WO2020221197A1 - 随机接入方法以及用户设备 - Google Patents

随机接入方法以及用户设备 Download PDF

Info

Publication number
WO2020221197A1
WO2020221197A1 PCT/CN2020/087202 CN2020087202W WO2020221197A1 WO 2020221197 A1 WO2020221197 A1 WO 2020221197A1 CN 2020087202 W CN2020087202 W CN 2020087202W WO 2020221197 A1 WO2020221197 A1 WO 2020221197A1
Authority
WO
WIPO (PCT)
Prior art keywords
msg
information
message
pucch
harq
Prior art date
Application number
PCT/CN2020/087202
Other languages
English (en)
French (fr)
Inventor
张崇铭
刘仁茂
罗超
山田升平
Original Assignee
夏普株式会社
张崇铭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 张崇铭 filed Critical 夏普株式会社
Priority to US17/606,752 priority Critical patent/US20220217787A1/en
Publication of WO2020221197A1 publication Critical patent/WO2020221197A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of wireless communication technology, and more specifically, the random access method and user equipment related to the present invention.
  • the signaling process is shown in Figure 1, which includes 4 steps (steps S101 to S104), so it is called a four-step random access process (ie 4-step RA).
  • a two-step random access process (ie 2-step RA) is currently being discussed.
  • the signaling process is shown in Figure 2 and includes two steps.
  • step 201 The UE sends a message A (Message A, MSG A) to the base station, and the MSG A includes a preamble sequence (preamble) and a payload of MSG A (MSG A payload).
  • the sending of message 4 includes the following steps.
  • the UE monitors the PDCCH channel, and when it detects a DCI format whose CRC is scrambled by TC-RNTI, it receives and decodes the DCI (Downlink Control Information) contained in it, and the DCI contains the base station transmission Message 4, or the PDSCH channel time domain and frequency domain resources for the UE to receive and transmit message 4 (may be called the scheduling information of message 4, or the scheduling information of PDSCH), and also contains the confirmation information used by the UE to feedback message 4 Information related to the time domain and frequency domain of the PUCCH channel (may be called PUCCH scheduling information).
  • DCI Downlink Control Information
  • the UE first receives message 4 according to the information in the DCI. If message 4 is correctly decoded and contains the contention resolution ID (CRID) of the UE, the UE considers that the contention conflict is successfully resolved, and the UE will instruct the physical layer to The transport block carrying the message 4 is confirmed. After receiving the indication, the physical layer will send the ACK information on the PUCCH channel described above.
  • CID contention resolution ID
  • Such confirmation information enables the base station to confirm that the UE has correctly received the message 4 carrying the CRID, so that the base station can continue to schedule the UE for data transmission; if the UE does not receive the confirmation information, there is a great possibility that the UE is not correct Message 4 is received, so the base station can retransmit message 4 until the confirmation message is received.
  • CRID is carried in message four.
  • the CRID of the UE is carried in MSG B. If there is no confirmation of MSG B, the base station will not know whether the UE has received MSG B correctly. So how to generate the confirmation message to MSG B and how to send the confirmation message are problems that need to be solved.
  • the present invention provides a random access method and user equipment.
  • a random access method which includes: a user equipment UE sends a message A to a base station, the message A includes a preamble sequence and the load of the message A; the user equipment UE receives a message sent by the base station Message B of the response message to the message A; determining whether the message B contains the contention conflict resolution ID of the UE; and in the case of determining that the message B contains the contention conflict resolution ID of the UE Generate media access control layer control information MAC CE, or media access control layer protocol data unit MAC PDU, or hybrid automatic repeat request confirmation information HARQ-ACK information to indicate the confirmation information for the message B.
  • MAC CE media access control layer control information
  • MAC PDU media access control layer protocol data unit
  • hybrid automatic repeat request confirmation information HARQ-ACK information hybrid automatic repeat request confirmation information
  • the UE may send the MAC CE carrying the confirmation information to the base station.
  • the MAC CE carrying the confirmation information may include a MAC subheader, and the MAC subheader includes a field for carrying a specific logical channel ID, and the specific logical channel ID Indicates that the MAC CE is used to confirm the message B.
  • the UE may send the MAC PDU carrying the stuffing bit information to the base station.
  • the UE may generate the HARQ-ACK information corresponding to the PDSCH carrying the message B, and send the HARQ-ACK information to all Mentioned base station.
  • the message B may also include an uplink grant UL grant, and the UL gran is used to transmit confirmation information for the message B.
  • the UL gran may be used to transmit the MAC CE or the MAC PDU indicating confirmation information for the message B.
  • the message B further includes PUCCH related information, and the PUCCH corresponding to the PUCCH related information is used to transmit the HARQ-ACK information indicating the confirmation information for the message B.
  • the UE may perform at least one of the following operations: the UE considers that this random access The entry process is not completed; the UE processes the UL grant received in the message B, and indicates the UL grant to the lower layer; the UE sends the UL grant received in the message B on the UL grant Send the payload of message A.
  • a user equipment including: a processor; and a memory storing instructions; wherein the instructions execute the random access method according to the context when run by the processor.
  • Fig. 1 is a schematic sequence diagram showing a four-step random access procedure as a kind of random access procedure.
  • Fig. 2 is a schematic sequence diagram showing a two-step random access procedure as a kind of random access procedure.
  • Fig. 3 is a block diagram showing a user equipment UE related to the present invention.
  • RA-RNTI Random Access RNTI random access wireless network temporary identification
  • MAC PDU media access control (layer) protocol data unit
  • RAPID Random Access Preamble Identifier random access preamble sequence identifier
  • the "2-step random access" (2-step RA) process currently under discussion generally includes the following steps when the UE performs the two-step random access.
  • Step 201 UE sends message A (message A, MSG A) to the base station
  • message A contains the preamble and the payload of message A (payload)
  • the preamble is sent on PRACH, and the payload of message A is sent on PUSCH.
  • the payload of message A is packaged into MAC PDU and transmitted on PUSCH.
  • the payload of message A carries information used for contention conflict resolution, such as contention resolution identity (CRID), or the C-RNTI of the UE.
  • CRID is used as an example of contention conflict resolution information.
  • the C-RNTI can also be used as contention conflict resolution information, and other relevant solutions in this article are adopted.
  • Step 202 UE receives message B (message B, MSG B) sent by the base station
  • the message B carries information used for contention conflict resolution, such as a contention conflict resolution ID.
  • a contention conflict resolution ID When the CRID detected by the UE in the received MSG B is the same as the CRID sent by the UE in the MSG A, the contention conflict can be considered to be resolved.
  • the UE may generate MAC CE, or MAC PDU, or HARQ-ACK information to indicate the confirmation information for message B.
  • the reception of MSG B may include the following steps.
  • the UE After the UE sends the MSG A, it monitors the PDCCH, and when it detects the DCI format, its CRC is scrambled by the RA-RNTI, receives and decodes the DCI format, and obtains the DCI information contained therein.
  • the DCI information (abbreviated as DCI) included in the DCI format carries time domain and frequency domain information for receiving the PDSCH carrying the MSGB.
  • This "time-domain and frequency-domain information for receiving PDSCH carrying MSGB" may be called MSG B scheduling information, or PDSCH scheduling information, and may also be called a Downlink Assignment.
  • the UE receives MSG B on the PDSCH based on this information.
  • MSG B is included in a transport block (Transport Block), and this transport block TB is transmitted on the PDSCH.
  • the UE receives the TB and decodes it. If the decoding is successful, it can extract MSG B from it, thereby obtaining the information carried by MSG B.
  • this TB contains one MAC PDU, and this MAC PDU can carry multiple MSG B as shown in the figure below.
  • Each MSGB can be considered as a MAC sub PDU (MAC sub PDU), and Multiple MAC sub-PDUs (for example, multiple MSG B) constitute one MAC PDU.
  • this step can be called the UE receiving MSG B, but in fact, the UE received the response message from the base station to MSG A. Since multiple UEs have sent MSG at the same time or on the same PRACH resource A, then what the UE receives is actually the response message of multiple MSG A sent by the base station to multiple UEs at this moment.
  • MSG B contains multiple response messages; it can also be understood that MSG B is only a message of one MSG A Response message, then what the UE receives in step 2 is a response message from the base station to multiple MSG A, and such a response message contains multiple MSG B.
  • the MSG B is merely used as a response message of MSG A to illustrate the solution.
  • One response message can contain multiple MSG B. But if it is considered that MSG B contains multiple response messages, then the concept of response messages and MSG B can be interchanged, which does not affect the implementation of the solution in this article.
  • the downlink control information (DCI) described below may include downlink assignment (Downlink assignment) and may also include uplink scheduling authorization.
  • the downlink assignment includes at least modulation and coding methods, resource allocation, and HARQ information related to the downlink shared channel.
  • the uplink scheduling authorization includes at least modulation and coding methods, resource allocation, and HARQ information related to the uplink shared channel.
  • Downlink Control Information refers to information used for downlink control. A lot of information belongs to downlink control information, such as downlink assignment (downlink assignment) and uplink scheduling grant (Uplink scheduling grant).
  • Different DCI formats can be defined according to the content/fields included in the downlink control information.
  • the CRC of the DCI foramt is scrambled by the RNTI, and the UE can distinguish different DCI formats according to the RNTI used to scramble the CRC.
  • the DCI described in this article corresponds to the downlink control information contained in a certain DCI format.
  • the CRC of this DCI format is scrambled by a certain RNTI.
  • the DCI scrambled by the RNTI described in this article actually refers to the DCI information included in the DCI format of the CRC scrambled by a specific RNTI.
  • DCI is transmitted on the PDCCH channel, and the CRC of the DCI format of this DCI is scrambled by a certain RNTI, it can be understood that when a PDCCH transmission is addressed by a certain RNTI, or The transmission of PDCCH to a certain RNTI (PDCCH transmission addressed to one RNTI) is actually equivalent to describing the DCI format in which a certain RNTI scrambles the CRC.
  • Embodiment 1 the two-step random access is described in detail, and the method of generating confirmation information in the random access process is mainly described.
  • Step 0 UE sends MSG A
  • Step 1 UE receives MSG B
  • the UE receives the RA-RNTI scrambled DCI in the PDDCH, and the carried DCI contains PDSCH scheduling information, and the UE receives the transmitted TB on the PDSCH and successfully decodes it, thereby obtaining the MSG B carried therein.
  • Step 2 Check whether the CRID of the UE is included in the MSG B.
  • This CRID refers to the CRID carried in the payload of the MSG A sent by the UE to the base station, so it is called the CRID of the UE. Since there may be multiple MSG Bs, the UE may need to detect them one by one.
  • Step 2.1 If the CRID of the UE is included in MSG B, the UE generates confirmation information for MSG B.
  • step 2 another possible implementation can be:
  • the UE If the detection result is that the CRID of the UE is included in the MSG B, the UE considers that the contention conflict is resolved, or the random access process is successfully completed.
  • the UE If the UE believes that the contention conflict is resolved, or the random access procedure is successfully completed, the UE generates confirmation information for MSG B.
  • confirmation information of MSG B can be in various forms, the method of generation can be different.
  • confirmation information can be generated as follows.
  • the confirmation information of MSG B can be a MAC CE.
  • This MAC CE carries confirmation information (confirmation/acknowledge) for MSG B, which can be called ACK MAC CE here.
  • the base station When the base station receives ACK MAC CE, or a MAC PDU containing ACK MAC CE, it can confirm that the UE successfully received MSGB.
  • ACK MAC CE can only include MAC subheader (MAC subheader), and the length can be one byte (8 bits). There is a field in the MAC subheader contained in it to carry a specific logical channel ID. This specific The logical channel ID indicates/indicates that this MAC CE is used for confirmation/acknowledge of MSG B.
  • the generation process can be: the UE instructs the multiplexing and assembly entity to generate an ACK MAC CE, and preferably, indicates the multiplexing and assembly entity that the MAC CE is included in the next or is about to happen In uplink transmission; and preferably, obtain the MAC PDU for transmission from the multiplexing and combining entity.
  • confirmation information may be generated as follows.
  • the confirmation information of MSG B can also be a MAC PDU.
  • This MAC PDU carries padding information (padding).
  • the base station receives such a MAC PDU, it can confirm that the UE has successfully received the MSGB.
  • the generation process can be: the UE instructs the multiplexing and assembly entity to generate the MAC PDU and preferably, obtain the MAC PDU for transmission from the multiplexing and assembly entity
  • confirmation information may be generated as follows.
  • the confirmation information of MSG B may also be a HARQ-ACK information (HARQ-ACK information).
