WO2012116602A1 - 数据传输方法、演进基站以及用户设备 - Google Patents

数据传输方法、演进基站以及用户设备 Download PDF

Info

Publication number
WO2012116602A1
WO2012116602A1 PCT/CN2012/071300 CN2012071300W WO2012116602A1 WO 2012116602 A1 WO2012116602 A1 WO 2012116602A1 CN 2012071300 W CN2012071300 W CN 2012071300W WO 2012116602 A1 WO2012116602 A1 WO 2012116602A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
uplink
enb
signaling
data packet
Prior art date
Application number
PCT/CN2012/071300
Other languages
English (en)
French (fr)
Inventor
官磊
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12752690.3A priority Critical patent/EP2683104B1/en
Publication of WO2012116602A1 publication Critical patent/WO2012116602A1/zh
Priority to US14/011,098 priority patent/US9516496B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/30Network data restoration; Network data reliability; Network data fault tolerance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application claims priority to Chinese patent application filed on February 28, 2011, the Chinese Patent Office, Application No. 201110047812.8, entitled "Data Transmission Method, Evolved Base Station, and User Equipment” The entire contents of which are incorporated herein by reference.
  • the present invention relates to the field of wireless communication technologies, and in particular, to a data transmission method, an evolved base station, and a user equipment.
  • the duplex mode of the Long Term Evolution (LTE) system mainly includes a Frequency Division Duplexing (FDD) mode and a Time Division Duplexing (TDD) mode.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the evolved base station communicates with the user equipment (UE, User Equipment) on the same frequency, wherein the uplink and downlink data transmissions are separated in time.
  • one radio frame includes two fields, and each The fields contain five subframes.
  • the TDD mode supports different uplink and downlink configurations.
  • the uplink and downlink configurations can be adjusted semi-statically through system messages according to the average uplink and downlink service requirements.
  • the LTE TDD system includes a total of seven uplink and downlink configuration types, as shown in Table 1, where "D” indicates a downlink subframe, "U” indicates an uplink subframe, and "S” indicates a special subframe, which is also used for downlink data transmission.
  • the eNB may send a NACK command to the UE to indicate that the UE retransmits the data packet.
  • the current data packet retransmission mechanism in the TDD mode is: when the UE receives the NACK command sent by the eNB, the UE will send the eNB to the eNB in an uplink subframe corresponding to the standard pre-configured subframe that is originally transmitted by the data packet.
  • the data packet is retransmitted, and the retransmission packet may be scheduled by an uplink scheduling grant (UL_grant) sent by the eNB, or may be scheduled without the UL_grant.
  • UL_grant uplink scheduling grant
  • the upstream and downstream configurations are configured semi-statically through system messages according to the average service requirement. Therefore, the configured uplink and downlink ratios do not match the instantaneous service types, so that resources cannot be effectively utilized.
  • a later version of the LTE system such as Release-11 or 12, introduces a dynamic TDD subframe configuration, that is, some subframes can be dynamically configured as downlink or uplink, and these subframes are called dynamic subframes (dynamical).
  • Subframe can also be called a flexible subframe. The following is a brief description, which is described by "dynamic subframe".
  • the UE When the UE receives the NACK command sent by the eNB, the UE retransmits the data packet to the eNB in the corresponding uplink subframe, and after the dynamic subframe is introduced, if the UE originally plans to retransmit the uplink subframe of the data packet to the eNB, A dynamic subframe, and the dynamic subframe has been adjusted by the eNB as a downlink subframe, and a data transmission conflict occurs, so that the UE cannot retransmit the data packet according to the original plan, or the eNB cannot deliver the data packet according to the original plan, thereby Affect data transmission performance and scheduling flexibility.
  • the embodiments of the present invention provide a data transmission method, an evolved base station, and a user equipment, which can avoid data transmission conflicts and improve data transmission performance and scheduling flexibility.
  • the data transmission method provided by the embodiment of the present invention includes: if the evolved base station eNB does not correctly receive the data packet sent by the user equipment UE in the first subframe, the eNB selects from multiple subframes. a second subframe; the eNB sends scheduling signaling to the UE, so that the UE sends a retransmission packet of the data packet in the second subframe.
  • the data transmission method provided by the embodiment of the present invention includes: the user equipment UE sends a data packet to the evolved base station eNB in the first subframe; if the eNB does not correctly receive the data packet, the UE receives the eNB.
  • the scheduling signaling of the sending the UE transmitting, according to the scheduling signaling, a retransmission packet of the data packet in a second subframe indicated by the scheduling signaling, where the second subframe is used by the eNB Selected from multiple sub-frames.
  • the evolved base station includes: a selecting unit, configured to: when the data packet sent by the user equipment UE in the first subframe is not correctly received, select a second subframe from the multiple subframes; And sending the scheduling signaling to the UE, so that the UE sends the retransmission packet of the data packet in the second subframe selected by the selecting unit.
  • the user equipment includes: a sending unit, configured to send a data packet to the evolved base station eNB in the first subframe; and a signaling receiving unit, configured to send, when the eNB does not correctly receive the sending unit, Receiving the scheduling signaling sent by the eNB, and the retransmission unit is configured to send, according to the scheduling signaling received by the signaling receiving unit, the second subframe indicated by the scheduling signaling The retransmission packet of the data packet, where the second subframe is selected by the eNB from multiple subframes.
  • the embodiments of the present invention have the following advantages:
  • the eNB if the eNB does not correctly receive the data packet sent by the UE in the first subframe, the eNB selects the second subframe from the multiple subframes, and notifies the UE to send the data in the second subframe.
  • the retransmission packet of the packet enables the eNB to schedule the UE to transmit the retransmission packet in a certain subframe. Since the eNB can learn which dynamic subframes are configured as uplink and which dynamic subframes are configured as downlink, the second selected by the eNB Downlink data is not transmitted on the subframe, so collision of data transmission can be avoided, thereby improving data transmission performance and scheduling flexibility.
  • FIG. 1 is a schematic diagram of an embodiment of a data transmission method according to the present invention
  • FIG. 2 is a schematic diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a data transmission method according to the present invention.
  • FIG. 4 is a schematic diagram of uplink scheduling of TDD uplink and downlink configuration 0 according to the present invention
  • FIG. 5 is a schematic diagram of a custom uplink scheduling sequence according to the present invention
  • FIG. 6 is a schematic diagram of an embodiment of an evolved base station according to the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of an evolved base station according to the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of an evolved base station according to the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a user equipment according to the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a user equipment according to the present invention.
  • the embodiments of the present invention provide a data transmission method, an evolved base station, and a user equipment, which can avoid data transmission conflicts and improve data transmission performance and scheduling flexibility.
  • an embodiment of the data transmission method of the present invention includes:
  • the eNB selects the second subframe from the multiple subframes.
  • the eNB communicates with the UE in the TDD mode, and the UE may send a data packet to the eNB through a fixed uplink subframe or a dynamic subframe configured as an uplink.
  • the UE sends a data packet to the eNB in the first subframe, where the first subframe may be any fixed uplink subframe in the TDD radio frame or a dynamic subframe configured as an uplink. There is no limit.
  • the data packet sent by the UE in the first subframe may be a data initial transmission packet or a data retransmission packet, which is not limited herein.
  • the eNB can determine whether the data packet sent by the UE is correctly received.
  • the specific manner of determining is not limited herein.
  • the eNB may request the UE to perform retransmission, that is, transmit the retransmission packet of the data packet.
  • the eNB may be in multiple subframes. Select the second subframe.
  • the eNB sends scheduling signaling to the UE, so that the UE sends the retransmission packet in the second subframe. After the eNB selects the second subframe, the eNB may send scheduling signaling to the UE to indicate that the UE sends the retransmission packet of the data packet in the second subframe.
  • the eNB may notify the UE of the information about the second subframe in an explicit or implicit manner, for example, the identifier of the second subframe may be directly carried in the scheduling signaling, where the identifier may be Therefore, the newly added bit, the newly added CRC mask, or may also implicitly indicate the correlation of the second subframe by scheduling the transmission time or carrier of the signaling, or the location of the scheduling signaling in the search space, and the like. information.
  • the eNB if the eNB does not correctly receive the data packet sent by the UE in the first subframe, the eNB selects the second subframe from the multiple subframes, and notifies the UE to send the data packet in the second subframe. Retransmitting the packet, so that the eNB can schedule the UE to send the retransmission packet in a certain subframe. Since the eNB can know which dynamic subframes are configured as uplink and which dynamic subframes are configured as downlink, the second subframe selected by the eNB Downstream data is not sent on, so data collisions can be avoided, thereby improving data transmission performance and scheduling flexibility.
  • Another embodiment of the data transmission method of the present invention includes:
  • the UE sends a data packet to the eNB in the first subframe.
  • the eNB communicates with the UE in the TDD mode, and the UE may send a data packet to the eNB through a fixed uplink subframe or a dynamic subframe configured as an uplink.
  • the UE sends a data packet to the eNB in the first subframe, where the first subframe may be any fixed uplink subframe in the TDD radio frame or a dynamic subframe configured as an uplink. There is no limit.
  • the data packet sent by the UE in the first subframe may be a data initial transmission packet or a data retransmission packet, which is not limited herein.
  • the UE receives the scheduling signaling sent by the eNB. If the data packet sent by the UE to the eNB in the first subframe is not correctly received by the eNB, the UE may receive the scheduling sent by the eNB. Signaling, the scheduling signaling is used to instruct the eNB to perform data retransmission.
  • the UE sends a retransmission packet in a second subframe indicated by the scheduling signaling according to the scheduling signaling.
  • the UE may learn related information of the second subframe according to the scheduling signaling, and the specific acquiring manner is related to the manner used by the eNB, and if the eNB explicitly informs the UE of the second sub-subject in an explicit manner, The information about the frame, the UE may directly learn the identifier of the second subframe from the scheduling signaling, and if the eNB notifies the UE of the information about the second subframe in an implicit manner, the UE may perform scheduling signaling according to the The information such as the transmission time is used to learn the related information of the second subframe.
  • the second subframe is selected by the eNB from multiple subframes.
  • the UE After the UE learns the related information of the second subframe, it may send the eNB to the eNB in the second subframe. Send the retransmission packet of the packet.
  • the UE may receive the scheduling signaling sent by the eNB, and according to the scheduling signaling, instructed by the scheduling signaling.
  • Sending a retransmission packet of the data packet on the second subframe the second subframe is selected by the eNB from the multiple subframes, because the eNB can learn which dynamic subframes are configured as uplink, and which dynamic subframes are configured as downlink,
  • the downlink data is not transmitted on the second subframe selected by the eNB, so collision of data transmission can be avoided, thereby improving data transmission performance and scheduling flexibility.
  • Another embodiment of the data transmission method of the present invention includes:
  • the UE sends a data packet to the eNB in the first subframe.
  • the eNB communicates with the UE in the TDD mode, and the UE may send a data packet to the eNB through a fixed uplink subframe or a dynamic subframe configured as an uplink.
  • the UE sends a data packet to the eNB in the first subframe
  • the first subframe may be any fixed uplink subframe in the TDD radio frame, or a dynamic subframe configured as an uplink, which is not limited herein.
  • the data packet sent by the UE in the first subframe may be a data initial transmission packet or a data retransmission packet, which is not limited herein.
  • the eNB determines whether the data packet is correctly received, and if yes, step 303 is performed; if not, step 304 is performed;
  • the eNB may determine whether the data packet is correctly received.
  • the specific manner of determining the data packet may be:
  • the eNB determines whether the received data packet can be correctly decoded. If it cannot be correctly decoded, it determines that the data packet is not correctly received.
  • the eNB determines whether the data packet is correctly received by using an example. It can be understood that, in practical applications, in addition to the foregoing determining manner, the eNB may use more methods to determine whether The data packet is correctly received, which is not limited herein.
  • the subsequent data transmission process may be continued, which is not limited herein.
  • the eNB selects a second subframe.
  • the eNB If the eNB does not correctly receive the data packet sent by the UE in the first subframe, it indicates that the UE is needed. Retransmit.
  • the eNB may select, from a plurality of subframes, a subframe that is required to be retransmitted by the UE, that is, a second subframe.
