CN112292807A - 多电平功率转换器电路 - Google Patents

多电平功率转换器电路 Download PDF

Info

Publication number
CN112292807A
CN112292807A CN201980006732.2A CN201980006732A CN112292807A CN 112292807 A CN112292807 A CN 112292807A CN 201980006732 A CN201980006732 A CN 201980006732A CN 112292807 A CN112292807 A CN 112292807A
Authority
CN
China
Prior art keywords
switch
voltage
circuit
power converter
functional blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980006732.2A
Other languages
English (en)
Inventor
马尔科·埃斯特万·里韦拉阿瓦尔卡
穆罕默德·阿里·侯赛因扎德
马里亚姆·沙尔班扎德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universidad de Talca
Original Assignee
Universidad de Talca
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73050467&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN112292807(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Universidad de Talca filed Critical Universidad de Talca
Publication of CN112292807A publication Critical patent/CN112292807A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明涉及但不限于电力电子和非线性控制领域,并且特别地涉及级联桥类型的多电平功率转换器的拓扑结构。本发明提供了功率转换器的新配置,所述功率转换器包括功能块并且包括少量装置:五个DC电压源、九个半导体开关以及两个半导体二极管。其中,开关S1
Figure DDA0002550379170000011
以及开关S2
Figure DDA0002550379170000012
是彼此互补的装置。另一方面,开关S3对应于双向开关。另外,本发明呈现了串联连接的多个功能块,所述功能块中的每个功能块具有该电路配置。