  • HARQ-ACK information When the UE receives the PDSCH, a HARQ-ACK information corresponding to the PDSCH can be generated at the physical layer.
  • a HARQ-ACK information corresponding to the PDSCH can be generated in the physical layer. This HARQ-ACK information can be understood as the confirmation information for MSG B.
  • the generation process may also be: the UE instructs the physical layer to generate confirmation information for this TB.
  • This TB refers to the TB that carries the aforementioned MSG B. It can also be directly described as the UE instructing the physical layer to generate confirmation information for the MSGB.
  • the physical layer generates HARQ-ACK information corresponding to the TB (or MSG B) and sends it to the base station.
  • the value of HARQ-ACK information bit information is preferably ACK (positive acknowledgement).
  • Embodiment 4 an implementation manner in which the UE instructs the physical layer to generate confirmation information for the TB carrying MSGB can be seen in Embodiment 4.
  • step 2.1 The CRID of the UE is included in the MSG B, and the UE considers that the contention conflict is resolved.
  • Embodiment 2 of the present invention will be described in detail.
  • the difference between Embodiment 2 and Embodiment 1 is that Embodiment 2 further provides a method for transmitting the confirmation information generated in step 2.1 of Embodiment 1.
  • the confirmation information can be MAC CE or MAC PDU, or HARQ-ACK information. Then, there are, for example, the following methods for transmitting confirmation information.
  • Method 1 In addition to the CRID of the UE, the MSG B also carries the UL grant.
  • This UL grant is used to transmit the confirmation information in Embodiment 1.
  • it can be used to transmit the MAC CE or MAC PDU that represents the confirmation information described in Embodiment 1.
  • this UL grant is the UL grant received in the same MSG B when the UE detects the CRID sent by the UE in MSG A in MSGB; it can also be Indicate that this UL grant is the UL grant obtained from MSGB or PDCCH scrambled by RA-RNTI when the UE considers that the contention conflict is resolved.
  • This UL grant schedules a PUSCH transmission, and the aforementioned MAC CE or MAC PDU can be transmitted on the PUSCH. Therefore, this UL grant includes at least PUSCH scheduling information, that is, time domain information and frequency domain information used to transmit PUSCH, or can be used to obtain time domain information and frequency domain information related information used to transmit PUSCH.
  • the UE may use a special uplink HARQ process (HARQ processing process) to execute or process the uplink transmission on the UL grant received in the MSG B.
  • HARQ processing process HARQ processing process
  • the number of this HARQ process is different from the number of the HARQ process of uplink transmission on the UL grant received in the random access response (Random Access Response, RAR) executed in the 4-step.
  • RAR Random Access Response
  • the specific confirmation information transmission process may be at least one of the following operations:
  • the received UL grant is the UL grant used to transmit confirmation information, and the UE processes the value of the received UL grant and indicates it to the lower layer (lower layer). ), such as the physical layer;
  • the received UL grant is the UL grant used to transmit the confirmation information, indicating that the corresponding HARQ process layer triggers a new transmission (trigger a new transmission), or First transmission
  • the received UL grant is the UL grant used for transmitting confirmation information
  • the MAC PDU used for transmission is obtained.
  • the UE can obtain the MAC PDU for transmission from the buffer of the MSG B, and can also obtain the MAC PDU for transmission from the Multiplexing and Assembly entity.
  • the obtained MAC PDU may at least contain the MAC CE described in Embodiment 1 that can provide confirmation information, or it may be the generated instruction and can provide confirmation information described in Embodiment 1.
  • the UE When the UE obtains the MAC PDU for transmission, it sends the MAC PDU and the received UL grant to the corresponding HARQ process; the HARQ process saves the UL grant and instructs the physical layer to generate the TB based on the saved UL grant Transmission. This TB carries the acquired MAC PDU used for transmission.
  • Method 2 In addition to CRID, MSG B also carries PUCCH-related information, referred to as PUCCH allocation. This PUCCH is used to transmit HARQ-ACK information generated by the UE instructing the physical layer.
  • Specific carrying methods can include the following methods.
  • Method 1 PUCCH-related information is carried in DCI.
  • This DCI also carries time and frequency domain information for transmitting the PDSCH of MSG B, that is, carrying PDSCH scheduling information for transmitting MSG B, and preferably, this DCI is scrambled with RA-RNTI.
  • Method 2 PUCCH related information is carried in MSG B.
  • the content of MSG B in the form of a field.
  • the content of MSG B described in the following figure contains at least the following fields:
  • CRID indicates the ID of the contention conflict resolution
  • PUCCH allocation indicates PUCCH related information.
  • PUCCH-related information can also be carried in the MAC subheader as shown in the following figure, and concatenated with MSG B in the form of MAC subheader to form a MAC sub PDU.
  • PUCCH related information includes at least PUCCH time domain information, and/or frequency domain information, or information used to determine PUCCH time domain information, and/or frequency domain information, here collectively referred to as carrying PUCCH scheduling information Specifically, it may include PUCCH resource indicator, which indicates the distribution of frequency resources, and may also include PDSCH-to-HARQ_feedback timing indicator, which indicates the time of HARQ-ACK information feedback, that is, the interval between HARQ feedback after the UE completes PDSCH reception, thus indirectly The time distribution of PUCCH is indicated.
  • the "PDSCH reception” here refers to the reception of the PDSCH transmitting MSG B.
  • the considered PUCCH related information includes at least time domain and frequency domain information. Another possible implementation manner is as follows:
  • the PUCCH-related information is carried in the DCI.
  • This DCI also carries the time domain and frequency domain information used to transmit the PDSCH of MSG B, that is, it carries the PDSCH scheduling information used to transmit MSG B, and preferably, this DCI It is scrambled with RA-RNTI.
  • the PUCCH-related information here may refer to time-domain information, such as PDSCH-to-HARQ_feedback timing indicator, indicating the time of HARQ-ACK information feedback, that is, the PUCCH transmission time; the remaining part of the PUCCH-related information is carried in MSG B.
  • the part of PUCCH-related information herein may refer to frequency domain information, such as PUCCH resource indicator, which indicates the distribution of frequency resources.
  • the specific carrying method can use the multiple methods described in the second method, which will not be repeated here.
  • the specific confirmation information transmission process may be that at the physical layer, the UE determines the time domain and frequency domain resources of the PUCCH according to the relevant information of the PUCCH, and reports/sends the corresponding HARQ-ACK information on the determined PUCCH.
  • MSG B and PUCCH are in a one-to-one correspondence, that is, the CRID in the MSG B is the same as the CRID sent by which UE, then the UE can use the one corresponding to the MSG B PUCCH is sent.
  • embodiments 1 and 2 can be combined, so that the problems of generation and transmission of confirmation information can be solved at the same time.
  • Embodiment 3 of the present invention will be described in detail.
  • the difference between Embodiment 3 and Embodiment 1 and Embodiment 2 is that Embodiment 3 provides a solution when the MSG B does not include CRID.
  • MSG B does not include the UE's CRID, preferably, MSG B includes the RAPID corresponding to the preamble sent by the UE in MSG A, then the UE can perform at least one of the following operations:
  • the UE considers that the 2-step RA needs to perform a fallback operation, that is, the UE will then send the load of MSG A on the UL grant indicated in MSG B (if the load of MSG A is stored in MSG 3 buffer It can be considered that the UE will next send MSG 3) on the UL grant indicated in MSG B, and perform corresponding operations, for example, after the load of MSG A (or MSG 3) is sent, the contention conflict resolution timer is started, And monitor the downlink PDCCH channel to detect whether there is DCI scrambled by the RNTI carried in MSG B;
  • the UE When the UE receives the UL grant in MSG B, it instructs its corresponding HARQ process layer to trigger a new transmission (trigger a new transmission), or the first transmission.
  • MSG A buffer MSG A buffer
  • the UE can receive the MSG 3 Obtaining the MAC PDU to be sent in the buffer can be understood as in this case, the UE sends MSG 3, and this MSG 3 is sent on the UL grant indicated in MSG B.
  • the UE When the UE obtains the MAC PDU for transmission, it sends the MAC PDU and the received UL grant to the corresponding HARQ process; the HARQ process saves the UL grant and instructs the physical layer to generate the UL grant according to the saved UL grant TB transmission.
  • This TB carries the acquired MAC PDU used for transmission.
  • the confirmation information of MSG B can also be a HARQ-ACK information, which needs to be generated at the physical layer. Therefore, the generation process can also be that the UE instructs the physical layer to generate confirmation information for the TB carrying MSGB.
  • An implementation of this generation process can include:
  • the UE receives MSG B, or TB carrying MSG B;
  • the UE uses a dedicated downlink HARQ process to process MSG B reception, or associates a dedicated HARQ process for the transmission indicated by the RA-RNTI.
  • RA-RNTI-indicated transmission refers to the transmission indicated by the RA-RNTI scrambled DCI, that is, the RA-RNTI scrambled DCI carries the time domain and frequency domain information of the transmission (or called Scheduling information, scheduling information), so it can be called the transmission indicated by the RA-RNTI during the transmission, or the transmission related to the RA-RNTI.
  • MSG B HARQ process can indicate which HARQ process is MSG B HARQ process by carrying HARQ process number/inex field in DCI.
  • this DCI also carries the information used by the UE to receive MSG B at the same time, for example, the time domain and frequency domain information used to receive MSGB, that is, the scheduling information of MSG B, and preferably, this DCI is generated by RA-RNTI. Scrambled.
  • the proprietary HARQ process can also be implemented in a predefined manner, for example, the designated downlink HARQ process X is used to process the downlink transmission indicated by the MSG B.
  • X can be any integer from 0 to 16.
  • the UE processing the MSGB may specifically include at least one of the following steps:
  • the UE allocates the TB received on the PDSCH corresponding to this DL assignment (allocate) to MSG B HARQ process.
  • HARQ process processes the received TB, which can specifically include the following parts.
  • the MAC entity of the UE decodes the received TB, which may specifically include:
  • the decoded MAC PDU is sent to the disassembly and demultiplexing entity.
  • the TB can be discarded.
  • this HARQ process is an MSG B HARQ process, but the contention conflict is not successfully resolved (or the contention conflict is not resolved), then the UE does not instruct the physical layer to generate confirmation information corresponding to the data of the TB.
  • Another implementation of this generation process may include: the UE receives MSG B. If the CRID of the UE is included in MSG B, or the UE considers that the contention conflict resolution is successful, then the UE indicates (instruct) that the physical layer generates the corresponding TB The confirmation information (confirmation/acknowledge inforamtion) of the data, or the UE instructs (instruct) the physical layer to generate confirmation information (confirmation/acknowledge inforamtion) corresponding to MSG B.
  • Embodiment 4 can be combined with Embodiment 1 to solve the problem of generating confirmation information.
  • Embodiment 4 can also be combined with Embodiment 2 to solve the problem of generating and sending confirmation information.
  • Example 5 of the present invention will be described in detail.
  • the base station can directly learn whether the UE has correctly received MSG B.
  • a method is provided so that the base station can indirectly learn whether the UE has correctly received MSG B.
  • MSG B carries a downlink assignment (DL assignment), which indicates the scheduling information of the PDSCH that needs to be received by the UE, that is, the time domain and frequency domain related information required by the UE to receive the PDSCH, or it is the UE It can be used to determine information related to the time domain and frequency domain of the received PDSCH.
  • This PDSCH may be referred to as the PDSCH scheduled by DL assignment, and the transmission on the PDSCH may be referred to as the downlink transmission indicated by MSG B.
  • the UE After the UE receives the MSGB, the UE can receive its scheduled PDSCH according to the DL assignment, and feed back the HARQ-ACK information corresponding to the PDSCH transmission, so that the base station can learn whether the UE correctly receives the scheduled PDSCH in the DL assignment PDSCH can then determine whether the UE has received MSG B correctly. This is because only when the UE receives the MSG B correctly, it can then receive the PDSCH scheduled by the DL assignment and perform HARQ-ACK information feedback on the PDSCH.
  • the specific process of "receiving the PDSCH and feeding back the HARQ-ACK information corresponding to the PDSCH" may include:
  • the UE receives the TB transmitted on the PDSCH indicated by the DL assignment. This DL assignment is included in MSG B.
  • the UE processes the TB, specifically: the UE uses a dedicated downlink HARQ process to process the downlink transmission indicated by the MSG B, or it is used to process the PDSCH transmission scheduled by the DL assignment carried in the MSG B, or It is used to process the TB transmitted on the PDSCH scheduled by the DL assignment carried in the MSG B.
  • MSG B DL HARQ process can indicate which HARQ process is MSG B HARQ process by carrying HARQ process number/inex field in DCI.