  • the eNB may select the second subframe in multiple manners, which may be: 1. Selecting a fixed uplink subframe from multiple subframes requires the UE to perform retransmission:
  • the eNB queries the currently used TDD uplink and downlink configuration type
  • the uplink and downlink configuration types of the TDD can be as shown in the preceding Table 1. After the dynamic subframe is introduced, the uplink and downlink configurations shown in Table 1 may also be changed.
  • the eNB determines a fixed uplink subframe from the plurality of subframes as the second subframe according to the TDD uplink and downlink configuration type.
  • the fixed uplink subframe may be determined from multiple subframes according to the TDD uplink and downlink configuration type.
  • the subframe in the TDD radio frame may be divided into a fixed uplink subframe, a fixed downlink subframe, and a dynamic subframe, where the fixed uplink subframe can only be used to send uplink data.
  • the fixed downlink subframe can only be used to send downlink data.
  • the dynamic subframe can decide to send uplink data or downlink data according to actual conditions.
  • the TDD radio frame must include at least one fixed uplink subframe, and the eNB can perform the correspondence between the TDD uplink and downlink configuration type and the fixed uplink subframe. Determine the fixed uplink subframe.
  • the fixed uplink subframe can only be used to transmit the uplink data, and the UE does not cause the data transmission conflict when the UE uses the fixed uplink subframe for retransmission. Therefore, the eNB can use the fixed uplink subframe as the second. Subframes, if there are multiple fixed uplink subframes, the eNB may also select one of them as the second subframe.
  • the eNB determines which dynamic subframes are configured as uplinks and which dynamic subframes are configured as downlinks according to service requirements;
  • the eNB may obtain service requirement information of a currently running service, such as a QoS (Quality of QoS) parameter, determine which dynamic subframes are configured as uplinks according to service requirement information, and which dynamic subframes are configured as Downstream.
  • QoS Quality of QoS
  • the eNB may increase the number of downlink subframes in the dynamic subframe.
  • the eNB selects one dynamic subframe configured as an uplink from the plurality of subframes as the second subframe.
  • the eNB determines which dynamic subframes are configured as uplinks, and after which dynamic subframes are configured as downlinks, dynamic subframes configured as uplinks may be selected from multiple subframes.
  • the UE After the eNB determines that the dynamic subframe is configured as the uplink, the UE can send uplink data on the dynamic subframe configured as the uplink, and the UE does not cause data transmission conflict when using the dynamic subframe configured as the uplink for retransmission, so the eNB
  • the dynamic subframe configured as the uplink may be used as the second subframe. If there are multiple dynamic subframes configured as the uplink, the eNB may also select one of the subframes as the second subframe.
  • the eNB may select the second subframe by using other methods, as long as the second subframe is configured to send uplink.
  • the sub-frame of the data may be used, and the specific selection manner is not limited herein.
  • the eNB sends scheduling signaling to the UE.
  • the eNB After the eNB selects the second subframe, it may send scheduling signaling to the UE to instruct the UE to send the retransmission packet of the data packet on the second subframe.
  • the scheduling signaling sent by the eNB to the UE may be layer 1 signaling or layer 2 signaling, and may be, for example, a physical downlink control channel (PDCCH, PDCCH, Physic), and/or a physical HARQ indication.
  • PDCCH physical downlink control channel
  • Physic Physical Downlink control channel
  • PHICH Physical HARQ Indica tor Channe l
  • the above-mentioned line scheduling grant (UL_grant) signaling is taken as an example of PDCCH signaling.
  • the eNB may notify the UE of the information about the second subframe in an explicit or implicit manner:
  • the eNB may carry indication information indicating the second subframe in the UL_grant signaling.
  • the indication information may be an uplink index (UL_index) field or a downlink indirect index (DAI) field in the UL_grant signaling, or the eNB may further add a bit in the UL_grant signaling, or new A method such as a scrambling code to carry the indication information.
  • UL_index uplink index
  • DAI downlink indirect index
  • a 1-bit parameter (Subframe. ID) may be added to the reserved field of the UL_grant signaling to indicate the identifier of the second subframe, or a number of bits of the scrambling code may be added to the UL_grant signaling.
  • the 2 bits are used to indicate the identity of the second subframe.
  • the eNB may implicitly indicate related information of the second subframe by using information such as a transmission time or a carrier of the UL_grant signaling. For example, if the eNB sends UL_grant signaling on the subframe 6 of the radio frame (ie, carrier) 1, it indicates that the UE is required to perform retransmission on the subframe 2 of the radio frame 2, that is, the second subframe is a sub-frame of the radio frame 2.
  • the eNB sends the UL_grant signaling on the subframe 0, it indicates that the UE is required to retransmit on the subframe 7, that is, the second subframe is the subframe 7, and the second manner may implicitly indicate the second Information about the subframe.
  • the correspondence between the subframe in which the UL_grant signaling is transmitted and the retransmitted subframe may be pre-agreed by the eNB and the UE, and the fixed uplink may be preferentially agreed in the actual application.
  • the frame is retransmitted, and other processing manners may be agreed, which is not limited herein.
  • the eNB may notify the UE of the information about the second subframe in other manners, which is not limited herein.
  • the UE sends a retransmission packet in a second subframe indicated by the scheduling signaling according to the scheduling signaling.
  • the UE may obtain related information of the second subframe according to the UL_grant signaling, and the specific obtaining manner is related to the manner used by the eNB:
  • the UE may read the indication information from the UL_grant signaling, and determine the second subframe according to the indication information.
  • the indication information in this embodiment may be a UL_index field in the UL_grant signaling, or a DAI field, or a new parameter in a reserved field of the UL_grant signaling, or a new scrambling code in the UL_grant signaling, specifically Not limited.
  • the UE may learn the information about the second subframe according to the information such as the transmission time or the carrier of the UL_grant signaling.
  • the UE may learn, in which subframe of the radio frame, the UL_grant signaling is sent, and then may know that the UL_grant signaling is hidden according to an agreement with the eNB in advance. Contains the meaning of the representation, thus obtaining the relevant information of the second subframe.
  • the UE After the UE receives the UL_grant signaling, if it is learned that the UL_grant signaling is sent on the subframe 6 of the radio frame (ie, carrier) 1, according to the agreement with the eNB in advance, it can be known that the eNB requests the UE to be in the radio frame 2. Performing retransmission on subframe 2, it can be known that the second subframe is subframe 2 of the radio frame 2;
  • the eNB After the UE receives the UL_grant signaling, if it is known that the UL_grant signaling is sent on the subframe 0, according to the agreement with the eNB in advance, the eNB requires the UE to perform retransmission on the subframe 7, that is, the second subframe. For subframe 7. After the UE learns the related information of the second subframe, the retransmission packet of the data packet may be sent to the eNB on the second subframe.
  • the eNB if the eNB does not correctly receive the data packet sent by the UE in the first subframe, the eNB selects the second subframe from the multiple subframes, and notifies the UE to send the data packet in the second subframe.
  • the retransmission packet enables the eNB to schedule the UE to transmit the retransmission packet of the data packet in a certain subframe. Since the eNB can learn which dynamic subframes are configured as uplink and which dynamic subframes are configured as downlink, the eNB selects The downlink data is not transmitted on the second subframe, so collision of data transmission can be avoided, thereby improving data transmission performance and scheduling flexibility.
  • FIG. 4 is a schematic diagram of the uplink scheduling sequence of "TDD uplink and downlink configuration 0" in this embodiment:
  • the subframes 0, 1, 5, 6 are fixed downlink subframes
  • the subframes 2 and 7 are fixed uplink subframes
  • the subframes 3, 4, 8 , 9 is a dynamic subframe.
  • the dynamic subframe may be the downlink subframe by default, that is, the UE performs the PDCCH detection on the dynamic subframe, and the UE does not receive the uplink scheduling signaling for the dynamic subframe, such as UL_grant signaling.
  • the frame is used as an uplink subframe.
  • the eNB can send the UL_grant to the UE for uplink scheduling on the fixed downlink subframe.
  • the uplink scheduling sequence in this embodiment is as shown in Figure 4:
  • UL_grant corresponds to a subframe in which the eNB transmits UL_grant
  • Physical uplink shared channel PUSCH, Physica l Upl ink Shared Channe l
  • PHICH The corresponding one is the subframe in which the eNB sends the ACK/NACK
  • Re-PUSCH corresponds to the subframe in which the UE transmits the retransmission packet.
  • each fixed downlink subframe can schedule data packets of two uplink subframes, for example, subframe 6 can schedule data packets of subframe 2 and/or subframe 3, and can be specifically sent by subframe 6.
  • the specific data transmission process may be as follows:
  • the eNB sends a UL_grant;
  • the UE receives the UL_grant;
  • the UE transmits a data packet to the eNB on subframe 3.
  • the eNB selects a subframe used by the UE for retransmission
  • the eNB When the eNB does not correctly receive the data packet sent by the UE on the subframe 3, it indicates that the UE needs to perform retransmission, and the eNB may select the subframe used by the UE for retransmission.
  • the eNB may select the subframe used by the UE for retransmission in the following manner:
  • the eNB first obtains the TDD uplink and downlink configuration type currently used, and learns that it is "TDD uplink and downlink configuration 0", and then searches for a fixed uplink subframe of "TDD uplink and downlink configuration 0", and learns as "subframe 2" and "subframe 7".
  • the eNB may select one of the subframes used for retransmission by the UE, and in this embodiment, select "subframe 7".
  • the eNB may reply to the PHICH signaling on the subframe 0, where the NACK is included, and is used to indicate that the eNB does not correctly receive the data packet sent by the UE on the uplink subframe 3.
  • the eNB sends a UL_grant to the UE.
  • the value of the UL_index in the UL-grant can be used to represent the subframe 4 and/or the subframe 7.
  • the UL_index 01, used to represent subframe 7.
  • the UE performs retransmission.
  • the UE After receiving the PHICH signaling replied by the eNB on the subframe 0, the UE obtains a NACK, and learns that the eNB does not correctly receive the data packet sent by the UE on the uplink subframe 3. According to the prior art, the UE will directly The retransmission packet of the data packet is transmitted to the eNB on the frame 4.
  • the UE sends the retransmission packet of the data packet on the subframe 3, and according to the scheme of the embodiment, the UE Retransmission will be performed on subframe 2 of the next TDD radio frame.
  • the eNB selects a fixed uplink subframe as an example. It can be understood that, in an actual application, the eNB may also select a subframe configured as an uplink according to service requirements, and the specific process is not limited herein.
  • the UL_grant sent by the eNB on the subframe 0 may schedule the UE to retransmit on the subframe 4 or the subframe 7, and the UL_grant transmitted by the eNB in the subframe 6 may schedule the UE to be in the subframe. Retransmission is performed on frame 2 or subframe 3, and so on.
  • subframe 2 and subframe 7 are both uplink subframes, that is, can be regarded as fixed uplink subframes, and other uplink subframes except subframe 2 and subframe 7
  • the foregoing embodiment can be further extended to the general situation, that is, the eNB selects a fixed one of the multiple subframes according to the timing relationship of the uplink and downlink configuration of the first reference time division duplex TDD.
  • the uplink subframe is used as the second subframe; or the eNB selects one uplink dynamic subframe from the multiple subframes according to the timing relationship of the uplink and downlink configuration of the first reference TDD, and uses the dynamic subframe as the second subframe. frame.
  • the first reference TDD uplink and downlink configuration may be the currently used TDD uplink and downlink configuration (that is, the TDD uplink and downlink configuration notified in the system message) or the TDD uplink and downlink configuration 0 or other configuration (such as the new timing relationship in FIG. 5). That is, it is not the timing relationship in the existing seven configurations.
  • the timing relationship may be an uplink scheduling timing relationship, such as a timing relationship of UL_grant to PUSCH of the initial transmission and/or retransmission.
  • the UE sends the retransmission packet of the data packet in a second subframe indicated by the scheduling signaling according to the scheduling relationship between the scheduling signaling and the first reference TDD uplink and downlink configuration.
  • Figure 4 above shows the uplink scheduling sequence of "TDD uplink and downlink configuration 0". If the uplink scheduling sequence of other configuration types or the customized uplink scheduling timing is used in actual applications, this implementation can also be performed according to this implementation. A similar scheme is processed in the example.
  • FIG. 5 is a schematic diagram of a custom uplink scheduling sequence in this embodiment:
  • the timing relationship between the initial transmission and the retransmission of the two fixed uplink subframes 2 and 7 is unique, that is, the UL. grant and the PUSCH are corresponding to each other, and the UL_grant/PH ICH and the Re-PUSCH are also - Correspondingly, UL_grant is not required in the UL_grant that schedules fixed uplink subframes (such as subframe 2 and subframe 7).
  • UL_grant The usage of the UL_DAI may remain unchanged, that is, the number of subframes scheduled in a certain time window is notified, and the number of subframes includes a subframe of the PDSCH scheduled for the time window and used for downlink semi-persistent scheduling (SPS, Semi) -Per sis tent Schedul ing ) Released subframes; for scheduling UL_grants configured as uplink dynamic subframes, when the TDD uplink and downlink configuration is not 0, UL_DAI in UL_grant can be used as UL_index, the specific data transmission process and the foregoing The processes described in the embodiments are similar, and are not described herein again.