Description

多电平功率转换器电路
技术领域
本发明涉及电力电子和非线性控制领域,并且特别地,提供级联桥类型的多电平功率电路。
背景技术
随着电力电子技术的发展,功率转换器的应用变得越来越广泛。由于其低谐波张力含量和输出电流以及开关的低反向张力,多电平转换器除了产生清洁能源外,还广泛用于速度调节以及中高张力的应用。
多电平逆变器(MLI)是在工业应用中选择的主要功率转换装置。这些应用主要包括用于所有电压和功率范围的电机单元。多电平逆变器还应用于连接至网络的系统、不间断电源系统(UPS)、电动车辆和FACTS装置等中。
在现有技术中,存在用于多电平逆变器的不同拓扑的先例。例如,文献CN2768303描述了一个实用新型,其提供了如下多级级联逆变器:所述多级级联逆变器的目的在于减少所使用的部件的数量、在发生高张力和大功率事件时简化多级级联逆变器的结构和控制并产生与常规级联逆变器相同的电平。该实用新型的多电平级联逆变器包括级联以形成多电平逆变器的基本模块。
另一方面,文献CN105450063提供了一种级联的半桥类型的多电平逆变器及其控制方法,其目的在于克服控制策略和现有的多电平级联拓扑的缺陷。该控制策略采用周期控制模式并且对输出电平进行叠加以产生多电平输出。
然而,通常,功率转换器电路具有复杂的配置和大量的部件。因此,需要一种新的配置来优化所述拓扑,从而以最少的部件数量实现预期的电平数。
因此,对于功率转换器电路,需要可以实现所需的电平数、具有简化的配置并且使所使用的部件的数量减少的新的结构。
发明内容
本发明提供了一种功率转换器的新配置,所述功率转换器包括具有图10所示的电路配置的功能块:
-其中,V1、V2、V3、V4、V5是DC电压源;
-其中,S1
Figure BDA0002550379150000021
S2
Figure BDA0002550379150000022
S3、T1
Figure BDA0002550379150000023
T2
Figure BDA0002550379150000024
是半导体开关;并且
-其中,D1y D2是两个半导体二极管。
在优选实施方式中,该电路的特征在于:开关S1
Figure BDA0002550379150000025
以及S2
Figure BDA0002550379150000026
是彼此互补的装置。
在另一优选实施方式中,该电路的特征在于:开关S3对应于双向开关。
在另一优选实施方式中,该电路的特征在于:该电路包括串联连接的多个功能块,所述功能块中的每个功能块具有图10所示的电路配置。在更优选的实施方式中,该电路的特征在于:该电路包括串联连接的两个功能块并且所述功能块的输出彼此不对称。
附图说明
图1示出了功能块的所有开关的状态相对于作为本发明的目的的功率转换器电路的电压输出电平的通用真值表。
图2示出了作为本发明的目的的功率转换器电路的所述功能块的输出电压的图。
图3示出了作为本发明目的的功率转换器电路的所述功能块的级联布置。
图4示出了作为本发明的目的的功率转换器电路的实施方式的示例。
图5示出了实施方式的所述示例中的第一功能块的输出电压的图。
图6示出了实施方式的所述示例中的第二功能块的输出电压的图。
图7示出了实施方式的所述示例中的电路的输出电压的图。
图8示出了实施方式的所述示例中的电路的输出电流的图。
图9示出了功率转换器电路的所述功能块中的网络的分布。
图10示出了作为本发明的目的的功率转换器的功能块的电路配置。
具体实施方式
本质上,本发明提供了多电平功率转换器的新配置,所述多电平功率转换器包括:五个DC电压源(V1、V2、V3、V4、V5)、八个单向半导体开关(S1
Figure BDA0002550379150000031
S2
Figure BDA0002550379150000032
T1
Figure BDA0002550379150000033
T2
Figure BDA0002550379150000034
)、双向半导体开关(S3)和两个半导体二极管(D1和D2)。
本发明提供了功率转换器的新配置,所述功率转换器包括具有如图10所示的电路配置的功能块:
-其中,V1、V2、V3、V4、V5是DC电压源;
-其中,S1
Figure BDA0002550379150000035
S2
Figure BDA0002550379150000036
T1
Figure BDA0002550379150000037
T2
Figure BDA0002550379150000038
是半导体开关;并且
-其中,D1和D2是两个半导体二极管。
开关S1
Figure BDA0002550379150000039
和开关S2
Figure BDA00025503791500000310
是彼此互补的开关。即,当一个开关断开时,另一个开关必然闭合。这样做的目的是避免使电压源V1、V2和V3分别短路。
开关S3是双向开关,其允许电流在两个方向上通过。
为了更好地理解,下面在不限制本发明的范围的情况下对所述功能块进行描述。将所述功能块分成7个网络,这不限制本发明的范围。将沿顺时针方向对每个网络的部件的进行描述,这不限制本发明的范围:
网络I:包括开关S1连接至另一双向开关S3,然后双向开关S3转而连接至电压源V1,电压源V1随后连接至所述开关S1
网络II:包括开关
Figure BDA00025503791500000311
连接至电压源V2,然后电压源V2转而连接至双向开关S3,然后双向开关S3转而连接至所述开关
Figure BDA00025503791500000312
网络III:包括开关T2连接至电压源V5,电压源V5转而连接至二极管D1,所述二极管D1转而连接至开关
Figure BDA00025503791500000313
然后
Figure BDA00025503791500000314
连接至所述开关T2
网络IV:包括电压源V1连接至电压源V2,电压源V2转而连接至开关T1,然后所述开关T1连接至电压源V4,电压源V4连接至另一电压源V3,然后另一电压源V3连接至另一附加电压源V5,然后所述电压源V5与开关T2连接,开关T2转而连接至所述电压源V1
网络V:包括开关
Figure BDA00025503791500000315
以及二极管D2,二极管D2转而连接至电压源V4,然后所述电压源V4连接至开关T1,开关T1转而连接至所述开关
Figure BDA00025503791500000316
网络VI:包括电压源V3连接至开关
Figure BDA0002550379150000041
转而连接至另一开关S2,然后所述开关S2连接至所述电压源V3
网络VII(外部):包括开关S1连接至开关
Figure BDA0002550379150000042