  • this DCI also carries the information used by the UE to receive MSG B at the same time, for example, the time domain and frequency domain information used to receive MSGB, that is, the scheduling information of MSG B, and preferably, this DCI is generated by RA-RNTI. Scrambled.
  • the proprietary HARQ process can also be implemented in a predefined manner, for example, the designated downlink HARQ process X is used to process the downlink transmission indicated by the MSG B.
  • X can be any integer from 0 to 16.
  • the UE processing the TB may specifically include at least one of the following operations:
  • the received TB is allocated to the MSG B DL HARQ process.
  • the MAC entity of the UE decodes the received TB, which specifically includes:
  • the MAC PDU is sent to the upper layer (for example, the RRC layer above the MAC layer), or sent to the disassembly and demultiplexing entity.
  • the upper layer for example, the RRC layer above the MAC layer
  • the UE instructs the physical layer to generate confirmation information corresponding to the data of the TB.
  • the generated confirmation information can be ACK
  • the generated confirmation information can be NACK. No matter ACK or NACK, it is usually called HARQ-ACK information at the physical layer.
  • the UE sends the HARQ-ACK information generated in (2).
  • HARQ-ACK information can be transmitted on the PUCCH channel.
  • the UE In order to send HARQ-ACK information, the UE needs to determine PUCCH resources. Therefore, preferably, the PUCCH related information used to determine the PUCCH resource may be carried in the MSG B.
  • the specific carrying method can be:
  • Method 1 PUCCH-related information is carried in DCI.
  • This DCI also carries time domain and frequency domain information for transmitting MSG B, that is, it carries MSG B scheduling information, and preferably, this DCI uses RA-RNTI Scrambled.
  • Method 2 PUCCH related information is carried in MSG B.
  • the content of MSG B in the form of a field.
  • the content of MSG B described in the following figure contains at least the following fields:
  • the scheduling information of the PDSCH that the UE needs to receive that is, the time domain and frequency domain related information that the UE needs to receive the PDSCH, or the information that the UE can use to determine the time domain and frequency domain related information of the PDSCH;
  • PUCCH allocation indicates PUCCH related information.
  • MSG B in the form of a MAC sub-header as shown in the following figure to form a MAC SUB PDU, in which MSG B contains at least the DL assignment field.
  • PUCCH related information includes at least PUCCH time domain information, and/or frequency domain information, or information used to determine PUCCH time domain information, and/or frequency domain information, here collectively referred to as carrying PUCCH scheduling information Specifically, it can include PUCCH resource indicator, indicating the distribution of frequency resources, and PDSCH-to-HARQ_feedback timing indicator, indicating the time of HARQ-ACK information feedback, that is, the interval between the UE's HARQ feedback after completing PDSCH reception, thereby indirectly indicating The time distribution of PUCCH.
  • the "PDSCH reception” here refers to the reception corresponding to the PDSCH indicated by the DL assignment carried in MSG B.
  • Manner 3 The considered PUCCH related information includes at least time domain and frequency domain information. Another possible implementation manner is:
  • the PUCCH-related information is carried in the DCI.
  • This DCI also carries the time domain and frequency domain information used to transmit the PDSCH of MSG B, that is, it carries the PDSCH scheduling information used to transmit MSG B, and preferably, this DCI It is scrambled with RA-RNTI.
  • the PUCCH-related information here may refer to time-domain information, such as PDSCH-to-HARQ_feedback timing indicator, indicating the time of HARQ-ACK information feedback, that is, the PUCCH transmission time; the remaining part of the PUCCH-related information is carried in MSG B.
  • the remaining part of the PUCCH-related information here may refer to frequency domain information, such as PUCCH resource indicator, which indicates the distribution of frequency resources.
  • the specific carrying method can adopt the various methods described in the second embodiment, and the description will not be repeated here.
  • the specific HARQ-ACK information sending process can be:
  • the UE determines the time domain and frequency domain resources of the PUCCH according to the relevant information of the PUCCH, and provides corresponding HARQ-ACK information on the determined PUCCH.
  • MSG B and PUCCH are in a one-to-one correspondence, that is, the CRID in the MSG B is the same as the CRID sent by which UE, then the UE can use the same as the MSG B The corresponding PUCCH is sent.
  • Embodiment 7 when the above method is adopted, there is a problem: there can be multiple MSGBs transmitted on the same PDSCH. If only one PUCCH resource is carried in the DCI, it will cause multiple UEs to send information on the same PUCCH resource. The confirmation information sent by the UE on the same PUCCH resource will cause mutual interference, making the base station unable to decode correctly. To avoid this situation, a solution is provided in Embodiment 7.
  • Example 6 of the present invention will be described in detail.
  • a feasible solution is to carry multiple PUCCH resources in the DCI.
  • Each PUCCH resource corresponds to an MSG B that carries CRID. For example, if the UE detects a total of 6 MSGs carrying CRIDs in the response message, and the second MSG B contains the CRID sent by the UE in MSGA, the UE will rank the second PUCCH resource in the DCI Feedback/send the confirmation information generated in Example 1.
  • Another feasible solution is to design a DCI format, which carries PUCCH scheduling information.
  • the CRC of the DCI format is scrambled by RNTI, which is called X-RNTI here.
  • this MSG B carries the CRID of the UE and also carries the X-RNTI.
  • the UE When the UE completes the reception of MSG B, or when the UE completes the reception of PDSCH transmission carrying MSG B, it starts to monitor the PDCCH.
  • a DCI format When a DCI format is detected, and the CRC of this DCI format is scrambled by X-RNTI, the DCI information carried in the DCI format is received, and the DCI carries PUCCH scheduling information, and the UE will use this PUCCH to feed back / Send the confirmation message generated in Example 1.
  • the UE can obtain the PUCCH resource for feedback confirmation information according to its own X-RNTI without causing conflicts.
  • PUCCH resource information may include at least PUCCH resource indicator, indicating the distribution of frequency resources, and may also include PDSCH-to-HARQ_feedback timing indicator, indicating the time of HARQ-ACK information feedback, that is, the time domain corresponding to the PUCCH resource distributed. This information can indicate the time interval from the UE to the HARQ feedback after completing the PDSCH reception.
  • the "PDSCH reception" here refers to the reception of the PDSCH transmitting MSG B. Considering that multiple UEs receiving the same response message (including multiple MSG B) can feed back confirmation information through PUCCH at the same time and on different frequency domain resources, another feasible solution is as follows:
  • the aforementioned DCI that includes PDSCH scheduling information for transmitting MSG B also includes a part of PUCCH related information, such as PUCCH time domain information.
  • the DCI includes the domain PDSCH-to-HARQ_feedback timing indicator, which indicates the time of HARQ-ACK information feedback, that is, the transmission time of PUCCH.
  • the CRC of this DCI is scrambled by RA-RNTI. If all UEs receiving the DCI need to send confirmation information through the PUCCH, they can determine the PUCCH transmission time according to the field-PDSCH-to-HARQ_feedback timing indicator included in the DCI.
  • the remaining part of the PUCCH related information for example, the frequency domain information of the PUCCH, it can be carried in the MSG B in the method shown in the second method in Embodiment 2. Therefore, if a UE needs to send MSG B confirmation information through PUCCH, it can obtain PUCCH resource time-domain information from the DCI carrying PDSCH scheduling information used to transmit MSG B, and it can also obtain PUCCH frequency from MSG B. Domain information.
  • the above method can be further optimized that the network pre-configures the part of PUCCH related information, such as PUCCH time domain information, then the UE combines the remaining part of the PUCCH related information received in MSG B, such as the frequency domain of PUCCH Information, the PUCCH resource can be determined, and the confirmation information can be sent.
  • the network pre-configures the part of PUCCH related information, such as PUCCH time domain information
  • the UE combines the remaining part of the PUCCH related information received in MSG B, such as the frequency domain of PUCCH Information
  • the PUCCH resource can be determined, and the confirmation information can be sent.
  • Embodiment 6 can be used in combination with Embodiments 1 and 2.
  • Example 7 of the present invention will be described in detail.
  • a feasible solution is to carry multiple PUCCH resources in the DCI.
  • Each PUCCH resource corresponds to an MSG B that carries CRID and DL assignment. For example, if the UE detects a total of 6 MSGs carrying CRIDs in the response message, and the second MSG B contains the CRID sent by the UE in MSGA, the UE will rank the second PUCCH resource in the DCI The above feedback/sends the confirmation message generated in Example 5.
  • Another feasible solution is to design a DCI format, which carries PUCCH scheduling information.
  • the CRC of the DCI format is scrambled by RNTI, which is called Y-RNTI here.
  • this MSG B When the UE receives MSG B, this MSG B carries the UE's CRID and DL assignment, and also carries the Y-RNTI.
  • the UE When the UE completes the reception of MSG B, or when the UE completes the reception of PDSCH transmission carrying MSG B, it starts to monitor the PDCCH.
  • a DCI format When a DCI format is detected, and the CRC of this DCI format is scrambled by Y-RNTI, then the UE receives the DCI information carried in the DCI format.
  • the DCI carries the scheduling information of the PUCCH, and the UE will use this PUCCH to feed back/send the confirmation information generated in Embodiment 5.
  • the UE can obtain the PUCCH resource for feedback confirmation information according to its own Y-RNTI without causing conflicts.
  • PUCCH resource information may include at least PUCCH resource indicator, indicating the distribution of frequency resources, and may also include PDSCH-to-HARQ_feedback timing indicator, indicating the time of HARQ-ACK information feedback, that is, the time domain corresponding to the PUCCH resource distributed. This information can indicate the time interval from the UE to the HARQ feedback after completing the PDSCH reception.
  • the "PDSCH reception” here refers to the reception of the PDSCH scheduled by the DL assignment. Considering that multiple UEs receiving the same response message (including multiple MSG B) can feed back confirmation information through PUCCH at the same time and on different frequency domain resources, another feasible solution is as follows:
  • the aforementioned DCI that includes PDSCH scheduling information for transmitting MSG B also includes a part of PUCCH related information, such as PUCCH time domain information.
  • the DCI includes the domain PDSCH-to-HARQ_feedback timing indicator, which indicates the time of HARQ-ACK information feedback, that is, the transmission time of PUCCH.
  • the CRC of this DCI is scrambled by RA-RNTI. If all UEs receiving the DCI need to send confirmation information through the PUCCH, they can determine the PUCCH transmission time according to the field-PDSCH-to-HARQ_feedback timing indicator included in the DCI.
  • the remaining part of the PUCCH related information for example, the frequency domain information of the PUCCH, it may be carried in the MSG B in the method shown in Mode 2 in Embodiment 5.
  • the time domain information of the PUCCH resource can be obtained from the DCI carrying the scheduling information of the PDSCH for transmitting MSG B, or from The frequency domain information of PUCCH is obtained from MSG B.
  • the above method can be further optimized that the network pre-configures the part of PUCCH related information, such as PUCCH time domain information, then the UE combines the remaining part of the PUCCH related information received in MSG B, such as the frequency domain of PUCCH Information, the PUCCH resource can be determined, and the confirmation information described in Embodiment 5 can be sent.
  • the network pre-configures the part of PUCCH related information, such as PUCCH time domain information
  • the UE combines the remaining part of the PUCCH related information received in MSG B, such as the frequency domain of PUCCH Information
  • the PUCCH resource can be determined, and the confirmation information described in Embodiment 5 can be sent.
  • Embodiment 7 can be used in combination with Embodiment 5.
  • FIG. 3 is a block diagram showing a user equipment UE related to the present invention.
  • the user equipment UE50 includes a processor 301 and a memory 302.
  • the processor 301 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 302 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memories.
  • the memory 302 stores program instructions. When the instruction is executed by the processor 301, it can execute the random access method described in detail in the present invention.
  • the program running on the device according to the present invention may be a program that enables the computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • a program for realizing the functions of each embodiment of the present invention can be recorded on a computer-readable recording medium.
  • Corresponding functions can be realized by causing the computer system to read the programs recorded on the recording medium and execute these programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium storing a program dynamically for a short time, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuit can be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present invention can also be implemented using these new integrated circuit technologies.
  • the present invention is not limited to the above-mentioned embodiment. Although various examples of the embodiment have been described, the present invention is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioning, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种随机接入方法以及用户设备,所述随机接入方法包括:用户设备UE向基站发送消息A,所述消息A包含前导序列和该消息A的负载;用户设备UE接收所述基站发送的对所述消息A的响应消息的消息B;判断所述消息B中是否包含所述UE的竞争冲突解决ID;和在判断为所述消息B中包含所述UE的竞争冲突解决ID的情况下,生成媒体接入控制层控制信息MAC CE、或者媒体接入控制层协议数据单元MAC PDU、或者混合自动重传请求确认信息HARQ-ACK信息,来表示对所述消息B的确认信息。

Description

随机接入方法以及用户设备 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及的随机接入方法以及用户设备。
背景技术
当UE在执行随机接入过程时,信令流程如图1所示,包含4个步骤(步骤S101~S104),所以被称为四步随机接入过程(即4-step RA)。
为了缩短完成随机接入过程的时间,目前在讨论一种基于两步的随机接入过程(即2-step RA),信令流程如图2所示,包含两个步骤,其中步骤201中,UE向基站发送消息A(Message A,MSG A),MSG A包括前导序列(preamble)以及MSG A的有效负载(MSG A payload)。
在4-step RA过程中,消息4的发送包含如下步骤。
首先UE监听PDCCH信道,当监听到一个DCI format,其CRC是由TC-RNTI加扰时,接收并解码包含在其中的DCI(Downlink Control Information,下行控制信息),在该DCI中包含了基站发送消息4或者说是UE接收传输消息4的PDSCH信道时域频域资源(可以称为消息4的调度信息,或者是PDSCH的调度信息),以及还包含了UE用于反馈对于消息4的确认信息的PUCCH信道的时域和频域相关的信息(可以称为PUCCH的调度信息)。
UE根据DCI中的信息首先接收消息4,如果消息4正确解码,并且在消息4中包含UE的竞争冲突解决ID(Contention Resolution ID,CRID),UE认为竞争冲突成功解决,UE会指示物理层针对携带消息4的传输块进行确认,物理层收到该指示后,就会在前面所述的PUCCH信道上发送ACK信息。
这样的确认信息使得基站能够确认UE正确接收了携带CRID的消息4,从而使得基站能够继续调度UE进行数据传输;如果UE没有接收到该确认 信息,那么存在一种极大的可能,UE没有正确接收到消息4,因此基站可以重传消息4,直到收到确认信息。
4-step RA过程中,CRID被携带在消息四中。在2-step RA过程中,UE的CRID被携带在MSG B中。如果没有对MSG B的确认,那么基站将无法知晓UE是否正确接收了MSG B。那么如何生成对MSG B的确认信息,以及如何发送该确认信息,是需要解决的问题。
发明内容
为了解决上述问题中的至少一部分,本发明提供一种随机接入方法以及用户设备。
根据本发明的第一方面,提供一种随机接入方法,包括:用户设备UE向基站发送消息A,所述消息A包含前导序列和该消息A的负载;用户设备UE接收所述基站发送的对所述消息A的响应消息的消息B;判断所述消息B中是否包含所述UE的竞争冲突解决ID;和在判断为所述消息B中包含所述UE的竞争冲突解决ID的情况下,生成媒体接入控制层控制信息MAC CE、或者媒体接入控制层协议数据单元MAC PDU、或者混合自动重传请求确认信息HARQ-ACK信息,来表示对所述消息B的确认信息。
在上述随机接入方法中,作为对所述消息B的确认信息,所述UE可以将携带有所述确认信息的所述MAC CE发送至所述基站。
在上述随机接入方法中,携带有所述确认信息的所述MAC CE可以包含MAC子头,所述MAC子头中包含用于携带特定的逻辑信道ID的域,所述特定的逻辑信道ID指示该MAC CE是用于对所述消息B的确认。
在上述随机接入方法中,作为对所述消息B的确认信息,所述UE可以将携带有填充比特信息的所述MAC PDU发送至所述基站。
在上述随机接入方法中,作为对所述消息B的确认信息,所述UE可以生成与携带所述消息B的PDSCH对应的所述HARQ-ACK信息,将所述HARQ-ACK信息发送至所述基站。
在上述随机接入方法中,所述消息B中还可以包含上行许可UL grant,所述UL gran用于传输对对所述消息B的确认信息。
在上述随机接入方法中,所述UL gran可以用于传输表示对所述消息B 的确认信息的所述MAC CE或者所述MAC PDU。
在上述随机接入方法中,所述消息B中还包含PUCCH相关信息,对应于所述PUCCH相关信息的PUCCH用于传输表示对所述消息B的确认信息的所述HARQ-ACK信息。
在上述随机接入方法中,在判断为所述消息B中不包含所述UE的竞争冲突解决ID的情况下,所述UE可以进行如下操作的至少一个操作:所述UE认为本次随机接入过程没有完成;所述UE处理在所述消息B中接收到的上行许可UL grant,并将所述UL grant指示给下层;所述UE在所述消息B中接收到的上行许可UL grant上发送消息A的负载。
根据本发明的第二方面,提供一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据上下文所述的随机接入方法。
附图说明
图1是表示作为随机接入过程的一种的四步随机接入过程的概略顺序图。
图2是表示作为随机接入过程的一种的两步随机接入过程的概略顺序图。
图3是表示本发明所涉及的用户设备UE的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
在具体描述之前,先对本发明中提到的若干术语做如下说明。除非另有指出,本发明中涉及的术语都具有下文的含义
UE        User Equipment用户设备
NR        New Radio新一代无线技术
LTE       Long Term Evolution长期演进技术
eLTE    Enhaced Long Term Evolution增强的长期演进技术
RRC    Radio Resource Control无线资源控制(层)
MAC    Medium Access Control媒体接入控制(层)
MAC CE  MAC Control Element MAC层控制信息
MSG 3  Message 3消息3
PRACH  Physical Random Access Channel物理随机接入信道
PUSCH  Physical Uplink Shared Channel物理上行共享信道
PDSCH  Physical Dplink Shared Channel物理下行共享信道
CCCH  Common Control Channel公共控制信道
UL grant  Uplink grant上行授权
DL assignment  Downlink assignment下行指派
HARQ  Hybrid Automatic Repeat reQuest,混合自动重传请求
ACK  Acknowledgement确认
NACK Negative ACK否定确认
RRC  Radio Resource Control无线资源控制
RNTI  Radio Network Temporary Identity无线网络临时标识
RA-RNTI:Random Access RNTI随机接入无线网络临时标识
MAC PDU:媒体接入控制(层)协议数据单元
RAPID:Random Access Preamble Identifier随机接入前导序列标识
下文以NR移动通信系统及其后续的演进版本作为示例应用环境,以支持NR的基站和UE设备为例,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如eLTE通信系统,而且可以适用于其他基站和UE设备,例如支持eLTE的基站和UE设备。
为了缩短随机接入的时间,目前在讨论的“两步随机接入”(2-step RA)过程,如图2所示,UE在执行两步随机接入时,一般包含下述步骤。
步骤201:UE向基站发送消息A(message A,MSG A)
其中,消息A包含preamble和消息A的负载(payload)
其中,preamble在PRACH上发送,消息A的payload在PUSCH上发 送。消息A的payload是被包装成MAC PDU在PUSCH上传输。消息A的payload中携带了用于竞争冲突解决的信息,例如竞争冲突解决ID(Contention Resolution Identity,CRID),还可以是UE的C-RNTI。下文中,以CRID作为竞争冲突解决信息为例。在UE获得有效C-RNTI的情况下,也可以将C-RNTI作为竞争冲突解决的信息,采用本文中的其他有关方案。
步骤202:UE接收基站发送的消息B(message B,MSG B)
其中消息B携带了用于竞争冲突解决的信息,例如竞争冲突解决ID。当UE在接收到的MSG B中检测到的CRID与UE在MSG A中发送CRID相同时,可以认为竞争冲突解决。
例如,在判断为消息B中包含UE的竞争冲突解决ID的情况下,UE可以生成MAC CE、或者MAC PDU、或者HARQ-ACK信息,来表示对消息B的确认信息。
关于MSG B的接收可以包括以下步骤。
UE发送MSG A之后,监听PDCCH,当检测到DCI format,其CRC是由RA-RNTI加扰的,接收并解码该DCI format,获取其中包含的DCI信息。在该DCI format包含的DCI信息(简称DCI)中携带了用于接收携带MSGB的PDSCH的时域和频域信息。
这个“用于接收携带MSGB的PDSCH的时域和频域信息”可以称为MSG B的调度信息,或者是PDSCH的调度信息,还可以称为一个下行指派(Downlink Assignment)。
UE基于该信息在PDSCH上接收MSG B。此时MSG B是包含在一个传输块(Transport Block)中,这个传输块TB在PDSCH上传输。UE接收到该TB并解码,如果解码成功,就可以提取其中的MSG B,从而获取MSG B携带的信息。
需要说明的是,在这个TB包含(contain)一个MAC PDU,在这个MAC PDU中可以如下图所示那样携带多个MSG B,可以认为每个MSGB是一个MAC子PDU(MAC sub PDU),而多个MAC子PDU(例如多个MSG B)构成一个MAC PDU。
Figure PCTCN2020087202-appb-000001
从UE角度来看,可以认为只有其中的一个MSG B是发送给自己的。所以这一步骤可以称为UE接收MSG B,但是实际上UE是接收了基站对MSG A的响应消息(response message),由于在相同的时刻或者相同的PRACH资源上有多个UE都发送了MSG A,那么UE接收的实际上是基站对这个时刻多个UE发送的多个MSG A的响应消息。
从名称上来看,我们可以称这样一个包含了对多个MSG A的响应消息统称为MSG B,在这样的MSG B中包含了多个响应消息;还可以理解为MSG B仅仅作为一个MSG A的响应消息,那么UE在步骤2中接收的是基站对多个MSG A的响应消息,在这样一个响应消息中,包含了多个MSG B。
在下述实施例中,从MSG B仅仅作为一个MSG A的响应消息来阐述方案。一个响应消息中可以包含多个MSG B。但是如果认为MSG B中包含了多个响应消息,那么可以将响应消息与MSG B的概念进行互换,这不影响本文中方案的实施。
另外,对于下文所述的下行控制信息Downlink Control Information(DCI),可以包括下行指派(Downlink assignment),还可以包括上行调度授权。其中下行指派至少包含了调制和编码方式,资源分配,以及和下行共享信道相关的HARQ信息。而上行调度授权包含了至少包含了调制和编码方式,资源分配,以及和上行共享信道相关的HARQ信息。
下行控制信息(Down link Control Inforamtion)是指用于下行控制的信息,很多信息都属于下行控制信息,例如下行指派(downlink assignment),又例如上行调度授权(Uplink scheduling grant)等等。
根据其包含的、属于下行控制信息的内容/域(field)的不同可以定义不同的DCI格式(DCI format)。DCI foramt的CRC是由RNTI加扰,UE能根据用于加扰CRC的RNTI来区分不同的DCI format。
在本文中描述的DCI是相应于某种DCI format所包含的下行控制信息,这种DCI format的CRC被由某种RNTI加扰。为了简化说明,在本文中所述的由RNTI加扰的DCI实际上指的是由特定RNTI加扰CRC的DCI format所包含的DCI信息。
此外,由于DCI是在PDCCH信道上传输的,而这个DCI的DCI format的CRC又是由某个RNTI加扰的,因此可以理解为当一个PDCCH的传输是以某个RNTI为地址的,或者址在向某个RNTI进行的PDCCH的传输(PDCCH transmission addressed to one RNTI),实际上等价于在描述由某个RNTI加扰CRC的DCI format。
以下,对本发明所涉及的具体的示例以及实施例等进行详细说明。另外,如上所述,本公开中记载的示例以及实施例等是为了容易理解本发明而进行的示例性说明,并不是对本发明的限定。
实施例1
在实施例1中,对两步随机接入进行详细说明,主要对随机接入过程中确认信息的生成方式进行说明。
步骤0:UE发送MSG A
步骤1:UE接收MSG B,
具体可以是UE在PDDCH中接收到由RA-RNTI加扰DCI,其中携带的DCI包含了PDSCH的调度信息,UE在该PDSCH上接收传输的TB并且成功解码,从而获取其中携带的MSG B。
步骤2:在MSG B中检测是否包含UE的CRID,这个CRID是指携带在UE发送给基站的MSG A的payload中的CRID,所以称为UE的CRID。由于MSG B可能有多个,UE可能需要逐一检测。
步骤2.1如果在MSG B中包含了UE的CRID,UE生成对MSG B的确认信息。
对于步骤2,又一种可能的实现方式可以是:
如果检测结果是在MSG B种包含了UE的CRID,那么UE认为竞争冲突解决,或者是随机接入过程成功完成。
如果UE认为竞争冲突解决,或者是随机接入过程成功完成,那么UE 生成对于MSG B的确认信息。
由于MSG B的确认信息的形式可以多种多样,因此生成的方法可以不同,例如作为一种方式,可以如下那样生成确认信息。
MSG B的确认信息可以是一个MAC CE,这个MAC CE携带了对MSG B的确认信息(confirmation/acknowledge),这里可以称之为ACK MAC CE。
当基站收到ACK MAC CE,或者是包含ACK MAC CE的MAC PDU,可以确认UE成功接收了MSGB。
ACK MAC CE可以仅仅包含MAC子头(MAC subheader),长度可以为一个字节(8比特),在其包含的MAC subheader中存在一个域(field),用来携带特定的逻辑信道ID,这个特定的逻辑信道ID表明/指示这个MAC CE是用于对MSG B的确认(confirmation/acknowledge)。
此时,其生成过程可以是:UE指示复用和组合实体(Multiplexing and assembly entity)生成ACK MAC CE,以及优选的,指示复用和组合实体该MAC CE包含在接下来的或者是即将发生的上行传输中;以及优选的,从复用和组合实体中取得(obtain)用于发送的MAC PDU。
此外,作为另一种确认信息的生成方式,例如还可以如下那样生成确认信息。
MSG B的确认信息还可以是一个MAC PDU,这个MAC PDU中携带了填充比特信息(padding),当基站收到这样一个MAC PDU,可以确认UE成功接收了MSGB。
此时,其生成过程可以是:UE指示复用和组合实体(Multiplexing and assembly entity)生成MAC PDU以及优选的,从复用和组合实体中取得(obtain)用于发送的MAC PDU
再有,作为又一种确认信息的生成方式,例如还可以如下那样生成确认信息。
MSG B的确认信息还可以是一个HARQ-ACK信息(HARQ-ACK information)。当UE接收到PDSCH时,在物理层可以生成一个对应于该PDSCH的HARQ-ACK information。当UE接收到携带MSG B的PDSCH时,相应地,可以在在物理层可以生成一个对应于该PDSCH的HARQ-ACK information。这个HARQ-ACK information可以理解为是对MSG B的确认 信息。
此时,其生成过程还可以是:UE指示物理层生成对于这个TB的确认信息。这个TB是指携带了前面所述的MSG B的TB。也可以直接描述成UE指示物理层生成对于MSGB的确认信息。
相应地,物理层生成对应于该TB(或者MSG B)的HARQ-ACK information比特信息,并发送给基站。其中HARQ-ACK information比特信息取值优选为ACK,(positive acknowledge)。
特别地,UE指示物理层生成对于携带MSGB的TB的确认信息的一种实现方式可以见实施例4。
此外,优选的,在步骤2.1中还可以包含如下过程,在MSG B中包含了UE的CRID,UE认为竞争冲突解决。
实施例2
下面,对本发明的实施例2进行详细说明。实施例2和实施例1的区别在于,实施例2进一步提供了传输实施例1中步骤2.1所生成的确认信息的方法。
根据实施例1中的描述,确认信息可以是MAC CE或者是MAC PDU,还可以是HARQ-ACK information,那么传输确认信息的方法例如可以有以下几种。
方法一:MSG B中除了包含UE的CRID,还携带了UL grant。
这个UL grant用于传输实施例1中的确认信息,优选的,可以用来传输实施例1中所述的、表示确认信息的MAC CE或者是MAC PDU。为了强调这个UL grant与其他UL grant的不同,可以指明这个UL grant是当UE在MSGB中检测到UE在MSG A中发送的CRID时,在同一个MSG B中接收到的UL grant;还可以是指明这个UL grant是当UE认为竞争冲突解决时,从MSGB或者是由RA-RNTI加扰的PDCCH中获得的UL grant。
这个UL grant调度了一个PUSCH传输,前面所述的MAC CE,或者MAC PDU都可以在PUSCH上进行传输。因此这个UL grant至少包含了PUSCH的调度信息,即用于传输PUSCH的时域信息以及频域信息,或者是可以用来获得用于传输PUSCH的时域信息以及频域信息的相关信息。
UE可以使用专门的上行HARQ process(HARQ处理进程)来执行或者处理在MSG B中接收到的UL grant上的上行传输。优选的,这个HARQ process的编号与执行在4-step中的随机接入响应(Random Access Response,RAR)中接收到的UL grant上的上行传输的HARQ process的编号不同。
具体的确认信息的传输过程可以是下述操作中的至少一个操作:
当UE在MSG B中接收到UL grant时,优选的,接收到的UL grant是用于传输确认信息的UL grant,UE处理接收到的UL grant的取值,并将其指示给下层(lower layer),例如物理层;
当UE在MSG B中接收到UL grant时,优选的,接收到的UL grant是用于传输确认信息的UL grant,指示其对应的HARQ process层触发一个新传(trigger a new transmission),或者是首次传输;
当UE在MSG B中接收到UL grant时,优选的,接收到的UL grant是用于传输确认信息的UL grant,获取(obtain)用于传输的MAC PDU。UE可以从MSG B的buffer中获取用于传输的MAC PDU,还可以从Multiplexing and assembly entity中获取用于传输的MAC PDU。优选的,这个被获取的MAC PDU可以是至少包含了实施例1中所述的、能够提供确认信息的MAC CE,还可以是实施例1中所述的、指示生成的、能够提供确认信息的MAC PDU;
当UE获取了用于传输的MAC PDU,将所述MAC PDU与接收到的UL grant送往对应的HARQ process;HARQ process将保存该UL grant,并且指示物理层根据这个保存的UL grant生成该TB的传输。这个TB中携带了所获取的、用于传输的MAC PDU。
方法二:MSG B中除了包含CRID,还携带了PUCCH相关的信息,简称为PUCCH allocation。这个PUCCH用于传输UE指示物理层生成的HARQ-ACK information。
具体的携带方式可以包含以下的几个方式。
方式一、PUCCH相关的信息携带在DCI中,这个DCI还携带了用于传输MSG B的PDSCH的时域和频域信息,即携带了用于传输MSG B的PDSCH调度信息,以及优选的,这个DCI是用RA-RNTI加扰的。
方式二、PUCCH相关的信息携带在MSG B中。
优选的,可以是以域(field)的形式携带在MSG B的内容(content)中,例如作为一例,下图中描述的MSG B的内容中包含了至少如下field:
CRID:指示了竞争冲突解决ID;
PUCCH allocation:指示了PUCCH相关的信息。
Figure PCTCN2020087202-appb-000002
此外,例如还可以如下图所示那样PUCCH相关的信息携带在MAC子头中,以MAC子头的形式和MSG B级联,构成一个MAC SUB PDU。
Figure PCTCN2020087202-appb-000003
其中,PUCCH的相关信息至少包括PUCCH的时域信息,和/或频域信息,或者是用于确定PUCCH的时域信息,和/或频域信息的信息,这里统称为携带了PUCCH的调度信息,具体可以包括PUCCH resource indicator,指示频率资源的分布,还可以包括PDSCH-to-HARQ_feedback timing  indicator,指示HARQ-ACK information反馈的时刻,即UE在完成PDSCH接收之后到HARQ反馈的间隔,,从而间接指示了PUCCH的时间分布。这里的“PDSCH接收”,是指传输MSG B的PDSCH的接收。
方式三、考虑的PUCCH的相关信息至少包含时域和频域的信息,又一种可能的实施方式是如下所示:
PUCCH相关的信息的部分携带在DCI中,这个DCI还携带了用于传输MSG B的PDSCH的时域和频域信息,即携带了用于传输MSG B的PDSCH调度信息,以及优选的,这个DCI是用RA-RNTI加扰的。优选的,这里的PUCCH相关的信息的部分可以指时域信息,例如PDSCH-to-HARQ_feedback timing indicator,指示HARQ-ACK information反馈的时刻,即PUCCH的传输时刻;PUCCH相关的信息的剩余部分携带在MSG B中。优选的,这里的PUCCH相关的信息的部分可以指频域信息,例如PUCCH resource indicator,指示频率资源的分布。具体的携带方式可以采用方式二中描述的多种方法,这里不再重复叙述。
具体的确认信息的传输过程可以是,在物理层,UE根据PUCCH的相关信息,确定PUCCH的时域以及频域资源,并且在确定的PUCCH上报告/发送相应的HARQ-ACK information。
需要说明的是,当采用上述方式二时,MSG B与PUCCH是一一对应的,即该MSG B中的CRID与哪一个UE发送的CRID相同,那么该UE就可以采用与该MSG B对应的PUCCH进行发送。
但是采用上述方式一时,存在这样的问题:在相同的PDSCH上传输的MSGB可以有多个。如果在DCI中仅携带一个PUCCH资源,那么将会造成多个UE在相同PUCCH资源上发送信息的情况。UE在相同的PUCCH资源上发送的确认信息会造成相互的干扰,使得基站无法正确解码。为避免出现该情况,在实施例6中提供了解决方案。
作为一例,可以将实施例1和2的结合,由此能够同时解决确认信息的生成和发送的问题。
实施例3
以下,对本发明的实施例3进行详细说明,实施例3和实施例1以及 实施例2的区别在于,实施例3提供了一种当MSG B中不包含CRID的情况下的解决方案。
当MSG B不包含UE的CRID时,优选的,在MSG B中包含了UE在MSG A中发送的preamble对应的RAPID,那么UE可以进行如下操作的至少一个操作:
-UE认为2-step RA没有完成;
-处理在MSG B中接收到的UL grant,并把它指示给下层;
-UE认为(consider)2-step RA需要执行回落(fall back)操作,即UE接下来将在MSG B中指示的UL grant上发送MSG A的负载(如果MSG A的负载保存在MSG 3 buffer中,可以认为UE接下来将在在MSG B中指示的UL grant上发送MSG 3),以及执行相应的操作,例如在MSG A的负载(或者MSG 3)发送完成后,启动竞争冲突解决定时器,并且监听下行PDCCH信道,检测是否有被携带在MSG B中的RNTI加扰的DCI;
-当UE在MSG B中接收到UL grant时,指示其对应的HARQ process层触发一个新传(trigger a new transmission),或者是首次传输。
-当UE在MSG B中接收到UL grant时,获取(obtain)用于传输的MAC PDU:如果竞争冲突解决没有成功,或者是竞争冲突没有解决,又或者在接收到MSG B中没有UE的CRID,那么这个UL grant用于发送MSG A的payload:UE从MSG A缓存区(MSG A buffer)中获取要发送的MAC PDU。MSG Abuffer是指存放着携带MSG A的payload的MAC PDU的缓存区。
优选的,如果携带MSG A payload的MAC PDU存放在MSG 3 buffer中,那么如果竞争冲突解决没有成功,或者是竞争冲突没有解决,又或者在接收到MSG B中没有CRID,UE可以从MSG 3的buffer中获取要发送的MAC PDU,可以理解为在这种情况下,UE发送MSG 3,这个MSG 3在MSG B中指示的UL grant上发送。
需要说明的是,当UE在MSG B中接收到UL grant时,如果竞争冲突解决成功,或者是接收到MSG B中有UE的CRID,那么这个UL grant用于发送实施例1或2中所描述的确认信息:UE需要如 实施例1以及实施例2中所述的方法,从复用和组合实体中取得(obtain)用于发送的MAC PDU。
-当UE获取了用于传输的MAC PDU,将所述MAC PDU与接收到的UL grant送往对应的HARQ process;HARQ process将保存该UL grant,并且指示物理层根据这个保存的UL grant生成该TB的传输。这个TB中携带了所获取的、用于传输的MAC PDU。
实施例4
下面,对本发明的实施例4进行详细说明。如实施例1所述,MSG B的确认信息还可以是一个HARQ-ACK information,这个需要在物理层生成,因此,其生成过程还可以是UE指示物理层生成对于携带MSGB的TB的确认信息。
这一生成过程的一种实现方式可以包括:
UE接收MSG B,或者说是接收携带MSG B的TB;
UE采用专有的下行HARQ process用于处理MSG B的接收,或者是为RA-RNTI指示的传输关联一个专有的HARQ process。这里“RA-RNTI指示的传输”,是指由RA-RNTI加扰的DCI所指示的传输,即在RA-RNTI加扰的DCI中携带了该传输的时域和频域信息(或者称为调度信息,scheduling information),因此可以称该传输时RA-RNTI指示的传输,或者是与RA-RNTI有关的传输。
为了方便说明,本文中称这个专有的HARQ process为“MSG B HARQ process”。
MSG B HARQ process可以通过在DCI中携带HARQ process number/inex field来指示哪一个HARQ process是MSG B HARQ process。优选地,这个DCI中还同时携带了UE用于接收MSG B的信息,例如用于接收MSGB的时域和频域信息,即MSG B的调度信息,以及优选的,这个DCI是由RA-RNTI加扰。
此外,专有的HARQ process还可以通过预先定义的方式来实现,例如,指定下行HARQ process X用于处理MSG B指示的下行传输。X可以是0到16的任意一个整数。
在明确了对应的MSG B HARQ process后,UE对该MSGB的处理具体可以包括下述步骤的至少一个步骤:
(a)当一个DL assignment与MSG B相关时,UE将在这个DL assignment对应的PDSCH上接收到的TB分配(allocate)给MSG B HARQ process.
(b)对于接收到的TB,如果其被分配的HARQ process是MSG B HARQ process,那么UE认为本次传输是一个新传(new transmission)或者是首次传输。
(c)HARQ process对接收到的TB进行处理,具体可以包括如下的部分。
(c.1)UE的MAC实体解码接收到的TB,具体可以包括:
-如果解码成功,被解码的MAC PDU被送往disassembly and demultiplexing entity。
-如果解码不成功,且又如果这个HARQ process是MSG B HARQ process,那么可以丢弃该TB。
(c.2)如果这个HARQ process是MSG B HARQ process,并且竞争冲突成功解决,那么UE指示(instruct)物理层生成对应于该TB的数据的确认信息(acknowledge)。
(c.3)如果如果这个HARQ process是MSG B HARQ process,但是竞争冲突没有成功解决(或者竞争冲突没有解决),那么UE不指示(instruct)物理层生成对应于该TB的数据的确认信息。
这一生成过程的又一种实现方式可以包括:UE接收MSG B,如果在MSG B中包含了UE的CRID,或者UE认为竞争冲突解决成功,那么UE指示(instruct)物理层生成对应于该TB的数据的确认信息(confirmation/acknowledge inforamtion),或者UE指示(instruct)物理层生成对应于MSG B的确认信息(confirmation/acknowledge inforamtion)。
作为一例,实施例4可以与实施例1结合,解决确认信息的生成。
此外,作为一例,实施例4还可以与实施例2结合,解决确认信息的生成与发送。
实施例5
以下,对本发明的实施例5进行详细说明。在实施例1-4中,通过UE对MSG B的确认,基站能够直接获知UE是否正确接收到了MSG B。在本实施例中,提供一种方法使得基站能够间接获知UE是否正确接收到了MSG B。
在一种情况下,MSG B中携带了下行指派(DL assignment),该下行指派指示了需要UE接收的PDSCH的调度信息,即UE接收PDSCH所需要的时域以及频域相关信息,或者是UE可以用于确定接收PDSCH的时域以及频域相关信息的信息。这个PDSCH可以称为DL assignment调度的PDSCH,在该PDSCH上的传输可以称为MSG B指示的下行传输。
当UE接收MSGB之后,UE可以根据其中的DL assignment,对其调度的PDSCH进行接收,并且反馈对应于该PDSCH传输的HARQ-ACK information,从而使得基站能够获知UE是否正确接收了DL assignment中调度的PDSCH,进而能够判断UE是否正确接收了MSG B。因为只有当UE正确接收了MSG B,才能够进而接收DL assignment调度的PDSCH,并对该PDSCH进行HARQ-ACK information的反馈。
上述“对PDSCH进行接收,并且反馈对应于该PDSCH的HARQ-ACK information”的具体过程可以包括:
(1)UE接收DL assignment指示的PDSCH上传输的TB。这个DL assignment是包含在MSG B中的。
(2)UE处理该TB,具体可以是:UE采用专有的下行HARQ process用于处理MSG B指示的下行传输,或者说是用于处理MSG B中携带的DL assignment调度的PDSCH传输,又或者说是用于处理MSG B中携带的DL assignment调度的PDSCH上传输的TB。
为了方便说明,本文中称这个专有的HARQ process为“MSG B DL HARQ process”。
MSG B DL HARQ process可以通过在DCI中携带HARQ process number/inex field来指示哪一个HARQ process是MSG B HARQ process。优选地,这个DCI中还同时携带了UE用于接收MSG B的信息,例如用于接 收MSGB的时域和频域信息,即MSG B的调度信息,以及优选的,这个DCI是由RA-RNTI加扰。
此外,专有的HARQ process还可以通过预先定义的方式来实现,例如,指定下行HARQ process X用于处理MSG B指示的下行传输。X可以是0到16的任意一个整数。
在明确了对应的MSG B DL HARQ process后,UE对该TB的处理具体可以包括下述操作的至少一个操作:
(a)当一个DL assignment与MSG B DL HARQ process相关,UE将接收到的TB分配(allocate)给这个HARQ process。
或者
对于在MSG B中接收到的DL assignment,如果竞争冲突成功解决,那么就把接收到的TB分配给MSG B DL HARQ process。
(b)对于接收到的TB,如果其被分配的HARQ process是MSG B DL HARQ process,那么UE认为本次传输是一个新传(new transmission)或者是首次传输。
(c)UE的MAC实体解码接收到的TB,具体包括:
(c.1)如果解码成功,就将这个MAC PDU送往上层(例如,MAC层之上的RRC层),或者是送往disassembly and demultiplexing entity。
(c.2)如果解码不成功,指示物理层将这个MAC层实体解码的TB存放在缓存区(soft buffer)中,如果soft buffer中已经存有数据,那么就有这个TB的数据替换已经存在的数据。
(d)然后UE指示(instruct)物理层生成对应于该TB的数据的确认信息。在物理层,对于解码成功的TB,生成的确认信息可以为ACK,对于解码不成功的TB,生成的确认信息可以是NACK,无论ACK还是NACK,在物理层通常称为HARQ-ACK information。
(3)UE发送在(2)中生成的HARQ-ACK information。
HARQ-ACK information可以在PUCCH信道上传输,为了发送HARQ-ACK information,UE需要确定PUCCH资源。因此优选的,可以在MSG B中携带用于确定PUCCH资源的PUCCH相关信息。
具体的携带方式可以是:
方式一、PUCCH相关的信息携带在DCI中,这个DCI还携带了用于传输MSG B的时域和频域信息,即携带了MSG B的调度信息,以及优选的,这个DCI是用RA-RNTI加扰的。
方式二、PUCCH相关的信息携带在MSG B中。
优选的,可以是以域(field)的形式携带在MSG B的内容(content)中,例如作为一例,下图中描述的MSG B的内容中包含了至少如下field:
DL assignment:需要UE接收的PDSCH的调度信息,即UE接收PDSCH所需要的时域以及频域相关信息,或者是UE可以用于确定接收PDSCH的时域以及频域相关信息的信息;
PUCCH allocation:指示了PUCCH相关的信息。
Figure PCTCN2020087202-appb-000004
此外,还可以如下图所示那样以MAC子头的形式和MSG B级联,构成一个MAC SUB PDU,其中在MSG B中至少包含了DL assignment field。
Figure PCTCN2020087202-appb-000005
其中,PUCCH的相关信息至少包括PUCCH的时域信息,和/或频域信息,或者是用于确定PUCCH的时域信息,和/或频域信息的信息,这里统称为携带了PUCCH的调度信息,具体可以包括PUCCH resource indicator,指示频率资源的分布,还可以包括PDSCH-to-HARQ_feedback timing indicator,指示HARQ-ACK information反馈的时刻,即UE在完成PDSCH接收之后到HARQ反馈的间隔,从而间接指示了PUCCH的时间分布。这里的“PDSCH接收”,是指对应于MSG B中携带的DL assignment所指示的PDSCH的接收。
方式三、考虑的PUCCH的相关信息至少包含时域和频域的信息,又一种可能的实施方式是:
PUCCH相关的信息的部分携带在DCI中,这个DCI还携带了用于传输MSG B的PDSCH的时域和频域信息,即携带了用于传输MSG B的PDSCH调度信息,以及优选的,这个DCI是用RA-RNTI加扰的。优选的,这里的PUCCH相关的信息的部分可以指时域信息,例如PDSCH-to-HARQ_feedback timing indicator,指示HARQ-ACK information反馈的时刻,即PUCCH的传输时刻;PUCCH相关的信息的剩余部分携带在MSG B中。优选的,这里的PUCCH相关的信息的剩余部分可以指频域信息,例如PUCCH resource indicator,指示频率资源的分布。具体的携带方式可以采用本实施例方式二中描述的多种方法,这里不再重复叙述。
具体的HARQ-ACK information的发送过程可以是:
在物理层,UE根据PUCCH的相关信息,确定PUCCH的时域以及频域资源,并且在确定的PUCCH上提供相应的HARQ-ACK information。
需要说明的是,当采用上述方式二或三时,MSG B与PUCCH是一一 对应的,即该MSG B中的CRID与哪一个UE发送的CRID相同,那么该UE就可以采用与该MSG B对应的PUCCH进行发送。
但是采用上述方式一时,存在这样的问题:在相同的PDSCH上传输的MSGB可以有多个。如果在DCI中仅携带一个PUCCH资源,那么将会造成多个UE在相同PUCCH资源上发送信息的情况。UE在相同的PUCCH资源上发送的确认信息会造成相互的干扰,使得基站无法正确解码。为避免出现该情况,在实施例7中提供了解决方案。
实施例6
以下,对本发明的实施例6进行详细说明。为了解决PUCCH和MSG B对应的问题,一种可行的方案是在所述的DCI中携带多个PUCCH资源.每个PUCCH资源对应了一个携带了CRID的MSG B。例如,UE在响应消息中检测到携带CRID的MSG B共有6个,其中第2个MSG B中包含了UE在MSGA中发送的CRID,那么UE将在DCI中将排在第2位的PUCCH资源上反馈/发送实施例1中生成的确认信息。
又一种可行的方案是,设计一种DCI format,其中携带了PUCCH的调度信息,该DCI format的CRC由RNTI加扰,这里称为X-RNTI。
当UE接收了MSG B,在这个MSG B中携带了UE的CRID,并且还携带了X-RNTI。
当UE完成MSG B的接收,或者说UE完成携带MSG B的PDSCH传输的接收时,开始监听PDCCH。当检测到一个DCI format,且这个DCI format的CRC是由X-RNTI加扰的,接收该DCI format中携带的DCI信息,在该DCI中携带了PUCCH的调度信息,UE将用这个PUCCH来反馈/发送实施例1中生成的确认信息。
由于每个UE被分配的X-RNTI不同,因此UE可以根据自己的X-RNTI来获取用于反馈确认信息的PUCCH资源,而不会引起冲突。
如前文所述,PUCCH资源的信息可以至少包括PUCCH resource indicator,指示频率资源的分布,还可以包括PDSCH-to-HARQ_feedback timing indicator,指示HARQ-ACK information反馈的时刻,即对应于PUCCH资源的时域分布。这个信息可以指示了UE在完成PDSCH接收之后到 HARQ反馈的时间间隔,这里的“PDSCH接收”,是指传输MSG B的PDSCH的接收。考虑到接收相同响应消息(包含多个MSG B)的多个UE可以在同样的时刻,不同的频域资源上通过PUCCH反馈确认信息,因此又一种可行的方案如下:
在所述的、包含了用于传输MSG B的PDSCH调度信息的DCI中还包含了PUCCH相关信息的部分,例如PUCCH的时域信息。例如所述DCI包含域PDSCH-to-HARQ_feedback timing indicator,指示HARQ-ACK information反馈的时刻,即PUCCH的发送时刻。优选的,这个DCI的CRC是由RA-RNTI加扰的。所有接收该DCI的UE,如果需要通过PUCCH发送确认信息,都可以根据在DCI中包含的field-PDSCH-to-HARQ_feedback timing indicator确定的PUCCH的传输时刻。
而对于PUCCH相关信息的剩余部分,例如PUCCH的频域信息,可以如实施例2中方式二所示的方法携带在MSG B中。因此对于一个UE,如果需要通过PUCCH发送MSG B的确认信息,可以从携带了用于传输MSG B的PDSCH调度信息的DCI中获取PUCCH资源的时域信息,还可以从MSG B中获取PUCCH的频域信息。
上述方法中可以进一步优化为,网络预先配置(configurate)了PUCCH相关信息的部分,例如PUCCH的时域信息,那么UE结合在MSG B中接收到的PUCCH相关信息的剩余部分,例如PUCCH的频域信息,即可确定PUCCH资源,从而发送确认信息。
作为一例,实施例6可以和实施例1、2结合使用。
实施例7
以下,对本发明的实施例7进行详细说明。为了解决PUCCH和MSG B对应的问题,一种可行的方案是在所述的DCI中携带多个PUCCH资源.每个PUCCH资源对应了一个携带了CRID以及DL assignment的MSG B。例如,UE在响应消息中检测到携带CRID的MSG B共有6个,其中第2个MSG B中包含了UE在MSGA中发送的CRID,那么UE将在DCI中将排在第2位的PUCCH资源上反馈/发送实施例5中生成的确认信息。
又一种可行的方案是,设计一种DCI format,其中携带了PUCCH的调 度信息,该DCI format的CRC由RNTI加扰,这里称为Y-RNTI。
当UE接收了MSG B,在这个MSG B中携带了UE的CRID和DL assignment,并且还携带了Y-RNTI。
当UE完成MSG B的接收,或者说UE完成携带MSG B的PDSCH传输的接收时,开始监听PDCCH。当检测到一个DCI format,且这个DCI format的CRC是由Y-RNTI加扰的,那么UE接收该DCI format中携带的DCI信息。在该DCI中携带了PUCCH的调度信息,UE将用这个PUCCH来反馈/发送实施例5中生成的确认信息。
由于每个UE被分配的Y-RNTI不同,因此UE可以根据自己的Y-RNTI来获取用于反馈确认信息的PUCCH资源,而不会引起冲突。
如前文所述,PUCCH资源的信息可以至少包括PUCCH resource indicator,指示频率资源的分布,还可以包括PDSCH-to-HARQ_feedback timing indicator,指示HARQ-ACK information反馈的时刻,即对应于PUCCH资源的时域分布。这个信息可以指示了UE在完成PDSCH接收之后到HARQ反馈的时间间隔,这里的“PDSCH接收”,是指DL assignment调度的PDSCH的接收。考虑到接收相同响应消息(包含多个MSG B)的多个UE可以在同样的时刻,不同的频域资源上通过PUCCH反馈确认信息,因此又一种可行的方案如下:
在所述的、包含了用于传输MSG B的PDSCH调度信息的DCI中还包含了PUCCH相关信息的部分,例如PUCCH的时域信息。例如所述DCI包含域PDSCH-to-HARQ_feedback timing indicator,指示HARQ-ACK information反馈的时刻,即PUCCH的发送时刻。优选的,这个DCI的CRC是由RA-RNTI加扰的。所有接收该DCI的UE,如果需要通过PUCCH发送确认信息,都可以根据在DCI中包含的field-PDSCH-to-HARQ_feedback timing indicator确定的PUCCH的传输时刻。
而对于PUCCH相关信息的剩余部分,例如PUCCH的频域信息,可以如实施例5中方式二所示的方法携带在MSG B中。
因此,对于一个UE,如果需要通过PUCCH发送实施例5中所述的的确认信息,可以从携带了用于传输MSG B的PDSCH的调度信息的DCI中获取PUCCH资源的时域信息,还可以从MSG B中获取PUCCH的频域信 息。
上述方法中可以进一步优化为,网络预先配置(configurate)了PUCCH相关信息的部分,例如PUCCH的时域信息,那么UE结合在MSG B中接收到的PUCCH相关信息的剩余部分,例如PUCCH的频域信息,即可确定PUCCH资源,从而发送实施例5中所述的确认信息。
作为一例,实施例7可以和实施例5结合使用。
再有,图3是表示本发明所涉及的用户设备UE的框图。如图3所示,该用户设备UE50包括处理器301和存储器302。处理器301例如可以包括微处理器、微控制器、嵌入式处理器等。存储器302例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器302上存储有程序指令。该指令在由处理器301运行时,可以执行本发明中详细描述的随机接入方法。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态 机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (2)

