WO2020221227A1 - 一种基于高折射率微球Mie散射的结构色涂料 - Google Patents

一种基于高折射率微球Mie散射的结构色涂料 Download PDF

Info

Publication number
WO2020221227A1
WO2020221227A1 PCT/CN2020/087390 CN2020087390W WO2020221227A1 WO 2020221227 A1 WO2020221227 A1 WO 2020221227A1 CN 2020087390 W CN2020087390 W CN 2020087390W WO 2020221227 A1 WO2020221227 A1 WO 2020221227A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
microspheres
parts
coating
structural color
Prior art date
Application number
PCT/CN2020/087390
Other languages
English (en)
French (fr)
Inventor
武素丽
吴越
常杰
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/594,718 priority Critical patent/US20220195218A1/en
Publication of WO2020221227A1 publication Critical patent/WO2020221227A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • C09D1/04Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates with organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/06Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/02Homopolymers or copolymers of unsaturated alcohols
    • C09J129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Definitions

  • the invention relates to a structural color paint based on Mie scattering of high refractive index microspheres, which belongs to the field of structural color.
  • the colloidal microspheres used are usually polymer microspheres and SiO 2 microspheres, according to Bragg Formula, the structural color film constructed by these low refractive index colloidal microspheres is highly dependent on the angle, which is not conducive to human visual experience.
  • the non-angle-dependent structural color can be realized by an amorphous photonic structure with a characteristic size of the order of the wavelength of visible light, and its microstructure units are arranged in short-range order and long-range disorder (see W. Yuan, N. Zhou, L.
  • Mie scattering refers to the scattered light emitted by an isotropic uniform spherical particle with a diameter equivalent to the radiation wavelength to incident light in any direction in space.
  • the Mie scattering of a single microsphere is very weak, and no macroscopic color can be observed.
  • the coating of the present invention forms a locally ordered assembly structure on the substrate, the coherent superposition of the Mie scattering of the uniform microspheres greatly enhances the intensity of the Mie scattering.
  • the film formed on the substrate of the coating of the present invention has a macroscopic disordered structure, its Mie scattering is scattered in all directions in space, so the generated structural color is visible at all angles, and has no Angle dependence. Therefore, the construction of a short-range ordered and long-range disordered structure based on the Mie scattering of high-refractive-index microspheres to produce structural colors that can be seen from all angles under natural light is of great significance for production and life.
  • the purpose of the present invention is to provide a structural color coating based on Mie scattering of high refractive index microspheres.
  • a structural color coating based on Mie scattering of high refractive index microspheres which is characterized in that it comprises the following mass parts: 1-20 parts of microspheres with a highly uniform particle size and theoretical refractive index>1.7, 75-90 Parts dispersion, 0.1-5 parts surfactant, 1-5 parts binder.
  • the color of the structural color coating is derived from the local microscopic order and macroscopic long-range disorder of a single layer or multiple layers assembled on a substrate with highly uniform high refractive index microspheres (refractive index>1.7) in the coating composition
  • the coupling of the structure to the Mie scattering of light is bright, which is a kind of structural color, and has nothing to do with the color of the high refractive index microspheres in the coating.
  • micro-nano microspheres with a theoretical refractive index> 1.7 are preferably selected from ZnS, ZnO, CdS, Cu 2 O, CaS, CuS, Cu 2 S, TiO 2 , ZrO 2 or CeO 2 One or more.
  • the high refractive index micro-nano microspheres are high refractive index microspheres with a particle size range of 150-600 nm, preferably, the selected particle size range is 200-500 nm.
  • the dispersion is a low-boiling hydrophilic solution.
  • the dispersion used is one or more of acetone, water, and ethanol.
  • the binder is polyvinyl alcohol, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate , One or more of water glass.
  • the surfactant is one of sodium dodecylbenzene sulfonate, sodium cetyl sulfate, stearic acid, and sodium stearate.
  • the coating is suitable for a variety of substrates, and the substrate is one of silicon wafer, glass, metal, textile, ceramic or plastic.
  • the structural color paint is suitable for spraying, scraping, brushing, roller coating or dipping to produce structural color.
  • the invention discloses a structural color coating based on Mie scattering of high refractive index microspheres.
  • the color of the structural color coating originates from a single layer or multiple layers assembled on a substrate with highly uniform high refractive index microspheres in the coating. Locally microscopically ordered and macroscopically long-range disordered structure. This color is a kind of structural color. Compared with other structural color-generating structures and the colors they produce, the colors are visible under natural light, and no special light source is required. Mirror reflection observation angle, and the structure color produced is more bright.
  • the structural color paint can finally obtain a variety of colors such as purple, blue, green, yellow, red and other colors without angle dependence.
  • Example 1 is a scanning electron micrograph of a plane of the green structural color film obtained in Example 1;
  • Example 2 is a scanning electron micrograph of a cross-section of the green structural color film obtained in Example 1;
  • Figure 3 is the reflection spectrum of the green structural color film obtained in Example 1;
  • Example 5 is a scanning electron micrograph of the blue structure color film obtained in Example 2.
  • Example 6 is a scanning electron microscope image of the red structural color film obtained in Example 3.
  • FIG. 7 is a scanning electron micrograph of a plane of the purple structural color film obtained in Example 4.
  • FIG. 7 is a scanning electron micrograph of a plane of the purple structural color film obtained in Example 4.
  • test methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials, unless otherwise specified, can be obtained from commercial sources, or can be prepared by conventional methods.
