIG. 7 se muestra una gráfica con el voltaje de salida del circuito en dicho ejemplo de realización. El voltaje de salida de dicho circuito describe una función sinusoidal que oscila entre -1 100V y 1 100V y que es la suma del voltaje de salida del primer bloque funcional con el voltaje de salida del segundo bloque funcional. En la FIG. 8 se muestra una gráfica con la corriente de salida del circuito en dicho ejemplo de realización. La corriente de salida de dicho circuito describe una función sinusoidal que oscila entre -7.3A y 7.3A.
En la FIG. 9 se muestra una enumeración de mallas que conforman un bloque funcional del circuito convertidor de potencia. En dicha figura, se indica la enumeración referente a cada malla descrita en la presente descripción detallada. Dicha enumeración se realizó a fin de otorgar un mejor entendimiento de la presente invención, pero no limita el alcance de la protección solicitada.
De acuerdo a la invención previamente detallada, es posible obtener un circuito convertidor de potencia de 23 niveles, que presenta una configuración simplificada y reduce la cantidad de componentes utilizados.
Debe entenderse que diferentes opciones de características técnicas de la presente invención pueden combinarse de cualquier manera prevista por una persona con conocimientos medios en el campo técnico sin que esto limite el alcance de la presente invención.
A continuación, se presentarán ejemplos de realización de la presente invención. Debe entenderse que el objetivo de dichos ejemplos es proporcionar un mejor entendimiento de la invención pero en ningún caso limitan el alcance de la misma. Adicionalmente, características técnicas presentadas en ejemplos diferentes pueden combinarse entre sí, o con otras características técnicas previamente descritas, de cualquier manera prevista por una persona con conocimientos medios en el campo técnico sin que esto limite el alcance de la presente invención. EJEMPLO DE REALIZACIÓN
Ejemplo 1 : Realización del circuito de un convertidor de potencia que es objeto de la presente invención.
La FIG. 4 ilustra un circuito de un convertidor de potencia de una fase que genera 45 niveles de voltaje. En la FIG. 4 se observa que la estructura propuesta comprende dos bloques funcionales conectados en serie.
Para verificar que la configuración de dicho circuito permite obtener la salida prevista, se realizó una simulación del circuito. En dicha simulación, el conjunto de dispositivos semiconductores como interruptores y diodos se suponen ideales. Los valores seleccionados para las fuentes de voltaje CC son: V1,1 = V2,1 = V1,2 = V2,2 = 50V
V3,1 = V3,2 = 150V
V4,1 = V5,2 = 300V
El peak de voltaje de salida es 1 100V, teniendo un voltaje de paso de 50V con frecuencia de salida de 50Hz, y el peak de corriente es 7.3A.

Claims

REIVINDICACIONES
1 . Un circuito de convertidor de potencia multinivel CARACTERIZADO porque comprende un bloque funcional que presenta una configuración de circuito que se observa en la Figura 10;
- donde V1, V2, V3, V4, V5 son fuentes de voltaje de corriente continua;
- donde son interruptores de semiconductores; y
Figure imgf000014_0001
- donde D4 y D2 son diodos semiconductores.
2. El circuito según la reivindicación 1 , CARCATERIZADO porque los
interruptores son dispositivos complementarios entre sí.
Figure imgf000014_0002
3. El circuito según la reivindicación 1 , CARACTERIZADO porque el
interruptor S3 corresponde a un interruptor bidireccional.
4. El circuito según la reivindicación 1 , CARACTERIZADO porque comprende una pluralidad de bloques funcionales conectados en serie, cada uno de dichos bloques funcionales que presenta la configuración del circuito de la reivindicación 1 .
5. El circuito según la reivindicación 4, CARACTERIZADO porque comprende dos bloques funcionales conectados en serie y porque las salidas de dichos bloques funcionales son asimétricas entre sí.
PCT/CL2019/050038 2019-05-09 2019-05-09 Circuito de convertidor de potencia multinivel WO2020223830A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3137339A CA3137339A1 (en) 2019-05-09 2019-05-09 Multilevel power converter circuit
PCT/CL2019/050038 WO2020223830A1 (es) 2019-05-09 2019-05-09 Circuito de convertidor de potencia multinivel
CN201980006732.2A CN112292807A (zh) 2019-05-09 2019-05-09 多电平功率转换器电路
JP2021566578A JP7127223B2 (ja) 2019-05-09 2019-05-09 マルチレベル電力変換回路
EP19897527.8A EP3926810A4 (en) 2019-05-09 2019-05-09 MULTI-LEVEL POWER CONVERTER CIRCUIT
US17/610,133 US12003194B2 (en) 2019-05-09 2019-05-09 Multilevel power converter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050038 WO2020223830A1 (es) 2019-05-09 2019-05-09 Circuito de convertidor de potencia multinivel

Publications (1)

Publication Number Publication Date
WO2020223830A1 true WO2020223830A1 (es) 2020-11-12

Family

ID=73050467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050038 WO2020223830A1 (es) 2019-05-09 2019-05-09 Circuito de convertidor de potencia multinivel

Country Status (6)

Country Link
US (1) US12003194B2 (es)
EP (1) EP3926810A4 (es)
JP (1) JP7127223B2 (es)
CN (1) CN112292807A (es)
CA (1) CA3137339A1 (es)
WO (1) WO2020223830A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2768303Y (zh) 2004-12-10 2006-03-29 华中科技大学 级联型多电平逆变器
US20110115532A1 (en) * 2009-11-16 2011-05-19 General Electric Company Multilevel converter operation
US20140192572A1 (en) * 2013-01-08 2014-07-10 Toshiba Mitsubishi-Electric Industrial Sys. Corp. Power converter capable of outputting a plurality of different levels of voltages
US20150003127A1 (en) * 2013-06-26 2015-01-01 Fuji Electric Co., Ltd. Multilevel power conversion circuit
CN105450063A (zh) 2015-12-11 2016-03-30 华南理工大学 一种半桥级联型多电平逆变器及控制方法
US20170163171A1 (en) * 2015-12-03 2017-06-08 Industry-Academic Cooperation Foundation, Yonsei University Apparatus and method for controlling asymmetric modular multilevel converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362878B (zh) * 2014-11-28 2017-07-21 东南大学 用于多电平变换器的基本单元、三电平和m电平拓扑结构
CN105827129B (zh) * 2015-01-04 2020-06-02 华为技术有限公司 多电平拓扑的电路和功率变换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2768303Y (zh) 2004-12-10 2006-03-29 华中科技大学 级联型多电平逆变器
US20110115532A1 (en) * 2009-11-16 2011-05-19 General Electric Company Multilevel converter operation
US20140192572A1 (en) * 2013-01-08 2014-07-10 Toshiba Mitsubishi-Electric Industrial Sys. Corp. Power converter capable of outputting a plurality of different levels of voltages
US20150003127A1 (en) * 2013-06-26 2015-01-01 Fuji Electric Co., Ltd. Multilevel power conversion circuit
US20170163171A1 (en) * 2015-12-03 2017-06-08 Industry-Academic Cooperation Foundation, Yonsei University Apparatus and method for controlling asymmetric modular multilevel converter
CN105450063A (zh) 2015-12-11 2016-03-30 华南理工大学 一种半桥级联型多电平逆变器及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926810A4

Also Published As

Publication number Publication date
US20220224245A1 (en) 2022-07-14
EP3926810A1 (en) 2021-12-22
EP3926810A4 (en) 2022-10-26
JP2022531616A (ja) 2022-07-07
CA3137339A1 (en) 2020-11-12
CN112292807A (zh) 2021-01-29
JP7127223B2 (ja) 2022-08-29
US12003194B2 (en) 2024-06-04

Similar Documents

Publication Publication Date Title
Samadaei et al. An envelope type (E-Type) module: asymmetric multilevel inverters with reduced components
JP5803683B2 (ja) マルチレベル電力変換回路
US20140016380A1 (en) Multi-level voltage converter
Aalami et al. Design of a new combined cascaded multilevel inverter based on developed H-bridge with reduced number of IGBTs and DC voltage sources
Babaei et al. A new basic unit for symmetric and asymmetric cascaded multilevel inverter with reduced number of components
Ponkumar et al. Realization of cascaded multilevel inverter
Babaei et al. New multilevel converter topology with minimum number of gate driver circuits
Hosseinzadeh et al. Cascaded multilevel inverter based on new sub-module inverter with reduced number of switching devices
Seifi et al. Design and simulation of a new symmetric/asymmetric structure of multilevel inverter based on switch-diode-source cells
Thiyagarajan New symmetric extendable type multilevel inverter topology with reduced switch count
WO2020223830A1 (es) Circuito de convertidor de potencia multinivel
Shahir et al. 16-level basic topology for cascaded multilevel inverters with reduced number of components
US20200228028A1 (en) Inverter system
Reddy et al. Novel symmetric and asymmetric topology of multilevel inverter with reduced number of switches
JP2013172627A (ja) マルチレベル電力変換回路
Bayat et al. A new structure with new algorithms for cascaded multilevel inverters by reducing number of IGBTs
Jaya et al. Modeling and simulation of a three phase multilevel inverter for harmonic reduction based on modified space vector pulse width modulation (SVPWM)
Chakraborty et al. A Comparative Study Between Two Switching Angle Techniques for Cascaded H-Bridge Multilevel Inverter
Arif et al. Modified asymmetrical 13-level inverter topology with reduce power semiconductor devices
Angirekula et al. Modeling and analysis of single phase multi string five level inverter for distributed energy resources
Rathore et al. A Symmetrical Cross-Connected T-Type Multilevel Inverter With Reduce Device Count
Adem Switching scheme of voltage levels and logic equation in asymmetrical single-phase seven-level cascaded H-bridge multilevel inverter
Kasinathan Hybrid modulation technique for asymmetrical reduced switch multilevel inverter
Aparna et al. Single-Phase Switched-Capacitor Integrated-with Five-level boost Inverter.
Raju et al. Design of Novel Cross-Tied Trinary Sequence Multilevel Inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019897527

Country of ref document: EP

Effective date: 20200622

ENP Entry into the national phase

Ref document number: 2021566578

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3137339

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE