WO2011116680A1 - 多子帧调度方法、系统和设备 - Google Patents

多子帧调度方法、系统和设备 Download PDF

Info

Publication number
WO2011116680A1
WO2011116680A1 PCT/CN2011/072026 CN2011072026W WO2011116680A1 WO 2011116680 A1 WO2011116680 A1 WO 2011116680A1 CN 2011072026 W CN2011072026 W CN 2011072026W WO 2011116680 A1 WO2011116680 A1 WO 2011116680A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
subframe
hybrid automatic
process number
automatic retransmission
Prior art date
Application number
PCT/CN2011/072026
Other languages
English (en)
French (fr)
Inventor
李博
吕永霞
陈玉华
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18208352.7A priority Critical patent/EP3522423B1/en
Priority to EP11758790.7A priority patent/EP2538734B1/en
Priority to EP17173309.0A priority patent/EP3293907B1/en
Priority to BR112012024032-3A priority patent/BR112012024032B1/pt
Publication of WO2011116680A1 publication Critical patent/WO2011116680A1/zh
Priority to US13/624,438 priority patent/US9059849B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • Multi-subframe scheduling method, system and device The present application claims priority to Chinese Patent Application entitled “Multi-subframe scheduling method, system and device” submitted by the Chinese Patent Office on March 22, 2010, application number 201010131399.9 The entire contents of which are incorporated herein by reference.
  • the embodiments of the present invention relate to the technical field, and in particular, to a multi-subframe scheduling method, system, and device. Background technique
  • E-UTRA Evolved Universal Mobile Telecommunications System
  • Universal Mobile Telecommunications System abbreviation: UMTS
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • LTE Long Term Evolution
  • the terminal receives downlink data on the corresponding uplink and downlink resources according to the indication of the Physical Downlink Control Channel (PDCCH) delivered by the base station.
  • PDCCH Physical Downlink Control Channel
  • the number of Hybrid Automatic Repeat Request (HQQ) processes is 8
  • the uplink adopts synchronous adaptive or non-adaptive retransmission
  • the downlink uses non-synchronous adaptive. Retransmission.
  • the maximum number of HARQ processes is 15.
  • the base station transmits the corresponding uplink resource indication (UL grant) in the PDCCH resource to perform uplink subframe scheduling in the subframe 0.
  • the terminal obtains the resource location of the uplink transmission and the corresponding transmission configuration indication information.
  • the terminal may send the required uplink service data on the corresponding resource of the fourth subframe after receiving the subframe of the PDCCH.
  • the base station can determine whether the data packet is correct by using a CRC (Cyclic Redundancy Check).
  • CRC Cyclic Redundancy Check
  • the base station If the data packet is incorrect, the base station simultaneously carries the retransmission UL grant of the retransmitted data packet on the PDCCH channel of the subframe carrying the error information.
  • the terminal performs new data transmission according to the corresponding retransmission PDCCH information, until receiving an acknowledgement (Acknowledgment; ACK) issued by the base station, or abandoning the retransmission of the existing data packet after reaching the maximum number of data retransmissions.
  • ACK acknowledgement
  • the terminal For the downlink data transmission, after receiving the data packet sent by the base station, the terminal needs to feed back the corresponding uplink ACK or negative (Non-Acknowledgment; NAK) information, and the existing uplink ACK/NAK sequence number corresponds to the PDCCH transmission location of the terminal. There is a mapping relationship between them.
  • the terminal may send ACK/NAK information in the corresponding uplink transmission resource according to the PDCCH transmission location.
  • each PDCCH schedules resources of one subframe for data transmission. Since each new data packet requires a PDCCH resource scheduling indication, the configuration of the data transmission is frequently changed when the user channel is relatively stable. The information causes the PDCCH signaling overhead of the system to be large and the spectrum efficiency is low.
  • the present invention provides a multi-subframe scheduling method, system and device, which are used to solve the defects of high system control signaling overhead and low spectral efficiency in the prior art, and reduce system control signaling overhead and improve spectrum efficiency.
  • An embodiment of the present invention provides a multi-subframe scheduling method, including: delivering, to a terminal, a continuous scheduling indication of multiple subframe scheduling, a hybrid automatic retransmission process number corresponding to a first scheduling subframe, and scheduling configuration parameters;
  • the hybrid automatic retransmission process number corresponding to the first scheduling subframe and the continuous scheduling indication acquire the hybrid automatic retransmission process number corresponding to the current scheduling subframe, and use the scheduling configuration parameter to correspond to the current scheduling subframe.
  • the data packet transmission of the hybrid automatic retransmission process number; each of the scheduling subframes of the multi-subframe scheduling carries one data packet, and each scheduling subframe of the multi-subframe scheduling uses the scheduling configuration parameter.
  • the embodiment of the present invention further provides a multi-subframe scheduling method, including: receiving a continuous scheduling indication of a multi-subframe scheduling sent by a base station, a hybrid automatic retransmission process number corresponding to a first scheduling sub-frame, and a scheduling configuration parameter;
  • the hybrid automatic retransmission process number corresponding to the first scheduling subframe and the continuous scheduling indication acquire the hybrid automatic retransmission process number corresponding to the current scheduling subframe, and use the scheduling configuration parameter to correspond to the current scheduling subframe.
  • the data packet transmission of the hybrid automatic retransmission process number; each scheduling subframe of the multi-subframe scheduling carries one data packet, and each scheduling subframe of the multi-subframe scheduling adopts the scheduling configuration parameter.
  • the embodiment of the present invention further provides a base station, including: a scheduling indication sending module, configured to deliver a continuous scheduling indication of multiple subframe scheduling to a terminal, a hybrid automatic retransmission process number corresponding to a first scheduling subframe, and a scheduling configuration a data packet transmission module, configured to acquire, according to the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the continuous scheduling indication, a hybrid automatic retransmission process number corresponding to the current scheduling subframe, where the scheduling is performed.
  • the configuration parameter performs data packet transmission of the corresponding hybrid automatic retransmission process number in the current scheduling subframe; each scheduling subframe of the multiple subframe scheduling carries one data packet, and each scheduling of the multiple subframe scheduling The subframe uses the scheduling configuration parameters.
  • the embodiment of the present invention further provides a terminal, including: a scheduling indication receiving module, configured to receive a continuous scheduling indication of multiple subframe scheduling sent by a base station, a hybrid automatic retransmission process number corresponding to a first scheduling subframe, and a scheduling configuration parameter. And a data packet transmission module, configured to acquire, according to the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the continuous scheduling indication, a hybrid automatic retransmission process number corresponding to the current scheduling subframe, where the scheduling is used.
  • a scheduling indication receiving module configured to receive a continuous scheduling indication of multiple subframe scheduling sent by a base station, a hybrid automatic retransmission process number corresponding to a first scheduling subframe, and a scheduling configuration parameter.
  • a data packet transmission module configured to acquire, according to the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the continuous scheduling indication, a hybrid automatic retransmission process number corresponding to the current scheduling subframe, where the scheduling is used.
  • the configuration parameter performs data packet transmission of the corresponding hybrid automatic retransmission process number in the current scheduling subframe; each scheduling subframe of the multiple subframe scheduling carries one data packet, and each scheduling of the multiple subframe scheduling
  • the scheduling configuration parameters are used for the subframes.
  • the embodiment of the present invention further provides a multi-subframe scheduling system, including: any one of the foregoing base stations and terminals.
  • the multi-subframe scheduling method, system and device provided by the present invention deliver each time the current scheduling
  • the hybrid automatic retransmission process number and continuous scheduling indication of the subframe can implement multi-subframe scheduling, save the control signaling overhead of the system, and improve the spectrum efficiency of the system.
  • 1 is a frame structure of an FDD mode in an embodiment of the present invention
  • FIG. 2 is a flowchart of a first embodiment of a multi-subframe scheduling method according to the present invention
  • FIG. 3 is a flowchart of a second embodiment of a multi-subframe scheduling method according to the present invention.
  • FIG. 4a is a schematic diagram of a third embodiment of a multi-subframe scheduling method according to the present invention.
  • 4b is a schematic diagram of extending the number of consecutively scheduled subframes in the third embodiment of the multi-subframe scheduling method according to the present invention.
  • FIG. 5 is a schematic diagram of a fourth embodiment of a multi-subframe scheduling method according to the present invention.
  • FIG. 6 is a schematic diagram of a fifth embodiment of a multi-subframe scheduling method according to the present invention.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a base station according to the present invention.
  • FIG. 8 is a schematic structural diagram of a second embodiment of a base station according to the present invention.
  • FIG. 9 is a schematic structural diagram of a first embodiment of a terminal according to the present invention.
  • FIG. 10 is a schematic structural diagram of a second embodiment of a terminal according to the present invention.
  • FIG. 11 is a schematic structural diagram of an embodiment of a multi-subframe scheduling system according to the present invention. detailed description
  • each radio frame has a length of 10 milliseconds and is composed of two half frames of 5 milliseconds long.
  • Each radio frame is composed of 20 time slots of 0.5 milliseconds long, and each two time slots form one subframe, and the duration of the subframe is 1 millisecond.
  • the multi-subframe scheduling method includes the following content.
  • Step 101 Send a continuous scheduling indication of multiple subframe scheduling, a hybrid automatic retransmission process number corresponding to the first scheduling subframe, and scheduling configuration parameters to the terminal.
  • Step 101 may specifically include the following cases.
  • the first step is to send the high-level signaling that carries the continuous scheduling indication to the terminal, where the high-level signaling is used to notify the terminal of the start or cancel of the multi-subframe scheduling, and deliver the carrying configuration parameter and the first scheduling to the terminal.
  • the signaling may be initiated by high-level signaling, for example, multi-subframe scheduling of the upper layer, to inform the terminal that the multi-subframe scheduling is started, and the continuous scheduling indication of the scheduling, for example, the number of all consecutive scheduling subframes or the first one.
  • the number of consecutively scheduled subframes after the subframe is scheduled is sent to the terminal.
  • the physical layer signaling for example, the physical downlink control channel, sends the scheduling configuration parameter and the hybrid automatic retransmission process number corresponding to the first scheduling subframe to the terminal.
  • the physical downlink control channel carrying the continuous scheduling indication, the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the scheduling configuration parameter is sent to the terminal.
  • the base station may first initiate the signaling by the high-layer signaling, for example, the multi-subframe scheduling of the upper layer, and notify the terminal to start the multi-subframe scheduling, and then send the scheduling configuration parameter to the terminal through the physical layer signaling, for example, the physical downlink control channel PDCCH.
  • the physical layer signaling for example, the physical downlink control channel PDCCH.
  • the continuous scheduling indication and the hybrid automatic retransmission process number corresponding to the first scheduling subframe may include a downlink resource indication, such as DL scheduling, and may also include an uplink resource indication, such as a UL grant.
  • the method for carrying the number of subframes in the scheduling may be:
  • the continuous scheduling indication is set in a new bit or reused bit of the physical downlink control channel.
  • the reuse bit is a redundancy version in a downlink resource indication of the physical downlink control channel
  • RV Resource version
  • field field or padding bit in the uplink resource indication.
  • the direct transmission continuous scheduling indication in the PDCCH is used, which can reduce the signaling occupied by the multi-subframe scheduling, and is beneficial to saving signaling resources.
  • the reused bits of the PDCCH such as the redundancy version field or the padding bits, can directly utilize the existing PDCCH resources without adding cells of the PDCCH, and the setting is convenient and the signaling resources are further saved.
  • Step 102 Obtain a hybrid automatic retransmission process number corresponding to the current scheduling subframe according to the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the continuous scheduling indication, where the scheduling configuration parameter is used in the current
  • the scheduling subframe performs packet transmission of the corresponding hybrid automatic retransmission process number.
  • Each of the scheduling subframes of the multi-subframe scheduling in the embodiment carries one data packet, and each of the scheduling subframes of the multi-subframe scheduling uses the scheduling configuration parameter.
  • the hybrid automatic retransmission process number and the location corresponding to the first scheduling subframe may include: collecting the number of consecutively scheduling subframes according to the number of all consecutive scheduling subframes or after the first scheduling subframe , each time selecting a minimum value from the currently available hybrid automatic retransmission process number as the hybrid automatic retransmission process number of the current scheduling subframe; or, according to the number of all consecutive scheduling subframes or in the first scheduling sub-
  • the number of consecutively scheduled subframes after the frame and the hybrid automatic retransmission process number corresponding to the first scheduling subframe are sequentially selected from the smallest to the largest, and the currently available hybrid automatic retransmission process number is used as the hybrid automatic of the current scheduling subframe. Retransmit the process number.
  • the carrier is sent to the terminal.
  • Retransmission resource indication letter of the hybrid automatic retransmission process number corresponding to the negative information send or receive a retransmission data packet of the hybrid automatic retransmission process number corresponding to the negative information sent by the terminal to the terminal.
  • the base station may preset the retransmission delay, and carry the retransmission resource indication signaling to the terminal together, or notify the terminal by using other signaling, and after the set retransmission delay, the base station schedules the retransmission resource indication.
  • the retransmission data packet is preferentially scheduled in the same scheduling subframe.
  • the retransmission resource indication signaling further includes all consecutive retransmissions corresponding to the consecutive multiple negative information. The number of frames or the number of consecutively retransmitted subframes after the first retransmission subframe.
  • the method for reserving resources may be used to reduce or avoid interference.
  • the specific method is: acquiring information of the neighboring cell from the inter-base station interface, where the neighboring cell
  • the information includes one or more of the following: a frequency domain location, a transmission time, and a transmission power of the physical downlink control channel allocated by the base station of the neighboring cell, or including one or more of the following: a base station allocated by the neighboring cell
  • the frequency domain location, transmission time, and transmission power of the physical uplink control channel is acquiring information of the neighboring cell from the inter-base station interface, where the neighboring cell
  • the information includes one or more of the following: a frequency domain location, a transmission time, and a transmission power of the physical downlink control channel allocated by the base station of the neighboring cell, or including one or more of the following: a base station allocated by the neighboring cell
  • the frequency domain location, transmission time, and transmission power of the physical uplink control channel is acquiring information of the neighboring cell from the inter-base station interface,
  • Obtaining, according to the information of the neighboring cell, the information of the strong interference cell whose interference level is greater than the set threshold, and according to the information of the strong interference cell, the strong interference cell and the physical downlink control channel of the local cell are coordinated and allocated in different manners.
  • the scheduling subframe of the physical downlink control channel that is sent by the base station of the local cell to the terminal Determining, in the subframe, the scheduling subframe of the physical downlink control channel that is sent by the base station of the local cell to the terminal, and reserving the time domain resource for the physical downlink control channel sent by the strong interfering cell and the local cell;
  • the strong interfering cell and the physical uplink control channel of the local cell are coordinated and allocated in the non-overlapping frequency band, so that frequency domain resources are reserved for the strong interfering cell and the physical uplink control channel of the local cell to feed back ACK or NAK information.
  • a semi-static sub-send can be sent to the terminal through high-level signaling.
  • Frame scheduling interval A semi-static subframe scheduling interval of 1, 2, 4, 5, 8 may be added in an existing semi-persistent scheduling period. And notifying the terminal of the corresponding semi-static transmission scheduling length for indication.
  • the base station performs the hybrid automatic retransmission process number, the continuous scheduling indication, and the static subframe scheduling interval corresponding to the first scheduling subframe in each multi-subframe scheduling, and the current sub-frame scheduling interval The new transmission packet of the hybrid automatic retransmission process number corresponding to the scheduling frame is scheduled.
  • the base station sends the scheduling configuration parameter, the continuous scheduling indication, and the hybrid automatic retransmission process number corresponding to the first scheduling subframe to the terminal, which can implement multi-subframe scheduling, save the control signaling overhead of the system, and improve the system.
  • Spectral efficiency Single-subframe scheduling can be better compatible with existing systems during retransmission.
  • multi-subframe scheduling is used during retransmission, the overhead of system control signaling can be further reduced and the performance of the system can be improved.
  • the data scheduling of multiple subframes is performed by using a single PDCCH, and resources may be reserved.
  • the interaction information may be sent through the control channel between the base stations, so that the control channels of the strong interfering cells are avoided.
  • the time schedule s data, thereby reducing the interference between the control channels.
  • FIG. 3 is a flowchart of a second embodiment of a multi-subframe scheduling method according to the present invention. As shown in FIG. 3, the multi-subframe scheduling method includes the following content.
  • Step 201 Receive a continuous scheduling indication of a multi-subframe scheduling sent by the base station, a hybrid automatic retransmission process number corresponding to the first scheduling sub-frame, and a scheduling configuration parameter.
  • Step 201 may specifically include the following cases.
  • Case 1 receiving high-level signaling that is sent by the base station and carrying the continuous scheduling indication, where the high-layer signaling is used to notify the terminal of starting or canceling the multi-subframe scheduling, and receiving the carrying scheduling configuration parameter and the first scheduling sent by the base station.
  • the terminal may start the signaling from the high-level signaling of the base station, for example, the multi-subframe scheduling, and obtain the indication of the multi-subframe scheduling start, and obtain the continuous scheduling indication of the scheduling, for example, the number of all consecutive scheduling subframes or at the first The number of consecutively scheduled subframes after scheduling subframes. Then, through the physical layer signaling of the base station, for example, the physical downlink control channel, the hybrid corresponding to the first scheduling subframe is obtained. Automatically retransmit the process number.
  • Case 2 receiving the continuous scheduling indication sent by the base station, the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the physical downlink control channel of the scheduling configuration parameter.
  • the terminal may start from the high layer signaling of the base station, for example, the multi-subframe scheduling start signaling, and obtain an indication of the multi-subframe scheduling start, and then obtain the scheduling configuration parameter from the physical layer signaling, for example, the physical downlink control channel PDCCH.
  • the PDCCH may include a downlink resource indication, such as DL scheduling, and may include an uplink resource indication, such as a UL grant, where the continuous scheduling indication may be obtained from a new bit or a reused bit of the PDCCH, where the reused bit may be a downlink resource indication of the PDCCH.
  • the terminal may determine, according to the format of the downlink transmission control information in the received physical downlink control channel, that the scheduling is single-subframe scheduling or multi-subframe scheduling.
  • the PDCCH uses a variety of downlink control information (Downlink Control Information; DCI) format for downlink scheduling transmission.
  • DCI Downlink Control Information
  • the multi-subframe scheduling transmission mode is enabled, part of the DCI format can be reserved for new.
  • the format of the PDCCH includes the DCI format 0 for performing uplink scheduling.
  • the DCI format 1, la, lb, lc, 2, 2a, and 3 for downlink resource scheduling are also used to perform downlink resource indication in different transmission modes.
  • the DCI format 0 is used for uplink scheduling, and includes: a resource scheduling indication field, a new data indication field, a demodulation reference signal (Demodulation Reference Signal; DMRS) cyclic shift indication field, a modulation coding indication field, and a channel quality indicator ( Channel Quality Indicator; Abbreviation: CQI) Request Domain, Cyclic Redundancy Check (CRC) domain, etc.
  • the other DCI format is used for the downlink data scheduling indication, and includes: a resource scheduling indication field, a new data indication field, a modulation coding indication field, a new data indication field, a power control indication field, a CRC check field, a HARQ process indication field, and a redundancy version. Indicate the domain, etc.
  • the partial DCI format there are 1 or 2 useless bits (bits) which are used as padding in order to satisfy the code rate. It is assumed that reserved DCI la is used for single subframe scheduling, and other formats are used for multi-subframe scheduling. In the uplink transmission, only DCI format 0 is used. For the uplink transmission scheduling, other uplink scheduling DCI formats may be added in the LTE-A protocol. According to different DCI formats of the PDCCH, it may be determined whether the current single-subframe scheduling or multi-subframe scheduling is used.
  • Step 202 Obtain a hybrid automatic retransmission process number corresponding to the current scheduling subframe according to the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the continuous scheduling indication, where the scheduling configuration parameter is used in the current
  • the scheduling subframe performs packet transmission of the corresponding hybrid automatic retransmission process number.
  • Each scheduling subframe of the multi-subframe scheduling in the embodiment carries one data packet, and each scheduling subframe of the multi-subframe scheduling uses the scheduling configuration parameter.
  • the base station sends the multi-subframe scheduling initiation signaling to the terminal, according to the first
  • the hybrid automatic retransmission process number corresponding to the scheduling subframe and the continuous scheduling indication acquire the hybrid automatic retransmission process number corresponding to the current scheduling subframe, which may include the following example.
  • Example 1 According to the number of all consecutive scheduling subframes or the number of consecutively scheduled subframes after the first scheduling subframe, each time selects the minimum value from the currently available hybrid automatic retransmission process number as the current scheduling. The hybrid of the subframe automatically retransmits the process number.
  • Example 2 According to the number of all consecutive scheduling subframes or the number of consecutively scheduled subframes after the first scheduling subframe and the hybrid automatic retransmission process number corresponding to the first scheduling subframe, according to small to large The order of the hybrid automatic retransmission process number is selected as the hybrid automatic retransmission process number of the current scheduling subframe.
  • the terminal receives the scheduling configuration parameter, the continuous scheduling indication, and the hybrid automatic retransmission process number corresponding to the first scheduling subframe, which can implement multi-subframe scheduling, save system control signaling overhead, and improve the system. Spectral efficiency.
  • the use of single-subframe scheduling in retransmission can be better compatible with existing systems.
  • the use of multi-subframe scheduling in retransmission can further reduce the overhead of system control signaling and improve system performance.
  • a single PDCCH is used for data scheduling of multiple subframes, and resources can be reserved. When there are adjacent strong interfering cells, the control between the base stations can be performed. The channel transmits interactive information, so that the control channels of the strong interfering cells are prevented from scheduling data at the same time, thereby reducing interference between the control channels.
  • the base station sends multi-subframe scheduling initiation signaling to the UE to instruct the terminal to initiate a multi-subframe reception and transmission data transmission mode.
  • the multi-subframe scheduling start signaling may be sent by high-layer signaling (for example, MAC or RLC layer signaling), and the number of subframes that need to be scheduled each time is configured for the newly transmitted data packet, for example: each multi-subframe scheduling
  • the number of consecutively transmitted or continuously received subframes which may be greater than 1, but less than or equal to the maximum number of HARQ processes in the system, such as 2, 3, 4, 5, 6, 7, 8, etc. .
  • the base station may perform continuous subframe scheduling configuration or change the corresponding configuration of the current user according to the currently transmitted service type, the number of cell users, the user channel condition, and the like, and notify the terminal of the configuration change information through the high layer signaling, and the terminal according to the base station At the time of transmitting the PDCCH, the corresponding resource is scheduled for data transmission.
  • the terminal may obtain, for example, a continuous scheduling indication from the received high layer signaling or physical layer control signaling, and obtain a scheduling configuration parameter, a HARQ process of the first scheduling subframe, from the physical layer control signaling. No., corresponding to a separate positive/negative (ACK/NAK) feedback position and other information.
  • ACK/NAK positive/negative
  • the PDCCH of the downlink transmission carries the information such as the current HARQ process ID, the modulation and coding mode, and the resource indication corresponding to the PDCCH corresponding to the first scheduling subframe, and corresponds to the subframe #0 and the subframe #1 that can be continuously scheduled this time. , Subframe #2, Subframe #3. At this time, the first subframe #0 has a PDCCH, and the three consecutive subframes #1, #2, and #3 are not PDCCH-issued.
  • the PDCCH carries a downlink resource indication (DL scheduling), and the DL scheduling carries the HARQ process number of the first time of the multi-subframe scheduling, for example: in subframe #0, the first sub-configuration of the base station
  • the HARQ process number of the frame is "0"
  • the UE may sequentially calculate, according to the chronological order, that is, the size of the subframe sequence, the subframes of the PDCCH-free subframes of the subsequent consecutive scheduling of the multi-subframe scheduling according to the HARQ process number "0".
  • HARQ process number for example: The sequence from small to large is used to select the HARQ process number corresponding to each subsequent subframe from the currently available HARQ process IDs. The minimum value can be selected from the currently available HARQ process IDs as the HARQ process delivered by the PDCCH-free subframes. number.
  • the base station may transmit the newly transmitted data packet in the corresponding resource according to the timing relationship between the downlink resource indication and the downlink data transmission and the uplink ACK/NAK information.
  • the uplink ACK/NAK information is in a mapping relationship with the resource location where the PDCCH is located.
  • the terminal may send the corresponding uplink ACK/NAK information according to the PDCCH on the corresponding uplink ACK/NAK resource.
  • the higher layer signaling may inform each UE of the specific channel location or channel range information for transmitting the uplink ACK/NAK information.
  • the corresponding uplink ACK/NAK information may be in the uplink subframe #5, the subframe. #6,
  • the uplink ACK/NAK resource indicated by subframe #7 is transmitted.
  • the uplink ACK/NAK resources are reserved by the base station for the terminal according to the number of cell users and the transmission data packet, for example, the specific resource location corresponding to the uplink ACK/NAK resource can be notified through high layer signaling or physical layer signaling.
  • the information such as the resource number, the corresponding resource group, and the like, and the specific resource location or the resource number of the corresponding corresponding uplink ACK/NAK information is indicated by other signaling.
  • the base station sends a downlink resource indication (DL scheduling) of the HARQ process #0 carried by the PDCCH through the PDCCH in the subframe #0, and is used to schedule the current subframe #0.
  • DL scheduling may further include the HARQ process number of the subframe #1, the subframe #2, the subframe #3, and other configuration indications. If the interval at which the UE sends the feedback information to the base station is 4 subframes, the UE returns the uplink ACK/NAK information of the HARQ process ID corresponding to the downlink data to the base station.
  • the UE correctly transmits the feedback uplink ACK information to the base station in subframe #4 and subframe #5, respectively.
  • the UE For the HARQ process #2 and the process #3, an error occurs in the transmission, and the UE feeds back the corresponding uplink NAK information to the base station in subframe #6 and subframe #7, respectively. Therefore, it is necessary to retransmit the subframes of HARQ process #2 and process #3.
  • subframe #8, subframe #9, subframe #10, and subframe #11 may not be allocated to the current terminal for new transmission of data packets due to scheduling reasons.
  • the terminal can judge that the data packet is a retransmitted data packet by using the received PDCCH.
  • the retransmission interval is 4 subframes
  • HARQ process #2 and process #3 may be retransmitted in subframe 9 and subframe 10, respectively.
  • the base station When the base station is in subframe #12, configure a multi-subframe scheduling of a new transmission packet, carrying the downlink resource indication (DL scheduling) of the smallest HARQ process #0 available, indicating that a new transmission is sent in the subframe #12.
  • the data packet, and consecutive 4 subframes including subframe #12 are used for new transmission data transmission.
  • the UE may select the HARQ process ID corresponding to the current subframe from the currently available HARQ process IDs in the order of the small subframes, or select the minimum value from the currently available HARQ process IDs.
  • the HARQ process number as the current subframe. As shown in FIG.
  • the HARQ process numbers available in subframe #15 include: “1" (released in subframe #5), “4" (released in subframe #8), "7” (in subframe # 11 Release), if the HARQ process number corresponding to the subframe #12 of the last new transmission packet is "0", the HARQ process number corresponding to the subframe #15 may be "1". If the method of selecting the minimum value is used, the HARQ process number corresponding to subframe #15 may also be "1".
  • the HARQ process number corresponding to the subframe #12 is "3"
  • the HARQ process number corresponding to the subframe #15 may be "4" in descending order, in the order of the minimum value, the subframe
  • the HARQ process ID corresponding to #15 can be T.
  • the retransmitted data packet of the HARQ process ID indicated in the resource indication and the retransmission resource indicated by the retransmission resource indication signaling may occur in the same subframe.
  • the retransmission packet of the HARQ process number included in the retransmission resource indication signaling is preferentially scheduled.
  • the DL scheduling of the HARQ process #4 carried by the base station in subframe #4 further includes consecutive subframe #5, subframe #6, subframe # 7 HARQ process number.
  • the UE When the subframe #5 of the HARQ process #5 is new When an error occurs in the transmission of the transmitted data packet, the UE returns an uplink NAK message to the base station in subframe #9, and the base station may send a retransmission resource indication signaling in the DL scheduling of the retransmission scheduling in subframe #13 for indicating the HARQ process. 5 retransmission of data packet scheduling. At this time, the subframe #13 of the newly transmitted data packet that should be used for the third multi-subframe scheduling is retransmitted, and the idle subframe #14 without retransmission can transmit the occupied subframe resource. Newly transmitted packets.
  • the multi-subframe scheduling may end after the scheduling of 4 subframes is completed, as shown in FIG. 4a. If the number of consecutively scheduled subframes is extended, the multi-subframe scheduling may end the processing of the HARQ process number that needs to be continuously scheduled, as shown in FIG. 4b, which is the third embodiment of the multi-subframe scheduling method of the present invention.
  • the original multi-subframe scheduling originally needs to occupy subframes #12, #13, #14, #15, respectively corresponding to scheduling HARQ processes #0, #1, #4,
  • the new transmission packet of HARQ process number #1 should be transmitted in subframe #13, but since the base station sends the retransmission resource indication signaling of HARQ process #5 in subframe #13, Therefore, the subframe #13 is occupied by the retransmission data packet of the HARQ process #5, and since the base station transmits the retransmission resource indication signaling of the HARQ process #6 in the subframe #14, the subframe #14 is the HARQ process #6.
  • the data packet is retransmitted, and the scheduling of the new data packet of the HARQ process number #1 is delayed to the processing of the subframe #15, and the scheduling of the new data packet of the HARQ process number #4 is delayed to the processing of the subframe #16, and the HARQ is processed.
  • the scheduling of the new transmission packet of process #7 is delayed to the processing of subframe #17.
  • the interference caused by the ACK/NAK information or PDCCH fed back by the cell is strongly avoided.
  • the base stations of the neighboring cells may exchange information such as the occupied position, the transmission time, the transmission power, the interference level related parameters, the measurement result, and the like of the resources of the control channel of the strong interfering cell through the inter-base station interface, for example, the X2 interface, and the base station may
  • the information of the interaction is resource reservation for the ACK/NA resource or the PDCCH, and is used to schedule the resource location occupied by the control channel of the current cell.
  • the ACK/NAK resources of the current cell and other cells are scheduled on actual physical resources, such as frequency domain resources, to avoid interference between adjacent cells in uplink transmission.
  • the cell and the strong interfering cell coordinately allocate resources of the control channel of the base station of the corresponding strong interfering cell, for example: UL A physical layer control channel such as AC/NAK:, CQI, SRI, RACH, or PDCCH, and the ACK/NAK information of the strong interfering cell and the local cell are coordinated and allocated in different frequency bands.
  • the time domain resource may be reserved for the PDCCH, and the information transmission time of the corresponding strong interfering cell PDCCH is performed through the X2 interface between the base stations to ensure the allocation of the PDCCH time of the corresponding strong interfering cell, thereby avoiding strong interference at the same time.
  • the cell simultaneously transmits the PDCCH in the same frequency band.
  • the PDCCH of the cell #0 can be transmitted in the subframe #0, the PDCCH can be omitted in the subframe #1, the subframe #2, and the subframe #3, so the subframe #1 and the subframe can be used.
  • #2, subframe #3 transmits the PDCCH of strong interference cell #1, cell #2, and cell #3, respectively.
  • the number of consecutive transmission subframes can be determined according to the number of strongly interfering cells.
  • the terminal of the corresponding cell #0 receives data only in subframe #0, and does not perform reception and detection of PDCCH in subframe #1, subframe #2, and subframe #3.
  • the base station when the PDCCH is sent to the PDCCH, the base station carries the HARQ process ID and the continuous scheduling indication corresponding to the first scheduling subframe in the multi-subframe scheduling, which can implement multi-subframe scheduling and save the control signaling overhead of the system. , improve the spectral efficiency of the system.
  • Single-subframe scheduling during retransmission is better compatible with existing systems.
  • a single PDCCH is used for data scheduling of multiple subframes, and resources may be reserved.
  • the interaction information may be sent through the control channel between the base stations, so that the control channels of the strong interfering cells are avoided. The time schedules data, thereby reducing interference between control channels.
  • FIG. 5 is a schematic diagram of a fourth embodiment of a multi-subframe scheduling method according to the present invention.
  • the base station sends a high-level multi-subframe scheduling start signaling to the UE to start a multi-subframe reception and multi-subframe transmission data transmission mode performed by the terminal.
  • the number of consecutive scheduling subframes is not used for high-level signaling, and each time the multi-subframe scheduling passes the physical layer signaling, for example, the PDCCH, carries a continuous scheduling indication, and notifies the terminal to continuously schedule the downlink and downlink.
  • the number of subframes may be used to indicate the discontinuous subframes to be scheduled or to indicate the number of consecutive subframes by using signaling.
  • the number of consecutive subframes is taken as an example, and a new bit or a reused bit may be used to carry a resource indication in the PDCCH, for example, in a downlink resource indication (DL scheduling) in the PDCCH.
  • the 2 bits of the redundant version field (RV field) can be reused to carry continuous scheduling indications, or more bits can be added to carry continuous scheduling indications.
  • the continuous scheduling indication may be carried by reusing the existing padding bit, or more bits may be added to carry the continuous scheduling indication.
  • the continuous scheduling indication of the multi-subframe scheduling may be expressed as follows: the number of consecutively scheduled subframes immediately after the subframe indicated by the PDCCH, that is, the consecutively scheduled subframes after the first scheduling subframe number.
  • the resource of multi-subframe scheduling carrying process #0 indicates DL scheduling, for example:
  • the continuous scheduling indication is "4", indicating that the PDCCH indicates resource scheduling of subframe #0, subframe #1, subframe #2, subframe #3, and subframe #4. Multiple subframes may be scheduled through one PDCCH until the terminal reaches its maximum HARQ process.
  • the continuous scheduling indication is "2" in the PDCCH of the subframe #5, it indicates that the PDCCH indicates the resource scheduling of the subframe #5, the subframe #6, and the subframe #7.
  • the HARQ process number of the multi-subframe scheduling may be obtained from the process number field of the HARQ process carried in the PDCCH sent by the base station, where the HARQ process number field indicates the process number corresponding to the current sub-frame scheduling data packet, and the PDCCH is not carried.
  • the data packets of the subframe may be sequentially matched in the order of available free HARQ numbers.
  • the SPS transmission does not support the spatial multiplexing transmission mode, and only supports the transmission mode of the transmit diversity.
  • the semi-static scheduling activation indication can be performed by more semi-persistent scheduling control channel formats to support spatial multiplexing transmission.
  • the retransmission information indicating the multi-subframe manner may also be used.
  • the UE when an error occurs in both the HARQ process #4 and the process #5, the UE will return an uplink NAK message to the base station, and both the HARQ process #4 and the process #5 need to perform retransmission, and the corresponding retransmission subframe is The location may also be indicated by multi-subframe scheduling signaling in the PDCCH.
  • the base station sends the retransmission resource indication signaling of the HARQ process #4, process #5, where the HARQ process number carried is "4", and the continuous retransmission indication is "1", except that the retransmission is indicated.
  • the UE may also obtain the subframe #13 that does not deliver the PDCCH, and needs to retransmit the HARQ. Retransmission packet of process number #5.
  • the multi-subframe scheduling can be implemented, the control signaling overhead of the system is saved, and the spectrum efficiency of the system is improved. .
  • the use of multi-subframe scheduling during retransmission can further reduce the overhead of system control signaling and improve system performance.
  • each new data packet has a corresponding control signaling, such as PDCCH, to inform its resources and transmission mode.
  • the user equipment User Equipment; short: UE
  • the PDCCH may occupy resources of one to three Orthogonal Frequency Division Multiplexing (OFDM) symbols of the corresponding downlink subframes: used to carry downlink resource indication (DL scheduling) or downlink resource indication (UL grant), used to indicate the corresponding lower uplink transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the base station can adjust the number of OFDM symbols occupied by the PDCCH according to the number of users scheduled in the cell.
  • the base station sends the downlink control signaling (PDCCH) once when the semi-persistent scheduling transmission is started.
  • the UE starts the SPS transmission according to the location and time indicated by the PDCCH, and the UE performs the new data transmission according to the interval. Transmission and reception, until a special format PDCCH is received and the SPS transmission is terminated.
  • the UE can distinguish whether the scheduling is dynamic scheduling or semi-static scheduling by using different IDs scrambled on the CRC of the PDCCH.
  • the CRC of the dynamically scheduled PDCCH is scrambled by the C-RNTI; the CRC of the semi-persistently scheduled PDCCH is scrambled by the SPS-C-RNTI.
  • the UE detects the PDCCH scrambled by the SPS-C-RNTI the semi-static transmission is learned and started, according to the PDCCH.
  • Receiving or transmitting data indicated in the medium does not need to notify the resource location of the SPS data packet through the PDCCH every time, when needed
  • the newly configured PDCCH may be used instead of the previous semi-persistent scheduling configuration.
  • This semi-static transmission is cancelled until a specially formatted SPS-C-RNTI scrambled PDCCH.
  • the existing protocol specifies that the downlink and uplink semi-persistent scheduling intervals may be 10, 20, 32, 40, 65, 80, 128, 160, 320, 640, and the interval indicates that a semi-static packet is sent between interval.
  • the data resources transmitted in each subframe are in the corresponding uplink and downlink subframes, and the corresponding PDCCH is required to perform corresponding resource location and other configuration indications on the transmitted data configuration. Therefore, when there is continuous new data to be transmitted, the PDCCH carrying the corresponding number of uplink and downlink data packets needs to be indicated on the corresponding downlink subframe.
  • the synchronous non-adaptive HARQ mechanism may be used for retransmission processing in the uplink transmission, and the retransmission data packet using this mechanism may be in the corresponding subframe according to the HARQ timing, according to the configuration of the last transmission.
  • the corresponding resource sends the uplink data, and does not need to retransmit the PDCCH.
  • the PDCCH is required to perform retransmission resource indication signaling.
  • FIG. 6 is a schematic diagram of a fifth embodiment of a multi-subframe scheduling method according to the present invention.
  • a PDCCH scrambled by an SPS-C-RNTI can perform activation of uplink and downlink semi-persistent scheduling.
  • the base station may notify the UE of the semi-static subframe scheduling interval n and/or the semi-persistent scheduling transmission length m that needs to be initiated through high layer signaling.
  • the semi-persistent scheduling transmission length m is the continuous scheduling indication in the foregoing embodiment.
  • the time when the PDCCH is sent is the semi-persistent scheduling start position, and the semi-persistent scheduling interval is n, and the terminal schedules m times the same resource as the active PDCCH, for example, the HARQ process, and then releases the corresponding resource.
  • the resource release indication may be performed by releasing the semi-persistently scheduled PDCCH. For example: In the first multi-subframe scheduling, the semi-persistent scheduling transmission length parameter m is "3", and when the semi-static subframe scheduling interval n is "2", as shown in FIG. 6, the activation is performed in subframe #0.
  • subframe #5 a new PDCCH is transmitted, where the HARQ process number is "3", and the transmission is performed according to the corresponding configuration.
  • the transmission of HARQ process #3 is performed in subframe #5, and is performed in subframe #7.
  • the transmission of HARQ process #4 due to the uplink ACK information corresponding to the HARQ process #0 fed back in subframe #4, the default HARQ process #0 has been released, so the subframe #9 at the next transmission time can be currently available.
  • a new transmission packet of the HARQ process #0 corresponding to the transmission minimum value "0" is selected.
  • the subframe #10 can perform the retransmission scheduling of the HARQ process #1 by the PDCCH carrying the retransmission resource indication signaling.
  • the semi-static subframe scheduling interval n can be set to 1, 2, 3, 4, and 5, and the semi-persistent transmission length m can be equal to the maximum number of HARQ processes in the system, for example, 1 to 15.
  • the PDCCH sent by the base station carries the HARQ process ID, the continuous scheduling indication, and the semi-static subframe scheduling interval of the currently scheduled subframe, and the multi-subframe scheduling can be implemented in the semi-persistent scheduling mode. It saves the control signaling overhead of the system and improves the spectrum efficiency of the system.
  • the use of multi-subframe scheduling during retransmission can further reduce the overhead of system control signaling and improve system performance.
  • FIG. 7 is a schematic structural diagram of a first embodiment of a base station according to the present invention.
  • the base station may include: a scheduling indication sending module 71 and a data packet transmission module 72.
  • the scheduling indication sending module 71 is configured to send, to the terminal, a continuous scheduling indication of multiple subframe scheduling, a hybrid automatic retransmission process number corresponding to the first scheduling subframe, and scheduling configuration parameters.
  • the data packet transmission module 72 is configured to obtain a hybrid automatic retransmission process number corresponding to the current scheduling subframe according to the hybrid automatic retransmission process number corresponding to the first scheduling subframe and the continuous scheduling indication, where the scheduling is used.
  • the configuration parameter performs data packet transmission of the corresponding hybrid automatic retransmission process number in the current scheduling subframe; each scheduling subframe of the multiple subframe scheduling carries one data packet, and each scheduling of the multiple subframe scheduling The subframe uses the scheduling configuration parameters.
  • the scheduling indication sending module 71 of the base station may send a continuous scheduling indication to the terminal by using the high layer signaling or the physical layer signaling, for example, the number of all consecutive scheduling subframes or consecutive scheduling after the first scheduling subframe.
  • the number of the subframes, and the hybrid automatic retransmission process number of the currently scheduled subframe in each multi-subframe scheduling is delivered to the terminal through physical layer signaling, for example, PDCCH. If the new transmission packet of the hybrid automatic retransmission process number corresponding to the current scheduling subframe is successfully scheduled, the feedback information is positive information, otherwise it is negative information. If the presence of the negative feedback information, the next data packet transmission module 72 sent to the terminal comprising information corresponding to the negative hybrid automatic repeat retransmission resource indication signaling process number.
  • the base station may pre-set the retransmission delay, and carry it in the retransmission resource indication signaling to the terminal, or notify the terminal through other signaling. After the set retransmission delay, the base station may schedule retransmission resource indication signaling.
  • the scheduling instruction of the base station sends the scheduling configuration parameter in the multi-subframe scheduling, the continuous scheduling indication, and the hybrid automatic retransmission process number corresponding to the first scheduling subframe, which can implement multi-subframe scheduling and save the system.
  • the control signaling overhead increases the spectral efficiency of the system.
  • the retransmission resource indication signaling sending module sends a retransmission resource indication signaling including the hybrid automatic retransmission process number corresponding to the negative information to the terminal during retransmission, and the single subframe scheduling may be performed by using a single subframe scheduling. Good is compatible with existing systems.
  • FIG. 8 is a schematic structural diagram of a second embodiment of a base station according to the present invention.
  • the continuous scheduling indication may include the number of subframes to be scheduled or subsequent.
  • the number of consecutively scheduled sub-frames further, the scheduling indication sending module 71 may include: a first sending sub-module 711 and/or a second sending sub-module 712.
  • the first sending sub-module 711 is configured to send, to the terminal, the high-layer signaling that carries the continuous scheduling indication, where the high-layer signaling is used to notify the terminal of the start or cancel of the multi-subframe scheduling, and Transmitting a physical downlink control channel carrying the scheduling configuration parameter and the hybrid automatic retransmission process number corresponding to the first scheduling subframe.
  • the second sending sub-module 712 is configured to send, to the terminal, a physical downlink control channel that carries the continuous scheduling indication, the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the scheduling configuration parameter.
  • the base station further includes any one or more of the following modules: a retransmission scheduling module 73, a setting module 74, a conflict processing module 75, a continuous retransmission module 76, a strong interference processing module 77, and a semi-static scheduling module 78.
  • the setting module 74 is configured to set the continuous scheduling indication in a new bit or a reuse bit of a physical downlink control channel, where the reused bit is a redundancy version field in a downlink resource indication of the physical downlink control channel. Or the padding bit in the upstream resource indication.
  • the retransmission scheduling module 73 is configured to: when a data packet carried by each scheduling subframe of the multi-subframe scheduling is a new transmission data packet, if there is negative information in the feedback information obtained by transmitting the newly transmitted data packet, The terminal sends the retransmission resource indication signaling carrying the hybrid automatic retransmission process number corresponding to the negative information, and sends or receives the retransmission subframe corresponding to the retransmission resource indication signaling to the terminal.
  • the conflict processing module 75 is configured to preferentially schedule the retransmission data packet in the same scheduling subframe if the new transmission data packet and the retransmission data packet are scheduled in the same scheduling subframe.
  • the continuous retransmission module 76 is configured to transmit a plurality of consecutive negative information in the feedback information obtained by transmitting the newly transmitted data packet, and the retransmission resource indication signaling further includes all the consecutive multiple negative information corresponding to the negative information. The number of consecutively retransmitted subframes or the number of consecutively retransmitted subframes after the first retransmission subframe.
  • the strong interference processing module 77 is configured to acquire information of a neighboring cell from an inter-base station interface, where the information of the neighboring cell includes a frequency domain location, a sending time, and a transmission of a physical downlink control channel allocated by a base station of the neighboring cell. Power, or include one or more of the following: the neighboring cell The frequency domain location, transmission time, and transmission power of the physical uplink control channel allocated by the base station.
  • the semi-persistent scheduling module 78 is configured to send a semi-static subframe scheduling interval to the terminal by using the high layer signaling during the semi-persistent scheduling.
  • the continuous scheduling indication includes the number of all consecutive scheduling subframes or the number of consecutively scheduling subframes after the first scheduling subframe
  • the data packet transmission module 72 may further include: a first process number acquiring sub Module 721 and/or second process number acquisition sub-module 722.
  • the first process ID acquisition sub-module 721 is configured to continuously allocate the number of subframes according to the number of all consecutive scheduling subframes or after the first scheduling subframe, and each time from the currently available hybrid automatic weight The minimum value is selected in the process ID as the hybrid automatic retransmission process number of the current scheduling subframe.
  • the second process ID acquisition sub-module 722 is configured to use, according to the number of all consecutive scheduling subframes, or the number of consecutively scheduled subframes after the first scheduling subframe, and the hybrid automatic weight corresponding to the first scheduling subframe.
  • the process ID number is selected in order from small to large, and the currently available hybrid automatic retransmission process number is selected as the hybrid automatic retransmission process number of the current scheduling subframe.
  • the first sending sub-module 711 of the base station may use high-level signaling, such as multi-subframe scheduling start signaling, to send a continuous scheduling indication to the terminal, and use physical layer signaling, such as PDCCH, to send The scheduling configuration parameter and the hybrid automatic retransmission process number corresponding to the first scheduling subframe.
  • high-level signaling is used not only to notify the terminal of the start or cancel of the multi-subframe scheduling, but also to issue a continuous scheduling indication.
  • the setting module 74 of the base station may set the continuous scheduling indication to a new bit or a reused bit of the physical downlink control channel, for example, a redundancy version field or an uplink resource indication in the downlink resource indication.
  • the base station sends a high layer signaling to the terminal.
  • the second sending sub-module 712 may send the scheduling configuration parameter, the continuous scheduling indication, and the physical downlink of the hybrid automatic retransmission process number corresponding to the first scheduling subframe to the terminal by using the physical downlink control channel. Control channel.
  • the continuous retransmission module 76 may set a continuous retransmission indication corresponding to the negative information in the retransmission resource indication signaling, where the continuous retransmission indication The number of all consecutive retransmission subframes or the number of consecutive retransmission subframes after the first retransmission subframe is included to indicate the number of retransmission data packets that the terminal needs to continuously schedule.
  • the conflict processing module 75 may preferentially schedule the retransmission data packet of the hybrid automatic retransmission process number included in the retransmission resource indication signaling, and may select The number of subframes processed in the multi-subframe scheduling process is extended or not extended. For details, refer to the related description of the third embodiment of the multi-subframe scheduling method of the present invention and FIG. 3 and FIG.
  • the neighboring cell has a large interference intensity to the local cell, it is a strong interfering cell with respect to the local cell.
  • the strong interference processing module 77 of the base station of the local cell can interact with the base station of the strong interfering cell, obtain the neighboring strong interfering cell information from the inter-base station interface, and then reserve the time domain for the physical downlink control channel according to the strong interfering cell information.
  • the resource or the frequency domain resource is reserved for the feedback information; according to the reserved time domain resource, the strong interference cell is coordinated with the physical downlink control channel of the local cell in different subframes; or according to the reserved frequency domain resource
  • the coordinated information of the strong interfering cell and the local cell is coordinated and allocated in different frequency bands.
  • the semi-persistent scheduling module 78 may also send a semi-static subframe scheduling interval to the terminal. Then, the continuous scheduling indication is used as a semi-static transmission scheduling length, and a new transmission data packet corresponding to the hybrid automatic retransmission process number is scheduled in each semi-static subframe scheduling interval. If there is negative information in the feedback information obtained by the scheduling, After the fixed retransmission delay, the weight of the hybrid automatic retransmission process number corresponding to the negative information is scheduled in each semi-static subframe scheduling interval. Pass the packet.
  • the first sending sub-module and the second sending sub-module of the base station send the scheduling configuration parameter, the continuous scheduling indication, and the hybrid automatic retransmission process number corresponding to the first scheduling subframe to the terminal, and multiple subframes can be implemented.
  • Scheduling saves the control signaling overhead of the system and improves the spectrum efficiency of the system.
  • the retransmission resource indication signaling sending module sends a retransmission resource indication signaling including the hybrid automatic retransmission process number corresponding to the negative information to the terminal during retransmission, and the single subframe scheduling may be better Existing systems are compatible.
  • the continuous retransmission module may also deliver the number of hybrid automatic retransmission process numbers that need to be continuously retransmitted or the number of subsequent automatic retransmission process numbers of consecutive retransmissions to the terminal, and implement multiple subframes during retransmission. Scheduling can further reduce the overhead of system control signaling and improve system performance.
  • the data scheduling of multiple subframes is performed by using a single PDCCH.
  • the strong interference processing module may also reserve resources. When there are adjacent strong interference cells, the interaction information may be sent through the control channel between the base stations, so that the control channel of the strong interference cell is Avoid scheduling data at the same time, thereby reducing interference between control channels.
  • the semi-persistent scheduling module can also implement multi-subframe scheduling in a semi-static scheduling manner.
  • FIG. 9 is a schematic structural diagram of a first embodiment of a terminal according to the present invention.
  • the terminal may include: a scheduling indication receiving module 91 and a data packet transmission module 92.
  • the scheduling indication receiving module 91 is configured to receive a continuous scheduling indication of the multi-subframe scheduling sent by the base station, a hybrid automatic retransmission process number corresponding to the first scheduling subframe, and a scheduling configuration parameter.
  • the data packet transmission module 92 is configured to acquire, according to the hybrid automatic retransmission process number corresponding to the first scheduling subframe, and the continuous scheduling indication, a hybrid automatic retransmission process number corresponding to the current scheduling subframe, where the scheduling configuration is adopted. And transmitting, in the current scheduling subframe, the data packet transmission of the corresponding hybrid automatic retransmission process number; each scheduling subframe of the multiple subframe scheduling carries one data packet, and each scheduling sub-frame scheduling The frames all adopt the scheduling configuration parameters.
  • the base station may send a continuous scheduling indication to the terminal by using the high layer signaling or the physical layer signaling, for example, the number of all consecutive scheduling subframes or the number of consecutively scheduling subframes after the first scheduling subframe, and Transmitting each multi-subframe scheduling to the terminal through physical layer signaling, such as PDCCH.
  • the scheduling configuration parameter and the hybrid automatic retransmission process number corresponding to the first scheduling subframe are included in the high layer signaling or the physical layer signaling, for example, the number of all consecutive scheduling subframes or the number of consecutively scheduling subframes after the first scheduling subframe.
  • the packet transmission module 92 may receive the retransmission resource indication signaling that is sent by the base station and includes the hybrid automatic retransmission process number corresponding to the negative information.
  • the base station may preset the retransmission delay, and send the retransmission resource indication signaling to the terminal together, or notify the terminal by using other signaling. After the set retransmission delay, the base station may schedule the retransmission resource indication. The retransmission packet of the hybrid automatic retransmission process number included in the signaling.
  • the scheduling instruction receiving module of the terminal can implement multi-subframe scheduling, and save the system control signal. Increase overhead and increase the spectrum efficiency of the system.
  • the data packet transmission module receives the retransmission of the hybrid automatic retransmission process number corresponding to the negative information when retransmitting.
  • the continuous scheduling indication includes the number of subframes to be scheduled or subsequent consecutive The number of the scheduled subframes, the scheduling indication receiving module 91 may include: a first receiving submodule 911 and/or a second receiving submodule 912.
  • the first receiving sub-module 91 1 is configured to receive, by the base station, high-layer signaling that carries the continuous scheduling indication, where the high-layer signaling is used to notify the terminal of starting or canceling multi-subframe scheduling, and receive the base station. And a physical downlink control channel that carries the hybrid automatic retransmission process number corresponding to the scheduling configuration parameter and the first scheduling subframe.
  • the second receiving sub-module 912 is configured to receive a physical downlink control channel that is sent by the base station and that carries the continuous scheduling indication, the hybrid automatic repeating process number corresponding to the first scheduling subframe, and the scheduling configuration parameter.
  • the terminal may further include: a determining module 93 and/or a retransmission scheduling module 95.
  • the determining module 93 is configured to determine, according to the format of the downlink transmission control information in the received physical downlink control channel, that the scheduling is a single subframe scheduling or a multiple subframe scheduling.
  • the retransmission scheduling module 95 is configured to: when the data packet carried by each scheduling subframe of the multi-subframe scheduling is a newly transmitted data packet, if there is a negation in the feedback information of the newly transmitted data packet obtained by transmitting the newly transmitted data packet Receiving, by the base station, the retransmission resource indication signaling that is sent by the base station and including the hybrid automatic retransmission process number corresponding to the negative information, and sending, in the retransmission resource indication signaling, the retransmission subframe to the base station Or receiving a retransmission data packet of the hybrid automatic retransmission process number corresponding to the negative information sent by the base station.
  • the continuous scheduling indication includes the number of all consecutive scheduling subframes or the number of consecutively scheduling subframes after the first scheduling subframe
  • the data packet transmission module may include: a first process number obtaining submodule 921 and Z or the second process number acquisition sub-module 922.
  • the first process ID acquisition sub-module 921 is configured to continuously allocate the number of subframes according to the number of all consecutive scheduling subframes or after the first scheduling subframe, and each time from the currently available hybrid automatic weight The minimum value is selected in the process ID as the hybrid automatic retransmission process number of the current scheduling subframe.
  • the second process ID acquisition sub-module 922 is configured to use, according to the number of all consecutive scheduling subframes, or the number of consecutively scheduled subframes after the first scheduling subframe, and the hybrid automatic weight corresponding to the first scheduling subframe.
  • the process ID number is selected in order from small to large, and the currently available hybrid automatic retransmission process number is selected as the hybrid automatic retransmission process number of the current scheduling subframe.
  • the first receiving submodule 911 can receive high layer signaling sent by the base station to notify the terminal of the start or cancel of the multi-subframe scheduling, for example, the high-level multi-subframe scheduling start signaling, the multi-sub-
  • the frame scheduling initiation signaling may include a continuous scheduling indication, and then receive a physical downlink control channel that is sent by the base station and that carries the scheduling configuration parameter and the hybrid automatic retransmission process number corresponding to the first scheduling subframe.
  • the first receiving submodule 911 may receive the high-level multi-subframe scheduling start signaling sent by the base station, where the multi-subframe scheduling start signaling is only used to indicate the start of the multi-subframe scheduling, but does not include consecutive Scheduling the indication, and then the second receiving submodule 912 receives the carrying scheduling configuration parameter, the continuous scheduling indication, and the first scheduling subframe corresponding to the base station.
  • the physical downlink control channel of the automatic retransmission process number is mixed.
  • the determining module 93 may determine, according to the format of the downlink transmission control information in the received physical downlink control channel, that the scheduling is a single subframe scheduling or a multiple subframe scheduling.
  • the first process ID acquisition sub-module 921 and the second process number acquisition sub-module 922 may obtain the current subframe according to the continuous scheduling indication in each multi-subframe scheduling and the hybrid automatic retransmission process number corresponding to the first scheduling sub-frame. The corresponding hybrid automatic retransmission process number.
  • the submodule 921 For example: obtaining, by the first process ID, the submodule 921 according to the number of all consecutive scheduling subframes in the continuous scheduling indication or the number of consecutively scheduling subframes after the first scheduling subframe, each time from the currently available hybrid automatic The minimum value of the retransmission process number is selected as the hybrid automatic retransmission process number of the current scheduling subframe; or the second process number acquisition submodule is based on the number of all consecutive scheduling subframes in the continuous scheduling indication or in the first After the subframe is scheduled, the number of consecutively scheduled subframes and the hybrid automatic repeating process number corresponding to the first scheduling subframe are sequentially selected from the smallest to the largest, and the currently available hybrid automatic repeating process number is selected as the current scheduling subframe.
  • the data packet transmission module 92 may receive the hybrid automatic delivery that is sent by the base station and includes the negative information.
  • the retransmission resource indication signaling of the retransmission process number The base station may preset the retransmission delay, and send the retransmission resource indication signaling to the terminal together, or notify the terminal by using other signaling. After the set retransmission delay, the base station may schedule the retransmission resource indication.
  • Multi-subframe scheduling can be implemented, which saves control signaling overhead of the system and improves the spectrum efficiency of the system.
  • the data packet transmission module receives the retransmission resource indication signaling including the hybrid automatic retransmission process number corresponding to the negative information, and the single subframe scheduling can be better compatible with the existing system. Multi-subframe scheduling is used in retransmission, which can further reduce the overhead of system control signaling and improve system performance.
  • the multi-subframe scheduling system may include the base station 10 and the terminal 20 of any of the above configurations.
  • the base station 10 may send a continuous scheduling indication to the terminal 20 by using the high layer signaling or the physical layer signaling, for example, the number of all consecutive scheduling subframes or the number of consecutively scheduling subframes after the first scheduling subframe. And transmitting, by the physical layer signaling, for example, the PDCCH, the scheduling configuration parameter and the hybrid automatic retransmission process number corresponding to the first scheduling subframe. If the new transmission packet of the hybrid automatic retransmission process number corresponding to the current scheduling subframe is successfully scheduled, the feedback information is a positive information, otherwise it is a negative information.
  • the physical layer signaling for example, the PDCCH
  • the base station 10 sends a retransmission resource indication signaling including the hybrid automatic retransmission process number corresponding to the negative information to the terminal 20.
  • the base station 10 may set the retransmission delay in advance, and carry it to the terminal 20 together in the retransmission resource indication signaling, or notify the terminal 20 through other signaling. After the set retransmission delay, the base station 10 may schedule retransmission.
  • the resource indicates the retransmission packet of the hybrid automatic retransmission process number included in the signaling.
  • the scheduling configuration parameter in the multi-subframe scheduling of the base station, the continuous scheduling indication, and the hybrid automatic retransmission process number corresponding to the first scheduling subframe may implement multi-subframe scheduling, which saves control signaling overhead of the system. Improve the frequency efficiency of the system.
  • single-subframe scheduling can be better compatible with existing systems in single-subframe scheduling, and multi-subframe scheduling in retransmission, which can further reduce the overhead of system control signaling and improve system performance.

Description

多子帧调度方法、 系统和设备 本申请要求于 2010 年 3 月 22 日提交中国专利局、 申请号为 201010131399.9, 发明名称为"多子帧调度方法、 系统和设备"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及技术领域, 尤其涉及一种多子帧调度方法、 系统和 设备。 背景技术
在现有的第三代系统合作项目( 3rd Generation Partnership Project;简称: 3GPP ) 演进的通用移动通信系统 (Universal Mobile Telecommunications System; 简称: UMTS ) 陆地无线接入 ( Evolved-UMTS Terrestrial Radio Access;简称: E-UTRA )系统中支持频分双工( Frequency Division Duplexing; 简称: FDD )和时分双工 ( Time Division Duplexing; 简称: TDD ) 两种模 式。 在长期演进计划 ( Long Term Evolution; 简称: LTE ) 系统中, 终端根 据基站下发的物理下 ^"控制信道 ( Physical Downlink Control Channel; 简称: PDCCH ) 的指示, 在对应的上下行资源接收下行数据、 发送上行数据。 在 LTE FDD系统中, 最大混合自动重传 ( Hybrid Automatic Repeat Request; 简称: HARQ )进程数为 8, 上行采用同步自适应或非自适应重传, 下行釆 用非同步自适应重传。 在 LTE TDD系统中, 最大 HARQ进程数为 15。
以上行数据传输为例,基站在子帧 0在 PDCCH资源内发送相应的上行 资源指示 (UL grant )进行上行子帧调度。 终端接收 PDCCH后, 获得上行 传输的资源位置和相应的传输配置指示信息。 根据 LTE协议中规定的定时 关系,终端可以在接收到 PDCCH的子帧后的第 4个子帧的相应资源上发送 其所需要的上行业务数据。基站接收终端上发的数据包后通过 CRC ( Cyclic redundancy check, 循环冗余校脸 )可以判断数据包是否正确。 在终端发送 上行数据后的第 4个子帧, 基站下发该数据包的是否正确的指示信息。 如 果数据包错误,基站在承载错误信息的子帧的 PDCCH信道上同时承载重传 数据包的重传 UL grant。终端则根据相应的重传 PDCCH信息进行新的数据 上发, 直到接收到基站发出的确认(Acknowledgment; 简称: ACK )指示, 或达到数据最大重传次数后放弃重传现有数据包。
对于下行数据传输, 终端接收基站发送的数据包后, 需要反馈相应的 上行 ACK或否定 ( Non- Acknowledgment; 简称: NAK )信息, 现有的上 行 ACK/NAK的序号与终端相对应的 PDCCH传输位置之间存在映射关系。 终端可以根据 PDCCH传输位置, 在相应的上行传输资源发送 ACK/NAK 信息。
现有 LTE标准中, 每个 PDCCH调度一个子帧的资源进行数据传输, 由于每个新传数据包都需要 PDCCH资源调度指示,因此在用户信道较稳定 的情况下, 频繁的改变数据传输的配置信息,会导致系统的 PDCCH信令开 销大, 频谱效率较低。 发明内容
本发明提供一种多子帧调度方法、 系统和设备, 用以解决现有技术中 系统控制信令开销大、 频谱效率较低的缺陷, 实现降低系统控制信令开销, 提高频谱效率。
本发明实施例提供一种多子帧调度方法, 包括: 向终端下发多子帧调 度的连续调度指示、 第一个调度子帧对应的混合自动重传进程号及调度配 置参数; 根据所述第一个调度子帧对应的混合自动重传进程号和所述连续 调度指示获取当前调度子帧对应的混合自动重传进程号, 采用所述调度配 置参数在所述当前调度子帧进行对应的混合自动重传进程号的数据包传 输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述多子帧调度的 每个调度子帧均采用所述调度配置参数。 本发明实施例又提供一种多子帧调度方法, 包括: 接收基站发送的多 子帧调度的连续调度指示、 第一个调度子帧对应的混合自动重传进程号及 调度配置参数; 根据所述第一个调度子帧对应的混合自动重传进程号和所 述连续调度指示获取当前调度子帧对应的混合自动重传进程号, 采用所述 调度配置参数在所述当前调度子帧进行对应的混合自动重传进程号的数据 包传输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述多子帧调 度的每个调度子帧均采用所述调度配置参数。
本发明实施例还提供一种基站, 包括: 调度指示下发模块, 用于向终 端下发多子帧调度的连续调度指示、 第一个调度子帧对应的混合自动重传 进程号及调度配置参数; 数据包传输模块, 用于根据所述第一个调度子帧 对应的混合自动重传进程号和所述连续调度指示获取当前调度子帧对应的 混合自动重传进程号, 采用所述调度配置参数在所述当前调度子帧进行对 应的混合自动重传进程号的数据包传输; 所述多子帧调度的每个调度子帧 承载一个数据包, 所述多子帧调度的每个调度子帧均采用所述调度配置参 数。
本发明实施例还提供一种终端, 包括: 调度指示接收模块, 用于接收 基站发送的多子帧调度的连续调度指示、 第一个调度子帧对应的混合自动 重传进程号及调度配置参数; 数据包传输模块, 用于根据所述第一个调度 子帧对应的混合自动重传进程号和所述连续调度指示获取当前调度子帧对 应的混合自动重传进程号, 釆用所述调度配置参数在所述当前调度子帧进 行对应的混合自动重传进程号的数据包传输; 所述多子帧调度的每个调度 子帧承载一个数据包, 所述多子帧调度的每个调度子帧均釆用所述调度配 置参数。
本发明实施例还提供一种多子帧调度系统, 包括: 上述的任意一种基 站和终端。
本发明提供的多子帧调度方法、 系统和设备, 通过下发每次当前调度 的子帧的混合自动重传进程号和连续调度指示, 可以实现多子帧调度, 节 省了系统的控制信令开销, 提高系统的频谱效率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中 FDD模式的帧结构;
图 2为本发明多子帧调度方法第一实施例的流程图;
图 3为本发明多子帧调度方法第二实施例的流程图;
图 4a为本发明多子帧调度方法第三实施例的示意图;
图 4b为本发明多子帧调度方法第三实施例中延长连续调度子帧个数的 示意图;
图 5为本发明多子帧调度方法第四实施例的示意图;
图 6为本发明多子帧调度方法第五实施例的示意图;
图 7为本发明基站第一实施例的结构示意图;
图 8为本发明基站第二实施例的结构示意图;
图 9为本发明终端第一实施例的结构示意图;
图 10为本发明终端第二实施例的结构示意图;
图 11为本发明多子帧调度系统实施例的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 为本发明实施例中 FDD模式的帧结构, 每个无线帧长为 10毫秒, 由 2个长为 5毫秒的半帧组成。 每个无线帧由 20个长为 0.5毫秒 的时隙组成, 每两个时隙组成一个子帧, 子帧的时长为 1毫秒。
图 2为本发明多子帧调度方法第一实施例的流程图, 如图 2所示, 该 多子帧调度方法包括以下内容。
步骤 101、 向终端下发多子帧调度的连续调度指示、 第一个调度子帧对 应的混合自动重传进程号及调度配置参数。
步骤 101具体可以包括以下情况。
情况一、 向终端下发携带连续调度指示的高层信令, 所述高层信令用 于通知终端多子帧调度的启动或取消, 并向所述终端下发携带调度配置参 数和第一个调度子帧对应的混合自动重传进程号的物理下行控制信道。
可以先通过高层信令, 例如高层的多子帧调度启动信令, 告知终端多 子帧调度启动, 同时将此次调度的连续调度指示, 例如所有连续调度子帧 的个数或在第一个调度子帧后连续调度子帧的个数, 下发给终端。 然后再 通过物理层信令, 例如: 物理下行控制信道, 将调度配置参数和第一个调 度子帧对应的混合自动重传进程号下发给终端。
情况二、 向终端下发携带所述连续调度指示、 第一个调度子帧对应的 混合自动重传进程号及调度配置参数的物理下行控制信道。
基站可以先通过高层信令, 例如高层的多子帧调度启动信令, 告知终 端多子帧调度启动, 然后通过物理层信令, 例如: 物理下行控制信道 PDCCH, 向终端下发携带调度配置参数、 连续调度指示和第一个调度子帧 对应的混合自动重传进程号。 其中, PDCCH可以包括下行资源指示, 例如 DL scheduling, 也可以包括上行资源指示, 例如 UL grant。
在情况二中, 上述携带此次调度的子帧个数的方法具体可以为: 将所 述连续调度指示设置在所述物理下行控制信道的新增比特或重用比特中。 所述重用比特为所述物理下行控制信道的下行资源指示中的冗余版本
( Redundancy version; 简称: RV )域( field )或上行资源指示中的填充位 ( padding bit )。
上述情况二中采用 PDCCH中的直接传输连续调度指示,可以减少多子 帧调度所占用的信令, 有利于节约信令资源。 其中, 釆用冗余版本域或填 充位等 PDCCH的重用比特, 可以直接利用现有的 PDCCH资源, 不用增加 PDCCH的信元, 设置方便并进一步节约信令资源。
步骤 102、根据所述第一个调度子帧对应的混合自动重传进程号和所述 连续调度指示获取当前调度子帧对应的混合自动重传进程号, 采用所述调 度配置参数在所述当前调度子帧进行对应的混合自动重传进程号的数据包 传输。
其中, 本实施例中的上述多子帧调度的每个调度子帧^载一个数据包, 上述多子帧调度的每个调度子帧均采用上述调度配置参数。
在连续调度指示包括所有连续调度子帧的个数或在第一个调度子帧后 连续调度子帧的个数时, 根据所述第一个调度子帧对应的混合自动重传进 程号和所述连续调度指示获取当前调度子帧对应的混合自动重传进程号的 具体过程可以包括: 根据所述所有连续调度子帧的个数或在第一个调度子 帧后连续调度子帧的个数, 每次从当前可用的混合自动重传进程号中选取 最小值作为当前调度子帧的混合自动重传进程号; 或, 根据所述所有连续 调度子帧的个数或在第一个调度子帧后连续调度子帧的个数和第一个调度 子帧对应的混合自动重传进程号, 按照从小到大的顺序依次选取当前可用 的混合自动重传进程号作为当前调度子帧的混合自动重传进程号。
进一步地, 如果多子帧调度的每个调度子帧承载的数据包为新传数据 包, 若传输所述新传数据包得到的反馈信息中存在否定信息, 则向所述终 端下发携带所述否定信息对应的混合自动重传进程号的重传资源指示信 令, 并在所述重传资源指示信令对应的重传子帧向终端发送或接收终端发 送的所述否定信息对应的混合自动重传进程号的重传数据包。 具体地, 基 站可以预先设置重传时延, 携带在重传资源指示信令中一起发送给终端, 或通过其他信令告知终端, 在经过设置的重传时延后, 基站调度重传资源 指示信令中包括的否定信息对应的混合自动重传进程号的重传数据包。
进一步地, 若所述新传数据包与所述重传数据包在相同调度子帧进行 调度, 则在所述相同调度子帧优先调度所述重传数据包。
再进一步地, 在每次多子帧调度的过程中, 调度当前调度子帧对应的 混合自动重传进程号的新传数据包时, 可能连续出现错误, 从而得到的反 馈信息中有多个否定信息。 此时, 若传输所述新传数据包得到的反馈信息 中存在连续的多个否定信息, 则所述重传资源指示信令还包括所述连续的 多个否定信息对应的所有连续重传子帧的个数或在第一个重传子帧后连续 重传子帧的个数。
对于本小区基站和相邻小区的基站存在较强千扰时, 可以采用预留资 源的方法降低或避免干扰, 具体方法为: 从基站间接口获取相邻小区的信 息, 所述相邻小区的信息包括以下一个或多个: 所述相邻小区的基站分配 的物理下行控制信道所占频域位置、 发送时刻、 发射功率, 或者包括以下 一个或多个: 所述相邻小区的基站分配的物理上行控制信道所占频域位置、 发送时刻、 发射功率。 根据相邻小区的信息获取千扰水平大于设定阈值的 强千扰小区的信息, 根据所述强干扰小区的信息, 将所述强干扰小区与本 小区的物理下行控制信道协调分配在不同的子帧上, 确定本小区的基站向 终端下发多子帧调度的物理下行控制信道的调度子帧, 从而为强干扰小区 和本小区下发物理下行控制信道预留时域资源; 或将所述强干扰小区与本 小区的物理上行控制信道协调分配在不重叠的频带上, 从而为强干扰小区 和本小区的物理上行控制信道预留频域资源, 以反馈 ACK或 NAK信息。
此外, 在半静态调度时, 可以通过高层信令向所述终端下发半静态子 帧调度间隔。 可以在已有半静态调度周期中增加值为 1、 2、 4、 5、 8 的半 静态子帧调度间隔。 并通知终端相应的半静态传输调度长度进行指示。 具 体调度时, 基站根据每次多子帧调度中第一个调度子帧对应的混合自动重 传进程号、 连续调度指示和静态子帧调度间隔, 每个静态子帧调度间隔内, 对当前子调度帧对应的混合自动重传进程号的新传数据包进行调度。
本实施例基站向终端下发调度配置参数、 连续调度指示和第一个调度 子帧对应的混合自动重传进程号, 可以实现多子帧调度, 节了省系统的控 制信令开销, 提高系统的频谱效率。 在重传时采用单子帧调度可以更好的 与已有系统兼容, 在重传时釆用釆用多子帧调度可以进一步减少系统控制 信令的开销,提高系统的性能。釆用单个 PDCCH进行多个子帧的数据调度, 可以预留资源, 在存在相邻的强干扰小区时, 可以通过基站间的控制信道 发送交互信息, 使强干扰小区的控制信道之间避免在相同时间调度数据, 从而减少控制信道之间的千扰。
图 3为本发明多子帧调度方法第二实施例的流程图, 如图 3所示, 该 多子帧调度方法包括以下内容。
步骤 201、接收基站发送的多子帧调度的连续调度指示、 第一个调度子 帧对应的混合自动重传进程号及调度配置参数。
步骤 201具体可以包括以下情况。
情况一、 接收基站发送的携带连续调度指示的高层信令, 所述高层信 令用于通知终端多子帧调度的启动或取消, 并接收所述基站发送的携带调 度配置参数和第一个调度子帧对应的混合自动重传进程号的物理下行控制 信道。
终端可以从基站的高层信令, 例如多子帧调度启动信令, 得到多子帧 调度启动的指示, 同时获取此次调度的连续调度指示, 例如所有连续调度 子帧的个数或在第一个调度子帧后连续调度子帧的个数。 然后再通过基站 的物理层信令, 例如: 物理下行控制信道, 获取第一个调度子帧对应的混 合自动重传进程号。
情况二、 接收基站发送的所述连续调度指示、 第一个调度子帧对应的 混合自动重传进程号及调度配置参数的物理下行控制信道。
终端可以先从基站的高层信令, 例如多子帧调度启动信令, 得到多子 帧调度启动的指示, 然后从物理层信令, 例如: 物理下行控制信道 PDCCH, 获取调度配置参数、 第一个调度子帧对应的混合自动重传进程号和连续调 度指示。 其中, PDCCH可以包括下行资源指示, 例如 DL scheduling, 也可 以包括上行资源指示, 例如 UL grant, 连续调度指示可以从 PDCCH的新增 比特或重用比特中获取,其中重用比特可以为 PDCCH的下行资源指示中的 冗余版本域或上行资源指示中的填充位。
此外, 终端可以根据接收到的物理下行控制信道中的下行传输控制信 息格式, 确定此次调度是单子帧调度或多子帧调度。 例如: 在下行传输中 PDCCH釆用多种下行控制信息( Downlink Control Information; 简称: DCI ) 格式进行下行调度传输, 在多子帧调度传输模式开启的情况下, 可以预留 部分 DCI格式用于新传数据的单子帧调度,其他 DCI格式用于多子帧调度。 PDCCH的格式包括进行上行调度的 DCI格式 0; 还包括进行下行资源调度 的 DCI格式 1、 la、 lb、 lc、 2、 2a、 3, 进行不同传输模式的下行资源指示。 其中, DCI格式 0用于上行调度, 包括: 资源调度指示域、 新数据指示域、 解调参考信号(Demodulation Reference Signal; 简称: DMRS )循环移位指 示域、 调制编码指示域、 信道质量指示 ( Channel Quality Indicator; 简称: CQI )请求域、 循环冗余码校验(Cyclical Redundancy Check; 简称: CRC ) 域等。 其他 DCI格式用于下行数据调度指示, 包括: 资源调度指示域、 新 数据指示域、 调制编码指示域、 新数据指示域、 功控指示域、 CRC校验域、 HARQ进程指示域、 冗余版本指示域等。 在部分 DCI格式中, 存在 1个或 2个无用比特( bit ), 用以满足码率的要求用作填充。 假设预留 DCI la用作 单子帧调度, 其他格式用作多子帧调度。 在上行传输只有 DCI格式 0用于 上行传输调度, 在 LTE-A协议中可以增加其他上行调度 DCI格式, 根据 PDCCH的不同的 DCI格式, 可以判定当前是采用单子帧调度,还是采用多 子帧调度。
步骤 202、根据所述第一个调度子帧对应的混合自动重传进程号和所述 连续调度指示获取当前调度子帧对应的混合自动重传进程号, 采用所述调 度配置参数在所述当前调度子帧进行对应的混合自动重传进程号的数据包 传输。
其中, 本实施例中的上述多子帧调度的每个调度子帧承载一个数据包, 上述多子帧调度的每个调度子帧均釆用所述调度配置参数。
如果连续调度指示包括所有连续调度子帧的个数或在第一个调度子帧 后连续调度子帧的个数, 在基站向终端下发多子帧调度启动信令后, 根据 所述第一个调度子帧对应的混合自动重传进程号和所述连续调度指示获取 当前调度子帧对应的混合自动重传进程号, 可以包括以下示例。
示例一、 根据所述所有连续调度子帧的个数或在第一个调度子帧后连 续调度子帧的个数, 每次从当前可用的混合自动重传进程号中选取最小值 作为当前调度子帧的混合自动重传进程号。
示例二、 根据所述所有连续调度子帧的个数或在第一个调度子帧后连 续调度子帧的个数和第一个调度子帧对应的混合自动重传进程号, 按照从 小到大的顺序依次选取当前可用的混合自动重传进程号作为当前调度子帧 的混合自动重传进程号。
本实施例终端接收基站下发的调度配置参数、 连续调度指示和第一个 调度子帧对应的混合自动重传进程号, 可以实现多子帧调度, 节省了系统 的控制信令开销, 提高系统的频谱效率。 在重传时采用单子帧调度可以更 好的与已有系统兼容, 在重传时采用采用多子帧调度可以进一步减少系统 控制信令的开销,提高系统的性能。釆用单个 PDCCH进行多个子帧的数据 调度, 可以预留资源, 在存在相邻的强干扰小区时, 可以通过基站间的控 制信道发送交互信息, 使强干扰小区的控制信道之间避免在相同的时间调 度数据, 从而减少控制信道之间的干扰。
图 4a为本发明多子帧调度方法第三实施例的示意图, 基站向 UE发送 多子帧调度启动信令, 用以指示终端启动多子帧接收和发送的数据传输模 式。 多子帧调度启动信令可以通过高层信令(例如: MAC或 RLC层的信 令) 下发, 对新传数据包配置每一次需要调度的子帧个数, 例如: 每次多 子帧调度共连续发送或连续接收的子帧的个数, 该个数的范围可以为大于 1, 但小于或等于系统最大 HARQ 进程数的值, 如 2、 3、 4、 5、 6、 7、 8 等。 基站可以根据当前传输的业务类型、 小区用户个数、 用户信道情况等 信息, 进行连续子帧调度配置或更改当前用户的相应配置, 通过高层信令 通知终端相应配置更改的信息,终端根据基站下发 PDCCH的时刻,调度相 应资源进行数据传输。
本发明实施例中, 终端可以从接收到的高层信令或物理层控制信令中 获得如连续调度指示, 并从物理层控制信令中获取调度配置参数、 第一个 调度子帧的 HARQ进程号、 对应单独的肯定 /否定 (ACK/NAK )反馈位置 等信息。 如图 4a所示, 假设配置的每次多子帧调度过程中需要连续调度的 时刻即子帧个数为 4个, 在第一个时刻即第一个子帧 #0, 终端接收到基站 发送的下行传输的 PDCCH, 其中携带第一个调度子帧对应的 PDCCH对应 的当前 HARQ进程号、 调制编码方式、 资源指示等信息, 对应指示此次可 以连续调度的子帧 #0、 子帧 #1、 子帧 #2、 子帧 #3。 此时, 第一个子帧 #0有 PDCCH下发, 而后续连续调度的 3个子帧 #1、 子帧 #2、 子帧 #3无 PDCCH 下发。 在下行传输中, PDCCH中承载下行资源指示 (DL scheduling ), DL scheduling 中承载着多子帧调度的第一个时刻的 HARQ进程号, 例如: 在 子帧 #0, 基站配置的第一个子帧的 HARQ 进程号为" 0", UE 可以根据该 HARQ进程号 "0", 可以按照时间顺序即子帧序号的大小依次计算多子帧调 度的后续连续调度的无 PDCCH下发的子帧的 HARQ进程号, 例如: 按照 从小到大的顺序从当前可用的 HARQ进程号中依次选取后续每个子帧对应 的 HARQ进程号;也可以每次从当前可用的 HARQ进程号中选取最小值作 为无 PDCCH子帧下发的 HARQ进程号。
基站根据下行资源指示与下行数据传输、 上行 ACK/NAK信息的定时 关系, 可以将新传数据包在相应的资源中进行传输。 其中, 上行 ACK/NAK 信息与 PDCCH所在的资源位置存在映射关系。对于有下行资源指示的下行 数据包,终端可以根据 PDCCH在相对应的上行 ACK/NAK资源上进行发送 对应的上行 ACK/NAK信息。 对于没有下行资源指示的子帧, 高层信令可 以为每个 UE通知其传输上行 ACK/NAK信息的具体信道位置或信道范围信 息。 例如, 通过高层信令通知 UE在子帧 #1、 子帧 #2、 子帧 #3传输的下行 的新传数据包时, 对应的上行 ACK/NAK信息可以在上行子帧 #5、 子帧 #6、 子帧 #7所指示的上行 ACK/NAK资源中进行传输。 这些上行 ACK/NAK资 源是基站根据小区用户数和传输数据包为终端预留并通知终端的, 例如: 可以通过高层信令或物理层信令通知上行 ACK/NAK资源所对应的具体的 资源位置、 资源编号、 相对应的资源组等信息, 再通过其他信令指示具体 对应的上行 ACK/NAK信息的具体资源位置, 或资源编号。
如图 4a所示, 在第一次多子帧调度时, 基站在子帧 #0通过 PDCCH下 发承载的 HARQ进程 #0的下行资源指示 (DL scheduling ), 用于调度当前 子帧 #0的数据, 如果连续调度的子帧个数为 4个, 则 DL scheduling还可以 包括子帧 #1、 子帧 #2、 子帧 #3的 HARQ进程号和其他配置指示。 如果 UE 向基站发送反馈信息的间隔为 4个子帧,则 UE向基站返回下行数据所对应 的 HARQ进程号的上行 ACK/NAK信息。 其中, 对于 HARQ进程 #0和进 程 #1, UE分别在子帧 #4和子帧 #5向基站正确传输反馈的上行 ACK信息。 而对于 HARQ进程 #2和进程 #3在传输中发生错误, UE分别在子帧 #6和子 帧 #7向基站反馈对应的上行 NAK信息。 因此, 需要对 HARQ进程 #2和进 程 #3的子帧进行重传。 为了方便区分, 在图 4a中, 将需要重传的进程号的 后缀加 X。如果采用下行非同步自适应重传, 重传调度的 PDCCH可以为单 子帧的配置。 在系统中可能由于调度原因, 没有将子帧 #8、 子帧 #9、 子帧 #10、 子帧 #11 分配给当前终端进行新传数据包传输。 在需要进行重传的时 刻, 如果子帧的相应的时刻没有新传数据包分配给当前终端, 终端通过接 收到的 PDCCH可以判断此数据包为重传数据包。 如图 4a中, 假设重传的 间隔为 4个子帧, 可以在子帧 9和子帧 10分别对 HARQ进程 #2和进程 #3 进行重传。 当基站在子帧 #12, 配置一个新传数据包的多子帧调度, 承载着 可用的最小的 HARQ进程 #0的下行资源指示 (DL scheduling ), 指示在该 子帧 #12下发新传数据包, 并且包括子帧 #12在内的连续 4个子帧用作新传 数据包传输使用。 其中, 每次多子帧调度时, UE可以按照从小到大的顺序 从当前可用的 HARQ进程号中选取当前子帧对应的 HARQ进程号,也可以 每次从当前可用的 HARQ进程号选取最小值作为当前子帧的 HARQ进程 号。 如图 4a所示, 在子帧 #15可用的 HARQ进程号包括: " 1" (在子帧 #5 释放)、 "4" (在子帧 #8释放)、 "7" (在子帧 #11释放), 如果按照从小到大 的顺序的方法, 由于上一个新传数据包的子帧 #12对应的 HARQ进程号为 "0", 因此子帧 #15对应的 HARQ进程号可以为 "1"; 如果按照选取最小值的 方法, 则子帧 #15对应的 HARQ进程号也可以为" 1"。 假设, 在为子帧 #12 对应的 HARQ进程号为" 3",则按照从大到小的顺序,子帧 #15对应的 HARQ 进程号可以为 "4", 按照最小值的顺序, 子帧 #15对应的 HARQ进程号可以 为 T。
进一步地, 在多子帧调度的过程中, 通过资源指示中指示的 HARQ进 程号的新传数据包与重传资源指示信令中指示的 HARQ进程号的重传数据 包可能在同一子帧发生沖突, 此时, 优先调度重传资源指示信令包括的 HARQ进程号的重传数据包。 例如: 图 4a的第二次多子帧调度过程中, 基 站在子帧 #4下发承载的 HARQ进程 #4的 DL scheduling, 还包括连续的子 帧 #5、 子帧 #6、 子帧 #7的 HARQ进程号。 当子帧 #5的 HARQ进程 #5的新 传数据包传输发生错误时, UE在子帧 #9向基站返回上行 NAK消息, 基站 可以在子帧 #13发送重传调度的 DL scheduling进行重传资源指示信令, 用 于指示对 HARQ进程 #5的重传数据包的调度。 此时, 原本应该用于第三次 多子帧调度的传输新传数据包的子帧 #13被重传占用,在下一个无重传的空 闲的子帧 #14可以传输被占用子帧资源的新传数据包。如果不延长连续调度 的子帧个数, 则此次多子帧调度可以在完成 4个子帧的调度之后结束, 如 图 4a所示。 如果延长连续调度的子帧个数, 则此次多子帧调度可以将原本 需要连续调度的 HARQ进程号处理完再结束,如图 4b所示, 为本发明多子 帧调度方法第三实施例中延长连续调度子帧个数的示意图, 第三次多子帧 调度的原本需要占用子帧 #12、 #13、 #14、 #15, 分别对应调度 HARQ进程 #0、 #1、 #4、 #7的新传数据包, 在子帧 #13原本应传输 HARQ进程号 #1的 新传数据包, 但由于基站在子帧 #13下发了 HARQ进程 #5的重传资源指示 信令, 因此子帧 #13被 HARQ进程 #5的重传数据包占用, 由于基站在子帧 #14下发了 HARQ进程 #6的重传资源指示信令, 因此子帧 #14被 HARQ进 程 #6的重传数据包占用,将 HARQ进程号 #1的新传数据包的调度延迟到子 帧 #15处理, 将 HARQ进程号 #4的新传数据包的调度延迟到子帧 #16处理, 将 HARQ进程 #7的新传数据包的调度延迟到子帧 #17处理。
此外, 在异构网络场景下, 为避免强干扰小区在反馈的 ACK/NAK信 息或 PDCCH带来的干扰。相邻小区的基站之间可以通过基站间接口,例如 X2接口, 交互强干扰小区的控制信道的资源的所占位置、 发送时刻、 发射 功率、 干扰水平相关参数、 测量结果等信息, 基站可以根据交互的信息为 ACK/NA 资源或 PDCCH进行资源预留,用来调度分配当前小区的控制信 道所占的资源位置。 一方面可以根据相邻小区的千扰情况, 将本小区和其 他小区的 ACK/NAK资源在实际物理资源, 例如频域资源, 上进行调度, 以避免相邻小区之间在上行传输中的干扰。 例如: 本小区与强干扰小区之 间协调分配相应强干扰小区的基站的控制信道的资源, 例如: UL AC /NAK:、 CQI、 SRI、 RACH或 PDCCH等物理层控制信道, 将强干扰小 区与本小区的 ACK/NAK信息协调分配在不同的频带上。 另一方面, 可以 为 PDCCH预留时域资源, 通过基站间的 X2接口进行信息交互相应的强干 扰小区 PDCCH的发送时刻, 以确保相应的强干扰小区 PDCCH时刻分配, 从而避免在相同时刻强干扰小区在同一频带同时发送 PDCCH。 如图 4a所 示, 由于在子帧 #0可以发送小区 #0的 PDCCH, 在子帧 #1、 子帧 #2、 子帧 #3可以不用发送 PDCCH, 因此可以在子帧 #1、 子帧 #2、 子帧 #3分别发送 强千扰小区 #1、 小区 #2、 小区 #3的 PDCCH。 因此, 在无线网络布网时, 可 以根据强干扰小区的数目确定连续传输子帧个数。 相应的小区 #0的终端只 在子帧 #0进行数据的接收,在子帧 #1、子帧 #2、子帧 #3可以不进行 PDCCH 的接收和检测。
本实施例基站向终端下发的 PDCCH时,携带每次多子帧调度第一个调 度子帧对应的 HARQ进程号和连续调度指示, 可以实现多子帧调度, 节省 了系统的控制信令开销, 提高系统的频谱效率。 在重传时采用单子帧调度 可以更好的与已有系统兼容。 采用单个 PDCCH进行多个子帧的数据调度, 还可以预留资源, 在存在相邻的强干扰小区时, 可以通过基站间的控制信 道发送交互信息, 使强干扰小区的控制信道之间避免在相同的时间调度数 据, 从而减少控制信道之间的干扰。
图 5为本发明多子帧调度方法第四实施例的示意图,基站向 UE发送高 层的多子帧调度启动信令来启动终端进行的多子帧接收和多子帧发送的数 据传输模式。 与第一实施例不同的是, 不采用高层信令通知连续调度子帧 个数,每次多子帧调度通过物理层信令, 例如 PDCCH,携带连续调度指示, 通知终端上、 下行连续调度的子帧个数。 可以釆用位图 (bit map ) 映射的 方式指示所需要调度的不连续子帧或采用信令进行连续子帧个数的指示。 本实施例中以连续子帧个数为例,在 PDCCH中可以釆用新增比特或重用比 特携带资源指示, 例如: 在 PDCCH中的下行资源指示( DL scheduling ) 中 可以重用冗余版本域 ( RV field )的 2bits携带连续调度指示, 或增加更多的 bit携带连续调度指示。 在上行资源指示 (UL grant ) 中, 可以通过重用已 有的填充位 (padding bit )携带连续调度指示, 或增加更多的 bit携带连续 调度指示。
以下行传输为例, 多子帧调度的连续调度指示可以表示为: 紧接着 PDCCH 所指示的子帧后的连续调度的子帧个数即在第一个调度子帧后连 续调度子帧的个数。 在子帧 #0 时, 承载进程 #0 的多子帧调度的资源指示 DL scheduling, 例如: 图 5中, 在多子帧调度的过程中, 如杲在子帧 #0的 PDCCH的 DL scheduling中连续调度指示为" 4", 表示该 PDCCH指示子帧 #0、 子帧 #1、 子帧 #2、 子帧 #3、 子帧 #4的资源调度。 可以通过一个 PDCCH 调度多个子帧,直到终端达到其最大 HARQ进程。如果在子帧 #5的 PDCCH 中连续调度指示为" 2", 则表示该 PDCCH指示子帧 #5、 子帧 #6、 子帧 #7的 资源调度。 多子帧调度的 HARQ进程号可以从基站发送的 PDCCH中承载 的 HARQ 进程号域( process number field ) 中获得, HARQ 进程号域指示 当前子帧调度数据包所对应的进程号,没有承载 PDCCH的子帧的数据包可 以按照可用空闲的 HARQ号顺序依次对应。 现有 LTE Release8协议中 SPS 传输不支持空间复用的传输模式, 只支持发射分集的传输模式。 在多子帧 调度方式下, 可以通过更多半静态调度控制信道格式进行半静态调度的激 活指示, 来支持空间复用的传输。
进一步地, 在多子帧调度过程中还可以釆用多子帧的方式的指示重传 信息。 如图 5所示, 当 HARQ进程 #4、 进程 #5都发生错误时, UE将向基 站返回上行 NAK消息, HARQ进程 #4、 进程 #5都需要进行重传, 对应的 重传子帧的位置也可以通过 PDCCH中的多子帧调度信令进行指示。在子帧 #12, 基站下发 HARQ进程 #4、 进程 #5 的重传资源指示信令, 其中携带的 HARQ进程号为" 4", 连续重传指示为" 1", 除了指示需要重传 HARQ进程 #4之外, 还可以 UE获得没有下发 PDCCH的子帧 #13需要重传 HARQ进 程号 #5的重传数据包。
本实施例基站向终端下发的 PDCCH 时, 携带每次当前调度的子帧的 HARQ 进程号和连续调度指示, 可以实现多子帧调度, 节省了系统的控制 信令开销, 提高系统的频谱效率。 在重传时采用采用多子帧调度可以进一 步减少系统控制信令的开销, 提高系统的性能。
在现有 LTE协议中定义了动态调度( Dynamic Scheduling; 简称: DS ) 和半静态调度( Semi-Persistent Scheduling; 简称: SPS )两种数据传输的资 源指示方式。 在动态调度下, 每个新传数据包有一个相应的控制信令, 例 如 PDCCH, 用以通知其资源和传输方式。 用户设备(User Equipment; 简 称: UE )根据基站( Base Station; 简称: BS ) 下发的 PDCCH接收下行数 据、 传输上行数据。 PDCCH可以占用相应的几个下行子帧的 1至 3个正交 频分复用 ( Orthogonal Frequency Division Multiplexing; 简称: OFDM )符 号的资源: 用于承载下行资源指示 (DL scheduling )或下行资源指示 ( UL grant ),用于指示相应的下上行传输。基站根据小区中所调度用户数的多少, 可以调整 PDCCH所占用的 OFDM符号个数。 当 PDCCH占用 OFDM符号 时越少时, 可以承载数据的资源越多, 相应的系统频谱效率越高; PDCCH 占用资源越多时, 承载有效数据的资源越少, 系统频谱效率越低。 在半静 态调度方式下, 基站仅在启动半静态调度传输时发送一次下行控制信令 ( PDCCH ), UE根据这个 PDCCH所指示的位置和时刻启动 SPS传输, UE 按照一定间隔进行新传数据包的传输和接收, 直到接收到一个特殊格式的 PDCCH再终止 SPS传输。
由于动态调度和半静态调度都是使用 PDCCH 进行通知, UE 通过 PDCCH的 CRC上加扰的不同 ID可以区分此次调度是动态调度还是半静态 调度。 其中, 动态调度的 PDCCH的 CRC通过 C-RNTI进行加扰; 半静态 调度的 PDCCH 的 CRC 通过 SPS-C-RNTI 进行加扰。 当 UE 检测到 SPS-C-RNTI加扰的 PDCCH时,获知并启动此次半静态传输,根据 PDCCH 中所指示的接收或发送数据, 在一段时间内根据第一次的启动半静态传输 的 PDCCH所指示的位置接收或发送数据,不需要每次都通过 PDCCH通知 SPS数据包的资源位置, 当需要改变 SPS资源位置时, 在 SPS数据周期性 到达的时刻, 可以采用新配置的 PDCCH取代之前的半静态调度的配置。 直 到一个特殊格式的 SPS-C-RNTI加扰的 PDCCH来取消这个半静态传输。 现 有协议中规定下行和上行半静态调度间隔的取值可以为 10、 20、 32、 40、 65、 80、 128、 160、 320、 640, 此间隔表明连个半静态数据包发送之间的 间隔。
在动态调度下的新传数据包, 每个子帧传输的数据资源在相应的上下 行子帧中,需要相应的 PDCCH对传输的数据配置进行相应的资源位置和其 他配置的指示。 因此, 当存在连续的新传数据需要传输时, 在相应的下行 子帧上, 需要承载相应的上、 下行数据包个数的 PDCCH进行指示。 对于重 传数据, 上行传输中可以釆用同步非自适应 HARQ机制进行重传处理, 釆 用这种机制的重传数据包可以根据 HARQ定时在相应的子帧上, 根据上次 传输的配置在相应资源发送上行数据, 而不需要重传数据的 PDCCH; 对于 上行自适应重传以及下行数据的重传数据,需要 PDCCH进行重传资源指示 信令。
图 6为本发明多子帧调度方法第五实施例的示意图, 如图 6所示, 在 半静态调度时, 釆用 SPS-C-RNTI加扰的 PDCCH可以进行上、 下行半静态 调度的激活。基站可以通过高层信令通知 UE需要启动的半静态子帧调度间 隔 n和 /或半静态调度传输长度 m。 其中半静态调度传输长度 m即为上述实 施例中的连续调度指示。假设以 PDCCH的下发的时刻为半静态调度的子帧 起始位置, 以半静态调度间隔为 n, 为终端调度 m次与激活 PDCCH相同配 置的资源, 例如 HARQ进程, 然后释放相应的资源。 如果系统不通知半静 态调度传输长度 m时, 可以通过释放半静态调度的 PDCCH进行资源释放 指示。 例如: 第一次多子帧调度时, 半静态调度传输长度参数 m为" 3", 半静 态子帧调度间隔 n为" 2"时, 如图 6所示, 在子帧 #0下发激活半静态调度的 PDCCH,其 HARQ进程号为" 0", 因此在子帧 #0传输 HARQ进程 #0对应新 传数据包, 根据半静态子帧调度间隔 n=2 时需要间隔一个子帧, 在下一次 传输的子帧 #2传输 HARQ进程 #1对应数据, 同样, 在子帧 #4对应 HARQ 进程 #2的新传数据包。 在 3次传输完毕后, 此次半静态调度的 PDCCH作 废。 第二次多子帧调度时, 基站可以重新配置相应的 m=4和 n=2, 并下发 新的半静态调度的 PDCCH进行此次传输指示。 例如: 在子帧 #5发送新的 PDCCH, 其中 HARQ 进程号为" 3", 按照相应的配置进行传输, 此时, 在 子帧 #5进行 HARQ进程 #3的传输, 在子帧 #7进行 HARQ进程 #4的传输, 由于在子帧 #4, 反馈的 HARQ进程 #0对应的上行 ACK信息, 默认 HARQ 进程 #0 已经被释放, 因此在下一次传输时刻子帧 #9, 可以从当前可用的 HARQ进程号中选取传输最小值" 0"对应的 HARQ进程 #0的新传数据包。 由于 HARQ进程 #1没有被释放, 假设重传定时为 4个子帧, 则在子帧 #10 可以通过携带重传资源指示信令的 PDCCH进行 HARQ进程 #1的重传调度。 其中, 半静态子帧调度间隔 n可以设置为 1、 2、 3、 4、 5等不同数值, 半 静态调度传输长度 m可以等于系统最大 HARQ进程数, 例如: 1至 15。
本实施例基站向终端下发的 PDCCH 时, 携带每次当前调度的子帧的 HARQ 进程号、 连续调度指示和半静态子帧调度间隔, 可以在半静态调度 的方式下实现多子帧调度, 节省了系统的控制信令开销, 提高系统的频谱 效率。 在重传时采用采用多子帧调度可以进一步减少系统控制信令的开销, 提高系统的性能。
图 7为本发明基站第一实施例的结构示意图, 如图 7所示, 该基站可 以包括: 调度指示下发模块 71和数据包传输模块 72。
其中, 上述调度指示下发模块 71用于向终端下发多子帧调度的连续调 度指示、 第一个调度子帧对应的混合自动重传进程号及调度配置参数。 上 述数据包传输模块 72用于根据所述第一个调度子帧对应的混合自动重传进 程号和所述连续调度指示获取当前调度子帧对应的混合自动重传进程号, 釆用所述调度配置参数在所述当前调度子帧进行对应的混合自动重传进程 号的数据包传输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述 多子帧调度的每个调度子帧均采用所述调度配置参数。
具体地, 基站的调度指示下发模块 71可以通过高层信令或物理层信令 向终端下发连续调度指示, 例如: 所有连续调度子帧的个数或在第一个调 度子帧后连续调度子帧的个数, 并通过物理层信令, 例如 PDCCH, 向终端 下发每次多子帧调度中当前调度的子帧的混合自动重传进程号。 如果对当 前调度子帧对应的混合自动重传进程号的新传数据包调度成功, 则反馈信 息为肯定信息, 否则为否定信息。 若反馈信息中存在否定信息, 则数据包 传输模块 72向该终端下发包括所述否定信息对应的混合自动重传进程号的 重传资源指示信令。 基站可以预先设置重传时延, 携带在重传资源指示信 令中一起发送给终端, 或通过其他信令告知终端, 在经过设置的重传时延 后, 基站可以调度重传资源指示信令中包括的混合自动重传进程号的重传 数据包。
本实施例基站的调度指示下发模块下发多子帧调度中调度配置参数、 连续调度指示和第一个调度子帧对应的混合自动重传进程号, 可以实现多 子帧调度, 节省了系统的控制信令开销, 提高系统的频谱效率。 重传资源 指示信令下发模块在重传时向所述终端下发包括所述否定信息对应的混合 自动重传进程号的重传资源指示信令, 采用单子帧调度可以单子帧调度可 以更好的与已有系统兼容。
图 8为本发明基站第二实施例的结构示意图, 如图 8所示, 在本发明 基站第一实施例的基础上, 所述连续调度指示可以包括此次需要调度的子 帧个数或后续连续调度的子帧个数, 进一步地, 调度指示下发模块 71可以 包括: 第一下发子模块 711和 /或第二下发子模块 712。 其中, 第一下发子模块 711 用于向终端下发携带所述连续调度指示的 高层信令, 所述高层信令用于通知终端多子帧调度的启动或取消, 并向所 述终端下发携带所述调度配置参数和第一个调度子帧对应的混合自动重传 进程号的物理下行控制信道。 第二下发子模块 712用于向终端下发携带所 述连续调度指示、 第一个调度子帧对应的混合自动重传进程号及调度配置 参数的物理下行控制信道。
进一步地, 该基站还包括以下模块的任意一个或者多个: 重传调度模 块 73、 设置模块 74、 沖突处理模块 75、 连续重传模块 76、 强干扰处理模 块 77和半静态调度模块 78。
其中, 上述设置模块 74用于将所述连续调度指示设置在物理下行控制 信道的新增比特或重用比特中, 所述重用比特为所述物理下行控制信道的 下行资源指示中的冗余版本域或上行资源指示中的填充位。
上述重传调度模块 73用于在多子帧调度的每个调度子帧承载的数据包 为新传数据包时, 若传输所述新传数据包得到的反馈信息中存在否定信息, 则向所述终端下发携带所述否定信息对应的混合自动重传进程号的重传资 源指示信令, 并在所述重传资源指示信令对应的重传子帧向终端发送或接 收终端发送的所述否定信息对应的混合自动重传进程号的重传数据包。
上述冲突处理模块 75用于若所述新传数据包与所述重传数据包在相同 调度子帧进行调度, 则在所述相同调度子帧优先调度所述重传数据包。
上述连续重传模块 76用于传输所述新传数据包得到的反馈信息中存在 连续的多个否定信息, 则所述重传资源指示信令还包括所述连续的多个否 定信息对应的所有连续重传子帧的个数或在第一个重传子帧后连续重传子 帧的个数。
上述强干扰处理模块 77用于从基站间接口获取相邻小区的信息, 所述 相邻小区的信息包括所述相邻小区的基站分配的物理下行控制信道所占频 域位置、 发送时刻、 发射功率, 或者包括以下一个或多个: 所述相邻小区 的基站分配的物理上行控制信道所占频域位置、 发送时刻、 发射功率。 根 据相邻小区的信息获取干扰水平大于设定阈值的强千扰小区的信息, 根据 所述强干扰小区的信息, 将所述强干扰小区与本小区的物理下行控制信道 协调分配在不同的子帧上, 确定本小区的基站向终端下发多子帧调度的物 理下行控制信道的调度子帧; 或将所述强干扰小区与本小区的物理上行控 制信道协调分配在不重叠的频带上。
上述半静态调度模块 78用于在半静态调度时, 通过高层信令向所述终 端下发半静态子帧调度间隔。
此外, 所述连续调度指示包括所有连续调度子帧的个数或在第一个调 度子帧后连续调度子帧的个数, 所述数据包传输模块 72还可以包括: 第一 进程号获取子模块 721和 /或第二进程号获取子模块 722。
其中, 上述第一进程号获取子模块 721 用于根据所述所有连续调度子 帧的个数或在第一个调度子帧后连续调度子帧的个数, 每次从当前可用的 混合自动重传进程号中选取最小值作为当前调度子帧的混合自动重传进程 号。 上述第二进程号获取子模块 722 用于根据所述所有连续调度子帧的个 数或在第一个调度子帧后连续调度子帧的个数和第一个调度子帧对应的混 合自动重传进程号, 按照从小到大的顺序依次选取当前可用的混合自动重 传进程号作为当前调度子帧的混合自动重传进程号。
具体地, 一种情况下, 基站的第一下发子模块 711可以釆用高层信令, 例如多子帧调度启动信令, 向终端发送连续调度指示, 采用物理层信令, 例如 PDCCH,发送调度配置参数和第一个调度子帧对应的混合自动重传进 程号。 此时, 高层信令不仅用于通知终端多子帧调度的启动或取消, 还用 于下发连续调度指示。
另一种情况下, 基站的设置模块 74可以将所述连续调度指示设置在所 述物理下行控制信道的新增比特或重用比特, 例如: 下行资源指示中的冗 余版本域或上行资源指示中的填充位中, 在基站向终端发送高层信令告知 终端启动多子帧调度后, 第二下发子模块 712可以采用物理下行控制信道 向终端下发调度配置参数、 连续调度指示和第一个调度子帧对应的混合自 动重传进程号的物理下行控制信道。
如果对此次调度的混合自动重传进程号的新传数据包的调度成功, 则 得到的反馈信息为肯定信息, 否则得到的反馈信息为否定信息。 若存在所 述否定信息对应的连续的混合自动重传进程号, 则连续重传模块 76可以在 重传资源指示信令中设置所述否定信息对应的连续重传指示, 所述连续重 传指示包括所有连续重传子帧的个数或在第一个重传子帧后连续重传子帧 的个数, 以指示终端需要连续调度的重传数据包的数目。
如果连续调度指示与重传资源指示信令包括的子帧发生冲突, 沖突处 理模块 75可以优先调度所述重传资源指示信令包括的混合自动重传进程号 的重传数据包, 同时可以选择延长或不延长此次多子帧调度过程中处理的 子帧的个数。 具体可以参照本发明多子帧调度方法第三实施例的相关描述 和图 3、 图 4。
进一步地, 如果邻居小区对本小区的千扰强度较大, 则相对于本小区 为强干扰小区。 本小区的基站的强干扰处理模块 77可以与强干扰小区的基 站交互, 从基站间接口获取相邻的强干扰小区信息, 然后根据所述强干扰 小区信息, 为物理下行控制信道预留时域资源或为所述反馈信息预留频域 资源; 根据预留的时域资源, 将强干扰小区与本小区的物理下行控制信道 协调分配在不同的子帧上; 或根据预留的频域资源, 将强干扰小区与本小 区的反馈信息协调分配在不同的频带上。
再进一步地, 在半静态调度时, 半静态调度模块 78还可以向终端下发 半静态子帧调度间隔。 然后将连续调度指示作为半静态传输调度长度, 在 每个半静态子帧调度间隔调度一个对应的混合自动重传进程号的新传数据 包, 如果调度得到的反馈信息中存在否定信息, 经过设定的重传延时后, 在每个半静态子帧调度间隔调度否定信息对应的混合自动重传进程号的重 传数据包。
本实施例基站的第一下发子模块、 第二下发子模块向终端下发调度配 置参数、 连续调度指示和第一个调度子帧对应的混合自动重传进程号, 可 以实现多子帧调度, 节省了系统的控制信令开销, 提高系统的频谱效率。 重传资源指示信令下发模块在重传时向所述终端下发包括所述否定信息对 应的混合自动重传进程号的重传资源指示信令, 釆用单子帧调度可以更好 的与已有系统兼容。 连续重传模块还可以向终端下发此次需要连续重传的 混合自动重传进程号的个数或后续连续重传的混合自动重传进程号的个 数, 实现重传时的多子帧调度, 可以进一步减少系统控制信令的开销, 提 高系统的性能。采用单个 PDCCH进行多个子帧的数据调度, 强干扰处理模 块还可以预留资源, 在存在相邻的强干扰小区时, 可以通过基站间的控制 信道发送交互信息, 使强干扰小区的控制信道之间避免在相同的时间调度 数据, 从而减少控制信道之间的干扰。 半静态调度模块还可以在半静态调 度的方式下实现多子帧调度。
图 9为本发明终端第一实施例的结构示意图, 如图 9所示, 该终端可 以包括: 调度指示接收模块 91和数据包传输模块 92。
其中, 上述调度指示接收模块 91用于接收基站发送的多子帧调度的连 续调度指示、 第一个调度子帧对应的混合自动重传进程号及调度配置参数。 上述数据包传输模块 92用于根据所述第一个调度子帧对应的混合自动重传 进程号和所述连续调度指示获取当前调度子帧对应的混合自动重传进程 号, 采用所述调度配置参数在所述当前调度子帧进行对应的混合自动重传 进程号的数据包传输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述多子帧调度的每个调度子帧均采用所述调度配置参数。
具体地, 基站可以通过高层信令或物理层信令向终端下发连续调度指 示, 例如: 所有连续调度子帧的个数或在第一个调度子帧后连续调度子帧 的个数, 并通过物理层信令, 例如 PDCCH, 向终端下发每次多子帧调度中 调度配置参数和第一个调度子帧对应的混合自动重传进程号。 基站的调度 指示接收模块 91接收到基站发送的调度配置参数、 连续调度指示和第一个 调度子帧对应的混合自动重传进程号后, 如果对当前调度子帧对应的混合 自动重传进程号的新传数据包调度得到的反馈信息中存在否定信息, 则数 据包传输模块 92可以接收基站下发的包括所述否定信息对应的混合自动重 传进程号的重传资源指示信令。 其中, 基站可以预先设置重传时延, 携带 在重传资源指示信令中一起发送给终端, 或通过其他信令告知终端, 在经 过设置的重传时延后, 基站可以调度重传资源指示信令中包括的混合自动 重传进程号的重传数据包。
本实施例终端的调度指示接收模块接收基站下发调度配置参数、 连续 调度指示和第一个调度子帧对应的混合自动重传进程号后, 可以实现多子 帧调度, 节省了系统的控制信令开销, 提高系统的频谱效率。 数据包传输 模块在重传时接收下发包括所述否定信息对应的混合自动重传进程号的重 兼容。
图 10为本发明终端第二实施例的结构示意图, 如图 10所示, 在本发 明终端第一实施例的基础上, 所述连续调度指示包括此次需要调度的子帧 个数或后续连续调度的子帧个数, 调度指示接收模块 91可以包括: 第一接 收子模块 911和 /或第二接收子模块 912。
其中, 上述第一接收子模块 91 1 用于接收基站发送的携带所述连续调 度指示的高层信令, 所述高层信令用于通知终端多子帧调度的启动或取消, 并接收所述基站发送的携带所述调度配置参数和第一个调度子帧对应的混 合自动重传进程号的物理下行控制信道。 上述第二接收子模块 912用于接 收基站发送的携带所述连续调度指示、 第一个调度子帧对应的混合自动重 传进程号及调度配置参数的物理下行控制信道。
进一步地, 该终端还可以包括: 确定模块 93和 /或重传调度模块 95。 其中, 上述确定模块 93用于根据接收到的物理下行控制信道中的下行 传输控制信息格式, 确定此次调度是单子帧调度或多子帧调度。 上述重传 调度模块 95用于在多子帧调度的每个调度子帧承载的数据包为新传数据包 时, 若传输所述新传数据包得到的新传数据包的反馈信息中存在否定信息, 接收所述基站下发的包括所述否定信息对应的混合自动重传进程号的重传 资源指示信令, 并在所述重传资源指示信令对于那个的重传子帧向基站发 送或接收基站发送的所述否定信息对应的混合自动重传进程号的重传数据 包。
进一步地, 所述连续调度指示包括所有连续调度子帧的个数或在第一 个调度子帧后连续调度子帧的个数, 数据包传输模块可以包括: 第一进程 号获取子模块 921和 Z或第二进程号获取子模块 922。
其中, 上述第一进程号获取子模块 921 用于根据所述所有连续调度子 帧的个数或在第一个调度子帧后连续调度子帧的个数, 每次从当前可用的 混合自动重传进程号中选取最小值作为当前调度子帧的混合自动重传进程 号。 上述第二进程号获取子模块 922 用于根据所述所有连续调度子帧的个 数或在第一个调度子帧后连续调度子帧的个数和第一个调度子帧对应的混 合自动重传进程号, 按照从小到大的顺序依次选取当前可用的混合自动重 传进程号作为当前调度子帧的混合自动重传进程号。
具体地, 一种情况下, 第一接收子模块 911 可以接收基站发送的用于 通知终端多子帧调度的启动或取消的高层信令, 例如高层的多子帧调度启 动信令, 该多子帧调度启动信令中可以包括连续调度指示, 然后接收所述 基站下发的携带调度配置参数和第一个调度子帧对应的混合自动重传进程 号的物理下行控制信道。 另一种情况下, 第一接收子模块 911 可以接收基 站发送的高层的多子帧调度启动信令, 该多子帧调度启动信令仅用于指示 多子帧调度的启动, 但不包括连续调度指示, 然后第二接收子模块 912接 收基站发送的携带调度配置参数、 连续调度指示和第一个调度子帧对应的 混合自动重传进程号的物理下行控制信道。 其中, 确定模块 93可以根据接 收到的物理下行控制信道中的下行传输控制信息格式, 确定此次调度是单 子帧调度或多子帧调度。 第一进程号获取子模块 921、 第二进程号获取子模 块 922 可以根据每次多子帧调度中的连续调度指示和第一个调度子帧对应 的混合自动重传进程号, 获取当前子帧对应的混合自动重传进程号。 例如: 通过第一进程号获取子模块 921 根据连续调度指示中的所有连续调度子帧 的个数或在第一个调度子帧后连续调度子帧的个数, 每次从当前可用的混 合自动重传进程号中选取最小值作为当前调度子帧的混合自动重传进程 号; 或者第二进程号获取子模块根据所述连续调度指示中的所有连续调度 子帧的个数或在第一个调度子帧后连续调度子帧的个数和第一个调度子帧 对应的混合自动重传进程号, 按照从小到大的顺序依次选取当前可用的混 合自动重传进程号作为当前调度子帧的混合自动重传进程号。 如果对当前 调度子帧对应的混合自动重传进程号的新传数据包调度得到的反馈信息中 存在否定信息, 则数据包传输模块 92可以接收基站下发的包括所述否定信 息对应的混合自动重传进程号的重传资源指示信令。 其中, 基站可以预先 设置重传时延, 携带在重传资源指示信令中一起发送给终端, 或通过其他 信令告知终端, 在经过设置的重传时延后, 基站可以调度重传资源指示信 令中包括的混合自动重传进程号的重传数据包。
本实施例终端的第一接收子模块、 第二接收子模块接收基站下发的多 子帧调度的调度配置参数、 连续调度指示和第一个调度子帧对应的混合自 动重传进程号后, 可以实现多子帧调度, 节省了系统的控制信令开销, 提 高系统的频谱效率。 数据包传输模块在重传时接收下发包括所述否定信息 对应的混合自动重传进程号的重传资源指示信令, 采用单子帧调度可以单 子帧调度可以更好的与已有系统兼容, 在重传时采用多子帧调度, 可以进 一步减少系统控制信令的开销, 提高系统的性能。
图 11 为本发明多子帧调度系统实施例的结构示意图, 如图 11所示, 该多子帧调度系统可以包括上述任意一种结构的基站 10和终端 20。
具体地, 基站 10可以通过高层信令或物理层信令向终端 20下发连续 调度指示, 例如所有连续调度子帧的个数或在第一个调度子帧后连续调度 子帧的个数, 并通过物理层信令, 例如 PDCCH, 向终端 20下发调度配置 参数和第一个调度子帧对应的混合自动重传进程号。 如果对当前调度子帧 对应的混合自动重传进程号的新传数据包调度成功, 则反馈信息为肯定信 息, 否则为否定信息。 若反馈信息中存在否定信息, 则基站 10向该终端 20 下发包括所述否定信息对应的混合自动重传进程号的重传资源指示信令。 基站 10可以预先设置重传时延, 携带在重传资源指示信令中一起发送给终 端 20, 或通过其他信令告知终端 20, 在经过设置的重传时延后, 基站 10 可以调度重传资源指示信令中包括的混合自动重传进程号的重传数据包。
本实施例基站下多子帧调度中的调度配置参数、 连续调度指示和第一 个调度子帧对应的混合自动重传进程号, 可以实现多子帧调度, 节省了系 统的控制信令开销, 提高系统的频谙效率。 在重传时, 采用单子帧调度可 以单子帧调度可以更好的与已有系统兼容, 在重传时采用多子帧调度, 可 以进一步减少系统控制信令的开销, 提高系统的性能。
本发明实施例中的基站、 终端、 多子帧调度系统进行多子帧调度的具 体方法, 可以参照本发明多子帧调度方法第一实施例到第五实施例中的相 关描述和附图。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序 代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种多子帧调度方法, 其特征在于, 包括:
向终端下发多子帧调度的连续调度指示、 第一个调度子帧对应的混合 自动重传进程号及调度配置参数;
根据所述第一个调度子帧对应的混合自动重传进程号和所述连续调度 指示获取当前调度子帧对应的混合自动重传进程号, 采用所述调度配置参 数在所述当前调度子帧进行对应的混合自动重传进程号的数据包传输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述多子帧调度的 每个调度子帧均采用所述调度配置参数。
2、 根据权利要求 1所述的多子帧调度方法, 其特征在于, 所述向终端 下发多子帧调度的连续调度指示、 第一个调度子帧对应的混合自动重传进 程号及调度配置参数, 包括:
向终端下发携带所述连续调度指示的高层信令, 所述高层信令用于通 知所述终端多子帧调度的启动或取消, 并向所述终端下发携带所述调度配 置参数和所述第一个调度子帧对应的混合自动重传进程号的物理下行控制 信道; 或
向所述终端下发携带所述连续调度指示、 第一个调度子帧对应的混合 自动重传进程号及调度配置参数的物理下行控制信道。
3、 根据权利要求 2所述的多子帧调度方法, 其特征在于, 还包括: 将所述连续调度指示设置在所述物理下行控制信道的新增比特或重用 比特中, 所述重用比特为所述物理下行控制信道的下行资源指示中的冗余 版本域或上行资源指示中的填充位。
4、 根据权利要求 1所述的多子帧调度方法, 其特征在于, 所述连续调 度指示包括所有连续调度子帧的个数或在第一个调度子帧后连续调度子帧 的个数, 所述根据所述第一个调度子帧对应的混合自动重传进程号和所述 连续调度指示获取当前调度子帧对应的混合自动重传进程号, 包括: 根据所述所有连续调度子帧的个数或在第一个调度子帧后连续调度子 帧的个数, 每次从当前可用的混合自动重传进程号中选取最小值作为当前 调度子帧的混合自动重传进程号; 或
根据所述所有连续调度子帧的个数或在第一个调度子帧后连续调度子 帧的个数和第一个调度子帧对应的混合自动重传进程号, 按照从小到大的 顺序依次选取当前可用的混合自动重传进程号作为当前调度子帧的混合自 动重传进程号。
5、 根据权利要求 1所述的多子帧调度方法, 其特征在于, 所述多子帧 调度的每个调度子帧承载的数据包为新传数据包, 所述方法还包括:
若传输所述新传数据包得到的反馈信息中存在否定信息, 则向所述终 端下发携带所述否定信息对应的混合自动重传进程号的重传资源指示信 令, 并在所述重传资源指示信令对应的重传子帧向终端发送或接收终端发 送的所述否定信息对应的混合自动重传进程号的重传数据包。
6、 根据权利要求 5所述的多子帧调度方法, 其特征在于, 还包括: 若所述新传数据包与所述重传数据包在相同调度子帧进行调度, 则在 所述相同调度子帧优先调度所述重传数据包。
7、 根据权利要求 5或 6所述的多子帧调度方法, 其特征在于, 若传输 所述新传数据包得到的反馈信息中存在连续的多个否定信息, 则所述重传 资源指示信令还包括所述连续的多个否定信息对应的所有连续重传子帧的 个数或在第一个重传子帧后连续重传子帧的个数。
8、 根据权利要求 2-6任一所述的多子帧调度方法, 其特征在于, 还包 括:
从基站间接口获取相邻小区的信息, 所述相邻小区的信息包括以下一 个或多个: 所述相邻小区的基站分配的物理下行控制信道所占频域位置、 发送时刻、 发射功率, 或者包括以下一个或多个: 所述相邻小区的基站分 配的物理上行控制信道所占频域位置、 发送时刻、 发射功率; 根据相邻小区的信息获取干扰水平大于设定阈值的强干扰小区的信 息, 根据所述强干扰小区的信息, 将所述强干扰小区与本小区的物理下行 控制信道协调分配在不同的子帧上, 确定本小区的基站向终端下发多子帧 调度的物理下行控制信道的调度子帧; 或将所述强干扰小区与本小区的物 理上行控制信道协调分配在不重叠的频带上。
9、 根据权利要求 2-6任一所述的多子帧调度方法, 其特征在于, 还包 括:
在半静态调度时, 通过高层信令向所述终端下发半静态子帧调度间隔。
10、 一种多子帧调度方法, 其特征在于, 包括:
接收基站发送的多子帧调度的连续调度指示、 第一个调度子帧对应的 混合自动重传进程号及调度配置参数;
根据所述第一个调度子帧对应的混合自动重传进程号和所述连续调度 指示获取当前调度子帧对应的混合自动重传进程号, 采用所述调度配置参 数在所述当前调度子帧进行对应的混合自动重传进程号的数据包传输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述多子帧调度的 每个调度子帧均釆用所述调度配置参数。
11、 根据权利要求 10所述的多子帧调度方法, 其特征在于, 所述接收 基站发送的多子帧调度的连续调度指示、 第一个调度子帧对应的混合自动 重传进程号及调度配置参数, 包括:
接收所述基站发送的携带所述连续调度指示的高层信令, 所述高层信 令用于通知终端多子帧调度的启动或取消, 并接收所述基站发送的携带所 述调度配置参数和第一个调度子帧对应的混合自动重传进程号的物理下行 控制信道; 或
接收所述基站发送的携带调所述连续调度指示、 第一个调度子帧对应 的混合自动重传进程号及调度配置参数的物理下行控制信道。
12、 根据权利要求 10或 11所述的多子帧调度方法, 其特征在于, 所 述连续调度指示包括所有连续调度子帧的个数或在第一个调度子帧后连续 调度子帧的个数, 所述根据所述第一个调度子帧对应的混合自动重传进程 号和所述连续调度指示获取当前调度子帧对应的混合自动重传进程号, 包 括:
根据所述所有连续调度子帧的个数或在第一个调度子帧后连续调度子 帧的个数, 每次从当前可用的混合自动重传进程号中选取最小值作为当前 调度子帧的混合自动重传进程号; 或
根据所述所有连续调度子帧的个数或在第一个调度子帧后连续调度子 帧的个数和第一个调度子帧对应的混合自动重传进程号, 按照从小到大的 顺序依次选取当前可用的混合自动重传进程号作为当前调度子帧的混合自 动重传进程号。
13、 根据权利要求 10或 1 1所述的多子帧调度方法, 其特征在于, 还 包括:
根据接收到的物理下行控制信道中的下行传输控制信息格式, 确定此 次调度是单子帧调度或多子帧调度。
14、 根据权利要求 10或 1 1所述的多子帧调度方法, 其特征在于, 所 述多子帧调度的每个调度子帧承载的数据包为新传数据包, 所述方法还包 括:
若传输所述新传数据包得到的新传数据包的反馈信息中存在否定信 息, 接收所述基站下发的包括所述否定信息对应的混合自动重传进程号的 重传资源指示信令, 并在所述重传资源指示信令对于那个的重传子帧向基 站发送或接收基站发送的所述否定信息对应的混合自动重传进程号的重传 数据包。
15、 一种基站, 其特征在于, 包括:
调度指示下发模块, 用于向终端下发多子帧调度的连续调度指示、 第 一个调度子帧对应的混合自动重传进程号及调度配置参数; 数据包传输模块, 用于根据所述第一个调度子帧对应的混合自动重传 进程号和所述连续调度指示获取当前调度子帧对应的混合自动重传进程 号, 采用所述调度配置参数在所述当前调度子帧进行对应的混合自动重传 进程号的数据包传输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述多子帧调度的每个调度子帧均采用所述调度配置参数。
16、 根据权利要求 15所述的基站, 其特征在于, 所述调度指示下发模 块包括以下子模块的一个或多个:
第一下发子模块, 用于向所述终端下发携带所述连续调度指示的高层 信令, 所述高层信令用于通知所述终端多子帧调度的启动或取消, 并向所 述终端下发携带所述调度配置参数和第一个调度子帧对应的混合自动重传 进程号的物理下行控制信道;
第二下发子模块, 用于向所述终端下发携带所述连续调度指示、 第一 个调度子帧对应的混合自动重传进程号及调度配置参数的物理下行控制信 道。
17、 根据权利要求 15或 16所述的基站, 其特征在于, 还包括以下模 块的任意一个或者多个:
设置模块, 用于将所述连续调度指示设置在物理下行控制信道的新增 比特或重用比特中, 所述重用比特为所述物理下行控制信道的下行资源指 示中的冗余版本域或上行资源指示中的填充位;
重传调度模块, 用于在多子帧调度的每个调度子帧承载的数据包为新 传数据包时, 若传输所述新传数据包得到的反馈信息中存在否定信息, 则 向所述终端下发携带所述否定信息对应的混合自动重传进程号的重传资源 指示信令, 并在所述重传资源指示信令对应的重传子帧向终端发送或接收 终端发送的所述否定信息对应的混合自动重传进程号的重传数据包;
冲突处理模块, 用于若所述新传数据包与所述重传数据包在相同调度 子帧进行调度, 则在所述相同调度子帧优先调度所述重传数据包; 连续重传模块, 用于传输所述新传数据包得到的反馈信息中存在连续 的多个否定信息, 则所述重传资源指示信令还包括所述连续的多个否定信 息对应的所有连续重传子帧的个数或在第一个重传子帧后连续重传子帧的 个数;
强干扰处理模块, 用于从基站间接口获取相邻小区的信息, 所述相邻 小区的信息包括以下一个或多个: 所述相邻小区的基站分配的物理下行控 制信道所占频域位置、 发送时刻、 发射功率, 或者包括以下一个或多个: 所述相邻小区的基站分配的物理上行控制信道所占频域位置、 发送时刻、 发射功率; 根据相邻小区的信息获取干扰水平大于设定阈值的强干扰小区 的信息, 根据所述强干扰小区的信息, 将所述强千扰小区与本小区的物理 下行控制信道协调分配在不同的子帧上, 确定本小区的基站向终端下发多 子帧调度的物理下行控制信道的调度子帧; 或将所述强干扰小区与本小区 的物理上行控制信道协调分配在不重叠的频带上;
半静态调度模块, 用于在半静态调度时, 通过高层信令向所述终端下 发半静态子帧调度间隔。
18、 根据权利要求 15或 16所述的基站, 其特征在于, 所述连续调度 指示包括所有连续调度子帧的个数或在第一个调度子帧后连续调度子帧的 个数, 所述数据包传输模块包括以下子模块中的一个或多个:
第一进程号获取子模块, 用于根据所述所有连续调度子帧的个数或在 第一个调度子帧后连续调度子帧的个数, 每次从当前可用的混合自动重传 进程号中选取最小值作为当前调度子帧的混合自动重传进程号;
第二进程号获取子模块, 用于根据所述所有连续调度子帧的个数或在 第一个调度子帧后连续调度子帧的个数和第一个调度子帧对应的混合自动 重传进程号, 按照从小到大的顺序依次选取当前可用的混合自动重传进程 号作为当前调度子帧的混合自动重传进程号。
19、 一种终端, 其特征在于, 包括: 调度指示接收模块, 用于接收基站发送的多子帧调度的连续调度指示、 第一个调度子帧对应的混合自动重传进程号及调度配置参数;
数据包传输模块, 用于根据所述第一个调度子帧对应的混合自动重传 进程号和所述连续调度指示获取当前调度子帧对应的混合自动重传进程 号, 采用所述调度配置参数在所述当前调度子帧进行对应的混合自动重传 进程号的数据包传输; 所述多子帧调度的每个调度子帧承载一个数据包, 所述多子帧调度的每个调度子帧均采用所述调度配置参数。
20、 根据权利要求 19所述的终端, 其特征在于, 所述调度指示接收模 块包括以下子模块中的一个或多个: :
第一接收子模块, 用于接收所述基站发送的携带所述连续调度指示的 高层信令, 所述高层信令用于通知终端多子帧调度的启动或取消, 并接收 所述基站发送的携带所述调度配置参数和第一个调度子帧对应的混合自动 重传进程号的物理下行控制信道;
第二接收子模块, 用于接收所述基站发送的携带所述连续调度指示、 第一个调度子帧对应的混合自动重传进程号及调度配置参数的物理下行控 制信道。
21、 根据权利要求 19或 20所述的终端, 其特征在于, 还包括以下模 块中的一个或多个:
确定模块, 用于根据接收到的物理下行控制信道中的下行传输控制信 息格式, 确定此次调度是单子帧调度或多子帧调度;
重传调度模块, 用于在多子帧调度的每个调度子帧承载的数据包为新 传数据包时, 若传输所述新传数据包得到的新传数据包的反馈信息中存在 否定信息, 接收所述基站下发的包括所述否定信息对应的混合自动重传进 程号的重传资源指示信令, 并在所述重传资源指示信令对于那个的重传子 帧向基站发送或接收基站发送的所述否定信息对应的混合自动重传进程号 的重传数据包。
22、 根据权利要求 19或 20所述的终端, 其特征在于, 所述连续调度 指示包括所有连续调度子帧的个数或在第一个调度子帧后连续调度子帧的 个数, 所述数据包传输模块包括以下子模块中的一个或多个:
第一进程号获取子模块, 用于根据所述所有连续调度子帧的个数或在 第一个调度子帧后连续调度子帧的个数, 每次从当前可用的混合自动重传 进程号中选取最小值作为当前调度子帧的混合自动重传进程号;
第二进程号获取子模块, 用于根据所述所有连续调度子帧的个数或在 第一个调度子帧后连续调度子帧的个数和第一个调度子帧对应的混合自动 重传进程号, 按照从小到大的顺序依次选取当前可用的混合自动重传进程 号作为当前调度子帧的混合自动重传进程号。
23、 一种多子帧调度系统, 其特征在于, 包括:
如权利要求 15-18任一所述的基站和如权利要求 19-22任一所述的终 端。
PCT/CN2011/072026 2010-03-22 2011-03-22 多子帧调度方法、系统和设备 WO2011116680A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18208352.7A EP3522423B1 (en) 2010-03-22 2011-03-22 Method, system and apparatus of multi-subframe scheduling
EP11758790.7A EP2538734B1 (en) 2010-03-22 2011-03-22 Method and device for scheduling multiple sub-frames
EP17173309.0A EP3293907B1 (en) 2010-03-22 2011-03-22 Method, system and apparatus of multi-subframe scheduling
BR112012024032-3A BR112012024032B1 (pt) 2010-03-22 2011-03-22 Método de escalonamento de múltiplos subquadros e estação base
US13/624,438 US9059849B2 (en) 2010-03-22 2012-09-21 Method, system and apparatus of multi-subframe scheduling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010131399.9 2010-03-22
CN201010131399.9A CN102202408B (zh) 2010-03-22 2010-03-22 多子帧调度方法、系统和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/624,438 Continuation US9059849B2 (en) 2010-03-22 2012-09-21 Method, system and apparatus of multi-subframe scheduling

Publications (1)

Publication Number Publication Date
WO2011116680A1 true WO2011116680A1 (zh) 2011-09-29

Family

ID=44662711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072026 WO2011116680A1 (zh) 2010-03-22 2011-03-22 多子帧调度方法、系统和设备

Country Status (7)

Country Link
US (1) US9059849B2 (zh)
EP (3) EP3522423B1 (zh)
CN (1) CN102202408B (zh)
BR (1) BR112012024032B1 (zh)
ES (1) ES2816385T3 (zh)
PT (1) PT3293907T (zh)
WO (1) WO2011116680A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2785131A1 (en) * 2011-12-23 2014-10-01 Huawei Technologies Co., Ltd. Communication method, enb and user equipment
EP2775774A4 (en) * 2011-11-30 2016-01-27 Huawei Tech Co Ltd METHOD AND APPARATUS FOR TRANSMITTING AN ORDERING SIGNALING OF A PLURALITY OF SUB-FRAMES
US11166306B2 (en) 2017-08-04 2021-11-02 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device and computer-readable storage medium

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130127000A (ko) * 2006-10-27 2013-11-21 후지쯔 가부시끼가이샤 무선 통신 시스템 및 무선 통신 방법
CN103648175B (zh) * 2010-03-22 2017-09-29 华为技术有限公司 多子帧调度方法、系统和设备
KR101785313B1 (ko) 2011-04-12 2017-10-17 삼성전자주식회사 통신 시스템에서 간섭 제어를 위한 서브프레임 운용 및 채널 정보 전송 방법 및 장치
CN102394728B (zh) * 2011-11-17 2014-08-20 电信科学技术研究院 下行进程号的确定方法和设备
CN103139717B (zh) * 2011-11-30 2015-11-25 鼎桥通信技术有限公司 群组业务调度方法、基站和用户设备
US9602252B2 (en) * 2012-05-10 2017-03-21 Sun Patent Trust Wireless communications terminal, base station device, and resource allocation method
CN102892205B (zh) * 2012-09-27 2015-09-09 电信科学技术研究院 一种调度重传数据的方法及装置
KR20140040902A (ko) * 2012-09-27 2014-04-04 삼성전자주식회사 동적 시분할 복식 시스템에서 제어채널의 송수신 방법 및 장치
EP2903369B1 (en) 2012-09-28 2019-09-04 Huawei Technologies Co., Ltd. Method and device for processing common search area
CN103796327A (zh) * 2012-10-29 2014-05-14 中兴通讯股份有限公司 一种子帧调度方法、系统及网络设备、终端
CN104756570A (zh) * 2012-10-31 2015-07-01 美国博通公司 针对切换操作将来自多个harq处理的数据进行多路复用传输
US9876615B2 (en) * 2012-11-13 2018-01-23 Lg Electronics Inc. Method and apparatus for transmitting and receiving data multiple times in consecutive subframes
CN103873213B (zh) * 2012-12-12 2017-02-22 电信科学技术研究院 一种传输指示信息的方法、装置及系统
CN103873214B (zh) * 2012-12-14 2017-12-19 电信科学技术研究院 一种数据传输方法及装置
US9763264B2 (en) 2013-02-06 2017-09-12 Lg Electronics Inc. Method for transmitting a feedback signal and apparatus for same
US9380466B2 (en) 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US9936470B2 (en) 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
CN104039012B (zh) * 2013-03-06 2018-12-28 索尼公司 在无线通信系统中进行动态下行配置的方法、基站和终端
US10123344B2 (en) 2013-03-06 2018-11-06 Qualcomm Incorporated Methods and apparatus for multi-subframe scheduling
CN104104486A (zh) * 2013-04-12 2014-10-15 北京三星通信技术研究有限公司 一种支持多子帧调度上行数据传输的方法和设备
CN104144509B (zh) * 2013-05-10 2019-08-02 北京三星通信技术研究有限公司 物理下行共享信道的多子帧调度的实现方法及装置
CN104144513A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种多子帧调度方法、基站、终端和系统
CN104184564B (zh) * 2013-05-21 2019-01-04 中兴通讯股份有限公司 一种harq信息发送的方法及装置
JP6389032B2 (ja) * 2013-07-31 2018-09-12 株式会社Nttドコモ 無線基地局及び移動局
CN105453677B (zh) * 2013-08-23 2019-04-02 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
EP2843963A1 (en) * 2013-08-30 2015-03-04 Thomson Licensing Method for watermarking a content
WO2015066904A1 (zh) 2013-11-08 2015-05-14 华为技术有限公司 一种调度信令的传输方法和装置
CN104754752B (zh) * 2013-12-25 2019-01-25 中国电信股份有限公司 多子帧调度方法和系统
CA3167284A1 (en) 2014-06-09 2015-12-17 Airvana Lp Radio access networks
KR102214648B1 (ko) * 2014-06-25 2021-02-10 삼성전자 주식회사 이동 통신 시스템에서 스케줄링 및 피드백 방법 및 장치
US9814060B1 (en) 2014-10-06 2017-11-07 Sprint Spectrum L.P. Systems and methods for scheduling wireless resources with coordinated multipoint tranmissions
US9591648B1 (en) * 2014-11-03 2017-03-07 Sprint Spectrum L.P. Semi-persistent secondary signaling channels
WO2016086971A1 (en) 2014-12-02 2016-06-09 Nokia Solutions And Networks Management International Gmbh Coded allocation of channel state information reference signals
CN107409414B (zh) * 2015-01-15 2021-07-02 瑞典爱立信有限公司 上行链路资源的资源调度
US10333659B2 (en) 2015-03-13 2019-06-25 Huawei Technologies Co., Ltd. Data transmission method, device, and system
CN107534893B (zh) * 2015-04-24 2021-08-24 夏普株式会社 终端装置、基站装置、集成电路及通信方法
JP2018101821A (ja) * 2015-04-24 2018-06-28 シャープ株式会社 端末装置、基地局装置、集積回路、および、通信方法
WO2017049413A1 (en) * 2015-09-24 2017-03-30 Sierra Wireless, Inc. Method and system for transmitting control information for user equipment
EP3338500B1 (en) 2015-09-25 2024-03-13 Samsung Electronics Co., Ltd. Terminal and communication method of the same
WO2017078501A1 (ko) * 2015-11-05 2017-05-11 엘지전자 주식회사 신호를 전송하는 방법 및 이를 위한 장치
CN111556571B (zh) 2015-11-11 2023-11-14 华为技术有限公司 传输调度信息的方法和装置
US10645679B2 (en) * 2015-11-18 2020-05-05 Qualcomm Incorporated Hybrid automatic repeat request (HARQ) payload mapping for short physical uplink control channel (PUCCH) on a shared communication medium
US10785791B1 (en) * 2015-12-07 2020-09-22 Commscope Technologies Llc Controlling data transmission in radio access networks
EP3399822B1 (en) * 2015-12-31 2021-03-17 LG Electronics Inc. Method for transmitting and receiving uplink signal in wireless communication system supporting unlicensed band and apparatus for supporting same
KR102017710B1 (ko) * 2016-01-08 2019-09-03 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US10511413B2 (en) * 2016-02-03 2019-12-17 Ofinno, Llc Hybrid automatic repeat requests in a wireless device and wireless network
CN105722239A (zh) * 2016-02-05 2016-06-29 宇龙计算机通信科技(深圳)有限公司 一种调度指令的检测方法和终端
CN105764146B (zh) * 2016-02-05 2019-03-08 宇龙计算机通信科技(深圳)有限公司 一种子帧配置的方法、数据传输的方法、相关设备和系统
WO2017150944A1 (ko) * 2016-03-03 2017-09-08 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN107295676B (zh) 2016-03-31 2019-07-23 中兴通讯股份有限公司 数据传输方法及装置
KR102390483B1 (ko) * 2016-04-12 2022-04-25 모토로라 모빌리티 엘엘씨 전송 시간 구간의 스케줄링
CN109075909B (zh) * 2016-05-12 2021-08-31 苹果公司 使用半持续调度资源进行非自适应重新发送的系统、方法、和设备
CN107733575B (zh) * 2016-08-11 2021-05-04 北京华为数字技术有限公司 上行传输进程号指示方法及相关设备
US10263691B2 (en) * 2016-09-21 2019-04-16 Qualcomm Incorporated Dynamic reverse link retransmission timelines in satellite communication systems
BR112019009128A2 (pt) * 2016-11-04 2019-07-16 Huawei Tech Co Ltd método, dispositivo de rede, e dispositivo de terminal para transmitir informação
CN108347321A (zh) * 2017-01-25 2018-07-31 华为技术有限公司 一种通信方法及装置
CN112564867B (zh) * 2017-05-05 2022-04-12 中兴通讯股份有限公司 一种半持续调度的混合自动重传请求的传输方法及装置
EP3692735B1 (en) 2017-10-03 2022-08-03 Commscope Technologies LLC Dynamic downlink reuse in a c-ran
TWI659630B (zh) * 2017-11-24 2019-05-11 財團法人工業技術研究院 混合自動重送方法及系統
JP7063387B2 (ja) 2018-02-12 2022-05-09 富士通株式会社 設定情報の送受信方法、装置及び通信システム
CN112005598B (zh) 2018-05-16 2023-06-09 康普技术有限责任公司 用于c-ran中的高效前传的下行链路多播
EP3794888A4 (en) 2018-05-16 2022-01-19 CommScope Technologies LLC DYNAMIC DOWNLINK REUSE IN A C-RAN
CN112075105A (zh) 2018-06-08 2020-12-11 康普技术有限责任公司 针对主要为位于场所的事件区域中的用户提供无线服务的集中式无线电访问网络的无线电点的自动发送功率控制
CN110708750B (zh) * 2018-07-09 2021-06-22 华为技术有限公司 一种功率调整方法、终端及存储介质
WO2020051146A1 (en) 2018-09-04 2020-03-12 Commscope Technologies Llc Front-haul rate reduction for use in a centralized radio access network
JP2022517480A (ja) * 2018-11-08 2022-03-09 日本電気株式会社 装置、方法及びプログラム
CN111901883B (zh) * 2019-05-05 2023-03-31 成都鼎桥通信技术有限公司 一种lte系统中的多子帧资源调度方法和基站设备
CN112399616B (zh) * 2019-08-15 2022-09-09 中国信息通信研究院 一种上行调度资源多配置数据传送方法、设备和系统
US11848787B2 (en) * 2020-01-02 2023-12-19 Qualcomm Incorporated Multiplexed communication for a base station and a programmable logic controller
WO2021184170A1 (zh) * 2020-03-16 2021-09-23 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
WO2022027662A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 数据调度方法、装置及系统
CN116828603A (zh) * 2020-09-04 2023-09-29 北京小米移动软件有限公司 Harq-ack反馈处理方法、装置、通信设备及存储介质
CN112187419B (zh) * 2020-09-17 2022-05-31 上海微波技术研究所(中国电子科技集团公司第五十研究所) 一种针对卫星通信的新型harq传输方法及系统
CN116133133A (zh) * 2021-11-12 2023-05-16 大唐移动通信设备有限公司 业务发送和接收方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527929A (zh) * 2008-03-05 2009-09-09 中兴通讯股份有限公司 控制信道设计方法
WO2009152637A1 (zh) * 2008-06-16 2009-12-23 上海贝尔阿尔卡特股份有限公司 用于dl半静态调度harq进程分配的方法及相应的系统
CN101615988A (zh) * 2008-06-25 2009-12-30 中兴通讯股份有限公司 混合自动重传请求的调度方法
CN101971681A (zh) * 2009-05-22 2011-02-09 华为技术有限公司 多子帧调度方法、系统及终端、基站

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084695B (zh) * 2004-11-02 2013-03-27 北电网络有限公司 与正交频分复用一起使用的系统和方法
US8031583B2 (en) * 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US8102805B2 (en) * 2006-10-31 2012-01-24 Telefonaktiebolaget Lm Ericsson (Publ) HARQ in spatial multiplexing MIMO system
EP3024294B1 (en) * 2007-08-22 2018-06-06 LG Electronics, Inc. Allocating radio resources in a wireless communication system
CN106301711B (zh) * 2007-10-23 2019-09-13 诺基亚技术有限公司 用于通信的方法、装置和存储器
CN101426267B (zh) 2007-11-02 2013-11-06 中国移动通信集团公司 资源调度方法及其装置
US9507669B2 (en) * 2007-11-15 2016-11-29 Lg Electronics Inc. Method of transmitting data using HARQ
KR20090078715A (ko) * 2008-01-15 2009-07-20 엘지전자 주식회사 서브맵을 이용한 통신방법
CN101505208A (zh) * 2008-02-04 2009-08-12 三星电子株式会社 分配上行ack/nack信道的方法
WO2009116837A1 (en) * 2008-03-21 2009-09-24 Lg Electronics Inc. Method of data communication in a wireless communication system
CN101867937B (zh) * 2009-04-14 2014-08-13 中兴通讯股份有限公司 基于恒定调度的混合自动重传实现方法
US8514721B2 (en) * 2009-06-22 2013-08-20 Qualcomm Incorporated Robust UE receiver
CN102036398B (zh) * 2009-09-29 2015-06-03 中兴通讯股份有限公司 一种中继节点及其传输数据的方法
CN102123019B (zh) * 2010-01-11 2015-11-25 三星电子株式会社 针对无线通信系统的下行数据传输执行ack/nack反馈的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527929A (zh) * 2008-03-05 2009-09-09 中兴通讯股份有限公司 控制信道设计方法
WO2009152637A1 (zh) * 2008-06-16 2009-12-23 上海贝尔阿尔卡特股份有限公司 用于dl半静态调度harq进程分配的方法及相应的系统
CN101615988A (zh) * 2008-06-25 2009-12-30 中兴通讯股份有限公司 混合自动重传请求的调度方法
CN101971681A (zh) * 2009-05-22 2011-02-09 华为技术有限公司 多子帧调度方法、系统及终端、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2538734A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775774A4 (en) * 2011-11-30 2016-01-27 Huawei Tech Co Ltd METHOD AND APPARATUS FOR TRANSMITTING AN ORDERING SIGNALING OF A PLURALITY OF SUB-FRAMES
EP2785131A1 (en) * 2011-12-23 2014-10-01 Huawei Technologies Co., Ltd. Communication method, enb and user equipment
EP2785131A4 (en) * 2011-12-23 2014-10-08 Huawei Tech Co Ltd METHOD, ENB AND COMMUNICATION USER EQUIPMENT
US9319199B2 (en) 2011-12-23 2016-04-19 Huawei Technologies Co., Ltd. Method and apparatus for scheduling PDSCHs of multiple subframes, base station, and user equipment
US11166306B2 (en) 2017-08-04 2021-11-02 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device and computer-readable storage medium
US11792816B2 (en) 2017-08-04 2023-10-17 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device and computer-readable storage medium

Also Published As

Publication number Publication date
EP3522423B1 (en) 2020-06-10
US9059849B2 (en) 2015-06-16
PT3293907T (pt) 2019-09-12
ES2816385T3 (es) 2021-04-05
CN102202408B (zh) 2014-01-01
BR112012024032B1 (pt) 2021-10-26
BR112012024032A2 (pt) 2016-08-30
EP2538734B1 (en) 2017-08-09
EP3522423A1 (en) 2019-08-07
EP3293907A1 (en) 2018-03-14
EP3293907B1 (en) 2019-06-26
EP2538734A4 (en) 2013-02-20
US20130016686A1 (en) 2013-01-17
CN102202408A (zh) 2011-09-28
EP2538734A1 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2011116680A1 (zh) 多子帧调度方法、系统和设备
JP6224642B2 (ja) 中継ノードを有する無線通信ネットワークにおける情報送信制御
JP6200434B2 (ja) フィードバック情報を送受信するためのデバイス
EP2880943B1 (en) Signaling and channel designs for d2d communications
US9667400B2 (en) Method and apparatus for TTI bundling transmission in a wireless communications system
CN108566673B (zh) 无线通信系统和在无线通信系统中进行无线通信的方法
KR101412051B1 (ko) Tdd시스템 백홀링크 통신 방법, 기기 및 시스템
WO2014068891A1 (en) Systems and methods for carrier aggregation
WO2010051695A1 (zh) 半静态调度数据包的应答信息的反馈、接收方法及其装置
EP2663008B1 (en) Method, user equipment and base station for information transmission in time division duplex system
WO2013167090A2 (zh) 一种子帧调度方法、系统及网络设备、终端
WO2010075706A1 (zh) 基于时分双工系统的混合自动重传请求的实现方法和装置
WO2010031356A1 (zh) 一种资源调度方法、基站以及通信系统
WO2012097692A1 (zh) 半静态调度方法、用户设备及网络设备
KR20140142231A (ko) 무선 통신 시스템에서 무선 자원의 동적 자원 변경을 위한 harq 수행 방법 및 이를 위한 장치
CN108039939B (zh) 物联网组播业务的harq反馈方法及装置
US20140092789A1 (en) PHICH-less Operation for Uplink-Downlink Configuration Zero
WO2015027798A1 (zh) 一种tdd-fdd联合系统中的传输方法和装置
WO2012175019A1 (zh) 一种时分双工tdd通信方法、基站和用户设备
WO2011124127A1 (zh) 调度信令发送及应答反馈的方法、系统和设备
CN113939045B (zh) 无线通信系统中处置经配置上行链路准予集束的drx计时器的方法和设备
WO2012116602A1 (zh) 数据传输方法、演进基站以及用户设备
CN103648175A (zh) 多子帧调度方法、系统和设备
WO2012097724A1 (zh) 半静态调度方法、用户设备及网络设备
WO2011137822A1 (zh) 下行分配指示的发送方法及装置、应答信息的反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7912/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2011758790

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011758790

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024032

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024032

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120921