  1. 一种随机接入方法,包括:
    用户设备UE向基站发送消息A,所述消息A包含前导序列和该消息A的负载;
    用户设备UE接收所述基站发送的对所述消息A的响应消息的消息B;
    所述消息B中包含
    UE的竞争冲突解决ID,PUCCH资源指示,以及HARQ反馈时间指示。
    指示物理层生成并发送混合自动重传请求确认信息HARQ-ACK信息,该混合自动重传请求确认信息HARQ-ACK信息的取值为确认ACK;
    以及在所述HARQ反馈时间指示的时刻,在所述PUCCH资源指示的PUCCH信道上发送所述HARQ-ACK信息。
  2. 一种用户设备UE,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1所述的随机接入方法。
PCT/CN2020/087202 2019-04-30 2020-04-27 随机接入方法以及用户设备 WO2020221197A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/606,752 US20220217787A1 (en) 2019-04-30 2020-04-27 Random access method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910366719.X 2019-04-30
CN201910366719.XA CN111867138A (zh) 2019-04-30 2019-04-30 随机接入方法以及用户设备

Publications (1)

Publication Number Publication Date
WO2020221197A1 true WO2020221197A1 (zh) 2020-11-05

Family

ID=72966716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087202 WO2020221197A1 (zh) 2019-04-30 2020-04-27 随机接入方法以及用户设备

Country Status (3)

Country Link
US (1) US20220217787A1 (zh)
CN (1) CN111867138A (zh)
WO (1) WO2020221197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11742990B2 (en) * 2019-11-12 2023-08-29 Qualcomm Incorporated Adaptive HARQ feedback and multi-threaded HARQ techniques for buffer management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852787A (zh) * 2014-02-13 2015-08-19 电信科学技术研究院 竞争解决消息反馈信息的发送方法及装置
US20180116000A1 (en) * 2016-10-26 2018-04-26 Qualcomm Incorporated Waveform-dependent random access channel procedure
WO2018175809A1 (en) * 2017-03-22 2018-09-27 Comcast Cable Communications, Llc Random access process in new radio
CN110679104A (zh) * 2019-08-13 2020-01-10 北京小米移动软件有限公司 Harq反馈方法、装置及可读存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158981B (zh) * 2010-02-11 2016-06-22 中兴通讯股份有限公司 一种基于竞争的上行数据传输方法和系统
JP6661608B2 (ja) * 2015-03-25 2020-03-11 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
JP7027430B2 (ja) * 2017-01-08 2022-03-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末と基地局との間の上りリンク信号の送受信方法及びそれを支援する装置
CN109495975A (zh) * 2017-09-11 2019-03-19 北京三星通信技术研究有限公司 随机接入方法、基站设备及用户设备
WO2019199051A1 (ko) * 2018-04-11 2019-10-17 한국전자통신연구원 통신 시스템에서 저지연 통신을 위한 방법 및 장치
US20210329703A1 (en) * 2018-08-09 2021-10-21 Lg Electronics Inc. Method and apparatus for transmitting or receiving wireless signal in wireless communication system
US11956831B2 (en) * 2018-08-09 2024-04-09 Lg Electronics Inc. Method and device for transmitting/receiving signal in wireless communication system
US11337253B2 (en) * 2019-01-11 2022-05-17 Qualcomm Incorporated Feedback for message B of a two-step random access channel procedure
US20220150973A1 (en) * 2019-02-13 2022-05-12 Apple Inc. Apparatus and method for generating mac format for messaging in a two-step random access procedure
US11438931B2 (en) * 2019-03-28 2022-09-06 Ofinno, Llc Selecting a random access procedure type in a wireless system
US20220167320A1 (en) * 2019-03-29 2022-05-26 Lg Electronics Inc. Method for transmitting downlink control information and base station, method for receiving downlink control information, user equipment, and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852787A (zh) * 2014-02-13 2015-08-19 电信科学技术研究院 竞争解决消息反馈信息的发送方法及装置
US20180116000A1 (en) * 2016-10-26 2018-04-26 Qualcomm Incorporated Waveform-dependent random access channel procedure
WO2018175809A1 (en) * 2017-03-22 2018-09-27 Comcast Cable Communications, Llc Random access process in new radio
CN110679104A (zh) * 2019-08-13 2020-01-10 北京小米移动软件有限公司 Harq反馈方法、装置及可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "On 2-step RACH Procedure", 3GPP TSG RAN WG1 #96BIS R1-1904716, 29 March 2019 (2019-03-29), XP051699900, DOI: 20200527145506X *

Also Published As

Publication number Publication date
US20220217787A1 (en) 2022-07-07
CN111867138A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
RU2761095C2 (ru) Способ связи и устройство связи
US11805515B2 (en) Blind scheduling apparatus and method in a mobile communication system
WO2020143701A1 (zh) 由用户设备执行的方法以及用户设备
TWI403121B (zh) 辨識混合式自動重發請求程序之方法及其通訊裝置
US9641301B2 (en) Terminal device, base station device, communication method, and integrated circuit
US9320031B2 (en) Mobile station device, radio communication method and integrated circuit
US11190304B2 (en) Method and apparatus for transmitting hybrid automatic repeat request using semi-persistent scheduling
US9655083B2 (en) Terminal device, base station device, communication method, and integrated circuit
US20100232373A1 (en) Resource Allocation in Wireless Communication Systems
US9510368B2 (en) Method and arrangement for acknowledgement of contention-based uplink transmissions in a telecommunication system
WO2016065620A1 (zh) 混合自动重传反馈的获取方法、装置以及通信系统
WO2011038618A1 (zh) 一种中继节点及其传输数据的方法
JP2011508511A (ja) 移動体通信ネットワークにおける方法と装置
WO2013107036A1 (en) Handling random access failure
CN117596694A (zh) 无线通信方法和设备
WO2012116602A1 (zh) 数据传输方法、演进基站以及用户设备
WO2012097724A1 (zh) 半静态调度方法、用户设备及网络设备
WO2020221197A1 (zh) 随机接入方法以及用户设备
KR20170054218A (ko) 통신 시스템에서의 빠른 접속을 위한 방법 및 장치
WO2021026924A1 (zh) 数据传输的方法及其装置、通信系统
US20220255672A1 (en) Retransmission mechanism for configured grant uplink transmission
US20240032017A1 (en) Data transmission method and apparatus
WO2011097806A1 (zh) 基于竞争的数据传输
WO2022001797A1 (zh) 数据传输方法及装置
WO2021134151A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798163

Country of ref document: EP

Kind code of ref document: A1