所述开关
Figure BDA0002550379150000043
连接至开关
Figure BDA0002550379150000044
然后,所述开关
Figure BDA0002550379150000045
与二极管D2连接,二极管D2转而连接至开关
Figure BDA0002550379150000046
然后开关
Figure BDA0002550379150000047
连接至开关S2,开关S2转而连接至二极管D1,所述二极管D1连接至开关
Figure BDA0002550379150000048
开关
Figure BDA0002550379150000049
最终连接至开关S1
根据两个节点之间产生的电压差确定输出电压;第一节点位于开关S1
Figure BDA00025503791500000410
与S3之间;第二节点位于开关S2
Figure BDA00025503791500000411
之间。
电源的电压值和电路的部件的性质均不限制本发明的范围,并且将取决于例如功率转换器预期用于的应用。
另一方面,功能块的输出电压不限制本发明的范围。在优选实施方式中,功能块的输出电压在0[V]与1200[V]之间的范围内。
另外,功能块的输出电流不限制本发明的范围。在优选实施方式中,功能块的输出电流在0[A]与8[A]之间的范围内。然而,可以在不限制本发明的范围的情况下使用较高的输出电流。
因此,功能块的输出功率也不限制本发明的范围。在优选的实施方式中,功能块的输出功率在0[kW]与10[kW]之间的范围内。
在本发明的上下文中,在不限制所要求保护的范围的情况下,二极管将被理解为双电极电子阀,其仅允许电流在一个方向通过,从而防止电流在相反的方向上通过。
在本发明的上下文中,在不限制所要求保护的范围的情况下,半导体开关将被理解为设置有电子半导体阀的电子功率装置,并且其目的是打开或关闭电路中的电流通路。
在本发明的上下文中,在不限制所要求保护的范围的情况下,功能块将被理解为以使得组件满足特定功能的方式互连的电气元件和/或电子元件的集合。
在本发明的上下文中,在不限制所要求保护的范围的情况下,非对称输出将被理解为其主块产生不同电平的输出电压的配置。
在本发明的上下文中,串联连接将被理解为装置相继连接的连接配置。
图1示出了通用真值表,其中可以观察到与电路的输出电压的23个电平有关的开关的状态。下面对所述输出电压电平进行详细说明:
在第一电压电平下,开关S1、S2和T1闭合,开关
Figure BDA0002550379150000051
S3
Figure BDA0002550379150000052
T2
Figure BDA0002550379150000053
断开,并且输出电压为(V1+V2+V3+V4)。
在第二电压电平下,开关
Figure BDA0002550379150000054
S2、S3、T1闭合,开关S1
Figure BDA0002550379150000055
T2
Figure BDA0002550379150000056
断开,并且输出电压为(V2+V3+V4)。
在第三电压电平下,开关
Figure BDA0002550379150000057
S2、T1闭合,开关S1
Figure BDA0002550379150000058
S3
Figure BDA0002550379150000059
T2
Figure BDA00025503791500000510
断开,并且输出电压为(V3+V4)。
在第四电压电平下,开关S1
Figure BDA00025503791500000511
T1闭合,开关
Figure BDA00025503791500000512
S2、S3
Figure BDA00025503791500000513
T2
Figure BDA00025503791500000514
断开,并且输出电压为(V1+V2+V4)。
在第五电压电平下,开关
Figure BDA00025503791500000515
S3、T1闭合,开关S1、S2
Figure BDA00025503791500000516
T2
Figure BDA00025503791500000517
断开,并且输出电压为(V2+V4)。
在第六电压电平下,开关
Figure BDA00025503791500000518
T1闭合,开关S1、S2、S3
Figure BDA00025503791500000519
T2
Figure BDA00025503791500000520
断开,并且输出电压为(V4)。
在第七电压电平下,开关S1、S2
Figure BDA00025503791500000521
闭合,开关
Figure BDA00025503791500000522
S3
Figure BDA00025503791500000523
T2
Figure BDA00025503791500000524
断开,并且输出电压为(V1+V2+V3)。
在第八电压电平下,开关
Figure BDA00025503791500000525
S2、S3
Figure BDA00025503791500000526
闭合,开关S1
Figure BDA00025503791500000527
T1、T2
Figure BDA00025503791500000528
断开,并且输出电压为(V2+V3)。
在第九电压电平下,开关
Figure BDA00025503791500000529
S2
Figure BDA00025503791500000530
闭合,开关S1
Figure BDA00025503791500000531
S3、T1、T2
Figure BDA00025503791500000532
断开,并且输出电压为(V3)。
在第十电压电平下,开关S1
Figure BDA00025503791500000533
T1闭合,开关
Figure BDA00025503791500000534
S2、S3、T1、T2
Figure BDA00025503791500000535
断开,并且输出电压为(V1+V2)。
在第十一电压电平下,开关
Figure BDA00025503791500000536
S3
Figure BDA00025503791500000537
闭合,开关S1、S2、S3、T1、T2
Figure BDA00025503791500000538
断开,并且输出电压为(V2)。
在第十二电压电平下,开关S1、S2
Figure BDA00025503791500000539
闭合,开关
Figure BDA00025503791500000540
S3、T1
Figure BDA00025503791500000541
T2断开,并且输出电压为(0)。
在第十三电压电平下,开关
Figure BDA00025503791500000542
S2、S3
Figure BDA00025503791500000543
闭合,开关S1
Figure BDA00025503791500000544
T1
Figure BDA00025503791500000545
T2断开,并且输出电压为(-V2)。
在第十四电压电平下,开关
Figure BDA00025503791500000546
S2
Figure BDA00025503791500000547
闭合,开关S1
Figure BDA00025503791500000548
S3、T1
Figure BDA00025503791500000549
T2断开,并且输出电压为(-V1-V2)。
在第十五电压电平下,开关S1
Figure BDA00025503791500000550
闭合,开关
Figure BDA00025503791500000551
S2、S3、T1
Figure BDA00025503791500000552
T2断开,并且输出电压为(-V3)。
在第十六电压电平下,开关
Figure BDA0002550379150000061
S3
Figure BDA0002550379150000062
闭合,开关S1、S2、T1
Figure BDA0002550379150000063
T2断开,并且输出电压为(-V2-V3)。
在第十七电压电平下,开关
Figure BDA0002550379150000064
断开,开关S1、S2、S3、T1
Figure BDA0002550379150000065
T2闭合,并且输出电压为(-V1-V2-V3)。
在第十八电压电平下,开关S1、S2、T2闭合,开关
Figure BDA0002550379150000066
S3、T1
Figure BDA0002550379150000067
断开,并且输出电压为(-V3)。
在第十九电压电平下,开关
Figure BDA0002550379150000068
S2、S3、,T2闭合,开关S1
Figure BDA0002550379150000069
T1
Figure BDA00025503791500000610
断开,并且输出电压为(-V2-V5)。
在第二十电压电平下,开关
Figure BDA00025503791500000611
S2、T2闭合,开关S1
Figure BDA00025503791500000612
S3、T1
Figure BDA00025503791500000613
断开,并且输出电压为(-V1-V2-V5)。
在第二十一电压电平下,开关S1
Figure BDA00025503791500000614
T2闭合,开关
Figure BDA00025503791500000615
S2、S3、T1
Figure BDA00025503791500000616
断开,并且输出电压为(-V3-V5)。
在第二十二电压电平下,开关
Figure BDA00025503791500000617
S3、T2闭合,开关S1、S2、T1
Figure BDA00025503791500000618
断开,并且输出电压为(-V2-V3-V5)。
在第二十三电压电平下,开关
Figure BDA00025503791500000619
T2闭合,开关S1、S2、S3、T1
Figure BDA00025503791500000620
断开,并且输出电压为(V1+V2+V3+V5)。
图2示出了功能块的特定实施方式中的输出电压随时间的图。在所述图中,观察到电压值在-550V与550V之间的范围内。
图3示出了用于彼此串联连接的多个功能块的通用级联布置,并且该通用级联布置被配置成实现提供多个确定的输出电压的电平。在图1的真值表中详细描述了每个功能块能够产生的电平数。
图4示出了作为本发明的目的的功率转换器电路的实施方式的示例。在实施方式的所述示例中,在不限制所申请保护的范围的情况下,示出了输出相的功率转换器的电路,其产生45个电压电平。图4示出了所提出的结构包括串联连接的两个功能块。
在更优选的实施方式中,在不限制本发明的范围的情况下,图4中示出的所述DC电压源的值为:
V1,1=V2,1=V1,2=V2,2=50V
V3,1=V3,2=150V
V4,1=V5,2=300V
峰值输出电压为1100V,其具有50V的阶跃电压以及50Hz的输出频率,并且峰值电流为7.3A。
图5示出了实施方式的所述示例中的第一功能块的输出电压的图。所述第一功能块的输出电压描述了在-550V与550V之间的范围内的阶跃函数。
图6示出了实施方式的所述示例中的第二功能块的输出电压的图。所述第二功能块的输出电压描述了在-550V与550V之间振荡的具有零阶跃的正弦函数。
在图7中,示出了实施方式的所述示例中的电路的输出电压的图。所述电路的输出电压描述了在-1100V与1100V之间振荡并且是第一功能块的输出电压与第二功能块的输出电压之和的正弦函数。
图8示出了在实施方式的所述示例中的电路的输出电流的图。所述电路的输出电流描述了在-7.3A与7.3A之间振荡的正弦函数。
图9示出了形成功率转换器电路的功能块的网络的枚举。在所述图中,指示了涉及在本详细描述中描述的每个网络的枚举。进行所述枚举是为了提供对本发明的更好的理解,而不是限制所申请保护的范围。
根据先前详细描述的发明,可以获得23个电平的功率转换器电路,其具有简化的配置并且减少了所使用的部件的数量。
应当理解,在不限制本发明的范围的情况下,本领域技术人员可以以任何预见的方式组合本发明的技术特征的不同选项。
接下来,将给出本发明的实施方式的示例。应当理解,所述示例的目的是提供对本发明的更好的理解,绝不是限制本发明的范围。另外,在不限制本发明的范围的情况下,本领域技术人员可以以任何预见的方式将在不同示例中呈现的技术特征彼此结合或与先前描述的其他技术特征结合。
实施方式的示例
示例1:作为本发明的目的的功率转换器的电路的实现
图4示出了产生45个电压电平的单相功率转换器的电路。图4示出了所提出的结构包括串联连接的两个功能块。
为了验证所述电路的配置使得能够获得期望的输出,执行电路仿真。在所述仿真中,假设半导体装置的集合例如开关和二极管是理想的。针对直流电压源选择的值为:
V1,1=V2,1=V1,2=V2,2=50V
V3,1=V3,2=150V
V4,1=V5,2=300V
峰值输出电压为1100V,其具有50V的阶跃电压以及50Hz的输出频率,并且峰值电流为7.3A。

Claims (5)

1.一种多电平功率转换器电路,其特征在于:所述多电平功率转换器电路包括具有图10所示的电路配置的功能块;
-其中,V1、V2、V3、V4、V5是DC电压源;
-其中,S1
Figure FDA0002550379140000011
S2
Figure FDA0002550379140000012
S3、T1
Figure FDA0002550379140000013
T2
Figure FDA0002550379140000014
是半导体开关;并且
-其中,D1和D2是两个半导体二极管。
2.根据权利要求1所述的电路,其特征在于:开关S1
Figure FDA0002550379140000015
以及开关S2
Figure FDA0002550379140000016
是彼此互补的装置。
3.根据权利要求1所述的电路,其特征在于:开关S3对应于双向开关。
4.根据权利要求1所述的电路,其特征在于:所述多电平功率转换器电路包括串联连接的多个功能块,所述功能块中的每个功能块具有权利要求1所述的电路配置。
5.根据权利要求4所述的电路,其特征在于:所述多电平功率转换器电路包括串联连接的两个功能块并且所述功能块的输出彼此不对称。
CN201980006732.2A 2019-05-09 2019-05-09 多电平功率转换器电路 Pending CN112292807A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050038 WO2020223830A1 (es) 2019-05-09 2019-05-09 Circuito de convertidor de potencia multinivel

Publications (1)

Publication Number Publication Date
CN112292807A true CN112292807A (zh) 2021-01-29

Family

ID=73050467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980006732.2A Pending CN112292807A (zh) 2019-05-09 2019-05-09 多电平功率转换器电路

Country Status (6)

Country Link
US (1) US12003194B2 (zh)
EP (1) EP3926810A4 (zh)
JP (1) JP7127223B2 (zh)
CN (1) CN112292807A (zh)
CA (1) CA3137339A1 (zh)
WO (1) WO2020223830A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110115532A1 (en) * 2009-11-16 2011-05-19 General Electric Company Multilevel converter operation
US20140192572A1 (en) * 2013-01-08 2014-07-10 Toshiba Mitsubishi-Electric Industrial Sys. Corp. Power converter capable of outputting a plurality of different levels of voltages
US20150003127A1 (en) * 2013-06-26 2015-01-01 Fuji Electric Co., Ltd. Multilevel power conversion circuit
CN104362878A (zh) * 2014-11-28 2015-02-18 东南大学 用于多电平变换器的基本单元、三电平和m电平拓扑结构
WO2016107123A1 (zh) * 2015-01-04 2016-07-07 华为技术有限公司 多电平拓扑的电路和功率变换器
US20170163171A1 (en) * 2015-12-03 2017-06-08 Industry-Academic Cooperation Foundation, Yonsei University Apparatus and method for controlling asymmetric modular multilevel converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2768303Y (zh) 2004-12-10 2006-03-29 华中科技大学 级联型多电平逆变器
CN105450063A (zh) 2015-12-11 2016-03-30 华南理工大学 一种半桥级联型多电平逆变器及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110115532A1 (en) * 2009-11-16 2011-05-19 General Electric Company Multilevel converter operation
US20140192572A1 (en) * 2013-01-08 2014-07-10 Toshiba Mitsubishi-Electric Industrial Sys. Corp. Power converter capable of outputting a plurality of different levels of voltages
US20150003127A1 (en) * 2013-06-26 2015-01-01 Fuji Electric Co., Ltd. Multilevel power conversion circuit
CN104362878A (zh) * 2014-11-28 2015-02-18 东南大学 用于多电平变换器的基本单元、三电平和m电平拓扑结构
WO2016107123A1 (zh) * 2015-01-04 2016-07-07 华为技术有限公司 多电平拓扑的电路和功率变换器
US20170163171A1 (en) * 2015-12-03 2017-06-08 Industry-Academic Cooperation Foundation, Yonsei University Apparatus and method for controlling asymmetric modular multilevel converter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD ALI HOSSEINZADEH等: "New Asymmetric Cascaded Multi-level Converter with Reduced Components", 《2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL SYSTEMS FOR AIRCRAFT, RAILWAY, SHIP PROPULSION AND ROAD VEHICLES & INTERNATIONAL TRANSPORTATION ELECTRIFICATION CONFERENCE (ESARS-ITEC)》 *
T. SUNITHA等: "A New 23 Level Cascaded Multi-Level Inverter with Optimum Structure", 《2018 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES)》 *

Also Published As

Publication number Publication date
JP7127223B2 (ja) 2022-08-29
WO2020223830A1 (es) 2020-11-12
CA3137339A1 (en) 2020-11-12
US12003194B2 (en) 2024-06-04
EP3926810A1 (en) 2021-12-22
JP2022531616A (ja) 2022-07-07
US20220224245A1 (en) 2022-07-14
EP3926810A4 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
Sandeep A 13-level switched-capacitor-based boosting inverter
Wang et al. Novel cascaded switched-diode multilevel inverter for renewable energy integration
Kakar et al. New asymmetrical modular multilevel inverter topology with reduced number of switches
US8288896B2 (en) 3N-4-level voltage inverter
Bayat et al. A new cascaded multilevel inverter with reduced number of switches
Vijayalakshmi et al. A hybrid multilevel inverter for electric vehicle applications
Alishah et al. Design of new multilevel voltage source inverter structure using fundamental frequency-switching strategy
Murugesan et al. Sinusoidal PWM based modified cascaded multilevel inverter
Bhaskar et al. A novel asymmetric multilevel inverter with minimum number of switches for renewable power grid applications
Ahmadi et al. Selective harmonic elimination for multilevel inverters with unbalanced DC inputs
Zou et al. Switched capacitor cell based Dc-dc and Dc-ac converters
Boora et al. A new general topology for asymmetrical multilevel inverter with reduced number of switching components
CN112292807A (zh) 多电平功率转换器电路
Shahir et al. 16-level basic topology for cascaded multilevel inverters with reduced number of components
Islam et al. Improvement in performance of asymmetric multilevel inverter used for grid integrated solar photovoltaic systems
Sabyasachi et al. Asymmetrical single-phase cascaded differential multilevel inverter for PV applications
Siddique et al. A new single-phase single source nine level boost inverter topology
Reddy et al. Novel symmetric and asymmetric topology of multilevel inverter with reduced number of switches
Sirohi et al. She modulation technique-based asymmetrical 11-level switched-capacitor-inverter topology with less switches and TSV factor
Kumar A new 7-level asymmetrical multilevel inverter with reduced number of sources and switching components
Shaikh et al. Single phase seven level inverter
Mohamad et al. Simulation analysis of an improved cascaded multilevel inverter topology
Murugan et al. Single-source switched-capacitor-based multilevel inverter (S3CMLI) and its horizontal/vertical extension with reduced components
Sathik et al. A New Design of Active NPC Converter Topology with Higher Voltage Gain for AC Microgrid Applications
Shyam et al. Symmetrical and Asymmetrical Multilevel Inverter with configurational parameters for power quality applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210129

WD01 Invention patent application deemed withdrawn after publication