  • a green structural color paint based on Mie scattering of high refractive index microspheres including the following components by mass: 5 parts of ZnS microspheres with a particle size of 320nm, 90 parts of deionized water, 1 part of dodecylbenzene Sodium sulfonate, 4 parts polyvinyl alcohol.
  • the said structural color paint is made by weighing the above-mentioned components by mass, mixing them in a beaker, adjusting the stirring speed to 700 rpm, magnetic stirring for 30 minutes, and ultrasonic dispersion for 60 minutes, so that the components are fully and uniformly dispersed in deionized water. A structural color paint is obtained.
  • the structural color paint is sprayed with a spray gun, and the selected substrate is a silicon wafer.
  • the microspheres are assembled on the substrate with a single layer of local microscopic order and macroscopic long-range disordered structure, and then a uniform green structural color film is formed on the surface of the silicon wafer.
  • the resultant structural color film was characterized by scanning electron microscopy. As shown in the plane electron microscope in Figure 1 and the cross-sectional electron microscope in Figure 2, the structural color coating formed a single layer of local microscopic order and macroscopic long-range disorder after spraying on the surface of the silicon wafer. Structure.
  • the resulting structural color film has an obvious reflection peak at 520 nm, that is, it can display a bright green structural color.
  • ZnS microspheres with a particle size of 280 nm can be prepared.
  • a blue structural color paint based on Mie scattering of high refractive index microspheres including the following components by mass: 10 parts of ZnS microspheres with a particle size of 280nm, 85 parts of deionized water, 2 parts of dodecyl Sodium benzene sulfonate, 3 parts polyvinyl alcohol.
  • the said structural color paint is made by weighing the above-mentioned components by mass, mixing them in a beaker, adjusting the stirring speed to 700 rpm, magnetic stirring for 30 minutes, and ultrasonic dispersion for 60 minutes, so that the components are fully and uniformly dispersed in deionized water. A structural color paint is obtained.
  • the structural color paint is sprayed with a spray gun, and the selected substrate is a metal plate.
  • the microspheres are assembled on the metal plate with a single layer of local microscopic order and macroscopic long-range disordered structure, and then a uniform blue structural color film is formed on the surface of the metal plate. Its planar structure is shown in the scanning electron microscope image of Figure 5.
  • a red structural color paint based on Mie scattering of high refractive index microspheres comprising the following components by mass: 1 part of CdS microspheres with a particle size of 390nm, 90 parts of ethanol, 4 parts of sodium cetyl sulfate, 5 parts water glass.
  • the structural color paint is obtained by weighing the above-mentioned components by mass, mixing in a beaker, adjusting the stirring speed to 700 rpm, magnetic stirring for 30 minutes, and ultrasonic dispersion for 60 minutes, so that the components are fully and uniformly dispersed in ethanol. Structural color paint.
  • the structural color paint is brushed, and the selected substrate is a stainless steel sheet.
  • the microspheres are assembled on the substrate with a multi-layer local microscopic order and macroscopic long-range disordered structure, and then a uniform red structural color film is formed on the surface of the stainless steel sheet. Its planar structure is shown in the scanning electron microscope image of Figure 6.
  • the copper source precursor solution Prepare the copper source precursor solution, weigh 2.416 g copper nitrate powder, add 20 mL diethylene glycol, and stir until the powder is completely dissolved. Weigh 1g polyvinylpyrrolidone powder (PVP), add 30mL diethylene glycol, stir until the powder is completely dissolved, add a certain amount of copper nitrate solution to make the Cu 2+ concentration 5-20mM, and heat to 150 ⁇ under the protection of N 2 At 170°C, the reaction was kept at 170°C for 1 hour and then cooled to room temperature. The product was centrifuged and washed with water three times and dried to obtain Cu 2 O microspheres with a particle size of 200 nm.
  • PVP polyvinylpyrrolidone powder
  • a purple structural color paint based on Mie scattering of high refractive index microspheres comprising the following components by mass: 20 parts of Cu 2 O microspheres with a particle size of 200 nm, 75 parts of ethanol, 5 parts of stearic acid, 1 Parts of polyethyl acrylate.
  • the structural color paint is obtained by weighing the above-mentioned components by mass, mixing in a beaker, adjusting the stirring speed to 700 rpm, magnetic stirring for 30 minutes, and ultrasonic dispersion for 60 minutes, so that the components are fully and uniformly dispersed in ethanol. Structural color paint.
  • the structural color paint is scraped, and the selected substrate is a plastic sheet.
  • the microspheres are assembled on the substrate with a multi-layer local microscopic order and macroscopic long-range disordered structure, and then a uniform purple structural color film is formed on the surface of the plastic sheet. Its planar structure is shown in the scanning electron microscope image of Figure 7.
  • Example 1 In the preparation method of ZnS microspheres in Example 1, the weighed amount of zinc nitrate hexahydrate was changed to 5.20g, 6.63g, 10.69g, 11.88g, and the particle sizes of 270nm, 290nm, 350nm, 370nm can be prepared respectively. ZnS microspheres.
  • the particle diameters of the ZnS microspheres used in Example 1 were replaced by 270 nm, 290 nm, 350 nm, and 370 nm, respectively, to obtain blue, cyan, yellow, and orange structural color paints.
  • Example 1 The high refractive index microspheres used in Example 1 were replaced with 310nm ZnO, CaS, CuS, Cu 2 S, TiO 2 , ZrO 2 , CeO 2 microspheres, and blue, yellow, orange and yellow green can be obtained respectively. , Orange, cyan, cyan structural color paint.
  • the structural color paint in Example 1 was applied by roll coating and dip coating, and the selected substrate was glass. Through roller coating and dip coating, the microspheres are assembled on the glass substrate into a multi-layer local microscopically ordered and macroscopic long-range disordered structure, forming a uniform green structural color film on the glass surface.
  • Example 1 When the structural color coating in Example 1 was sprayed, the selected substrate was ceramic, silk, and leather. Through spraying, the single layer of microspheres assembled on the substrate has a local microscopic order and a macroscopic long-range disordered structure, and then forms a uniform green structural color film on the surface of ceramics, silk and leather.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

一种基于高折射率微球Mie散射的结构色涂料,由以下质量份的组分组成:5-20份的粒径高度均一的理论折射率>1.7的纳米级微球,75-90份分散液,0.1-5份表面活性剂,1-5份粘结剂。该结构色涂料通过喷涂、刮涂、刷涂、辊涂或浸涂的方式在基质上形成局部微观有序、宏观长程无序的结构膜;基质为玻璃、金属、纺织品、陶瓷、塑料或纸张;表面活性剂为十二烷基苯磺酸钠、十六烷基硫酸钠、硬脂酸或硬脂酸钠;纳米级微球为ZnS、ZnO、CdS、Cu 2O、CaS、CuS、Cu 2S、TiO 2、ZrO 2或CeO 2中的一种、两种或多种;纳米级微球粒径范围为200-500nm。

Description

一种基于高折射率微球Mie散射的结构色涂料 技术领域
本发明涉及一种基于高折射率微球Mie散射的结构色涂料,属于结构色领域。
背景技术
在自然界中,颜色有两种来源——色素生色和结构生色。与色素生色相比,结构生色具有高亮度,高饱和度,永不褪色等优点。结构生色源自可见光与物质的微纳米结构的相互作用,例如散射,干涉或衍射等。目前,人工构筑结构色的研究中,主要通过光子晶体和非晶光子结构来实现。通过光子晶体结构实现结构色构筑是最常见的方式,可以产生亮丽的结构色(参见专利CN200710064245.0;X.Wang,Z.Wang,L.Bai,H.Wang,L.Kang,D.H.Werner,M.Xu,B.Li,J.Li and X.-F.Yu,Opt.Express,2018,26,27001-27013)然而所用的胶体微球通常是聚合物微球和SiO 2微球,根据Bragg公式,这些低折射率胶体微球构筑的结构色膜角度依存性强,不利于人类的视觉感受。而无角度依存的结构色可以通过具有特征尺寸为可见光波长量级的非晶光子结构实现,其微观结构单元呈短程有序、长程无序排列(参见W.Yuan,N.Zhou,L.Shi and K.-Q.Zhang,ACS Applied Materials&Interfaces,2015,7,14064-14071;Q.Li,Y.Zhang,L.Shi,H.Qiu,S.Zhang,N.Qi,J.Hu,W.Yuan,X.Zhang and K.-Q.Zhang,ACS Nano,2018,12,3095-3102)。由于结构的无序性,散射光会在整个空间向各个方向散开,短程有序性又会使散射光发生相干叠加,因此就会产生无角度依存的结构色。无角度依存的结构色更符合人类的视觉感受,但这种结构色膜通常具有色彩黯淡的弊端。
Mie散射是指直径与辐射波长相当的各向同性均匀球形颗粒对入射光向空间任何方向发出的散射光。粒径>200nm,理论折射率>1.7的高折射率微球理论上会对可见光产生Mie散射。但是单个微球的Mie散射很弱,观察不到宏观的颜色,本发明的涂料在基质上形成局部有序组装的结构时,均匀微球Mie散射的相干叠加大大增强其Mie散射的强度,使其可以产生亮丽的结构色;同时由于本发明的涂料在基质上形成的膜为宏观无序的结构,其Mie散射是朝空间各个方向散射的,因此产生的结构色全角度可视,具有无角度依存性。因此,基于高折射率微球Mie散射构筑短程有序长程无序的结构产生自然光下全角度可视的结构色对于生产生活具有重要的意义。
发明内容
本发明的目的是提供一种基于高折射率微球Mie散射的结构色涂料。
一种基于高折射率微球Mie散射的结构色涂料,其特征在于,包括以下质量份数 的组分:1-20份的粒径高度均一的理论折射率>1.7的微球,75-90份分散液,0.1-5份表面活性剂,1-5份粘结剂。
所述的结构色涂料的颜色源自涂料组分中粒径高度均一的高折射率微球(折射率>1.7)在基质上组装的单层或多层的局部微观有序、宏观长程无序的结构对光的Mie散射的耦合。所产生的颜色亮丽,属于结构生色的一种,与涂料内高折射率微球的自身颜色无关。
通过改变所述结构色涂料内高折射率微球的粒径,可得到紫、蓝、绿、黄、红等覆盖全光谱范围的亮丽的无角度依存的结构色。
进一步的,所述的理论折射率>1.7的微纳米级微球,优选地,为ZnS、ZnO、CdS、Cu 2O,CaS、CuS、Cu 2S、TiO 2,ZrO 2或CeO 2中的一种或多种。
进一步的,所述的高折射率微纳米级微球为粒径范围的150-600nm之间的高折射率微球,优选地,所选的粒径范围为200-500nm。
进一步的,所述的分散液为低沸点的亲水性溶液,优选地,所用分散液为丙酮,水,乙醇的一种或多种。
进一步的,所述的粘结剂为聚乙烯醇,聚丙烯酸甲酯,聚丙稀酸乙酯,聚丙烯酸丁酯,聚甲基丙烯酸甲酯,聚甲基丙烯酸乙酯,聚甲基丙烯酸丁酯,水玻璃中的一种或多种。
进一步的,所述的表面活性剂为十二烷基苯磺酸钠,十六烷基硫酸钠,硬脂酸,硬脂酸钠中的一种。
进一步的,所述的涂料适用于多种基底,基底为硅片,玻璃,金属,纺织品,陶瓷或塑料的一种。
进一步的,所述的结构色涂料适宜通过喷涂,刮涂,刷涂,辊涂或浸涂的方式产生结构色。
发明有益效果
本发明公开的一种基于高折射率微球Mie散射的结构色涂料,结构色涂料的颜色源自涂料内的粒径高度均一的高折射率微球在基质上组装的单层或多层的局部微观有序、宏观长程无序的结构,该种颜色属于结构生色的一种,与其它结构色生色结构以及其产生的颜色相比,颜色在自然光下可视,无需特殊光源照射或镜面反射观察角度,且所产生的结构色颜色更加亮丽。此外,所述的结构色涂料通过改变涂料内所加入的高折射率微球的粒径,可最终得到紫、蓝、绿、黄、红等多种颜色的无角度依存的结构色。
附图说明
图1为实施例1所得的绿色结构色薄膜的平面的扫描电镜图;
图2为实施例1所得的绿色结构色薄膜的截面的扫描电镜图;
图3为实施例1所得的绿色结构色薄膜的反射光谱;
图4为实施例1所得的绿色结构色薄膜的散射光谱;
图5为实施例2所得的蓝色结构色薄膜的平面的扫描电镜图;
图6为实施例3所得的红色结构色薄膜的平面的扫描电镜图;
图7为实施例4所得的紫色结构色薄膜的平面的扫描电镜图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得,或可以常规方法制备。
实施例1
ZnS微球制备方法:
称取3.00g聚乙烯吡咯烷酮,100mL去离子水,使聚乙烯吡咯烷酮充分溶解在去离子水中;得均匀溶液,搅拌加热至75℃;称取3.75g硫代乙酰胺,加至反应体系;量取0.07mL浓硝酸,加至反应体系;称取8.92g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加至反应体系,1000rpm转速下搅拌3min;将搅拌速度调低至500rpm,于75℃下搅拌反应3h。将产物离心后用水洗3次,干燥研磨得到粒径为320nm的ZnS微球。
一种基于高折射率微球Mie散射的绿色的结构色涂料,包括以下质量份的组分:5份的粒径为320nm的ZnS微球,90份去离子水,1份十二烷基苯磺酸钠,4份聚乙烯醇。
所述的结构色涂料通过分别称取上述质量份的组分,在烧杯中混合,搅拌速度调至700rpm,磁力搅拌30min,超声分散60min,使各组分充分均匀分散于去离子水中,即可得到结构色涂料。
所述的结构色涂料利用喷枪进行喷涂,所选基底为硅片。通过喷涂,微球在基质上组装的单层的局部微观有序、宏观长程无序的结构,进而在硅片表面形成均匀的绿色的结构色膜。
对所得结构色膜进行扫描电镜表征,如图1的平面电镜和图2的截面电镜所示, 该结构色涂料在喷涂到硅片表面后形成了单层的局部微观有序、宏观长程无序的结构。
如图3的反射光谱和图4的散射光谱,可以看出,所得的结构色膜在520nm处出具有明显的反射峰,即可以显示亮丽的绿色结构色。
实施例2
将实施例1 ZnS微球制备方法中将称取的六水合硝酸锌的量改为5.95g,则可制备出粒径为280nm的ZnS微球。
一种基于高折射率微球Mie散射的蓝色的结构色涂料,包括以下质量份的组分:10份的粒径为280nm的ZnS微球,85份去离子水,2份十二烷基苯磺酸钠,3份聚乙烯醇。
所述的结构色涂料通过分别称取上述质量份的组分,在烧杯中混合,搅拌速度调至700rpm,磁力搅拌30min,超声分散60min,使各组分充分均匀分散于去离子水中,即可得到结构色涂料。
所述的结构色涂料利用喷枪进行喷涂,所选基底为金属板。通过喷涂,微球在金属板上组装的单层的局部微观有序、宏观长程无序的结构,进而在金属板表面形成均匀的蓝色的结构色膜。其平面结构如图5的扫描电镜图所示。
实施例3
CdS微球制备方法:
称取6.00g聚乙烯吡咯烷酮,溶解于150mL二乙二醇溶液内,再加7.71g的四水合硝酸铬和1.90g硫脲,搅拌至所有粉末完全溶解。将溶液加热至150-160℃,保温反应5h后自然冷却至室温,将产物离心后用乙醇和水洗3次,干燥研磨得到粒径为390nm的CdS微球。
一种基于高折射率微球Mie散射的红色的结构色涂料,包括以下质量份的组分:1份的粒径为390nm的CdS微球,90份乙醇,4份十六烷基硫酸钠,5份水玻璃。
所述的结构色涂料通过分别称取上述质量份的组分,在烧杯中混合,搅拌速度调至700rpm,磁力搅拌30min,超声分散60min,使各组分充分均匀分散于乙醇中,即可得到结构色涂料。
所述的结构色涂料进行刷涂,所选基底为不锈钢片。通过刷涂,微球在基质上组装的多层的局部微观有序、宏观长程无序的结构,进而在不锈钢片表面形成均匀的红色的结构色膜。其平面结构如图6的扫描电镜图所示。
实施例4
Cu 2O微球制备方法:
配制铜源前驱体溶液,称取2.416g硝酸铜粉末,加入20mL二乙二醇,搅拌至粉末完全溶解。称取1g聚乙烯吡咯烷酮粉末(PVP),加入30mL二乙二醇,搅拌至粉末完全溶解后,加入一定量硝酸铜溶液,使Cu 2+浓度为5~20mM,N 2保护下加热至150~170℃,保温反应1h后冷却至室温,将产物离心后水洗3次干燥得到粒径为200nm的Cu 2O微球。
一种基于高折射率微球Mie散射的紫色的结构色涂料,包括以下质量份的组分:20份的粒径为200nm的Cu 2O微球,75份乙醇,5份硬脂酸,1份聚丙稀酸乙酯。
所述的结构色涂料通过分别称取上述质量份的组分,在烧杯中混合,搅拌速度调至700rpm,磁力搅拌30min,超声分散60min,使各组分充分均匀分散于乙醇中,即可得到结构色涂料。
所述的结构色涂料进行刮涂,所选基底为塑料片。通过刮涂,微球在基质上组装的多层的局部微观有序、宏观长程无序的结构,进而在塑料片表面形成均匀的紫色的结构色膜。其平面结构如图7的扫描电镜图所示。
实施例5-8
将实施例1 ZnS微球制备方法中将称取的六水合硝酸锌的量分别改为5.20g,6.63g,10.69g,11.88g对应则可制备出粒径分别为270nm,290nm,350nm,370nm的ZnS微球。
实施例1中所用的ZnS微球的粒径分别用270nm,290nm,350nm,370nm代替,可分别得到蓝色,青色,黄色,橙色的结构色涂料。
实施例9~15
ZnO微球制备方法:
称取1.00g聚乙烯吡咯烷酮,80mL乙醇,得均匀溶液,搅拌加热至80℃;4.39g二水合乙酸锌,预先溶解到3mL去离子水中,迅速加至反应体系,于80℃下搅拌反应2h。将产物离心后水洗3次干燥得到粒径为310nm的ZnO微球。
CaS微球制备方法:
称取3.00g聚乙烯吡咯烷酮,100mL去离子水,使聚乙烯吡咯烷酮充分溶解在去离子水中;得均匀溶液,搅拌加热至75℃;称取2.25g硫代乙酰胺,加至反应体系;量取0.07mL浓硝酸,加至反应体系;称取3.33g氯化钙,预先溶解到5mL去离子水中,然后迅速加至反应体系,1000rpm转速下搅拌3min;将搅拌速度调低至500rpm,,于75℃下搅拌反应3h。将产物离心后水洗3次干燥得到粒径为310nm的CaS微球。
CuS微球制备方法:
称取3.00g聚乙烯吡咯烷酮,100mL去离子水,使聚乙烯吡咯烷酮充分溶解在去离子水中;得均匀溶液,搅拌加热至75℃;称取2.25g硫脲,加至反应体系;量取0.07mL浓硝酸,加至反应体系;称取7.25g三水合硝酸铜,预先溶解到5mL去离子水中,然后迅速加至反应体系,1000rpm转速下搅拌3min;将搅拌速度调低至500rpm,,于75℃下搅拌反应2h。将产物离心后水洗3次干燥得到粒径为310nm的CuS微球。
Cu 2S微球制备方法:
称取100mL乙醇,2.25g硫脲,5.10g二水合氯化铜,搅拌混匀后,加入反应釜中,反应釜放置在加热炉中,设置炉内温度160℃,反应7h。将产物离心后水洗3次干燥得到粒径为310nm的Cu 2S微球。
TiO 2微球制备方法:
将钛酸正丁酯加入到无水乙醇中,配置成浓度为0.02M的混合溶液,然后向混合溶液中加入巯基乙酸,浓度为6×10 -3M;然后搅拌10h,温度为22℃;在剧烈搅拌下向上述混合溶液中加入的去离子水,其中钛前驱体、无水醇溶剂、有机配体、去离子水用量比为0.001mol:0.8mol:2.9×10 -4mol:0.27mol;离心分离出沉淀,将产物在80℃下烘干,得到均一的粒径为310nm的TiO 2微球。
ZrO 2微球制备方法:
量取80mL环己烷,10mL曲拉通,10mL正己醇混合成油相体系;称取氧氯化锆3.22g,3.83g硝酸钇,配置成与油相等体积的水相体系;水相加入油相体系,混合后转移至三口烧瓶,于75℃下搅拌4h。将产物离心后水洗3次干燥得到粒径为310nm的ZrO 2微球。
CeO 2微球制备方法:
称取5.48g硝酸铈铵,5.88g柠檬酸钠,50mL去离子水,搅拌均匀;6.01g尿素溶解于10mL去离子水,然后将尿素溶液滴加到混合溶液中,搅拌60min后转移至反应釜中,反应釜放置在加热炉中,设置炉内温度200℃,反应24h。将产物离心后水洗3次干燥得到粒径为310nm的CeO 2微球。
实施例1中所用的高折射率微球分别用310nm的ZnO,CaS,CuS,Cu 2S,TiO 2,ZrO 2,CeO 2微球代替,可分别得到蓝色,黄色,橙黄色,黄绿色,橙色,青色,青绿色的结构色涂料。
实施例16~17
实施例1中的结构色涂料进行辊涂和浸涂,所选基底为玻璃。通过辊涂和浸涂, 微球在玻璃基质上组装为多层的局部微观有序、宏观长程无序的结构,在玻璃表面形成均匀的绿色的结构色膜。
实施例17~19
实施例1中的结构色涂料进行喷涂时,所选基底为陶瓷,丝绸,皮革。通过喷涂,微球在基质上组装的单层的局部微观有序、宏观长程无序的结构,进而均在陶瓷,丝绸,皮革表面形成均匀的绿色的结构色膜。

Claims (4)

  1. 一种基于高折射率微球Mie散射的结构色涂料,其特征在于,所述涂料由以下质量份数的组分组成:5-20份的粒径高度均一的理论折射率>1.7的纳米级微球,75-90份分散液,0.1-5份表面活性剂,1-5份粘结剂;所述的结构色涂料通过喷涂、刮涂、刷涂、辊涂或浸涂的方式在基质上形成局部微观有序、宏观长程无序的结构膜;所述基质为玻璃、金属、纺织品、陶瓷、塑料或纸张;所述的表面活性剂为十二烷基苯磺酸钠、十六烷基硫酸钠、硬脂酸或硬脂酸钠;
    所述粒径高度均一的理论折射率>1.7的纳米级微球,为ZnS、ZnO、CdS、Cu 2O、CaS、CuS、Cu 2S、TiO 2、ZrO 2或CeO 2中的一种、两种或多种;
    所述的高折射率微球粒径范围为200-500nm。
  2. 根据权利要求1所述的一种基于高折射率微球Mie散射的结构色涂料,其特征在于,所述分散液为低沸点的亲水性溶液。
  3. 根据权利要求1所述的一种基于高折射率微球Mie散射的结构色涂料,其特征在于,所述分散液为丙酮、水或乙醇中的一种、两种或多种。
  4. 根据权利要求1所述的一种基于高折射率微球Mie散射的结构色涂料,其特征在于,所述的粘结剂为聚乙烯醇、聚丙烯酸甲酯、聚丙稀酸乙酯、聚丙烯酸丁酯、聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚甲基丙烯酸丁酯或水玻璃中的一种、两种或多种。
PCT/CN2020/087390 2019-04-30 2020-04-28 一种基于高折射率微球Mie散射的结构色涂料 WO2020221227A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/594,718 US20220195218A1 (en) 2019-04-30 2020-04-28 High-refractive index microsphere mie scattering-based schemochrome coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910363788.5A CN110079171B (zh) 2019-04-30 2019-04-30 一种基于高折射率微球Mie散射的结构色涂料
CN201910363788.5 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020221227A1 true WO2020221227A1 (zh) 2020-11-05

Family

ID=67418314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087390 WO2020221227A1 (zh) 2019-04-30 2020-04-28 一种基于高折射率微球Mie散射的结构色涂料

Country Status (3)

Country Link
US (1) US20220195218A1 (zh)
CN (1) CN110079171B (zh)
WO (1) WO2020221227A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079171B (zh) * 2019-04-30 2020-07-14 大连理工大学 一种基于高折射率微球Mie散射的结构色涂料
CN110935607A (zh) * 2019-11-28 2020-03-31 大连理工大学 一种超声喷涂制备结构色材料的方法
CN111607991A (zh) * 2020-07-07 2020-09-01 兴化市大地蓝绢纺有限公司 一种仿生结构生色、抗菌真丝的制备方法
CN112625388B (zh) * 2020-12-15 2022-04-12 大连理工大学 一种具有亮丽结构色的Cu2O单晶纳米粒子-聚合物复合膜及其制备方法
CN113072867A (zh) * 2021-02-24 2021-07-06 中山大学 一种水性聚氨酯结构色防水涂料及其制备方法与应用
CN113388305B (zh) * 2021-05-28 2022-05-03 上海交通大学 一种具有结构色的辐射制冷复合涂层、应用及制备方法
CN113957729B (zh) * 2021-10-27 2022-10-11 大连理工大学 一种具有高亮度、高稳定性结构色的织物及其制备方法
CN114517038B (zh) * 2022-03-25 2023-03-24 富思特新材料科技发展股份有限公司 一种砂壁状建筑涂料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614808A (zh) * 2015-02-13 2015-05-13 苏州中科纳福材料科技有限公司 一种具有色相和光泽的光学功能材料及其制备与应用
CN104698536A (zh) * 2015-02-13 2015-06-10 苏州中科纳福材料科技有限公司 一种具有光泽与色相的光学功能材料及其制备与应用
CN105518088A (zh) * 2013-07-31 2016-04-20 哈佛学院院长及董事 具有光谱选择性吸收组分的结构着色材料及其制造方法
CN106891634A (zh) * 2017-03-15 2017-06-27 大连理工大学 一种喷墨打印制备大面积结构生色图案的方法
CN109180220A (zh) * 2018-08-31 2019-01-11 周晓东 一种光子晶体结构色釉的制备方法
CN109201438A (zh) * 2018-07-28 2019-01-15 华南理工大学 一种呈色具有高明亮度低角度依赖性的复合光子结构材料及其制备方法
CN110079171A (zh) * 2019-04-30 2019-08-02 大连理工大学 一种基于高折射率微球Mie散射的结构色涂料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105111481B (zh) * 2015-09-21 2018-03-16 陕西科技大学 一种具有光催化效应的绿色光子晶体结构色薄膜及其制备方法
CN105113006A (zh) * 2015-09-21 2015-12-02 陕西科技大学 一种表面粗糙的单分散球形硫化锌光子晶体及其制备方法
CN107020853A (zh) * 2017-03-15 2017-08-08 大连理工大学 一种基于结构色变化的防伪方法
CN108587629A (zh) * 2018-06-13 2018-09-28 大连理工大学 一种通过强电磁共振产生亮丽结构色材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518088A (zh) * 2013-07-31 2016-04-20 哈佛学院院长及董事 具有光谱选择性吸收组分的结构着色材料及其制造方法
CN104614808A (zh) * 2015-02-13 2015-05-13 苏州中科纳福材料科技有限公司 一种具有色相和光泽的光学功能材料及其制备与应用
CN104698536A (zh) * 2015-02-13 2015-06-10 苏州中科纳福材料科技有限公司 一种具有光泽与色相的光学功能材料及其制备与应用
CN106891634A (zh) * 2017-03-15 2017-06-27 大连理工大学 一种喷墨打印制备大面积结构生色图案的方法
CN109201438A (zh) * 2018-07-28 2019-01-15 华南理工大学 一种呈色具有高明亮度低角度依赖性的复合光子结构材料及其制备方法
CN109180220A (zh) * 2018-08-31 2019-01-11 周晓东 一种光子晶体结构色釉的制备方法
CN110079171A (zh) * 2019-04-30 2019-08-02 大连理工大学 一种基于高折射率微球Mie散射的结构色涂料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG, F. T. ET AL.: "Rapid Fabrication of Noniridescent Structural Color Coatings with High Color Visibility, Good Structural Stability, and Self-Healing Properties", ACS APPLIED MATERIALS & INTERFACES, vol. 11, no. 13, 3 April 2019 (2019-04-03), pages 13022 - 13028, XP055750645, DOI: 10.1021/acsami.9b01522 *

Also Published As

Publication number Publication date
CN110079171B (zh) 2020-07-14
US20220195218A1 (en) 2022-06-23
CN110079171A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020221227A1 (zh) 一种基于高折射率微球Mie散射的结构色涂料
Wang et al. Structural coloration pigments based on carbon modified ZnS@ SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability
US6187824B1 (en) Zinc oxide sol and method of making
Meng et al. Bio-inspired transparent structural color film and its application in biomimetic camouflage
JP6615878B2 (ja) 光輝性顔料とその製造方法、顔料含有組成物、及び顔料含有塗装体
JP2001031421A (ja) ルチル型二酸化チタンの析出方法、ならびにそれが定着した基材およびガラスフレーク
CN102951849B (zh) 一种干涉彩色玻璃微珠及其制备方法
Dai et al. Transmissive structural color filters using vertically coupled aluminum nanohole/nanodisk array with a triangular-lattice
US3374105A (en) Particulate reflective elements and method for forming the same
Liang et al. Fabrication and solar energy modulation enhancement research of triangular-like array composed of isolated VO2 nanoparticles
JP5546341B2 (ja) 着色透明被膜、熱線吸収用透明被膜及びその製造方法
JP2011102216A (ja) 発色フレーク体とその製造方法
WO2018096936A1 (ja) 光輝性顔料、顔料含有組成物、及び顔料含有塗装体
EP2512650B1 (de) Verfahren zur herstellung von eingekapselten metall-kolloiden als anorganische farbpigmente
WO2017004842A1 (zh) 反蛋白石胶体晶体纤维的制备方法
Li et al. Effects of solution pH value and mineralizer on formation and color property of holmium molybdate pigment via co-precipitation and sintering
JP3328493B2 (ja) 薄膜付き基板およびその製造方法
Ren et al. Noniridescent and robust structural-colored coating for automotives based on the Mie scattering of ZnO spheres
Zhou et al. Organic–inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency
JP4104353B2 (ja) 塗料組成物
JP4678736B2 (ja) 黄着色用複合微粒子、および黄着色用複合微粒子の製造方法
CN109912996B (zh) 一种颜色可调的高近红外反射率复合无机色料及其制备方法
Yang et al. Adjustable color and emissivity based on amorphous arrays composed of SiO2@ ZnO
JP6301574B1 (ja) 光輝性顔料、顔料含有組成物、及び顔料含有塗装体
Yu et al. Facile Access to High Solid Content Monodispersed Microspheres via Dual‐Component Surfactants Regulation toward High‐Performance Colloidal Photonic Crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799188

Country of ref document: EP

Kind code of ref document: A1