  • the UE may perform data retransmission in the second subframe according to the scheduling of the eNB. If, at this time, the UE needs to upload some non-adaptive retransmissions in the second subframe.
  • the retransmission packet of the data packet the UE can use the following processing methods:
  • the UE may discard the retransmission packet of the non-adaptive retransmitted data packet, and only transmit the retransmission packet of the adaptive retransmitted data packet on the second subframe;
  • the UE may also send two retransmission packets simultaneously in the second subframe, for example, multiple codewords may be used, or multiple uplink resource block clusters (c lus ter ), and the coding manner may use joint or independent coding.
  • multiple codewords may be used, or multiple uplink resource block clusters (c lus ter ), and the coding manner may use joint or independent coding.
  • c lus ter multiple uplink resource block clusters
  • the eNB if the eNB does not correctly receive the data packet sent by the UE in the first subframe, the eNB selects the second subframe from the multiple subframes, and notifies the UE to send the data packet in the second subframe.
  • the retransmission packet enables the eNB to schedule the UE to transmit the retransmission packet on a certain subframe. Since the eNB can learn which dynamic subframes are configured as uplink and which dynamic subframes are configured as downlink, the second sub-selection by the eNB Downlink data is not sent on the frame, so collisions of data transmission can be avoided, thereby improving data transmission performance and scheduling flexibility.
  • an embodiment of the evolved base station of the present invention includes:
  • the selecting unit 601 is configured to: when the data packet sent by the user equipment UE in the first subframe is not correctly received, select the second subframe from the multiple subframes;
  • the signaling sending unit 602 is configured to send scheduling signaling to the UE, so that the UE sends the retransmission packet of the data packet in the second subframe selected by the selecting unit 601.
  • the selecting unit 601 can select the second subframe by using multiple methods, and specifically includes the following situations:
  • the selecting unit is specifically configured to query the currently used TDD uplink and downlink configuration class. Type, and determine a fixed uplink subframe as a second subframe from multiple subframes according to the TDD uplink and downlink configuration type.
  • the function of the selected unit may also be allocated to several modules, as illustrated in the following example. :
  • Another embodiment of the evolved base station of the present invention includes:
  • the selecting unit 701 is configured to: when the data packet sent by the user equipment UE in the first subframe is not correctly received, select the second subframe from the multiple subframes;
  • the signaling sending unit 702 is configured to send scheduling signaling to the UE, so that the UE sends the retransmission packet of the data packet in the second subframe selected by the selecting unit 701.
  • the selecting unit 701 may further include:
  • the query module 701 1 is configured to query the currently used TDD uplink and downlink configuration type
  • the determining module 7012 is configured to determine, according to the TDD uplink and downlink configuration type that is queried by the query module 7011, a fixed uplink subframe from the multiple subframes as the second subframe.
  • the query module 7011 in the selecting unit 701 may first query the currently used TDD uplink and downlink configuration type.
  • the uplink and downlink configuration types of the TDD may be as shown in the foregoing Table 1. After the dynamic subframe is introduced, the uplink and downlink configurations shown in Table 1 may also be changed, which is not limited herein.
  • the determining module 7012 can determine a fixed uplink subframe from the multiple subframes according to the TDD uplink and downlink configuration type.
  • the subframe in the TDD radio frame may be divided into a fixed uplink subframe, a fixed downlink subframe, and a dynamic subframe, where the fixed uplink subframe can only be used to send uplink data.
  • the fixed downlink subframe can only be used to send downlink data.
  • the dynamic subframe can decide to send uplink data or downlink data according to actual conditions.
  • the TDD radio frame necessarily includes at least one fixed uplink subframe, and the determining module 7012 may be configured according to the TDD uplink and downlink configuration type and the fixed uplink subframe. The correspondence determines a fixed uplink subframe.
  • the determining module 7012 determines the fixed uplink subframe, since the fixed uplink subframe can only be used for transmitting the uplink data, the UE does not cause a data transmission conflict when the UE uses the fixed uplink subframe for retransmission, so the determining module 7012 can fix the uplink subframe.
  • the frame is used as the second subframe, if the fixed uplink subframe has If multiple, the determining module 7012 may also select one of them as the second subframe.
  • the signaling sending unit 702 can send scheduling signaling to the UE, so that the UE transmits the retransmission packet of the data packet in the second subframe determined by the determining module 701 2 .
  • the process of the signaling sending unit 702 sending the scheduling signaling to the UE may be similar to the content described in the foregoing step 305 in the embodiment shown in FIG. 3, and details are not described herein again.
  • Another embodiment of the evolved base station of the present invention is similar to the embodiment shown in FIG. 7, except that the selecting unit is specifically configured to:
  • the selecting unit is specifically configured to select a dynamic subframe configured as an uplink from the multiple subframes as the second subframe.
  • the function may also be implemented by a module in the selecting unit.
  • FIG. 8 another embodiment of the evolved base station of the present invention includes:
  • the selecting unit 801 is configured to: when the data packet sent by the user equipment UE in the first subframe is not correctly received, select the second subframe from the multiple subframes;
  • the signaling sending unit 802 is configured to send scheduling signaling to the UE, so that the UE sends the retransmission packet of the data packet in the second subframe selected by the selecting unit 801.
  • the selecting unit 801 may further include:
  • the determining module 801 1 is configured to select, from the plurality of subframes, a dynamic subframe configured as an uplink as the second subframe.
  • the evolved base station when the evolved base station does not correctly receive the data packet sent by the user equipment UE in the first subframe, the evolved base station may obtain the service requirement information of the currently running service, for example, the QoS parameter, and determine which according to the service requirement information.
  • Dynamic subframes are configured for uplink and dynamic subframes are configured for downlink.
  • the eNB may Increase the number of downlink subframes in a dynamic subframe.
  • the determining module 801 1 may select dynamic subframes configured as uplinks from the plurality of subframes.
  • the determining module 801 1 selects the dynamic subframe configured as the uplink, the UE can send the uplink data in the dynamic subframe configured as the uplink, and the UE does not cause the data transmission conflict when using the dynamic subframe configured as the uplink for retransmission. Therefore, the determining module 801 1 may use the dynamic subframe configured as the uplink as the second subframe. If there are multiple dynamic subframes configured as the uplink, the determining module 801 1 may also select one of the subframes as the second subframe.
  • the signaling transmitting unit 802 can send scheduling signaling to the UE, so that the UE transmits the retransmission packet of the data packet in the second subframe determined by the determining module 801 1 .
  • the process of the signaling sending unit 802 sending the scheduling signaling to the UE may be similar to the content described in the foregoing step 305 in the embodiment shown in FIG. 3, and details are not described herein again.
  • the selecting unit in the eNB may select the second subframe by using other methods, as long as the second subframe is made. It is a sub-frame that can send uplink data, and the specific selection manner is not limited herein.
  • the selecting unit in the eNB selects the second subframe from the multiple subframes, and is notified by the signaling sending unit in the eNB.
  • the UE sends the retransmission packet of the data packet on the second subframe, so that the eNB can schedule the UE to send the retransmission packet in a certain subframe. Since the eNB can learn which dynamic subframes are configured as uplink, which dynamic subframes are The configuration is downlink, so downlink data is not sent on the second subframe selected by the eNB, so collision of data transmission can be avoided, thereby improving data transmission performance and scheduling flexibility.
  • an embodiment of the user equipment of the present invention includes:
  • the sending unit 901 is configured to send a data packet to the evolved base station eNB on the first subframe, and the signaling receiving unit 902 is configured to: when the eNB does not correctly receive the data packet sent by the sending unit 901, receive the scheduling signaling sent by the eNB. ;
  • the retransmission unit 903 is configured to send, according to the scheduling signaling received by the signaling receiving unit 902, the retransmission packet of the data packet in the second subframe indicated by the scheduling signaling, where the second subframe is received by the eNB. Selected from multiple sub-frames.
  • another embodiment of the user equipment of the present invention includes:
  • the sending unit 1001 is configured to send a data packet to the evolved base station eNB in the first subframe.
  • the signaling receiving unit 1002 is configured to: when the eNB does not correctly receive the data packet sent by the sending unit 1001, receive the scheduling signaling sent by the eNB. ;
  • the retransmission unit 1003 is configured to send, according to the scheduling signaling received by the signaling receiving unit 1002, the retransmission packet of the data packet in the second subframe indicated by the scheduling signaling, where the second subframe is from the eNB. Selected from the sub-frames.
  • the scheduling signaling in this embodiment may be uplink scheduling grant signaling.
  • the retransmission unit 1003 in this embodiment may further include:
  • the first obtaining module 10031 is configured to obtain indication information for indicating the second subframe included in the uplink scheduling grant signaling.
  • the first determining module 10032 is configured to determine, according to the indication information acquired by the first obtaining module 10031, the second subframe.
  • the first sending module 10033 is configured to send a retransmission packet of the data packet in the second subframe determined by the first determining module 10032.
  • the scheduling signaling in this embodiment may be an uplink scheduling grant UL. Grant signaling.
  • the indication information in this embodiment may be a UL_index field in the UL_grant signaling, or a DAI field, or a reserved field of the UL.grant signaling.
  • the new parameter in the new parameter, or the new scrambling code in the UL_grant signaling, is not limited here.
  • the retransmission unit 1003 in this embodiment may further include:
  • the second obtaining module 10034 is configured to obtain a sending moment or a carrier of the uplink scheduling grant signaling.
  • the second determining module 10035 is configured to determine, according to the sending moment or the carrier of the uplink scheduling grant signaling acquired by the second acquiring module 10034, the second sub-module. frame;
  • the second sending module 10036 is configured to send a retransmission packet of the data packet in the second subframe determined by the second determining module 10035.
  • the eNB communicates with the UE in the TDD mode, and the sending unit 1001 in the UE may send the data packet to the eNB by using the fixed uplink subframe or the dynamic subframe configured as the uplink.
  • the sending unit 1001 sends a data packet to the eNB in the first subframe, where the first subframe may be any fixed uplink subframe in the TDD radio frame, or a dynamic subframe configured as an uplink, which is not limited herein. .
  • the signaling receiving unit 1002 in the UE may receive the UL-grant signaling sent by the eNB.
  • the first obtaining module 10031 in the retransmission unit 1003 may obtain the indication information for indicating the second subframe from the UL_grant signaling, and then the first determining module 10032 in the retransmission unit 1003 may obtain the indication information according to the obtained information. After determining the second subframe, after the first determining module 10032 determines the second subframe, the first sending module 10033 in the retransmission unit 1003 may send the retransmission packet of the data packet in the second subframe.
  • the UE obtains the related information of the second subframe by using the foregoing manner, and obtains the related information of the second subframe by using other methods.
  • the way to use is related:
  • the UE may read the indication information from the UL_grant signaling, and determine the second subframe according to the indication information;
  • the indication information in this embodiment may be a UL_index field in the UL_grant signaling, or a DAI field, or a new parameter in a reserved field of the UL_grant signaling, or a new scrambling code in the UL_grant signaling, specifically Not limited.
  • the UE may learn the information about the second subframe according to the information such as the transmission time or the carrier of the UL_grant signaling.
  • the second obtaining module 10034 in the retransmission unit 1003 may acquire the transmission time or carrier of the UL_grant signaling, and then, in the retransmission unit 1003.
  • the second determining module 10035 may determine the second subframe according to the sending time or carrier of the UL_grant signaling acquired by the second obtaining module 10034. After the second determining module 10035 determines the second subframe, the retransmission unit 1003
  • the second sending module 10036 can then send the retransmission packet of the data packet in the second subframe.
  • the signaling receiving unit 1002 in the UE may receive the scheduling signaling sent by the eNB, and the retransmission unit 1003 may And transmitting, in the second subframe indicated by the scheduling signaling, a retransmission packet of the data packet, where the second subframe is selected by the eNB from multiple subframes, because the eNB can learn which dynamic subframes are configured as uplink Which dynamic subframes are configured as downlinks, so downlink data is not transmitted on the second subframe selected by the eNB, so collision of data transmission can be avoided, thereby improving data transmission performance and scheduling flexibility.
  • the retransmission unit is specifically configured to:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

数据传输方法、 演进基站以及用户设备 本申请要求于 2011 年 02 月 28 日提交中国专利局、 申请号为 201110047812.8、 发明名称为"数据传输方法、 演进基站以及用户设备"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及无线通讯技术领域, 具体涉及一种数据传输方法、 演进基 站以及用户设备。
背景技术 长期演进( LTE, Long Term Evolution ) 系统的双工方式主要包括频分 双工( FDD, Frequency Division Duplexing )方式以及时分双工( TDD, Time Division Duplexing )方式。
在 TDD方式中, 演进基站( eNB )与用户设备 ( UE , User Equipment ) 在同一个频率上进行通信, 其中上下行数据传输在时间上分开, 具体的, 一个无线帧包含两个半帧, 每个半帧包含五个子帧。 TDD方式支持不同的 上下行配置, 可以根据上下行平均业务需求, 通过系统消息半静态地调整 上下行配置。
LTE TDD系统总共包括七种上下行配置类型, 如表 1所示, 其中 "D" 表示下行子帧, "U" 表示上行子帧, "S" 表示特殊子帧, 也用于下行数据 传输。
表 1
上下行配 切换 子帧号
周期 0 1 2 3 4 5 6 7 8 9
0 5 ms D S U u U D S U U U
1 5 ms D S U u D D S U U D
2 5 ms D S u D D D S u D D
3 10 ms D S u u U D D D D D 4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
由于无线网络的特性, UE向 eNB发送的数据包可能会丟失, 或者是 出错,若 eNB未成功接收 UE的数据包,则 eNB会向 UE反馈 NACK指令, 用以指示 UE重传该数据包。
目前 TDD 方式下的数据包重传机制为: 当 UE接收到 eNB 发送的 NACK指令时, 则 UE会在标准预先配置的与该数据包初传的子帧唯一对 应的一个上行子帧上向 eNB重传该数据包,重传包可以由 eNB发送的上行 调度授权(UL— grant )进行调度, 也可以没有 UL— grant进行调度。
LTE 系统中, 由于上下行配置是根据平均业务需求通过系统消息半静 态配置的, 因此可能会出现配置的上下行配比与瞬时业务类型不匹配, 从 而不能有效利用资源。为此, LTE 系统的后续版本,如 Release-11或 12等, 引入了动态 TDD子帧配置, 即某些子帧可以动态地配置为下行或上行, 这 些子帧被称为动态子帧 ( Dynamical Subframe ) , 也可以叫做灵活子帧 ( Flexible Subframe ), 后续为简要描述, 均用 "动态子帧" 进行说明。
由于动态子帧的引入, 现有的 TDD方式下的数据包重传机制则会存在 如下的问题:
当 UE接收到 eNB发送的 NACK指令时, UE会在对应的上行子帧上 向 eNB重传该数据包, 引入动态子帧之后, 如果 UE原先计划向 eNB重传 该数据包的上行子帧为动态子帧, 且该动态子帧已经被 eNB调整为下行子 帧, 则会出现数据传输冲突, 使得 UE无法按照原计划重传该数据包, 或者 使得 eNB无法按照原计划下发数据包, 从而影响数据传输性能和调度灵活 性。 发明内容 本发明实施例提供了一种数据传输方法、 演进基站以及用户设备, 能 够避免数据传输冲突, 提高数据传输性能和调度灵活性。
本发明实施例提供的数据传输方法, 包括: 若演进基站 eNB未正确接 收用户设备 UE在第一子帧上发送的数据包, 则所述 eNB从多个子帧中选取 第二子帧; 所述 eNB向所述 UE发送调度信令, 使得所述 UE在所述第二子 帧上发送所述数据包的重传包。
本发明实施例提供的数据传输方法, 包括: 用户设备 UE在第一子帧上 向演进基站 eNB发送数据包; 若所述 eNB未正确接收到所述数据包, 则所 述 UE接收所述 eNB发送的调度信令; 所述 UE根据所述调度信令, 在所述 调度信令指示的第二子帧上发送所述数据包的重传包, 所述第二子帧由所 述 eNB从多个子帧中选取。
本发明实施例提供的演进基站, 包括: 选取单元, 用于当未正确接收 用户设备 UE在第一子帧上发送的数据包时, 从多个子帧中选取第二子帧; 信令发送单元, 用于向所述 UE发送调度信令, 使得所述 UE在所述选取单 元选取的第二子帧上发送所述数据包的重传包。
本发明实施例提供的用户设备, 包括: 发送单元, 用于在第一子帧上 向演进基站 eNB发送数据包; 信令接收单元, 用于当所述 eNB未正确接收 到所述发送单元发送的数据包时, 接收所述 eNB发送的调度信令; 重传单 元, 用于根据所述信令接收单元接收的调度信令, 在所述调度信令所指示 的第二子帧上发送所述数据包的重传包, 所述第二子帧由所述 eNB从多个 子帧中选取。
从以上技术方案可以看出, 本发明实施例具有以下优点:
本发明实施例中,若 eNB未正确接收 UE在第一子帧上发送的数据包, 则 eNB会从多个子帧中选取第二子帧, 并通知 UE在该第二子帧上发送该 数据包的重传包, 使得 eNB可以调度 UE在某个子帧上发送重传包, 由于 eNB 可以获知哪些动态子帧被配置为上行, 哪些动态子帧被配置为下行, 所以由 eNB选择的第二子帧上不会发送下行数据, 因此可以避免数据传输 的冲突, 从而提高数据传输性能和调度的灵活性。
附图说明 图 1为本发明数据传输方法一个实施例示意图;
图 2为本发明数据传输方法另一实施例示意图;
图 3为本发明数据传输方法另一实施例示意图;
图 4为本发明 TDD上下行配置 0的上行调度时序示意图; 图 5为本发明自定义上行调度时序示意图;
图 6为本发明演进基站一个实施例示意图;
图 7为本发明演进基站另一实施例示意图;
图 8为本发明演进基站另一实施例示意图;
图 9为本发明用户设备一个实施例示意图;
图 1 0为本发明用户设备另一实施例示意图。 具体实施方式 本发明实施例提供了一种数据传输方法、 演进基站以及用户设备, 能 够避免数据传输冲突, 提高数据传输性能和调度灵活性。
请参阅图 1 , 本发明数据传输方法一个实施例包括:
1 01、 若 eNB未正确接收 UE在第一子帧上发送的数据包, 则 eNB从多 个子帧中选取第二子帧;
eNB与 UE釆用 TDD方式进行通信, UE可以通过固定上行子帧, 或者被 配置为上行的动态子帧向 eNB发送数据包。
本实施例中, UE在第一子帧上向 eNB发送数据包, 该第一子帧可以是 TDD无线帧中的任意一个固定上行子帧, 或者是被配置为上行的动态子帧, 具体此处不作限定。
需要说明的是, UE在第一子帧上发送的数据包可以是数据初传包, 也 可以是数据重传包, 具体此处不作限定。
UE在第一子帧上发送数据包之后, eNB可以判断是否正确接收到 UE发 送的数据包, 具体的判断方式此处不作限定。
若 eNB确认未正确接收到 UE在第一子帧上发送的数据包, 则 eNB可以 要求 UE进行重传, 即发送该数据包的重传包, 本实施例中, eNB可以从多 个子帧中选取第二子帧。
1 02、 eNB向 UE发送调度信令, 使得 UE在第二子帧上发送重传包。 当 eNB选取到第二子帧之后, eNB可以向 UE发送调度信令, 以指示 UE 在该第二子帧上发送该数据包的重传包。
需要说明的是, eNB可以釆用显式或隐式的方式向 UE通知第二子帧的 相关信息, 例如可以将第二子帧的标识直接携带在调度信令中, 该标识可 以是新增的比特位, 新增的 CRC掩码, 或者也可以通过调度信令的发送时 刻或载波, 或该调度信令在搜索空间中的位置等来隐含表示第二子帧的相 关信息。
本实施例中,若 eNB未正确接收 UE在第一子帧上发送的数据包,则 eNB 会多个子帧中选取第二子帧, 并通知 UE在该第二子帧上发送该数据包的重 传包, 使得 eNB可以调度 UE在某个子帧上发送重传包, 由于 eNB可以获知 哪些动态子帧被配置为上行, 哪些动态子帧被配置为下行, 所以由 eNB选 择的第二子帧上不会发送下行数据, 因此可以避免数据传输的冲突, 从而 提高数据传输性能和调度灵活性。
上面从 eNB的角度对本发明数据传输方法进行了说明, 下面从 UE的角 度对本发明数据传输方法进行说明,请参阅图 2 , 本发明数据传输方法另一 实施例包括:
201、 UE在第一子帧上向 eNB发送数据包;
eNB与 UE釆用 TDD方式进行通信, UE可以通过固定上行子帧, 或者是 被配置为上行的动态子帧向 eNB发送数据包。
本实施例中, UE在第一子帧上向 eNB发送数据包, 该第一子帧可以是 TDD无线帧中的任意一个固定上行子帧, 或者是被配置为上行的动态子帧, 具体此处不作限定。
需要说明的是, UE在第一子帧上发送的数据包可以是数据初传包, 也 可以是数据重传包, 具体此处不作限定。
202、 若 eNB未正确接收到数据包, 则 UE接收 eNB发送的调度信令; 若 UE在第一子帧上向 eNB发送的数据包未被 eNB正确接收, 则 UE可 以接收到 eNB发送的调度信令, 该调度信令用于指示 eNB进行数据重传。
203、 UE根据调度信令,在该调度信令所指示的第二子帧上发送重传包。 UE接收到调度信令之后, 可以根据该调度信令获知第二子帧的相关信 息, 具体的获取方式与 eNB所釆用的方式相关, 若 eNB釆用显式的方式向 UE通知第二子帧的相关信息,则 UE可以从该调度信令中直接获知第二子帧 的标识, 若 eNB釆用隐式的方式向 UE通知第二子帧的相关信息, 则 UE可 以根据调度信令的发送时刻等信息获知第二子帧的相关信息。
本实施例中, 该第二子帧由 eNB从多个子帧中选取。
当 UE获知了第二子帧的相关信息之后, 则可以在第二子帧上向 eNB发 送该数据包的重传包。
本实施例中, 若 eNB未正确接收 UE在第一子帧上发送的数据包, 则 UE 可以接收到 eNB发送的调度信令, 并根据该调度信令, 在该调度信令所指 示的第二子帧上发送该数据包的重传包, 该第二子帧由 eNB从多个子帧中 选取, 由于 eNB 可以获知哪些动态子帧被配置为上行, 哪些动态子帧被配 置为下行, 所以由 eNB选择的第二子帧上不会发送下行数据, 因此可以避 免数据传输的冲突, 从而提高数据传输性能和调度灵活性。
下面从 UE与 eNB交互的角度对本发明数据传输方法进行说明, 请参阅 图 3 , 本发明数据传输方法另一实施例包括:
301、 UE在第一子帧上向 eNB发送数据包;
eNB与 UE釆用 TDD方式进行通信, UE可以通过固定上行子帧, 或者是 被配置为上行的动态子帧向 eNB发送数据包。
UE在第一子帧上向 eNB发送数据包, 该第一子帧可以是 TDD无线帧中 的任意一个固定上行子帧, 或者是被配置为上行的动态子帧, 具体此处不 作限定。
需要说明的是, UE在第一子帧上发送的数据包可以是数据初传包, 也 可以是数据重传包, 具体此处不作限定。
302、 eNB判断是否正确接收到数据包, 若是, 则执行步骤 303 , 若否, 则执行步骤 304 ;
当 UE在第一子帧上向 eNB发送数据包之后, eNB可以判断是否正确接 收到数据包, 具体的判断方式可以为:
eNB判断接收到的数据包是否可以正确解码, 若无法正确解码, 则确定 未正确接收到数据包。
本实施例中仅以一个例子说明了 eNB判断是否正确接收到数据包的方 式, 可以理解的是, 在实际应用中, 除了上述的判断方式之外, eNB还可以 釆用更多的方式判断是否正确接收到数据包, 具体此处不作限定。
303、 继续执行数据传输流程;
若 eNB正确接收到的 UE在第一子帧上发送的数据包, 则可以继续执行 后续的数据传输流程, 此处不作限定。
304、 eNB选取第二子帧;
若 eNB未正确接收到的 UE在第一子帧上发送的数据包,则说明需要 UE 进行重传。
eNB可以从多个子帧中选取要求 UE重传所使用的子帧, 即第二子帧。 本实施例中, eNB可以釆用多种方式选取第二子帧, 具体可以为: 一、 从多个子帧中选取固定上行子帧要求 UE进行重传:
( 1 ) eNB查询当前使用的 TDD上下行配置类型;
TDD上下行配置类型可以如前述表 1所示, 当引入动态子帧之后, 表 1 所示的上下行配置也可能会有所变化, 具体此处不作限定。
( 2 ) eNB根据 TDD上下行配置类型从多个子帧中确定一个固定上行子 帧作为第二子帧。
eNB查询到当前使用的 TDD上下行配置类型之后,可以根据该 TDD上下 行配置类型从多个子帧中确定固定上行子帧。
本实施例中, 当引入动态子帧之后, 则 TDD无线帧中的子帧可以分为 固定上行子帧, 固定下行子帧以及动态子帧, 其中, 固定上行子帧只能用 于发送上行数据, 固定下行子帧只能用于发送下行数据, 动态子帧可以根 据实际情况决定发送上行数据或下行数据。
需要说明的是, 无论对于哪一种 TDD上下行配置类型, TDD无线帧中都 必然会包括至少一个固定上行子帧, 则 eNB可以根据 TDD上下行配置类型 与固定上行子帧之间的对应关系确定固定上行子帧。
eNB确定了固定上行子帧之后,由于固定上行子帧只能用于发送上行数 据, UE使用固定上行子帧进行重传时不会造成数据传输冲突, 所以 eNB可 以将固定上行子帧作为第二子帧, 若固定上行子帧有多个, 则 eNB也可以 选择其中的一个作为第二子帧。
二、 根据业务需求选取上行子帧要求 UE进行重传:
( 1 ) eNB按照业务需求确定哪些动态子帧被配置为上行, 哪些动态子 帧被配置为下行;
eNB 可以获取当前正在运行的业务的业务需求信息, 例如服务质量 ( QoS , Qua l i ty of Serv i ce )参数, 根据业务需求信息确定哪些动态子帧 被配置为上行, 哪些动态子帧被配置为下行。
例如当某业务的 QoS参数表示该业务需要较高的下行速率时, eNB可以 增加动态子帧中下行子帧的数量。
( 2 ) eNB从多个子帧中选取一个配置为上行的动态子帧作为第二子帧。 eNB确定了哪些动态子帧被配置为上行,哪些动态子帧被配置为下行之 后, 可以从多个子帧中选取配置为上行的动态子帧。
eNB确定了配置为上行的动态子帧之后, 由于 UE在配置为上行的动态 子帧上可以发送上行数据, UE使用配置为上行的动态子帧进行重传时不会 造成数据传输冲突, 所以 eNB可以将配置为上行的动态子帧作为第二子帧, 若配置为上行的动态子帧有多个, 则 eNB也可以选择其中的一个作为第二 子帧。
上述描述了两种 eNB选取第二子帧的方式, 可以理解的是, 在实际应 用中, eNB还可以釆用其他更多的方式选取第二子帧, 只要使得第二子帧为 可以发送上行数据的子帧即可, 具体选取方式此处不作限定。
305、 eNB向 UE发送调度信令;
eNB选取了第二子帧之后,可以向 UE发送调度信令以指示 UE在第二子 帧上发送该数据包的重传包。
eNB向 UE发送的调度信令可以是层 1信令或者是层 2信令, 例如可以 为物理下行控制信道 ( PDCCH , Phys ica l Downl ink Contro l Channe l )信 令, 和 /或物理 HARQ指示信道(PHICH, Phys ica l HARQ Indica tor Channe l ) 信令。
本实施例中, 以上行调度授权(UL_grant )信令作为 PDCCH信令为例 进行说明。
本实施例中, eNB可以釆用显式或隐式的方式向 UE通知第二子帧的相 关信息:
当釆用显式的方式向 UE 通知第二子帧的相关信息时, eNB 可以在 UL_grant信令中携带用于表示第二子帧的指示信息。
该指示信息可以是 UL_grant信令中的上行索引 (UL_ index )字段或下 行分西己索引 ( DAI , Downl ink As s ignment Index ) 字段, 或者 eNB还可以 在 UL_grant信令中新增比特, 或新增扰码等方式以携带该指示信息。
例如, 可以在 UL_grant 信令的保留字段中新增一个 1 比特的参数 ( Subframe. ID ), 用来表示第二子帧的标识, 或者可以在 UL_grant信令中 增加若干比特的扰码, 使用其中的 2个比特用来表示第二子帧的标识。
当釆用隐式的方式向 UE 通知第二子帧的相关信息时, eNB 可以通过 UL_grant信令的发送时刻或载波等信息来隐含表示第二子帧的相关信息。 例如, eNB若在无线帧 (即载波) 1的子帧 6上发送 UL_grant信令, 则表示要求 UE在无线帧 2的子帧 2上进行重传, 即第二子帧为无线帧 2的 子帧 2 ; eNB若在子帧 0上发送 UL_ grant信令, 则表示要求 UE在子帧 7上 进行重传, 即第二子帧为子帧 7 , 通过上述的方式则可以隐含表示第二子帧 的相关信息。
需要说明的是, 上述隐含表示的方案中, 发送 UL_grant信令的子帧与 重传的子帧之间的对应关系可以由 eNB与 UE预先约定, 在实际应用中可以 优先约定使用固定上行子帧进行重传, 也可以约定其他的处理方式, 具体 此处不作限定。
在实际应用中, eNB还可以通过其他的方式向 UE通知第二子帧的相关 信息, 具体此处不作限定。
306、 UE根据调度信令,在该调度信令所指示的第二子帧上发送重传包。 UE接收到 UL_ grant信令之后, 可以根据该 UL_ grant信令获知第二子 帧的相关信息, 具体的获取方式与 eNB所釆用的方式相关:
若 eNB釆用显式的方式向 UE通知第二子帧的相关信息, 则 UE可以从 该 UL_grant信令中读取指示信息, 并根据该指示信息确定第二子帧。
本实施例中的指示信息可以为 UL_grant信令中的 UL_ index字段, 或 DAI字段, 或 UL_grant信令的保留字段中的新增参数, 或 UL_ grant信令中 的新增扰码, 具体此处不作限定。
若 eNB釆用隐式的方式向 UE通知第二子帧的相关信息, 则 UE可以根 据 UL_grant信令的发送时刻或载波等信息获知第二子帧的相关信息。
具体的, UE接收到 UL— grant信令之后, 可以获知该 UL_grant信令是 在哪一个无线帧的哪一个子帧上发送的, 然后可以根据预先与 eNB的约定, 获知该 UL_grant信令所隐含表示的含义, 从而得到第二子帧的相关信息。
例如, UE接收到 UL_grant信令之后, 若获知该 UL_grant信令是在无 线帧 (即载波) 1的子帧 6上发送的, 则根据预先与 eNB的约定, 可知 eNB 要求 UE在无线帧 2的子帧 2上进行重传, 则可获知第二子帧为无线帧 2的 子帧 2 ;
UE接收到 UL_ grant信令之后, 若获知该 UL_grant信令是在子帧 0上 发送的 ,则根据预先与 eNB的约定,可知 eNB要求 UE在子帧 7上进行重传, 即第二子帧为子帧 7。 当 UE获知了第二子帧的相关信息之后, 则可以在第二子帧上向 eNB发 送该数据包的重传包。
本实施例中,若 eNB未正确接收 UE在第一子帧上发送的数据包,则 eNB 会从多个子帧中选择第二子帧, 并通知 UE在该第二子帧上发送该数据包的 重传包, 使得 eNB可以调度 UE在某个子帧上发送该数据包的重传包, 由于 eNB可以获知哪些动态子帧被配置为上行, 哪些动态子帧被配置为下行, 所 以由 eNB选择的第二子帧上不会发送下行数据, 因此可以避免数据传输的 冲突, 从而提高数据传输性能和调度灵活性。
为便于理解, 下面以 "TDD上下行配置 0" 为例对本发明数据传输方法 进行说明, 请参阅图 4 , 图 4为本实施例中 "TDD上下行配置 0" 的上行调 度时序示意图:
引入了动态子帧之后, 假设 "TDD上下行配置 0" 中, 子帧 0 , 1 , 5 , 6 为固定下行子帧, 子帧 2 , 7为固定上行子帧, 子帧 3 , 4 , 8 , 9为动态子 帧。
动态子帧可以默认为下行子帧, 即 UE会在动态子帧上进行 PDCCH的检 测, 直到 UE收到针对于这个动态子帧的上行调度信令, 如 UL_grant信令, 才会将该动态子帧作为上行子帧使用。
为确保 UE能够收到 UL_grant , eNB可以在固定下行子帧上向 UE发送 UL_grant进行上行调度, 本实施例中的上行调度时序如图 4所示:
在图 4中, "UL_grant,,对应的是 eNB发送 UL_grant的子帧, "物理上 行共享信道 ( PUSCH, Phys ica l Upl ink Shared Channe l )" 对应的是 UE发 送数据包的子帧, " PHICH " 对应的是 eNB 发送 ACK/NACK 的子帧, "Re-PUSCH" 对应的是 UE发送重传包的子帧。
由图 4可以看出, 每个固定下行子帧可以调度两个上行子帧的数据包, 例如子帧 6可以调度子帧 2和 /或子帧 3的数据包, 具体可以由子帧 6上发 送的 UL_grant中的上行索引字段 " UL_ index,, 决定, 比如 UL_ index=10时 表示调度子帧 2 的数据包, UL_ index=01 时表示调度子帧 3 的数据包, UL_ index=l l时表示同时调度子帧 2和 3的数据包。
基于图 4 的上行调度时序, 本实施例中, 具体的数据传输过程可以如 下:
( 1 ) eNB发送 UL_grant ; eNB在子帧 6上向 UE发送 UL-grant , 该 UL-grant中的 UL_ index=01。 ( 2 ) UE接收 UL_grant;
UE在子帧 6上接收到 eNB发送的 UL_grant, 对 UL-grant进行解析, 得到 UL_index=01, 则可获知 UE在子帧 3上可以发送上行数据。
( 3) UE发送数据包;
UE在子帧 3上向 eNB发送数据包。
( 4 ) eNB选择 UE进行重传所使用的子帧;
当 eNB未正确接收到 UE在子帧 3上发送的数据包时, 则说明 UE需要 进行重传, eNB可以选择 UE进行重传所使用的子帧。
本实施例中, eNB若未正确接收到 UE在子帧 3上发送的数据包, 则可 以釆用以下方式选择 UE进行重传所使用的子帧:
eNB首先获取当前使用的 TDD上下行配置类型, 获知为 "TDD上下行配 置 0", 随后查找 "TDD上下行配置 0" 的固定上行子帧, 获知为 "子帧 2" 以及 "子帧 7", eNB可以从中选取一个作为 UE进行重传所使用的子帧, 本 实施例中 4叚设选择 "子帧 7"。
( 5 ) eNB回复 PHICH信令;
eNB可以在子帧 0上回复 PHICH信令, 其中包含 NACK, 用于表示 eNB 未正确接收到 UE在上行子帧 3上发送的数据包。
同时, eNB会向 UE发送 UL_grant, 为提高与现有方案的兼容性, 该 UL-grant中的 UL_ index的数值可以用以表示子帧 4和 /或子帧 7, 本实施 例中, UL_index=01, 用以表示子帧 7。
(6) UE进行重传。
UE接收到 eNB在子帧 0上回复的 PHICH信令后, 得到 NACK, 获知 eNB 未正确接收到 UE在上行子帧 3上发送的数据包, 按照现有技术的方案, 则 UE将直接在子帧 4上向 eNB发送该数据包的重传包。
但本实施例中, UE 会在子帧 0 上接收到 UL_grant, 并得到其中的 UL_index=01, 则 UE获知需要在子帧 7上发送上行数据, 则 UE并不会在子 帧 4上发送该数据包的重传包, 而会在子帧 7上发送该数据包的重传包。
同理, UE在子帧 2上发送的数据包如果需要重传, 按照现有技术的方 案, UE会在子帧 3上发送该数据包的重传包, 而根据本实施例的方案, UE 会在下一个 TDD无线帧的子帧 2上进行重传。 本实施例中, 仅以 eNB选择固定上行子帧为例进行说明, 可以理解的 是, 在实际应用中, eNB也可以根据业务需求选择被配置为上行的子帧, 具 体过程此处不作限定。
需要说明的是, 本实施例中, eNB在子帧 0上发送的 UL_grant可以调 度 UE在子帧 4或子帧 7上进行重传, eNB在子帧 6上发送的 UL_ grant可以 调度 UE在子帧 2或子帧 3上进行重传, 依此类推。
由此可以看出, 相对于现有标准的方案而言, 本实施例中并未引入新 的定时关系, 所以能够提高与现有标准的方案的兼容性。
可以看出, 当前的 7种 TDD上下行配置中子帧 2和子帧 7都是上行子 帧, 即可以看作固定的上行子帧, 而除子帧 2和子帧 7之外的其他上行子 帧可以被看作动态子帧, 因此上述实施例还可以扩展到一般情况, 即: 所述 eNB根据第一参考时分双工 TDD上下行配置的定时关系,从所述 多个子帧中选取一个固定的上行子帧作为第二子帧; 或者所述 eNB根据第 一参考 TDD上下行配置的定时关系, 从多个子帧中选取一个上行的动态子 帧, 将所述动态子帧作为所述第二子帧。
具体地, 该第一参考 TDD上下行配置可以为当前使用的 TDD上下行配 置(即系统消息中通知的 TDD上下行配置)或 TDD上下行配置 0或其他配置 (比如图 5中的新定时关系, 即不是现有 7种配置中的定时关系), 该定时 关系可以是上行调度定时关系, 比如初传和 /或重传的 UL_grant 到 PUSCH 的定时关系。
相应地, 所述 UE根据所述调度信令和第一参考 TDD上下行配置的定 时关系, 在所述调度信令指示的第二子帧上发送所述数据包的重传包。 上述图 4所示的是 "TDD上下行配置 0" 的上行调度时序示意图, 若在 实际应用中, 釆用其他配置类型的上行调度时序, 或者是自定义的上行调 度时序, 也可按照本实施例中类似的方案进行处理, 例如, 图 5 为本实施 例中自定义上行调度时序示意图:
在图 5中, 两个固定上行子帧 2和 7的初传和重传的时序关系都是唯 一的,即 UL. grant与 PUSCH是——对应的,且 UL_grant/PH ICH与 Re- PUSCH 也是——对应的,这样调度固定上行子帧(如子帧 2和子帧 7 )的 UL_grant 中就不需要 UL_ index的用法, 因此在 TDD上下行配置不为 0时, UL_grant 中的 UL_DAI的用法可以保持不变, 即通知某个时间窗内调度的子帧数, 该 子帧数包括该时间窗调度给 UE 的 PDSCH 的子帧和用于下行半持续调度 ( SPS , Semi-Per s i s tent Schedul ing )释放的子帧; 对于调度配置为上行 的动态子帧的 UL_grant ,在 TDD上下行配置不为 0时, UL_grant中的 UL_DAI 可以用作 UL_ index, 具体数据传输流程与前述实施例中描述的流程类似, 此处不再赘述。
需要说明的是, 上述实施例中, UE可以按照 eNB的调度在第二子帧上 进行数据重传, 若此时, 在该第二子帧上, UE还需要上传某些非自适应重 传的数据包的重传包, 则 UE可以釆用如下一些处理方式:
优选的, UE可以丟弃非自适应重传的数据包的重传包, 而仅在第二子 帧上发送自适应重传的数据包的重传包;
或者,
UE还可以将两个重传包同时在第二子帧上发送, 例如可以釆用多个码 字, 或多个上行资源块簇(c lus ter ), 编码方式可以釆用联合或独立编码, 具体此处不作限定。
本实施例中,若 eNB未正确接收 UE在第一子帧上发送的数据包,则 eNB 会从多个子帧中选择第二子帧, 并通知 UE在该第二子帧上发送该数据包的 重传包, 使得 eNB可以调度 UE在某个子帧上发送重传包, 由于 eNB可以获 知哪些动态子帧被配置为上行, 哪些动态子帧被配置为下行, 所以由 eNB 选择的第二子帧上不会发送下行数据, 因此可以避免数据传输的冲突, 从 而提高数据传输性能和调度灵活性。
下面对本发明实施例中的演进基站进行描述,请参阅图 6 , 本发明演进 基站一个实施例包括:
选取单元 601 , 用于当未正确接收用户设备 UE在第一子帧上发送的数 据包时, 从多个子帧中选取第二子帧;
信令发送单元 602 , 用于向 UE发送调度信令, 使得 UE在选取单元 601 选取的第二子帧上发送该数据包的重传包。
本实施例中, 选取单元 601 可以通过多种方式选取第二子帧, 具体可 以包括如下一些情况:
一、 选取固定上行子帧:
在本实施例中, 选取单元具体用于查询当前使用的 TDD上下行配置类 型, 并根据 TDD上下行配置类型从多个子帧中确定一个固定上行子帧作为 第二子帧, 在实际应用中, 也可以将选取单元的功能分配到若干个模块上 实现, 下面举例进行说明:
具体请参阅图 7 , 本发明演进基站另一实施例包括:
选取单元 701 , 用于当未正确接收用户设备 UE在第一子帧上发送的数 据包时, 从多个子帧中选取第二子帧;
信令发送单元 702 , 用于向 UE发送调度信令, 使得 UE在选取单元 701 选取的第二子帧上发送该数据包的重传包。
其中, 选取单元 701可以进一步包括:
查询模块 701 1 , 用于查询当前使用的 TDD上下行配置类型;
确定模块 7012 ,用于根据查询模块 7011查询到的 TDD上下行配置类型 从多个子帧中确定一个固定上行子帧作为第二子帧。
为便于理解, 下面以一具体应用场景为例对本实施例中各单元之间的 交互进行描述:
本实施例中, 当演进基站未正确接收用户设备 UE在第一子帧上发送的 数据包时, 选取单元 701中的查询模块 7011可以先查询当前使用的 TDD上 下行配置类型。
需要说明的是, TDD上下行配置类型可以如前述表 1所示, 当引入动态 子帧之后, 表 1所示的上下行配置也可能会有所变化, 具体此处不作限定。
当查询模块 7011查询到当前使用的 TDD上下行配置类型之后, 确定模 块 7012可以根据 TDD上下行配置类型从多个子帧中确定固定上行子帧。
本实施例中, 当引入动态子帧之后, 则 TDD无线帧中的子帧可以分为 固定上行子帧, 固定下行子帧以及动态子帧, 其中, 固定上行子帧只能用 于发送上行数据, 固定下行子帧只能用于发送下行数据, 动态子帧可以根 据实际情况决定发送上行数据或下行数据。
需要说明的是, 无论对于哪一种 TDD上下行配置类型, TDD无线帧中都 必然会包括至少一个固定上行子帧, 则确定模块 7012可以根据 TDD上下行 配置类型与固定上行子帧之间的对应关系确定固定上行子帧。
确定模块 7012确定了固定上行子帧之后, 由于固定上行子帧只能用于 发送上行数据, UE使用固定上行子帧进行重传时不会造成数据传输冲突, 所以确定模块 7012可以将固定上行子帧作为第二子帧, 若固定上行子帧有 多个, 则确定模块 7012也可以选择其中的一个作为第二子帧。
信令发送单元 702可以向 UE发送调度信令, 使得 UE在确定模块 701 2 确定的第二子帧上发送该数据包的重传包。
本实施例中, 信令发送单元 702向 UE发送调度信令的过程可以与前述 图 3所示实施例中的步骤 305所描述的内容类似, 此处不再赘述。
本发明演进基站另一实施例与图 7所示的实施例类似, 不同之处在于, 所述选取单元具体用于:
根据第一参考时分双工 TDD上下行配置的定时关系, 从所述多个子帧 中选取一个固定的上行子帧作为第二子帧; 或者
根据第一参考 TDD上下行配置的定时关系, 从多个子帧中选取一个上 行的动态子帧, 将所述动态子帧作为所述第二子帧。 二、 根据业务需求选取上行子帧:
本实施例中, 选取单元具体用于从多个子帧中选取一个配置为上行的 动态子帧作为第二子帧, 在实际应用中, 该功能也可以由选取单元中的某 模块实现, 下面举例进行说明:
具体请参阅图 8 , 本发明演进基站另一实施例包括:
选取单元 801 , 用于当未正确接收用户设备 UE在第一子帧上发送的数 据包时, 从多个子帧中选取第二子帧;
信令发送单元 802 , 用于向 UE发送调度信令, 使得 UE在选取单元 801 选取的第二子帧上发送该数据包的重传包。
其中, 选取单元 801可以进一步包括:
确定模块 801 1 , 用于从多个子帧中选取一个配置为上行的动态子帧作 为第二子帧。
为便于理解, 下面以一具体应用场景为例对本实施例中各单元之间的 交互进行描述:
本实施例中, 当演进基站未正确接收用户设备 UE在第一子帧上发送的 数据包时, 演进基站可以获取当前正在运行的业务的业务需求信息, 例如 QoS参数,根据业务需求信息确定哪些动态子帧被配置为上行, 哪些动态子 帧被配置为下行。
例如当某业务的 QoS参数表示该业务需要较高的下行速率时, eNB可以 增加动态子帧中下行子帧的数量。
当获知哪些动态子帧被配置为上行, 那些动态子帧被配置为下行之后, 确定模块 801 1可以从多个子帧中选取配置为上行的动态子帧。
确定模块 801 1选取了配置为上行的动态子帧之后, 由于 UE在配置为 上行的动态子帧上可以发送上行数据, UE使用配置为上行的动态子帧进行 重传时不会造成数据传输冲突, 所以确定模块 801 1可以将配置为上行的动 态子帧作为第二子帧, 若配置为上行的动态子帧有多个, 则确定模块 801 1 也可以选择其中的一个作为第二子帧。
信令发送单元 802可以向 UE发送调度信令, 使得 UE在确定模块 801 1 确定的第二子帧上发送该数据包的重传包。
本实施例中, 信令发送单元 802向 UE发送调度信令的过程可以与前述 图 3所示实施例中的步骤 305所描述的内容类似, 此处不再赘述。
上述描述了 eNB 中的选取单元的两种实现方式, 可以理解的是, 在实 际应用中, eNB中的选取单元还可以釆用其他更多的方式选取第二子帧, 只 要使得第二子帧为可以发送上行数据的子帧即可, 具体选取方式此处不作 限定。
本实施例中,若 eNB未正确接收 UE在第一子帧上发送的数据包,则 eNB 中的选取单元会从多个子帧中选取第二子帧, 并由 eNB 中的信令发送单元 通知 UE在该第二子帧上发送该数据包的重传包, 使得 eNB可以调度 UE在 某个子帧上发送重传包, 由于 eNB 可以获知哪些动态子帧被配置为上行, 哪些动态子帧被配置为下行, 所以由 eNB选择的第二子帧上不会发送下行 数据, 因此可以避免数据传输的冲突, 从而提高数据传输性能和调度灵活 性。
请参阅图 9 , 本发明用户设备一个实施例包括:
发送单元 901 , 用于在第一子帧上向演进基站 eNB发送数据包; 信令接收单元 902 ,用于当 eNB未正确接收到发送单元 901发送的数据 包时, 接收 eNB发送的调度信令;
重传单元 903 , 用于根据信令接收单元 902接收到的调度信令, 在该调 度信令所指示的在第二子帧上发送该数据包的重传包, 第二子帧由 eNB从 多个子帧中选取。
请参阅图 1 0 , 本发明用户设备另一实施例包括: 发送单元 1001 , 用于在第一子帧上向演进基站 eNB发送数据包; 信令接收单元 1002 ,用于当 eNB未正确接收到发送单元 1001发送的数 据包时, 接收 eNB发送的调度信令;
重传单元 1003 , 用于根据信令接收单元 1002接收到的调度信令, 在该 调度信令所指示的第二子帧上发送该数据包的重传包, 第二子帧由 eNB从 多个子帧中选取。
本实施例中的调度信令可以为上行调度授权信令;
本实施例中的重传单元 1003可以进一步包括:
第一获取模块 10031 ,用于获取上行调度授权信令中包含的用于表示第 二子帧的指示信息;
第一确定模块 10032 ,用于根据第一获取模块 10031获取的指示信息确 定第二子帧;
第一发送模块 10033 ,用于在第一确定模块 10032确定的第二子帧上发 送该数据包的重传包。
本实施例中的调度信令可以为上行调度授权 UL.grant信令, 本实施例 中的指示信息可以为 UL_grant信令中的 UL_ index字段, 或 DAI字段, 或 UL.grant信令的保留字段中的新增参数, 或 UL_grant信令中的新增扰码, 具体此处不作限定。
本实施例中的重传单元 1003可以进一步包括:
第二获取模块 10034 , 用于获取上行调度授权信令的发送时刻或载波; 第二确定模块 10035 ,用于根据第二获取模块 10034获取的上行调度授 权信令的发送时刻或载波确定第二子帧;
第二发送模块 10036 ,用于在第二确定模块 10035确定的第二子帧上发 送数据包的重传包。
为便于理解, 下面以一具体应用场景为例对本实施例中各单元之间的 交互进行描述:
eNB与 UE釆用 TDD方式进行通信, UE中的发送单元 1001可以通过固 定上行子帧, 或者是被配置为上行的动态子帧向 eNB发送数据包。
发送单元 1001在第一子帧上向 eNB发送数据包,该第一子帧可以是 TDD 无线帧中的任意一个固定上行子帧, 或者是被配置为上行的动态子帧, 具 体此处不作限定。 当 eNB未正确接收到数据包时, UE中的信令接收单元 1002可以接收 eNB发送的 UL-grant信令。
重传单元 1003中的第一获取模块 10031可以从 UL_ grant信令中获取 用于表示第二子帧的指示信息, 随后, 重传单元 1003 中的第一确定模块 10032可以根据获取到的指示信息确定第二子帧,当第一确定模块 10032确 定了第二子帧之后, 重传单元 1003中的第一发送模块 10033则可以在第二 子帧上发送该数据包的重传包。
需要说明的是, 在实际应用中, UE除了釆用上述方式获取到第二子帧 的相关信息之外, 还可以通过其他方式获取到第二子帧的相关信息, 具体 的获取方式与 eNB所釆用的方式相关:
若 eNB釆用显式的方式向 UE通知第二子帧的相关信息, 则 UE可以从 该 UL_grant信令中读取指示信息, 并根据指示信息确定第二子帧;
本实施例中的指示信息可以为 UL_grant信令中的 UL_ index字段, 或 DAI字段, 或 UL_grant信令的保留字段中的新增参数, 或 UL_ grant信令中 的新增扰码, 具体此处不作限定。
若 eNB釆用隐式的方式向 UE通知第二子帧的相关信息, 则 UE可以根 据 UL_grant信令的发送时刻或载波等信息获知第二子帧的相关信息。
当 eNB釆用隐式的方式向 UE通知第二子帧的相关信息时, 重传单元 1003中的第二获取模块 10034可以获取 UL_grant信令的发送时刻或载波, 随后,重传单元 1003中的第二确定模块 1 0035可以根据第二获取模块 10034 获取到的 UL_ grant信令的发送时刻或载波确定第二子帧, 当第二确定模块 10035确定了第二子帧之后, 重传单元 1003中的第二发送模块 10036则可 以在第二子帧上发送该数据包的重传包。
本实施例中, 若 eNB未正确接收 UE在第一子帧上发送的数据包, UE 中的信令接收单元 1002可以接收到 eNB发送的调度信令,则重传单元 1003 可以根据该调度信令, 在该调度信令所指示的第二子帧上发送该数据包的 重传包, 该第二子帧由 eNB从多个子帧中选取, 由于 eNB可以获知哪些动 态子帧被配置为上行, 哪些动态子帧被配置为下行, 所以由 eNB选择的第 二子帧上不会发送下行数据, 因此可以避免数据传输的冲突, 从而提高数 据传输性能和调度灵活性。
本发明用户设备另一实施例与图 9所示的实施例类似, 不同之处在于, 所述重传单元具体用于:
根据所述调度信令和第一参考 TDD上下行配置的定时关系, 在所述调 度信令指示的第二子帧上发送所述数据包的重传包。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件完成, 该程序可以存储于一种计算机 可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明所提供的一种数据传输方法、 演进基站以及用户设备进 行了详细介绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施方式及应用范围上均会有改变之处, 因此, 本说明书内容不应 理解为对本发明的限制。

Claims

权利要求
1、 一种数据传输方法, 其特征在于, 包括:
若演进基站 eNB未正确接收用户设备 UE在第一子帧上发送的数据包, 则所述 eNB从多个子帧中选取第二子帧;
所述 eNB向所述 UE发送调度信令, 使得所述 UE在所述第二子帧上 发送所述数据包的重传包。
2、根据权利要求 1所述的方法, 其特征在于, 所述 eNB从多个子帧中 选取第二子帧包括:
所述 eNB根据第一参考时分双工 TDD上下行配置的定时关系,从所述 多个子帧中选取一个固定的上行子帧作为第二子帧; 或者
所述 eNB根据第一参考 TDD上下行配置的定时关系,从多个子帧中选 取一个上行的动态子帧, 将所述动态子帧作为所述第二子帧。
3、根据权利要求 1所述的方法, 其特征在于, 所述 eNB从多个子帧中 选取第二子帧包括:
所述 eNB查询当前使用的 TDD上下行配置类型, 并根据所述 TDD上 下行配置类型从多个子帧中确定一个固定上行子帧作为所述第二子帧; 或者,
所述 eNB从多个子帧中选取一个配置为上行的动态子帧作为所述第二 子帧。
4、根据权利要求 1-3任一权利要求所述的方法,其特征在于,所述 eNB 向所述 UE发送的调度信令具体为上行调度授权信令;
所述上行调度授权信令中包含用于表示所述第二子帧的指示信息。
5、 根据权利要求 4所述的方法, 其特征在于, 所述指示信息具体为: 上行索引字段;
或下行分配索引字段;
或所述上行调度授权信令中的新增扰码;
或在所述上行调度授权信令的保留字段中的新增参数。
6、 根据权利要求 1-3任一权利要求所述的方法, 其特征在于, 所述第一子帧为固定上行子帧, 或配置为上行的动态子帧。
7、 一种数据传输方法, 其特征在于, 包括:
用户设备 UE在第一子帧上向演进基站 eNB发送数据包;
若所述 eNB未正确接收到所述数据包, 则所述 UE接收所述 eNB发送 的调度信令;
所述 UE根据所述调度信令,在所述调度信令指示的第二子帧上发送所 述数据包的重传包, 所述第二子帧由所述 eNB从多个子帧中选取。
8、 根据权利要求 7所述的方法, 其特征在于, 所述 UE根据所述调度 信令, 在所述调度信令指示的第二子帧上发送所述数据包的重传包包括: 所述 UE根据所述调度信令和第一参考 TDD上下行配置的定时关系, 在所述调度信令指示的第二子帧上发送所述数据包的重传包。
9、 根据权利要求 7所述的方法, 其特征在于, 所述调度信令为上行调 度授权信令;
所述 UE根据所述调度信令,在所述调度信令指示的第二子帧上发送所 述数据包的重传包包括:
所述 UE 获取所述上行调度授权信令中包含的用于表示所述第二子帧 的指示信息;
所述 UE 4艮据所述指示信息确定所述第二子帧;
所述 UE在所述第二子帧上发送所述数据包的重传包。
10、 根据权利要求 9所述的方法, 其特征在于, 所述指示信息具体为: 上行索引字段;
或下行分配索引字段;
或所述上行调度授权信令中的新增扰码;
或在所述上行调度授权信令的保留字段中的新增参数。
11、 根据权利要求 7 所述的方法, 其特征在于, 所述调度信令为上行 调度授权信令;
所述 UE根据所述调度信令,在所述调度信令指示的第二子帧上发送所 述数据包的重传包包括:
所述 UE获取所述上行调度授权信令的发送时刻或载波;
所述 UE根据所述上行调度授权信令的发送时刻或载波确定所述第二 子帧;
所述 UE在所述第二子帧上发送所述数据包的重传包。
12、 一种演进基站, 其特征在于, 包括:
选取单元,用于当未正确接收用户设备 UE在第一子帧上发送的数据包 时, 从多个子帧中选取第二子帧;
信令发送单元, 用于向所述 UE发送调度信令, 使得所述 UE在所述选 取单元选取的第二子帧上发送所述数据包的重传包。
13、 根据权利要求 12所述的演进基站, 其特征在于, 所述选取单元具 体用于:
查询当前使用的 TDD上下行配置类型, 并根据所述 TDD上下行配置 类型从多个子帧中确定一个固定上行子帧作为所述第二子帧;
或者,
从多个子帧中选取一个配置为上行的动态子帧作为所述第二子帧。
14、 根据权利要求 12所述的演进基站, 其特征在于, 所述选取单元具 体用于:
根据第一参考时分双工 TDD上下行配置的定时关系, 从所述多个子帧 中选取一个固定的上行子帧作为第二子帧; 或者
根据第一参考 TDD上下行配置的定时关系, 从多个子帧中选取一个上 行的动态子帧, 将所述动态子帧作为所述第二子帧。
15、 一种用户设备, 其特征在于, 包括:
发送单元, 用于在第一子帧上向演进基站 eNB发送数据包;
信令接收单元, 用于当所述 eNB未正确接收到所述发送单元发送的数 据包时, 接收所述 eNB发送的调度信令;
重传单元, 用于根据所述信令接收单元接收的调度信令, 在所述调度 信令所指示的第二子帧上发送所述数据包的重传包, 所述第二子帧由所述 eNB从多个子帧中选取。
16、 根据权利要求 15所述的用户设备, 其特征在于, 所述调度信令为 上行调度授权信令;
所述重传单元包括:
第一获取模块, 用于获取所述上行调度授权信令中包含的用于表示所 述第二子帧的指示信息;
第一确定模块, 用于根据所述第一获取模块获取的指示信息确定第二 子帧;
第一发送模块, 用于在所述第一确定模块确定的第二子帧上发送所述 数据包的重传包。
17、 根据权利要求 15所述的用户设备, 其特征在于, 所述调度信令为 上行调度授权信令;
所述重传单元包括:
第二获取模块, 用于获取所述上行调度授权信令的发送时刻或载波; 第二确定模块, 用于根据所述第二获取模块获取的上行调度授权信令 的发送时刻或载波确定第二子帧;
第二发送模块, 用于在所述第二确定模块确定的第二子帧上发送所述 数据包的重传包。
18、 根据权利要求 15所述的用户设备, 其特征在于, 所述重传单元具 体用于:
根据所述调度信令和第一参考 TDD上下行配置的定时关系, 在所述调 度信令指示的第二子帧上发送所述数据包的重传包。
PCT/CN2012/071300 2011-02-28 2012-02-20 数据传输方法、演进基站以及用户设备 WO2012116602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12752690.3A EP2683104B1 (en) 2011-02-28 2012-02-20 Data transmission method, evolved nodeb and user equipment
US14/011,098 US9516496B2 (en) 2011-02-28 2013-08-27 Data transmission method, evolved NodeB and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110047812.8A CN102651679B (zh) 2011-02-28 2011-02-28 数据传输方法、演进基站以及用户设备
CN201110047812.8 2011-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/011,098 Continuation US9516496B2 (en) 2011-02-28 2013-08-27 Data transmission method, evolved NodeB and user equipment

Publications (1)

Publication Number Publication Date
WO2012116602A1 true WO2012116602A1 (zh) 2012-09-07

Family

ID=46693578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071300 WO2012116602A1 (zh) 2011-02-28 2012-02-20 数据传输方法、演进基站以及用户设备

Country Status (4)

Country Link
US (1) US9516496B2 (zh)
EP (1) EP2683104B1 (zh)
CN (1) CN102651679B (zh)
WO (1) WO2012116602A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541791B2 (en) * 2014-11-25 2020-01-21 Qualcomm Incorporated Techniques for reducing latency in a wireless communication system
ES2874900T3 (es) * 2014-12-15 2021-11-05 Ericsson Telefon Ab L M Planificación de recursos de enlace ascendente en múltiples instancias de tiempo
CN105991246B (zh) 2015-02-10 2019-04-02 中国移动通信集团公司 一种数据重传方法及装置
CN106921474B (zh) * 2015-12-24 2020-12-25 华为技术有限公司 上行重传数据的发送方法、装置及系统
CN107547178B (zh) * 2016-06-29 2021-02-12 中兴通讯股份有限公司 数据传输方法、装置、基站、终端设备及系统
CN108206732B (zh) * 2016-12-19 2020-09-25 维沃移动通信有限公司 数据传输方法、资源指示信息的获取方法、终端及基站
WO2018232620A1 (en) * 2017-06-21 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) METHOD, BASE STATION AND USER EQUIPMENT FOR CORRESPONDING UPLINK TRANSMISSION AND CONTROL
US11026255B2 (en) * 2017-06-30 2021-06-01 Qualcomm Incorporated Discontinuous scheduling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400081A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 Tdd系统中的上行资源调度方法、系统及设备
CN101729128A (zh) * 2008-10-20 2010-06-09 中兴通讯股份有限公司 一种时分复用系统的上行子帧调度方法
WO2010129295A1 (en) * 2009-04-28 2010-11-11 Zte U.S.A., Inc. Method and system for dynamic adjustment of downlink/uplink allocation ratio in lte/tdd systems
CN101926214A (zh) * 2008-03-24 2010-12-22 中兴通讯美国公司 动态调整和信令通知lte/tdd系统中的下行/上行分配比率

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2009003610A (es) * 2006-10-02 2009-04-22 Lg Electronics Inc Metodo para retransmitir datos en el sistema de multiples portadoras.
ES2950290T3 (es) * 2007-08-13 2023-10-06 Optis Cellular Tech Llc Procedimiento para controlar un esquema de programación
KR20090022048A (ko) * 2007-08-29 2009-03-04 삼성전자주식회사 무선 이동통신시스템에서 패킷 기반 고정 자원할당을 위한하이브리드 자동재전송 장치 및 방법
WO2009035905A2 (en) * 2007-09-11 2009-03-19 Nextwave Broadband Inc. Error correction for a persistent resource allocation
CN101488906B (zh) * 2008-01-14 2011-12-07 中兴通讯股份有限公司 实时业务传输的资源分配方法、实时业务传输方法
US7756081B2 (en) * 2008-03-21 2010-07-13 Lg Electronics Inc. Method of data communication in a wireless communication system
CN101651895B (zh) 2008-08-15 2012-06-27 华为技术有限公司 长期演进的时分双工通信方法、设备、系统及无线帧结构
US8160014B2 (en) * 2008-09-19 2012-04-17 Nokia Corporation Configuration of multi-periodicity semi-persistent scheduling for time division duplex operation in a packet-based wireless communication system
US9584216B2 (en) * 2008-10-31 2017-02-28 Nokia Technologies Oy Dynamic allocation of subframe scheduling for time divison duplex operation in a packet-based wireless communication system
CN101882985B (zh) * 2009-05-06 2015-08-12 中兴通讯股份有限公司 混合自动重传请求发送的指示方法及其基站
CN101895379B (zh) * 2009-05-21 2014-09-10 中兴通讯股份有限公司 一种实现接入链路上行重传的方法及系统
KR101691828B1 (ko) * 2009-08-18 2017-01-02 엘지전자 주식회사 무선 통신 시스템에서 harq 방식에 기반하여 데이터를 재전송하는 방법 및 이를 이용하는 단말 장치
US8687602B2 (en) * 2009-09-29 2014-04-01 Apple Inc. Methods and apparatus for error correction for coordinated wireless base stations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400081A (zh) * 2007-09-28 2009-04-01 大唐移动通信设备有限公司 Tdd系统中的上行资源调度方法、系统及设备
CN101926214A (zh) * 2008-03-24 2010-12-22 中兴通讯美国公司 动态调整和信令通知lte/tdd系统中的下行/上行分配比率
CN101729128A (zh) * 2008-10-20 2010-06-09 中兴通讯股份有限公司 一种时分复用系统的上行子帧调度方法
WO2010129295A1 (en) * 2009-04-28 2010-11-11 Zte U.S.A., Inc. Method and system for dynamic adjustment of downlink/uplink allocation ratio in lte/tdd systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2683104A4 *

Also Published As

Publication number Publication date
CN102651679A (zh) 2012-08-29
CN102651679B (zh) 2016-02-03
US9516496B2 (en) 2016-12-06
US20140010067A1 (en) 2014-01-09
EP2683104B1 (en) 2019-04-17
EP2683104A4 (en) 2014-03-26
EP2683104A1 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US11122609B2 (en) Systems and methods for grant-free uplink transmissions
US11825454B2 (en) Latency reduction techniques in wireless communications
US20220321191A1 (en) Method and apparatus for sidelink communication
US11387946B2 (en) Reliable ultra-low latency communications
WO2017167308A1 (en) Control channel design for elaa
US9641301B2 (en) Terminal device, base station device, communication method, and integrated circuit
WO2012116602A1 (zh) 数据传输方法、演进基站以及用户设备
US9655083B2 (en) Terminal device, base station device, communication method, and integrated circuit
WO2013167090A2 (zh) 一种子帧调度方法、系统及网络设备、终端
TW201626750A (zh) 通訊系統之無線通訊處理方法
WO2011116680A1 (zh) 多子帧调度方法、系统和设备
WO2012097692A1 (zh) 半静态调度方法、用户设备及网络设备
US9510368B2 (en) Method and arrangement for acknowledgement of contention-based uplink transmissions in a telecommunication system
US9648599B2 (en) System and method for avoiding collisions between open discovery and cellular resources
CN108039939B (zh) 物联网组播业务的harq反馈方法及装置
US20220225400A1 (en) Communications device, infrastructure equipment and methods
JP2014513462A (ja) Tddベースの無線通信システムにおけるharq実行方法及び装置
WO2015106554A1 (zh) 资源管理方法、装置及计算机存储介质
WO2015027798A1 (zh) 一种tdd-fdd联合系统中的传输方法和装置
WO2012175020A1 (zh) 时分双工系统中传输信息的方法、用户设备和基站
WO2012113330A1 (zh) 信息传输的方法和装置
WO2012175019A1 (zh) 一种时分双工tdd通信方法、基站和用户设备
KR20210158322A (ko) 무선 통신 시스템에서 시간 지연을 표시하는 방법 및 장치
WO2012097724A1 (zh) 半静态调度方法、用户设备及网络设备
WO2013135144A1 (zh) 时分双工自适应帧结构的重传方法、网络及终端侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE