WO2011038618A1 - 一种中继节点及其传输数据的方法 - Google Patents

一种中继节点及其传输数据的方法 Download PDF

Info

Publication number
WO2011038618A1
WO2011038618A1 PCT/CN2010/076069 CN2010076069W WO2011038618A1 WO 2011038618 A1 WO2011038618 A1 WO 2011038618A1 CN 2010076069 W CN2010076069 W CN 2010076069W WO 2011038618 A1 WO2011038618 A1 WO 2011038618A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
scheduling
downlink
downlink assignment
uplink
Prior art date
Application number
PCT/CN2010/076069
Other languages
English (en)
French (fr)
Inventor
陈思
张健
张银成
王冠宙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/384,309 priority Critical patent/US8897202B2/en
Priority to EP10819847.4A priority patent/EP2448347A4/en
Publication of WO2011038618A1 publication Critical patent/WO2011038618A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a relay node and a method for transmitting data. Background technique
  • the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) of the 3rd Generation of the Long Term Evolution (LTE) system is composed of a base station eNB, and thus may also be referred to as a base station eNB.
  • the Media Access Control (MAC) protocol layer of the wireless interface there is a Scheduling/Priority Handling functional entity, wherein the scheduling function supports dynamic scheduling (Dynamic Scheduling) and semi-persistent scheduling (or Called Semi-persistent Scheduling.
  • Dynamic Scheduling means that the E-UTRAN can pass the Cell Radio Network Temporary Identifier (C-RNTI) on the Physical Downlink Control Channel (PDCCH) at each transmission time interval.
  • C-RNTI Cell Radio Network Temporary Identifier
  • PDCCH Physical Downlink Control Channel
  • TTI Transmission Time Interval
  • UE user equipment
  • MCS Modulation and Coding Scheme
  • the downlink control information (Downlink Control Information, DCI) format 0 (format 0) and the downlink DCI format 1 indicate scheduling information, as shown in Table 1, Table 2, the main difference between the two is:
  • the automatic repeat request (Hybrid ARQ, HARQ) is an asynchronous HARQ, so it needs to indicate the HARQ process identifier, and the uplink HARQ is the synchronous HARQ, so there is no need to indicate the identifier.
  • Dynamic scheduling can be used for both the UE's HARQ first transmission and HARQ retransmission.
  • the mode and coding rate new data indicator is used to indicate whether the UE is transmitting new data or retransmitting old data (DI, New Data Indicator)
  • Uplink index Configuration for TDD mode 0 indicating which uplink subframe the uplink grant is used for
  • SPS Semi-persistent Scheduling
  • PDCCH Physical Downlink Control Channel
  • Semi-Persistent Scheduling C-RNTI allocates a semi-persistent resource for the UE to receive or transmit data, and the resource includes a physical resource block (PRB), a modulation and coding scheme (MCS), and the like.
  • PRB physical resource block
  • MCS modulation and coding scheme
  • the HARQ first transmission of the UE uses semi-persistent resources, and the HARQ retransmission uses dynamically scheduled resources.
  • the semi-persistent resource is repeatedly generated according to the configured period.
  • the UE When the UE is configured with a semi-persistent resource (Subframe), if the UE does not detect its C-RNTI on the PDCCH, the corresponding subframe is based on the semi-persistent resource. Receive or send.
  • the UE When the UE is configured with a subframe of semi-persistent resources, if the UE is in the PDCCH If the C-RNTI is detected on it, the semi-persistent resource is overridden by using the dynamic resource indicated by the PDCCH in the corresponding subframe.
  • semi-persistent scheduling is applied to VoIP traffic, with semi-persistent resources allocated for it in a 20ms period.
  • the E-UTRAN configures semi-persistent scheduling parameters for the UE through Radio Resource Control (RRC) signaling, including semi-persistent scheduling cell-radio network temporary identification, downlink semi-persistent scheduling configuration, and uplink semi-persistent scheduling configuration.
  • RRC Radio Resource Control
  • the downlink or uplink semi-persistent scheduling parameters may be separately configured, and the downlink semi-persistent scheduling parameters include a downlink semi-persistent scheduling period, a reserved number of HARQ processes, a PUCCH (Physical Uplink Control Channel) feedback resource, and the like;
  • the scheduling parameters include information such as an uplink semi-persistent scheduling period, an implicit release parameter, a PUSCH (Physical Uplink Shared Channel) related parameter, and a two-cycle configuration information for the TDD mode.
  • the E-UTRAN enables or disables the downlink or uplink semi-persistent scheduling through RRC signaling. When the downlink or uplink semi-persistent scheduling is disabled, the corresponding semi-persistent resources are released.
  • the LTE Frequency Divided Duplex supports up to one cycle in the downlink or uplink.
  • Time Divided Duplex (TDD) supports only one cycle in the downlink and supports two periodic configurations in the uplink to avoid collision of semi-persistent resources between HARQ retransmission and HARQ first transmission.
  • the E-UTRAN configures the number of HARQ processes reserved by the semi-persistent scheduling for the UE through RRC, and the dynamic scheduling can share the HARQ process reserved for semi-persistent scheduling.
  • dynamic scheduling and semi-persistent scheduling can also share the same HARQ process.
  • the E-UTRAN activates the semi-persistent resource for the UE through the PDCCH.
  • semi-persistent resources are allocated to the entire UE, rather than being assigned to a specific service.
  • Up to one semi-persistent resource (including information such as PRB and MCS) is configured for the downlink or uplink, and the semi-persistent resource occurs according to the downlink or uplink semi-persistent scheduling period configured by the RRC signaling.
  • the E-UTRAN explicitly releases the downlink or uplink semi-persistent resources of the UE through the PDCCH.
  • the UE In the uplink, implicitly releasing semi-persistent resources is also supported, and the UE triggers semi-persistent resources according to a plurality of consecutive new MAC PDUs (Medium Access Control Protocol Data Units) including 0 MAC SDUs (Media Access Control Service Data Units). freed.
  • MAC PDUs Medium Access Control Protocol Data Units
  • MAC SDUs Media Access Control Service Data Units
  • LTE-Advanced Long-Term Evolution Advanced
  • LTE-Advanced Long-Term Evolution Advanced
  • the evolution of (Long-Term Evolution, LTE) retains the core of LTE.
  • LTE-Advanced a series of technologies are used to expand the frequency domain and the airspace to achieve the purpose of improving spectrum utilization and increasing system capacity.
  • the wireless relay (Relay) technology is one of the technologies in the LTE-Advanced, which aims to expand the coverage of the cell, reduce the dead zone in the communication, balance the load, transfer the service in the hot spot, and save the terminal (or called the user equipment UE). , User Equipment ) The transmit power.
  • a new relay node is added between the original base station (Door-eNB) and the UE, and the newly added RN and Donor-eNB are connected through a wireless connection and a transmission network. There is no wired connection between them.
  • the radio link between the Donor-eNB and the RN is called a backhaul link, and the radio link between the RN and the UE is called an access link.
  • the downlink data arrives at the Donor-eNB first, and then passes to the RN, which then transmits the signal to the UE, and vice versa.
  • an RN-dedicated physical downlink control channel R-PDCCH
  • R-PDSCH physical downlink shared channel
  • R-PUSCH physical uplink shared channel
  • the R-PDCCH may indicate the downlink resources of the multiple subsequent subframes in addition to the downlink resources of the current subframe, and the R-PDCCH may also indicate the multiple subsequent subframes. Upstream resources.
  • the existing resource allocation method is only applicable to scheduling resources of a single subframe. Therefore, it is necessary to provide a new scheduling method for the R-PDCCH to schedule resources of multiple subframes.
  • the technical problem to be solved by the present invention is to provide a relay node and a method for transmitting data thereof to implement resources for simultaneously scheduling a plurality of subframes.
  • the present invention provides a method for a relay node (RN) to transmit data, including:
  • the RN receives data according to the acquired scheduling information of the downlink multi-subframe scheduling on the corresponding multiple consecutive or non-contiguous downlink backhaul subframes; and/or The RN sends data according to the acquired scheduling information of the uplink multi-subframe scheduling on the corresponding multiple consecutive or non-contiguous uplink backhaul subframes.
  • the data received by the RN on the corresponding multiple consecutive or non-contiguous downlink backhaul subframes is a hybrid automatic repeat request (HARQ) first transmission, and the RN is in a corresponding multiple consecutive or non-continuous uplinks.
  • the data sent on the backhaul subframe is the HARQ first pass.
  • HARQ hybrid automatic repeat request
  • the process for the RN to acquire the scheduling information includes:
  • the RN receives a downlink assignment or an uplink grant on a RN-dedicated physical downlink control channel (R-PDCCH) according to a cell-radio network temporary identifier (C-RNTI) or an RNTI for multi-subframe scheduling, the downlink finger
  • R-PDCCH RN-dedicated physical downlink control channel
  • C-RNTI cell-radio network temporary identifier
  • the allocation or uplink grant includes the scheduling information.
  • the scheduling information includes one or more of the following information:
  • the number of subframes for multi-subframe scheduling The number of subframes for multi-subframe scheduling, the process identifiers involved in multi-subframe scheduling, the physical resource blocks (PRBs) of each subframe, the modulation and coding scheme (MCS) for each subframe, and the allocation of resources in multi-subframe scheduling.
  • PRBs physical resource blocks
  • MCS modulation and coding scheme
  • the downlink assignment and the uplink grant are indicated to the RN by the same downlink control information (DCI) for multi-subframe scheduling, or the downlink assignment and the uplink grant are respectively used for different subframe scheduling.
  • DCI indication ;
  • a flag is added in the DCI for multi-subframe scheduling to indicate that the DCI indicates that the downlink multi-subframe scheduling is used.
  • the downlink assignment is also an uplink grant for uplink multi-subframe scheduling.
  • the DCI indicating the downlink assignment is DCI format 1 or a new DCI format
  • the DCI indicating the uplink authorization is DCI format 0 or a new DCI format.
  • the RN acquires the RNTI for multi-subframe scheduling by using radio resource control (RRC) signaling, where the RRC signaling is an RRC connection reconfiguration message or a new RRC signaling.
  • RRC radio resource control
  • the starting subframe in the multi-subframe scheduling is a subframe in which the RN receives the downlink assignment or the uplink grant subframe and the HARQ sequence jointly indicate; or
  • the starting subframe in the multi-subframe scheduling is that the RN receives the downlink assignment or uplink grant a subframe of the right and a subframe indicated by the RN-specific HARQ timing; or
  • the starting subframe in the multi-subframe scheduling is a subframe in which the RN-dedicated HARQ timing and the mapping relationship between the subframe in which the resource is allocated and the subframe in which the data is transmitted are commonly indicated;
  • the RN acquires the HARQ timing dedicated to the RN by using system pre-defined or RRC signaling.
  • the subsequent subframe in the multi-subframe scheduling is a subframe in which the RN-dedicated HARQ timing and the mapping relationship between the subframe in which the resource is allocated and the subframe in which the data is transmitted are commonly indicated;
  • the RN acquires the HARQ timing dedicated to the RN through system pre-defined or RRC signaling.
  • the process for the RN to acquire the scheduling information includes:
  • the RN acquires a downlink assignment or an uplink grant through a Medium Access Control (MAC) Control Element (CE), where the downlink assignment or uplink grant includes the scheduling information.
  • MAC Medium Access Control
  • CE Control Element
  • the RN obtains a downlink assignment and an uplink grant through the same MAC CE, or acquires a downlink assignment and an uplink grant through different MAC CEs;
  • a flag is added to the MAC CE to indicate whether the MAC CE indicates a downlink assignment for downlink multi-subframe scheduling or a Uplink authorization for uplink multi-subframe scheduling.
  • the RN when the RN fails to receive the MAC CE, it notifies the base station that the reception fails.
  • the base station when the base station is informed that the RN fails to receive the MAC CE, the base station does not retransmit the MAC CE.
  • the RN pre-defines or RRCs through the system before receiving the downlink assignment or uplink authorization. Obtaining the number of subframes in which the multi-subframe scheduling is obtained;
  • the RN obtains multiple subframes by using a system pre-defined or a correspondence between a subframe and a process identifier in the RRC signaling.
  • the process identifier of the starting subframe of the scheduled subframe and the process identifier of the subsequent subframe, or the process identifier of the starting subframe of the multi-subframe scheduling is obtained by the system pre-defined or RRC signaling, and the process identifier of the starting subframe is sequentially incremented.
  • the RN learns that each subframe in the multi-subframe scheduling occupies the same PRB;
  • the RN learns that each subframe in the multi-subframe scheduling uses the same MCS;
  • the RN learns that the NDI of each subframe in the multi-subframe scheduling is a default value
  • the RN learns that the RV of each subframe in the multi-subframe scheduling is a default value.
  • the starting subframe in the multi-subframe scheduling is a subframe that is jointly indicated by the RN receiving the subframe of the MAC CE and a predefined time interval of the system; or
  • the starting subframe in the multi-subframe scheduling is the first downlink backhaul subframe or the uplink backhaul subframe after the RN correctly receives the subframe of the MAC CE.
  • the process for the RN to acquire the scheduling information includes:
  • the RN acquires an RNTI for multi-subframe scheduling by using dedicated RRC signaling, and then receives a downlink assignment or an uplink grant on the R-PDCCH according to the RNTI for multi-subframe scheduling, the downlink assignment or uplink
  • the authorization includes the scheduling information.
  • the downlink assignment includes the following scheduling information:
  • the PRB of the starting subframe in the multi-subframe scheduling, the MCS of the starting subframe in the multi-subframe scheduling, the NDI of the starting subframe in the multi-subframe scheduling, the RV of the starting subframe in the multi-subframe scheduling, and the multiple sub-frames The process identifier of the starting subframe in the frame scheduling;
  • the uplink authorization includes the following scheduling information:
  • the PRB of the starting subframe in the multi-subframe scheduling, the MCS of the starting subframe in the multi-subframe scheduling, the NDI of the starting subframe in the multi-subframe scheduling, and the RV of the starting subframe in the multi-subframe scheduling are identical to each other.
  • the downlink assignment is indicated to the RN by a DCI format 1
  • the uplink grant is indicated to the RN by a DCI format 0.
  • the starting subframe in the multi-subframe scheduling is a subframe in which the RN receives the downlink assignment or the uplink grant subframe and the HARQ sequence jointly indicate; or
  • the starting subframe in the multi-subframe scheduling is a subframe in which the RN receives the downlink assignment or the uplink grant subframe and the RN-specific HARQ sequence jointly indicated;
  • the RN acquires the HARQ timing dedicated to the RN by using system pre-defined or RRC signaling.
  • the RN acquires the PRB of the starting subframe in the multi-subframe scheduling from the downlink assignment or the uplink grant, the PRB of the subsequent subframe in the multi-subframe scheduling is learned
  • the PRB of the first sub-frame is the same;
  • the MCS is the same.
  • the RN acquires the number of subframes scheduled by the multiple subframes by using system predefined or RRC signaling before receiving the downlink assignment or the uplink grant;
  • the RN learns that the NDI of the subsequent subframe in the multi-subframe scheduling is the same value as the NDI of the starting subframe, or the RN learns that the NDI of the subsequent subframe in the multi-subframe scheduling is a default value. ; as well as
  • the RN learns that the RV of the subsequent subframe in the multi-subframe scheduling is the same value as the RV of the starting subframe, or the RN learns that the RV of the subsequent subframe in the multi-subframe scheduling is a default value. .
  • the RN obtains a corresponding relationship between a subframe and a process identifier by using system pre-defined or RRC signaling to obtain a process identifier of a subsequent subframe of the multi-subframe scheduling; or
  • the RN sequentially increments the process identifier of the start subframe scheduled by the multiple subframes to obtain a process identifier of a subsequent subframe scheduled by the multiple subframe.
  • the RN acquires the RNTI for multi-subframe scheduling by using RRC signaling, where the RRC signaling is an RRC connection reconfiguration message or a new RRC signaling.
  • RRC signaling is an RRC connection reconfiguration message or a new RRC signaling.
  • the present invention further provides a relay node, including an obtaining module and a transmitting module, where: the acquiring module is configured to acquire scheduling information of downlink multi-subframe scheduling and scheduling information of uplink multi-subframe scheduling;
  • the transmitting module is configured to receive data on multiple consecutive or non-contiguous downlink backhaul subframes indicated by the scheduling information of the downlink multi-subframe scheduling, and perform scheduling in the downlink multi-subframe scheduling
  • the data is transmitted on a plurality of consecutive or non-contiguous uplink backhaul subframes indicated by the degree information.
  • the acquiring module is configured to receive a downlink assignment or an uplink on a RN dedicated physical downlink control channel (R-PDCCH) according to a cell-radio network temporary identifier (C-RNTI) or an RNTI for multi-subframe scheduling.
  • R-PDCCH RN dedicated physical downlink control channel
  • C-RNTI cell-radio network temporary identifier
  • the downlink assignment or uplink grant includes the scheduling information.
  • the scheduling information includes one or more of the following information:
  • the number of subframes for multi-subframe scheduling The number of subframes for multi-subframe scheduling, the process identifiers involved in multi-subframe scheduling, the physical resource blocks (PRBs) of each subframe, the modulation and coding scheme (MCS) for each subframe, and the allocation of resources in multi-subframe scheduling.
  • PRBs physical resource blocks
  • MCS modulation and coding scheme
  • the acquiring module is configured to obtain a downlink assignment or an uplink grant by using a Medium Access Control (MAC) Control Element (CE), where the downlink assignment or uplink grant includes the scheduling information.
  • MAC Medium Access Control
  • CE Control Element
  • the acquiring module is configured to acquire an RNTI for multi-subframe scheduling by using dedicated RRC signaling, and receive a downlink assignment or an uplink grant on the R-PDCCH according to the RNTI for multi-subframe scheduling,
  • the downlink assignment or uplink grant includes the scheduling information.
  • the downlink assignment includes the following scheduling information:
  • the PRB of the starting subframe in the multi-subframe scheduling, the MCS of the starting subframe in the multi-subframe scheduling, the NDI of the starting subframe in the multi-subframe scheduling, the RV of the starting subframe in the multi-subframe scheduling, and the multiple sub-frames The process identifier of the starting subframe in the frame scheduling;
  • the uplink authorization includes the following scheduling information:
  • the PRB of the starting subframe in the multi-subframe scheduling, the MCS of the starting subframe in the multi-subframe scheduling, the NDI of the starting subframe in the multi-subframe scheduling, and the RV of the starting subframe in the multi-subframe scheduling are identical to each other.
  • the technical solution of the present invention solves the problem of scheduling resources of a plurality of subframes for a relay node. Compared with the methods of dynamic scheduling and semi-persistent scheduling in the prior art, the technical solution of the present invention can more flexibly configure and utilize resources to ensure the transmission of the backhaul link between the base station and the relay node.
  • 1 is a schematic diagram of a network architecture using a relay technology in the prior art
  • 2 is a flowchart of a RN performing service transmission according to the embodiment of the present invention
  • FIG. 3 is a schematic diagram of a dedicated MAC CE reception failure process in uplink multi-subframe scheduling
  • FIG. 4 is a schematic diagram of dedicated MAC CE reception failure processing in downlink multi-subframe scheduling.
  • the relay node acquires configuration information and scheduling information of a preset multi-subframe scheduling, and performs multi-subframe downlink or uplink transmission according to the acquired configuration information and scheduling information.
  • An RN includes an acquisition module and a transmission module.
  • the acquiring module is configured to obtain the scheduling information of the downlink multi-subframe scheduling and the scheduling information of the uplink multi-subframe scheduling, where the specific obtaining process is performed by the operation of step 202 in the specific process of transmitting data by the RN described below;
  • the acquiring module may receive the downlink assignment or the uplink grant on the RN-dedicated physical downlink control channel (R-PDCCH) according to the cell-radio network temporary identifier (C-RNTI) or the RNTI for multi-subframe scheduling.
  • R-PDCCH RN-dedicated physical downlink control channel
  • C-RNTI cell-radio network temporary identifier
  • the downlink assignment or uplink authorization may include one or more of the following scheduling information:
  • the number of subframes for multi-subframe scheduling The number of subframes for multi-subframe scheduling, the process identifiers involved in multi-subframe scheduling, the physical resource blocks (PRBs) of each subframe, the modulation and coding scheme (MCS) for each subframe, and the allocation of resources in multi-subframe scheduling.
  • PRBs physical resource blocks
  • MCS modulation and coding scheme
  • the acquiring module may also obtain a downlink assignment or an uplink grant by using a medium access control (MAC) control element (CE), and the downlink assignment or the uplink grant may include one or more of the following scheduling information: subframes of multiple subframe scheduling
  • the process identifiers involved in the number and multi-subframe scheduling, the PRB occupied by each sub-frame, the MCS of each sub-frame, the sub-frame of the resource allocated in the multi-subframe scheduling, and the sub-frame of the transmission data, and the NDI of each sub-frame , RV of each subframe.
  • the acquiring module may also obtain the RNTI for the multi-subframe scheduling by using the dedicated RRC signaling, and then receive the downlink assignment or the uplink grant on the R-PDCCH according to the RNTI for the multi-subframe scheduling,
  • the downlink assignment includes the following scheduling information:
  • the PRB of the starting subframe in the multi-subframe scheduling, the MCS of the starting subframe in the multi-subframe scheduling, the NDI of the starting subframe in the multi-subframe scheduling, the RV of the starting subframe in the multi-subframe scheduling, and the multiple sub-frames The process identifier of the starting subframe in the frame scheduling;
  • the uplink authorization includes the following scheduling information:
  • the PRB of the starting subframe in the multi-subframe scheduling, the MCS of the starting subframe in the multi-subframe scheduling, the NDI of the starting subframe in the multi-subframe scheduling, and the RV of the starting subframe in the multi-subframe scheduling are identical to each other.
  • a transmission module configured to receive data on a plurality of consecutive or non-contiguous downlink backhaul subframes indicated by scheduling information of downlink multi-subframe scheduling, and multiple consecutive or non-continuous indications indicated by scheduling information of downlink multi-subframe scheduling The data is sent on the uplink backhaul subframe.
  • the transmission module refer to the operation of step 203 in the specific process of transmitting data by the RN.
  • Step 201 The RN acquires configuration information of the multi-subframe scheduling, where the configuration information of the multi-subframe scheduling includes at least: configuration information of the downlink backhaul subframe and configuration information of the uplink backhaul subframe.
  • the RN may pass through the base station. Obtaining configuration information of the downlink backhaul subframe by using the sent RRC signaling or system information;
  • the RN may obtain the configuration information of the uplink backhaul subframe by using the system information and the RRC signaling sent by the base station, or according to the configuration information of the downlink backhaul subframe, and according to the predefined rules of the system, according to the downlink backhaul subframe.
  • the configuration information is used to obtain the configuration information of the uplink backhaul subframe. For example, if the RN acquires the configuration information of the downlink backhaul subframe, the configuration information of the uplink backhaul subframe can be obtained according to the HARQ timing in the prior art. Specifically, in other embodiments of the FDD.
  • the configuration information of the multi-subframe scheduling may further include an RN-dedicated HARQ timing, where the RN-dedicated HARQ timing refers to a time relationship between a time when the resource is allocated, a time at which the data is transmitted, and a feedback time, wherein, the downlink
  • the HARQ timing of multi-subframe scheduling includes T shell -
  • the HARQ timing can also be predefined by the system.
  • the configuration information of the multiple subframe scheduling further includes a correspondence between the subframe and the process, that is, which process is used for each subframe to perform uplink or downlink transmission, and of course, the correspondence between the subframe and the process. It can also be predefined by the system.
  • the RN Before the base station schedules the RN using the scheduling method of the present invention, the RN knows the configuration information of the Un subframe (ie, which are Un subframes) and the HARQ timing.
  • Step 202 The RN acquires scheduling information of the multi-subframe scheduling, where the scheduling information of the multi-subframe scheduling includes the subframe information of the multi-subframe scheduling (indicated by the number of the starting subframe and the subframe, or indicated by the bitmap) And the PRB, the MCS, and the HARQ information that are occupied by the scheduling subframes, where the HARQ information includes a HARQ process id (process ID), an NDI, an RV, and the like, where the multiple subframes in the multiple subframe scheduling are consecutive or non-contiguous multiple subframes. ;
  • the scheduling information of the multi-subframe scheduling includes the subframe information of the multi-subframe scheduling (indicated by the number of the starting subframe and the subframe, or indicated by the bitmap)
  • the PRB, the MCS, and the HARQ information that are occupied by the scheduling subframes where the HARQ information includes a HARQ process id (process ID), an NDI, an RV, and the
  • the scheduling information of the multi-subframe scheduling may be directly indicated to the RN by the RRC signaling sent by the base station, or the MAC CE, or the DCI, or may be jointly indicated to the RN by the RRC signaling and the MAC CE, and may also be RRC. Signaling and DCI are jointly directed to the RN.
  • the MAC CE may indicate when the RRC signaling and the DCI are jointly indicated, if there is scheduling information that is jointly indicated by the two (for example, the RRC signaling and the MAC CE indicate the number of subframes in which the multi-subframe scheduling is performed).
  • the MAC CE may indicate
  • the DCI indication may be used.
  • the multi-subframe scheduling-dedicated RNTI must be included in the RRC signaling.
  • the RRC signaling for transmitting the scheduling information of the multi-subframe scheduling is referred to as dedicated RRC signaling
  • the MAC CE that transmits the scheduling information of the multi-subframe scheduling is referred to as a dedicated MAC CE, and the multi-subframe scheduling is delivered.
  • the DCI of the scheduling information is called a dedicated DCI.
  • the RN may obtain one or more of the following information in the scheduling information of the multi-subframe scheduling by using the dedicated RRC signaling sent by the eNB, where the dedicated RRC signaling is in the existing RRC signaling (such as the RRC connection).
  • Reassignment message, added in RRC Connection Reconfiguration) for indication A field of scheduling information for multi-subframe scheduling, or a dedicated RRC signaling for introducing new scheduling information for delivering multi-subframe scheduling:
  • the number of subframes that are scheduled by multiple subframes where the number of subframes is a positive integer greater than or equal to 1, and the default value may be 1, that is, single subframe scheduling, where the RN may be from the dedicated RRC.
  • the number of subframes scheduled by the downlink multi-subframe and the number of subframes scheduled by the uplink multi-subframe are respectively obtained.
  • the RN may also obtain a sub-frame value from the dedicated RRC signaling.
  • the number of subframes scheduled by the downlink multi-subframe is the same as the number of subframes scheduled by the uplink multi-subframe;
  • the HARQ timing of the downlink multi-subframe scheduling includes at least the downlink backhaul subframe of the downlink assignment scheduled by the RN to receive the downlink multi-subframe scheduling and the downlink backhaul subframe of the downlink data scheduled by the RN to receive the downlink multi-subframe scheduling
  • the mapping relationship may further include: mapping, by the RN, the downlink backhaul subframe of the downlink data scheduled by the downlink multi-subframe, and the mapping of the uplink backhaul subframe of the downlink multi-subframe scheduling downlink data received by the RN.
  • the mapping of the HARQ sequence in the uplink multi-subframe scheduling includes at least the mapping relationship between the downlink backhaul subframe in which the RN receives the uplink grant of the uplink multi-subframe scheduling and the uplink backhaul subframe in which the RN transmits the uplink data scheduled by the uplink multi-subframe, where The uplink backhaul of the uplink data scheduled by the RN to be sent by the RN may further be included.
  • RN receives the radio frame and the relationship.
  • the RN may obtain one or more of the following information in the scheduling information of the multi-subframe scheduling by using a dedicated MAC Control Element (MAC CE), where the dedicated MAC CE is a new scheduling information for transmitting the multi-subframe scheduling.
  • the MAC CE, the dedicated MAC CE indicating the scheduling information of the downlink and uplink multi-subframe scheduling may be different dedicated MAC CEs, or may be the same dedicated MAC CE, when the same dedicated MAC CE is used, the dedicated MAC
  • the CE includes a flag bit for indicating whether the downlink multi-subframe scheduling scheduling information or the uplink multi-subframe scheduling scheduling information is delivered:
  • the number of subframes in a multi-subframe scheduling where the number of the subframes is a positive integer greater than or equal to 1.
  • the default value may be 1, that is, single-subframe scheduling, where the RN may acquire downlink multi-sub-subs The number of subframes scheduled by the frame and the number of subframes scheduled by the uplink multi-subframe.
  • the RN can also acquire only one sub-frame.
  • Frame value indicating that the number of subframes scheduled for downlink multi-subframe scheduling is the same as the number of subframes scheduled for uplink multi-subframe;
  • the process identifier involved in the multi-subframe scheduling may only indicate the process identifier corresponding to the initial subframe, and the process identifier corresponding to the subsequent subframe may be based on the process identifier corresponding to the initial subframe and the setting algorithm (eg, sequentially incrementing) Obtained; may also indicate the process identifier of each subframe in the multi-subframe scheduling;
  • the PRB occupied by the multi-subframe scheduling may only indicate the PRB occupied by the initial sub-frame.
  • the PRB occupied by the subsequent sub-frame is considered to be the same as the PRB occupied by the initial sub-frame, and may also indicate each of the multi-subframe scheduling.
  • the MCS of the multi-subframe scheduling may only indicate the MCS of the initial sub-frame.
  • the MCS of the subsequent sub-frame is considered to be the same as the MCS of the initial sub-frame, and the MCS of each sub-frame in the multi-subframe scheduling may also be respectively indicated. ;
  • bitmap bitmap
  • the HARQ timing of the multi-subframe scheduling obtained by the RN through the RRC signaling indicates that the uplink grant received in the downlink backhaul subframe D is used for uplink transmission in the uplink backhaul subframes U1, U2, U3, and the RN is received in the subframe D.
  • the uplink grant where the field is indicated by the bitmap "110" means that the uplink grant is used for uplink transmission of two uplink subframes of U1 and U2. This scheduling information is particularly suitable for non-contiguous multi-subframe scheduling.
  • the RN In the process of receiving the MAC PDU including the dedicated MAC CE, the RN considers that the MAC CE is the first transmission, so that when the RN fails to receive the MAC CE, the base station does not need to retransmit, because the MAC CE is retransmitted.
  • the subframes of the multi-subframe scheduling that may be occupied by the RB may be lack of timeliness, that is, the RN has missed the subframe indicated by the DeNB in the MAC CE.
  • the RN may obtain one or more of the following information in the scheduling information of the multi-subframe scheduling by using the dedicated DCI, where the dedicated DCI may add an indication in the existing DCI (such as DCI format 0 for uplink and DCI format 1 for downlink).
  • the field of the scheduling information of the multi-subframe scheduling may be implemented by using a newly defined DCI format for transmitting scheduling information of the multi-subframe scheduling, and the DCI indicating the scheduling information of the downlink and uplink multi-subframe scheduling may be Different DCIs may also be the same DCI.
  • the DCI includes a flag bit for indicating whether the downlink multi-subframe scheduling scheduling information or the uplink multi-subframe scheduling scheduling information is delivered: (1) The flag of the multi-subframe scheduling.
  • the RN determines, according to the flag, the resource indicated by the DCI.
  • multi-subframe scheduling or single sub-frame scheduling
  • the number of subframes in a multi-subframe scheduling where the number of the subframes is a positive integer greater than or equal to 1.
  • the default value may be 1, that is, single-subframe scheduling, where the RN may acquire downlink multi-sub-subs The number of subframes scheduled by the frame and the number of subframes scheduled by the uplink multi-subframe.
  • the RN may also acquire only one subframe value, and this indicates the number of subframes and uplink multi-subframes scheduled by the downlink multi-subframe.
  • the number of scheduled subframes is the same;
  • the process identifier involved in the multi-subframe scheduling may only indicate the process identifier corresponding to the initial subframe, and the process identifier corresponding to the subsequent subframe may be obtained according to the process identifier corresponding to the initial subframe and the setting algorithm (such as increasing in sequence); It may also indicate a process identifier of each subframe in the multi-subframe scheduling;
  • the PRB occupied by the multi-subframe scheduling may only indicate the PRB occupied by the initial sub-frame.
  • the PRB occupied by the subsequent sub-frame is considered to be the same as the PRB occupied by the initial sub-frame, and may also indicate each of the multi-subframe scheduling.
  • the MCS of the multi-subframe scheduling may only indicate the MCS of the initial sub-frame.
  • the MCS of the subsequent sub-frame is considered to be the same as the MCS of the initial sub-frame, and the MCS of each sub-frame in the multi-subframe scheduling may also be respectively indicated. ;
  • the mapping relationship between the subframe in which the resource is allocated and the subframe in which the transmission is performed in the multi-subframe scheduling, and the fields in which the subframes are scheduled are described in a bitmap manner.
  • the HARQ timing of the multi-subframe scheduling obtained by the RN through the dedicated RRC signaling indicates that the uplink grant received in the downlink backhaul subframe D is used for uplink transmission in the uplink backhaul subframes U1, U2, U3, and the RN is received in the subframe D.
  • the uplink grant where the field is indicated by the bitmap "110"
  • the uplink grant is used for the uplink transmission of the two uplink subframes of U1 and U2.
  • This scheduling information is particularly suitable for non-contiguous multi-subframe scheduling.
  • Step 203 The RN determines a downlink assignment or an uplink grant, so as to receive downlink data or send uplink data.
  • the multi-subframe scheduling refers to scheduling the HARQ first transmission of multiple consecutive or non-contiguous bakchaul subframes.
  • the RN obtains the scheduling information of the multi-subframe scheduling in step 202, that is, the primary scheduling sub-s Frame information
  • the starting subframe in the subframe information of the one-scheduled scheduling of the multi-subframe scheduling may be a downlink assignment that the RN obtains the multi-subframe scheduling or a subframe that is jointly indicated by the uplink authorized sub-frame and the existing HARQ timing (as follows)
  • the start subframe is a subframe in which the RN obtains the downlink assignment of the multi-subframe scheduling; in the FDD mode, the uplink start subframe is a subframe after the RN obtains the uplink grant subframe of the multi-subframe scheduling 4 ms; TDD mode
  • the uplink start subframe is related to a specific TDD configuration; or the RN obtains a downlink assignment of the multi-subframe scheduling or a sub
  • the starting subframe may also be a subframe that is jointly indicated by a subframe sent by the dedicated MAC CE and a predefined time interval of the system, and may also be a dedicated MAC.
  • the number of subframes in the subframe information of one scheduling may be a predefined value of the system, or may be obtained by the RN through dedicated RRC signaling, dedicated MAC CE, or dedicated DCI. Of course, the RN may also be based on a dedicated MAC CE or a dedicated DCI process.
  • the number of subframes, the number of PRBs, or the number of MCSs are indirectly obtained by the number of subframes, that is, the number of subframes scheduled by multiple subframes is the same as the number of processes, the number of PRBs, and the number of MCSs;
  • the bitmap indication in the subframe information of the primary scheduling refers to the non-contiguous multi-subframe obtained by the RN in combination with the HARQ timing of the multi-subframe scheduling and the mapping relationship between the subframe in which the resource is allocated and the subframe to be transmitted in the multi-subframe scheduling.
  • the RN when the RN obtains the HARQ timing of the multi-subframe scheduling by using the RRC signaling, if the RRC signaling indicates that the uplink grant received in the downlink backhaul subframe D is used for the uplink transmission of the uplink backhaul subframes U1, U2, and U3, the RN Receiving an uplink grant in the subframe D, where the field indicating the mapping relationship in the DCI indicates the subframe scheduled in the current multi-subframe scheduling with the bitmap "110", which means that the uplink grant is used for the U1 and U2 Uplink transmission of an uplink subframe;
  • the PRB (or MCS) occupied by each subframe may be obtained by a dedicated MAC CE or a dedicated DCI; if the dedicated MAC CE or the dedicated DCI includes PRBs (or MCSs) for multiple subframes, each subframe uses a different PRB ( Or MCS). If dedicated MAC CE or DCI only includes For the PRB (or MCS) of one subframe, the same PRB (or MCS) is used for each subframe; for the HARQ process id in the HARQ information of each subframe, the sub-system can be obtained through system pre-defined or RRC signaling.
  • the HARQ process id (ie, synchronous HARQ) occupied by the subframe is obtained according to the subframe number, or obtained by using a dedicated MAC CE or DCI.
  • the dedicated MAC CE is implemented by introducing a new MAC CE for delivering the HARQ process id.
  • the DCI can be an existing DCI (such as uplink DCI format 0, downlink DCI format 1), or a dedicated DCI.
  • Dedicated DCI is implemented by introducing a new DCI format for passing the HARQ process id. If the dedicated MAC CE or DCI includes the HARQ process id for multiple subframes, each subframe sequentially uses the corresponding HARQ process id.
  • the dedicated MAC CE or DCI only includes the HARQ process id for one subframe, that is, only the HARQ process id occupied by the initial subframe is given, the HARQ process id occupied by the subsequent subframe may be based on the HARQ process occupied by the initial subframe.
  • the id is incremented sequentially;
  • the NDI is used to compare with the last received NDI to determine whether the current reception is a first transmission or a retransmission.
  • each process is a first pass, so there is no need to judge based on NDI.
  • the NDI for multi-subframe scheduling is predefined. If the value of the NDI in the DCI of the subsequent sub-frame scheduling is the same as the value of the predefined NDI for the multi-subframe scheduling, it indicates that the single sub-frame is scheduled to be retransmitted. Otherwise, if the value of the NDI is different, the indication is The single subframe is scheduled for the first transmission;
  • the RV is a redundant version of the downlink or uplink transmission, and for the first transmission, the redundancy version is the 0th version. Regardless of which version of the received RV is indicated in the DCI, the transmission of the multi-subframe scheduling defaults to the 0th version;
  • the RN receives downlink data or transmits uplink data in the corresponding subframe according to the foregoing scheduling information.
  • the RN reserves the scheduling information acquired in step 202 until the multi-subframe scheduling ends.
  • the following describes the specific process of the RN determining the downlink assignment to receive the downlink data and determining the uplink grant to send the uplink data.
  • the scheduling information of the multi-subframe scheduling is separately indicated to the RN by dedicated RRC signaling, when the special The multi-subframe scheduling-dedicated RNTI is configured by RRC signaling (the same dedicated RNTI is used in the uplink and downlink in this embodiment), and the system pre-defined or the dedicated RRC signaling configures the number of subframes (this embodiment takes 3
  • the RN detects the R-PDCCH in each downlink backhaul subframe by using the dedicated RNTI indicated by the dedicated RRC signaling, if the RN detects the downlink assignment (DCI format 1) in the subframe D1, and the downlink assignment Indicates the process id of the initial subframe (in this embodiment, processl is taken as an example), PRB, and MCS, and the RN is on D1 and the next two downlink backhaul subframes D2 and D3 without considering retransmission.
  • DCI format 1 downlink assignment
  • the downlink data is received, and process 1 and process 2 (or the process corresponding to the D2 of the system) and process3 (or the process corresponding to the D3 of the system) are used for the first transmission; if the RN is If the subframe D1 detects the uplink grant (DCI format 0) and the PRB and MCS of the initial subframe are indicated in the uplink grant, the RN is in the next three uplink backhaul subframes without considering retransmission. , U2, U3 are sent according to the PRB and MCS in the uplink authorization.
  • the downlink assignment or the uplink grant indicated by the dedicated RNTI on the R-PDCCH is used for multiple children.
  • the scheduling information of the multi-subframe scheduling is separately indicated to the RN by the dedicated DCI format, or is jointly indicated by the dedicated DCI format and the dedicated RRC signaling to the RN, and the number of subframes is configured when the system is predefined or dedicated RRC signaling (
  • the RN uses the C-RNTI to detect the R-PDCCH in each downlink backhaul subframe, if the RN detects the downlink assignment (dedicated DCI) in the subframe D1, and the downlink assignment is used in the downlink assignment.
  • the RN detects an uplink grant (dedicated DCI) in subframe D1, and the flag and the PRB and MCS of the initial subframe are indicated in the uplink grant, then the retransmission is not considered.
  • the RN sends uplink data according to the PRB and the MCS in the uplink grant on the next three uplink backhaul subframes U1, U2, and U3, and the process corresponding to the system U1 (in the case of rocess 1 as an example), rocess2 (or The system pre-processes the Dcess corresponding to D2 and process3 (or the process corresponding to D3 of the system) for the first transmission.
  • the flag bit may not be needed to distinguish between multiple or single subframe scheduling;
  • the dedicated DCI format also indicates non-contiguous multi-subframe scheduling to the RN, and the system pre-defined or dedicated RRC signaling configures the number of subframes (in this embodiment, 3 is taken as an example), and the dedicated RRC signaling configures multiple sub-subframes.
  • the HARQ timing of the frame scheduling (for example, when the downlink assignment of the downlink backhaul subframe D1 can be used to indicate the downlink transmission of the three downlink backhaul subframes of D1, D2, and D3), the RN uses the C-RNTI on each downlink backhaul subframe.
  • the RN Detecting the R-PDCCH, if the RN detects the downlink assignment (dedicated DCI) at D1, and the flag indicates the process of the initial subframe (process 1 as an example), PRB, MCS, and indication Subframe scheduling sub-frame (in the manner of bitmap "101"), the RN receives downlink data according to the PRB and MCS in the downlink assignment in D1 and D3, regardless of the retransmission, to process 1, process 2 (or the process corresponding to the D3 predefined by the system) for the first pass processing. At this time, the downlink backhaul subframe D2 between D1 and D3 does not participate in the multi-subframe scheduling because there is no indication in the subframe scheduled for the multi-subframe. Other processing methods are similar to continuous multi-subframe scheduling, and will not be repeated here.
  • the system pre-defined or RRC signaling configures the number of subframes (this embodiment 3, for example, the RN detects the R-PDCCH on each downlink backhaul subframe by using the C-RNTI, and if the RN detects the downlink assignment (DCI format 1) in the subframe D1, the retransmission is not considered.
  • the RN in D1 indicates that the MAC PDU including the dedicated MAC CE is correctly received according to the downlink assignment (DCI format 1), and the dedicated MAC CE indicates the process of the initial subframe (in this embodiment, processl is taken as an example) and its PRB, MCS, and
  • the RN receives the downlink data according to the PRB and MCS in the dedicated MAC CE in the next three downlink backhaul subframes D2, D3, and D4, and processes 1 (or the process corresponding to the system predefined D2), process2 (or system)
  • the process corresponding to D3 defined by D3, process3 (or the process corresponding to D4 of the system) is used for the first transmission.
  • the number of subframes, the process of each subframe, PRB, MCS can also be indicated in the dedicated MAC CE. If the RN detects the downlink assignment (DCI format 1) in the subframe D1, the RN instructs to correctly receive the MAC PDU including the dedicated MAC CE according to the downlink assignment (DCI format 1 ) in D1 regardless of the retransmission.
  • the dedicated MAC CE indicates the PRB and MCS of the initial subframe, and indicates that the uplink multi-subframe scheduling is used in the flag bit, and the RN is in accordance with the PRB in the dedicated MAC CE in the next three uplink backhaul subframes U1, U2, and U3.
  • the MCS sends the uplink data, and the process corresponding to the U1 corresponding to the system (process 1 as an example), process2 (or the process corresponding to the U2 of the system), and process3 (or the process corresponding to the U3 defined by the system) are used as the first. Transfer processing, number of sub-frames process each sub-frame, PRB, MCS may also be indicated in the dedicated MAC CE.
  • the RN in the process that the RN receives the dedicated MAC CE including the uplink multi-subframe scheduling, if the reception fails, it means that the current multi-subframe scheduling fails.
  • D indicates a downlink backhaul subframe
  • Ux indicates the xth uplink backhaul subframe in the uplink multi-subframe scheduling
  • the DeNB allocates a downlink assignment and an uplink grant to the RN in the subframe D.
  • the RN The MAC PDU including the dedicated MAC CE indicating the uplink multi-subframe scheduling needs to be received in the subframe D according to the downlink assignment, and the uplink grant is reserved, where the dedicated MAC CE instructs the RN to schedule the process l in the subframes U1, U2, and U3, respectively.
  • Process2, process3, and the uplink grant indicate the scheduling information of the PRB and the MCS used by the RN to schedule the process1 in the subframe U1, and the RN sends the data of the first subframe (processl) of the multi-subframe scheduling in the subframe U1 according to the uplink grant.
  • the MAC address of the MAC PDU including the dedicated MAC CE is successfully received in the subframe RN.
  • the RN fails to receive the MAC PDU including the MAC CE, the RN cannot obtain the uplink multi-subframe scheduling information in the MAC CE. Then, the RN does not perform multi-subframe scheduling in the subsequent manner, so that the DeNB receives the fed back NACK (indicating that the RN receives the failure) in the subframe U1, and learns that the RN does not obtain the uplink multi-subframe scheduling information. If the multi-subframe scheduling fails, the DeNB may resend the MAC CE indicating the multi-subframe scheduling in the subsequent downlink backhaul subframe.
  • Dx represents the Xth downlink backhaul subframe in the downlink multi-subframe scheduling.
  • the DeNB allocates the downlink assignment to the RN in the subframe D, and uses the existing DCI format1 in the downlink assignment. According to the normal procedure, the RN needs to receive the MAC PDU including the dedicated MAC CE in the subframe D according to the indication of the downlink assignment.
  • the CE instructs the RN to schedule process1, process2, and process3 in D1, D2, and D3, respectively, including scheduling information such as the corresponding PRB and MCS, and the RN feeds back whether the MAC PDU is successfully received in the corresponding uplink backhaul subframe; but when the RN receives the dedicated MAC address,
  • the RN cannot obtain the downlink multi-subframe scheduling information in the MAC CE, and the RN does not perform multi-subframe scheduling, and the DeNB receives the feedback NACK (indicating that the RN receives the failure), and learns the RN. If the downlink multi-subframe scheduling information is not obtained, the multi-subframe scheduling fails, and the DeNB may retransmit the MAC CE indicating the multi-subframe scheduling in the subsequent downlink backhaul subframe.
  • Step 204 The RN sends or receives HARQ feedback of each subframe in the multi-subframe scheduling.
  • the RN may separately feed back each subframe in the multi-subframe scheduling according to the prior art, or may refer to the ACK or NACK bundling in the existing TDD to jointly feed back the multiple subframes.
  • the dedicated RRC signaling is dedicated signaling of the designated UE or the designated RN, and the dedicated RRC signaling for acquiring the scheduling information of the multi-subframe scheduling is to add an indication in the existing RRC signaling (such as the RRC reconfiguration message).
  • the scheduling information of the multiple subframe scheduling, the downlink backhaul subframe configuration information, and the uplink backhaul subframe configuration information may be transmitted through the same dedicated RRC signaling or through multiple different dedicated RRC signaling.
  • the relay node and the method for transmitting the data provided by the invention solve the problem of scheduling more for the relay node The problem of resources for sub-frames.
  • the technical solution of the present invention can configure and utilize resources more flexibly, and ensure the transmission of the backhaul link between the base station and the relay node.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种中继节点及其传输数据的方法
技术领域
本发明涉及无线通信技术领域,特别涉及中继节点及其传输数据的方法。 背景技术
第三代移动通信长期演进 ( Long Term Evolution, LTE ) 系统的"演进的 通用陆地无线接入网 ( Evolved Universal Terrestrial Radio Access Network, E-UTRAN, 由基站 eNB组成, 因此也可以称为基站 eNB ) "的无线接口媒体 接入控制 ( Media Access Control , MAC ) 协议层, 存在调度 /优先级处理 ( Scheduling/Priority Handling ) 功能实体, 其中, 调度功能支持动态调度 ( Dynamic Scheduling )和半持久调度 (或称为半静态调度 ) ( Semi-persistent Scheduling ) 。
动态调度(Dynamic Scheduling )是指, E-UTRAN能够通过物理下行控 制信道( Physical Downlink Control Channel , PDCCH )上的小区无线网络临时 标识( Cell Radio Network Temporary Identifier, C-RNTI )在每个传输时间间 隔(Transmit Time Interval, TTI, 对应于一个子帧( Subframe ) )向用户设备 ( UE )动态分配资源用于 UE接收 /发送数据, 资源包括物理资源块( Physical Resource Block, PRB )和调制编码方案( Modulation and Coding Scheme, MCS ) 等。 其中上行釆用下行控制信息( Downlink Control Information, DCI )格式 0 ( format 0 ) 、 下行釆用 DCI format 1指示调度信息, 如表 1、 表 2所示, 两 者主要的区别在于: 由于下行混合自动重传请求(Hybrid ARQ, HARQ )是 异步 HARQ所以需要指示 HARQ进程标识, 而上行 HARQ是同步 HARQ所 以不需要指示该标识。 UE 的 HARQ的首传和 HARQ重传均可使用动态调度。
表 1: DCI format 0的主要定义域
Figure imgf000003_0001
( MCS, Modulation and Coding Scheme ) 模式和编码率 新数据指示符 用于指示 UE是发送新数据还是重传旧数据 ( DI , New Data Indicator )
上行索引 用于 TDD模式的配置 0, 指示该上行授权用 于哪个上行子帧
下行指配索引 用于 TDD模式的配置 1~6,指示 HARQ反馈
( DAI, Downlink Assignment Index ) 的子帧
表 2: DCI format 1的主要定义域
Figure imgf000004_0001
半持久调度( Semi-persistent Scheduling, SPS )是指, E-UTRAN可以通 过在 PDCCH (物理下行控制信道, Physical Downlink Control Channel )上的 半持久调度小区无线网络临时标识( Semi-Persistent Scheduling C-RNTI, SPS C-RNTI )为 UE分配半持久资源用于 UE接收或者发送数据, 资源包括物理 资源块(PRB )、 调制编码方案(MCS )等。 在半持久调度中, UE的 HARQ 首传使用半持久资源, HARQ重传使用动态调度的资源。 半持久资源按照所 配置的周期重复发生, 在 UE被配置有半持久资源的子帧(Subframe )时, 如 果 UE没有在 PDCCH上监测到其 C-RNTI, 则在相应的子帧根据半持久资源 进行接收或者发送。在 UE被配置有半持久资源的子帧时,如果 UE在 PDCCH 上监测到其 C-RNTI, 则在相应的子帧使用 PDCCH指示的动态资源替代 ( Override )半持久资源。
典型地, 半持久调度应用于 VoIP业务, 为其分配的半持久资源以 20ms 为周期。 E-UTRAN通过无线资源控制 (Radio Resource Control, RRC )信令 为 UE配置半持久调度参数, 包括半持久调度小区-无线网络临时标识、 下行 半持久调度配置、 上行半持久调度配置等。 下行或者上行半持久调度参数可 以分别配置, 下行半持久调度参数包括下行半持久调度周期、 预留的 HARQ 进程数、 PUCCH (物理上行控制信道, Physical Uplink Control Channel )反馈 资源等信息; 上行半持久调度参数包括上行半持久调度周期、 隐式释放参数、 PUSCH (物理上行共享信道, Physical Uplink Shared Channel )相关参数等信 息、对于 TDD模式还包括两周期配置信息。 E-UTRAN通过 RRC信令使能或 者去使能( enable/disable )下行或者上行半持久调度, 当下行或者上行半持久 调度去使能时,对应的半持久资源被释放。 LTE频分多路复用模式(Frequency Divided Duplex, FDD )在下行或者上行最多分别支持一个周期。 时分多路复 用模式( Time Divided Duplex, TDD )在下行仅支持一个周期, 在上行支持两 个周期的配置以避免 HARQ重传和 HARQ首传时半持久资源的冲突。在下行, E-UTRAN通过 RRC为 UE配置半持久调度所预留的 HARQ进程数, 动态调 度可以共享预留给半持久调度的 HARQ进程。 在上行, 动态调度和半持久调 度也可以共享同一个 HARQ进程。 E-UTRAN通过 PDCCH为 UE激活半持久 资源。 为了降低半持久调度的复杂性, 半持久资源是分配给整个 UE的, 而 不是分配给某个具体的业务的。 下行或者上行最多分别只配置一个半持久资 源 (包括 PRB、 MCS等信息) , 该半持久资源按照 RRC信令所配置的下行 或者上行半持久调度周期发生。 E-UTRAN通过 PDCCH显式释放 UE的下行 或者上行半持久资源。 在上行, 也支持隐式释放半持久资源, UE根据若干个 连续的包含 0个 MAC SDU (媒体接入控制业务数据单元 )的新的 MAC PDU (媒体接入控制协议数据单元 )触发半持久资源释放。
为了满足日益增长的大带宽高速移动接入的需求, 第三代伙伴组织计划 ( Third Generation Partnership Projects, 3 GPP )推出高级长期演进 ( Long-Term Evolution Advanced , LTE- Advanced ) 标准。 LTE- Advanced对于长期演进 ( Long-Term Evolution, LTE )的演进保留了 LTE的核心, 在此基础上釆用一 系列技术对频域、 空域进行扩充, 以达到提高频谱利用率、 增加系统容量等 目的。 无线中继 (Relay )技术为 LTE-Advanced中的技术之一, 旨在扩展小 区的覆盖范围, 减少通信中的死角地区, 平衡负载, 转移热点地区的业务, 节省终端(或称为用户设备 UE, User Equipment )的发射功率。 如图 1所示, 在原有的基站( Donor-eNB )和 UE之间增加一些新的中继节点( Relay-Node, RN ) , 这些新增的 RN和 Donor-eNB通过无线连接 , 和传输网络之间没有有 线连接。 其中, Donor-eNB 和 RN之间的无线链路称为回程链路(backhaul link ) , RN和 UE之间的无线链路称为接入链路(access link ) 。 下行数据先 到达 Donor-eNB, 然后再传递给 RN, RN再传输至 UE, 上行则反之。
为了配置回程链路的资源, 定义了 RN 专用的物理下行控制信道 ( R-PDCCH ) 、 物理下行共享信道 (R-PDSCH ) 和物理上行共享信道 ( R-PUSCH ) 。 R-PDCCH 用于动态或半静态地分配 R-PDSCH 资源和 R-PUSCH资源, 其中, R-PDSCH资源用于传输 backhaul link的下行数据, R-PUSCH资源用于传输 backhaul link的上行数据。
与 PDCCH指示资源分配的区别在于, R-PDCCH除了可以指示当前子帧 的下行资源之外, 也可以指示多个后续子帧的下行资源, 此外, R-PDCCH也 可以指示多个后续子帧的上行资源。 然而现有的资源分配方法仅适用于调度 单个子帧的资源, 因此, 需要提供一种新的调度方法用于 R-PDCCH调度多 个子帧的资源。
发明内容
本发明所要解决的技术问题是,提供一种中继节点及其传输数据的方法, 以实现同时调度多个子帧的资源。
为了解决上述技术问题, 本发明提供了一种中继节点(RN )传输数据的 方法, 包括:
所述 RN根据获取的下行多子帧调度的调度信息在相应的多个连续或者 非连续的下行回程子帧上接收数据; 和 /或 所述 RN根据获取的上行多子帧调度的调度信息在相应的多个连续或者 非连续的上行回程子帧上发送数据。
优选地, 所述 RN在相应的多个连续或者非连续的下行回程子帧上接收 的数据为混合自动重传请求(HARQ )首传, 所述 RN在相应的多个连续或者 非连续的上行回程子帧上发送的数据为 HARQ首传。
优选地, 所述 RN获取所述调度信息的过程包括:
所述 RN根据小区 -无线网络临时标识( C-RNTI )或者用于多子帧调度的 RNTI在 RN专用的物理下行控制信道(R-PDCCH )上接收下行指配或者上 行授权, 所述下行指配或者上行授权包括所述调度信息。
优选地, 所述调度信息包括下列信息中的一种或多种:
多子帧调度的子帧个数、 多子帧调度中涉及的进程标识, 各子帧的物理 资源块(PRB ) 、 各子帧的调制编码方案 (MCS ) 、 多子帧调度中分配资源 的子帧和传输数据的子帧的映射关系、 各子帧的新数据指示符(NDI ) 、 各 子帧的冗余版本(RV ) 。
优选地, 所述下行指配和上行授权由相同的用于多子帧调度的下行控制 信息(DCI )指示给 RN, 或者所述下行指配和上行授权分别由不同的用于多 子帧调度的 DCI指示;
当所述下行指配和上行授权由相同的用于多子帧调度的 DCI指示时, 在 用于多子帧调度的 DCI中增加标志位以表示该 DCI指示的是用于下行多子帧 调度的下行指配还是用于上行多子帧调度的上行授权。
优选地, 所述指示下行指配的 DCI为 DCI格式 1或者为新增 DCI格式; 所述指示上行授权的 DCI为 DCI格式 0或者为新增 DCI格式。
优选地, 所述 RN通过无线资源控制 (RRC )信令获取所述用于多子帧 调度的 RNTI,其中,所述 RRC信令为 RRC连接重配消息或者为新增的 RRC 信令。
优选地, 所述多子帧调度中的起始子帧是所述 RN接收所述下行指配或 者上行授权的子帧和 HARQ时序共同指示的子帧; 或者
所述多子帧调度中的起始子帧是所述 RN接收所述下行指配或者上行授 权的子帧和和 RN专用的 HARQ时序共同指示的子帧; 或者
所述多子帧调度中的起始子帧是 RN专用的 HARQ时序和所述分配资源 的子帧和传输数据的子帧的映射关系共同指示的子帧;
其中,所述 RN通过系统预定义或者 RRC信令获取所述 RN专用的 HARQ 时序。
优选地, 所述多子帧调度中的后续子帧是 RN专用的 HARQ时序和所述 分配资源的子帧和传输数据的子帧的映射关系共同指示的子帧;
所述 RN通过系统预定义或者 RRC信令获取所述 RN专用的 HARQ时序。 优选地, 所述 RN获取所述调度信息的过程包括:
所述 RN通过媒体接入控制( MAC )控制元( CE )获取下行指配或者上 行授权, 所述下行指配或者上行授权包括所述调度信息。
优选地, 所述 RN通过相同的 MAC CE获取下行指配和上行授权, 或者 通过不同的 MAC CE获取下行指配和上行授权;
当所述 RN通过相同的 MAC CE获取所述下行指配和上行授权时, 该 MAC CE中新增有标志位以表示该 MAC CE指示的是用于下行多子帧调度的 下行指配还是用于上行多子帧调度的上行授权。
优选地, 所述 RN接收所述 MAC CE失败时, 告知基站接收失败。
优选地, 当基站被告知所述 RN接收所述 MAC CE失败时, 基站不再重 传所述 MAC CE。
优选地, 当所述下行指配或者上行授权中不包括所述多子帧调度的子帧 个数时, 所述 RN在接收所述下行指配或上行授权之前, 通过系统预定义或 者 RRC信令获取所述多子帧调度的子帧个数;
当所述下行指配或者上行授权中不包括所述多子帧调度中涉及的进程标 识时, 所述 RN通过系统预定义或者 RRC信令中子帧与进程标识的对应关系 中获取多子帧调度的起始子帧的进程标识和后续子帧的进程标识, 或者通过 系统预定义或者 RRC信令获取多子帧调度的起始子帧的进程标识,对起始子 帧的进程标识依次递增以获取后续子帧的进程标识; 当所述下行指配或者上行授权中只包括一个 PRB时, 所述 RN得知多子 帧调度中各子帧占用相同的 PRB;
当所述下行指配或者上行授权中只包括一个 MCS时,所述 RN得知多子 帧调度中各子帧釆用相同的 MCS;
当所述下行指配或者上行授权不包括 NDI时, 所述 RN得知多子帧调度 中各子帧的 NDI为默认值; 以及
当所述下行指配或者上行授权不包括 RV时, 所述 RN得知多子帧调度 中各子帧的 RV为默认值。
优选地, 所述多子帧调度中的起始子帧是所述 RN接收所述 MAC CE的 子帧与系统预定义的时间间隔共同指示的子帧; 或者
所述多子帧调度中的起始子帧是所述 RN正确接收所述 MAC CE的子帧 之后的第一个下行回程子帧或者上行回程子帧。
优选地, 所述 RN获取所述调度信息的过程包括:
所述 RN通过专用 RRC信令获取用于多子帧调度的 RNTI, 再根据所述 用于多子帧调度的 RNTI在 R-PDCCH上接收下行指配或者上行授权,所述下 行指配或者上行授权包括所述调度信息。
优选地, 所述下行指配包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、多子帧调度中起始子帧的 RV、多子帧调度中起始子 帧的进程标识;
所述上行授权包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、 多子帧调度中起始子帧的 RV。
优选地, 所述下行指配由 DCI格式 1指示给所述 RN, 所述上行授权由 DCI格式 0指示给所述 RN。
优选地, 所述多子帧调度中的起始子帧为所述 RN接收所述下行指配或 者上行授权的子帧和 HARQ时序共同指示的子帧; 或者 所述多子帧调度中的起始子帧为所述 RN接收所述下行指配或者上行授 权的子帧和 RN专用的 HARQ时序共同指示的子帧;
其中,所述 RN通过系统预定义或者 RRC信令获取所述 RN专用的 HARQ 时序。
优选地, 当所述 RN从所述下行指配或者上行授权中获取所述多子帧调 度中起始子帧的 PRB时, 获知所述多子帧调度中后续子帧的 PRB与所述起 始子帧的 PRB相同; 以及
当所述 RN从所述下行指配或者上行授权中获取所述多子帧调度中起始 子帧的 MCS时, 获知所述多子帧调度中后续子帧的 MCS与所述起始子帧的 MCS相同。
优选地, 所述 RN在接收所述下行指配或上行授权之前, 通过系统预定 义或者 RRC信令获取所述多子帧调度的子帧个数;
所述 RN获知所述多子帧调度中后续子帧的 NDI是与所述起始子帧的 NDI相同的值, 或者所述 RN获知所述多子帧调度中后续子帧的 NDI是默认 值; 以及
所述 RN获知所述多子帧调度中后续子帧的 RV是与所述起始子帧的 RV 相同的值, 或者所述 RN获知所述多子帧调度中后续子帧的 RV是默认值。
优选地, 所述 RN通过系统预定义或 RRC信令获取子帧与进程标识的对 应关系以获得所述多子帧调度的后续子帧的进程标识; 或者
所述 RN对所述多子帧调度的起始子帧的进程标识依次递增以获得所述 多子帧调度的后续子帧的进程标识。
优选地, 所述 RN通过 RRC信令获取所述用于多子帧调度的 RNTI, 所 述 RRC信令为 RRC连接重配消息或者为新增的 RRC信令。
本发明还提供了一种中继节点, 包括获取模块和传输模块, 其中: 所述获取模块, 设置为获取下行多子帧调度的调度信息和上行多子帧调 度的调度信息;
所述传输模块, 设置为在所述下行多子帧调度的调度信息指示的多个连 续或者非连续的下行回程子帧上接收数据, 以及在所述下行多子帧调度的调 度信息指示的多个连续或者非连续的上行回程子帧上发送数据。
优选地, 所述获取模块设置为根据小区 -无线网络临时标识(C-RNTI )或 者用于多子帧调度的 RNTI在 RN专用的物理下行控制信道( R-PDCCH )上 接收下行指配或者上行授权,所述下行指配或者上行授权包括所述调度信息。
优选地, 所述调度信息包括下列信息中的一种或多种:
多子帧调度的子帧个数、 多子帧调度中涉及的进程标识, 各子帧的物理 资源块(PRB ) 、 各子帧的调制编码方案 (MCS ) 、 多子帧调度中分配资源 的子帧和传输数据的子帧的映射关系、 各子帧的新数据指示符(NDI ) 、 各 子帧的冗余版本(RV ) 。
优选地, 所述获取模块,设置为通过媒体接入控制 ( MAC )控制元 ( CE ) 获取下行指配或者上行授权,所述下行指配或者上行授权包括所述调度信息。
优选地, 所述获取模块,设置为通过专用 RRC信令获取用于多子帧调度 的 RNTI, 再根据所述用于多子帧调度的 RNTI在 R-PDCCH上接收下行指配 或者上行授权, 所述下行指配或者上行授权包括所述调度信息。
优选地, 所述下行指配包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、多子帧调度中起始子帧的 RV、多子帧调度中起始子 帧的进程标识;
所述上行授权包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、 多子帧调度中起始子帧的 RV。
本发明技术方案解决了为中继节点调度多个子帧的资源的问题。 相比现 有技术中动态调度和半持久调度的方法, 本发明技术方案可以更为灵活的配 置和利用资源, 保证基站与中继节点之间的回程链路的传输。
附图概述
图 1为现有技术中利用中继 (relay )技术的网络架构示意图; 图 2为本发明本实施例中 RN进行业务传输的流程图;
图 3为上行多子帧调度中专用 MAC CE接收失败处理的示意图; 图 4为下行多子帧调度中专用 MAC CE接收失败处理的示意图。 本发明的较佳实施方式
本发明的主要构思是: 中继节点获取事先设定的多子帧调度的配置信息 和调度信息, 并根据所获取的配置信息和调度信息进行多子帧下行或者上行 传输。
以下结合附图和具体实施方式对本发明技术方案作详细说明。
一种 RN, 包括获取模块和传输模块。
获取模块, 设置为获取下行多子帧调度的调度信息和上行多子帧调度的 调度信息, 其中, 具体的获取过程参见下文介绍的 RN传输数据的具体过程 中的步骤 202的操作;
本实施例中, 获取模块可以根据小区-无线网络临时标识( C-RNTI )或者 用于多子帧调度的 RNTI在 RN专用的物理下行控制信道( R-PDCCH )上接 收下行指配或者上行授权, 该下行指配或者上行授权可以包括以下一种或几 种调度信息:
多子帧调度的子帧个数、 多子帧调度中涉及的进程标识, 各子帧的物理 资源块(PRB ) 、 各子帧的调制编码方案 (MCS ) 、 多子帧调度中分配资源 的子帧和传输数据的子帧的映射关系、 各子帧的新数据指示符(NDI ) 、 各 子帧的冗余版本(RV ) 。
获取模块还可以通过媒体接入控制(MAC )控制元(CE )获取下行指配 或者上行授权, 下行指配或者上行授权可以包括以下一种或几种调度信息: 多子帧调度的子帧个数、 多子帧调度中涉及的进程标识, 各子帧占用的 PRB、 各子帧的 MCS、 多子帧调度中分配资源的子帧和传输数据的子帧的映 射关系、 各子帧的 NDI、 各子帧的 RV。
获取模块还可以通过专用 RRC信令获取用于多子帧调度的 RNTI, 再根 据所述用于多子帧调度的 RNTI在 R-PDCCH上接收下行指配或者上行授权, 下行指配包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、多子帧调度中起始子帧的 RV、多子帧调度中起始子 帧的进程标识;
上行授权包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、 多子帧调度中起始子帧的 RV。
传输模块, 设置为在下行多子帧调度的调度信息指示的多个连续或者非 连续的下行回程子帧上接收数据, 以及在下行多子帧调度的调度信息指示的 多个连续或者非连续的上行回程子帧上发送数据, 其中, 传输模块的具体实 现参见下文介绍的 RN传输数据的具体过程中的步骤 203的操作。
下面介绍上述 RN进行数据传输的具体过程, 如图 2所示, 该过程包括 以下步骤:
步骤 201 : RN获取多子帧调度的配置信息, 其中, 多子帧调度的配置信 息至少包括:下行 backhaul子帧的配置信息和上行 backhaul子帧的配置信息; 该步骤中, RN可以通过基站下发的 RRC信令或者系统信息获取下行 backhaul子帧的配置信息;
RN可以通过系统信息、 基站下发的 RRC信令获取上行 backhaul子帧的 配置信息, 或者在已经获取下行 backhaul子帧的配置信息的前提下, 再按照 系统预定义的规则根据下行 backhaul子帧的配置信息获取上行 backhaul子帧 的配置信息, 例如, RN获取了下行 backhaul子帧的配置信息, 则可以根据现 有技术中 HARQ时序获取上行 backhaul子帧的配置信息, 具体地, 在 FDD 其他实施例中, 多子帧调度的配置信息还可以包括 RN专用的 HARQ时 序, RN专用的 HARQ时序是指分配资源的时刻、 进行数据传输的时刻以及 反馈时刻这三者之间的时间关系, 其中, 下行多子帧调度的 HARQ时序包括 T贝-
HARQ时序也可以是系统预定义的。 还有一些实施例中, 多子帧调度的配置 信息还包括子帧与进程(process ) 的对应关系, 即指每个子帧进行上行或者 下行传输占用哪个 process, 当然, 子帧与 process的对应关系也可以是系统 预定义的。
在基站釆用本发明所述调度方法调度 RN之前, RN已知 Un子帧的配置 信息 (即哪些是 Un子帧) 以及 HARQ时序。
步骤 202: RN获取多子帧调度的调度信息, 其中, 多子帧调度的调度信 息包括多子帧调度的子帧信息 (由起始子帧和子帧个数共同指示, 或者由位 图指示) 以及各调度子帧占用的 PRB、 MCS和 HARQ信息, HARQ信息包 括 HARQ process id (进程标识) 、 NDI、 RV等, 其中, 多子帧调度中的多 子帧为连续或者非连续的多个子帧;
该步骤中, 多子帧调度的调度信息可以由基站下发的 RRC信令, 或者 MAC CE, 或者 DCI单独指示给 RN, 也可以由 RRC信令和 MAC CE联合指 示给 RN,还可以由 RRC信令和 DCI联合指示给 RN。当由 RRC信令和 MAC CE联合指示时, 若存在两者共同指示的调度信息 (如 RRC信令和 MAC CE 都指示了多子帧调度的子帧个数), 则可以 MAC CE指示的为准; 当由 RRC 信令和 DCI联合指示时, 若存在两者共同指示的调度信息 (如 RRC信令和 DCI都指示了多子帧调度的子帧个数) , 则可以 DCI指示的为准; 当多子帧 调度的调度信息由 RRC信令单独指示给 RN (即下行指配或者上行授权都釆 用现有的 DCI格式, 且没有 MAC CE指示多子帧调度的调度信息)时, 所述 RRC信令中必须包括多子帧调度专用的 RNTI。
以下为了描述方便,将传递多子帧调度的调度信息的 RRC信令称为专用 RRC信令,将传递多子帧调度的调度信息的 MAC CE称为专用 MAC CE,将 传递多子帧调度的调度信息的 DCI称为专用 DCI。
具体地, RN可以通过基站下发的专用 RRC信令获取多子帧调度的调度 信息中以下一种或几种信息, 其中, 所述专用 RRC信令是在现有 RRC信令 (如 RRC连接重配消息, RRC Connection Reconfiguration ) 中增加用于指示 多子帧调度的调度信息的字段, 或引入新的用于传递多子帧调度的调度信息 的专用 RRC信令:
( 1 )多子帧调度的子帧个数, 该子帧个数的取值为大于或等于 1的正整 数, 默认值可以为 1 , 即单子帧调度, 其中, RN可以从所述专用 RRC信令 中分别获取下行多子帧调度的子帧个数和上行多子帧调度的子帧个数, 当然, RN也可以从所述专用 RRC信令中获取一个子帧个数值, 此时表示下行多子 帧调度的子帧个数和上行多子帧调度的子帧个数相同;
( 2 ) 多子帧调度专用的 RNTI (无线网络临时标识) , 其中, 下行多子 帧调度专用的 RNTI和上行多子帧调度专用的 RNTI可以相同, 也可以不同; ( 3 ) 多子帧调度的 HARQ时序, 其中, 下行多子帧调度中的 HARQ时 序至少包括 RN接收下行多子帧调度的下行指配的下行 backhaul子帧和 RN 接收下行多子帧调度的下行数据的下行 backhaul子帧的映射关系, 在此基础 上, 还可以进一步包括 RN接收下行多子帧调度的下行数据的下行 backhaul 子帧和 RN 反馈所述下行多子帧调度的下行数据是否接收成功的上行 backhaul子帧的映射关系; 上行多子帧调度中的 HARQ时序至少包括 RN接 收上行多子帧调度的上行授权的下行 backhaul子帧和 RN发送上行多子帧调 度的上行数据的上行 backhaul子帧的映射关系, 在此基础上, 还可以进一步 包括 RN发送上行多子帧调度的上行数据的上行 backhaul子帧和 RN接收所 射关系。
RN可以通过专用 MAC控制元(MAC CE )获取多子帧调度的调度信息 中以下一种或多种信息, 其中, 所述专用 MAC CE为引入的新的用于传递多 子帧调度的调度信息的 MAC CE, 指示下行和上行的多子帧调度的调度信息 的专用 MAC CE可以是不同的专用 MAC CE,也可以是相同的专用 MAC CE, 釆用相同的专用 MAC CE时, 所述专用 MAC CE中包括一个标志位, 用于指 示传递的是下行多子帧调度的调度信息还是上行多子帧调度的调度信息:
( 1 )多子帧调度的子帧个数, 该子帧个数的取值为大于或等于 1的正整 数, 默认值可以为 1 , 即单子帧调度, 其中, RN可以分别获取下行多子帧调 度的子帧个数和上行多子帧调度的子帧个数, 当然, RN也可以只获取一个子 帧个数值, 此时表示下行多子帧调度的子帧个数和上行多子帧调度的子帧个 数相同;
( 2 )多子帧调度中涉及的进程标识, 可以仅指示初始子帧对应的进程标 识, 后续子帧对应的进程标识可以才艮据初始子帧对应的进程标识以及设定算 法(如依次递增)获得; 也可以指示多子帧调度中每个子帧的进程标识;
( 3 )多子帧调度占用的 PRB, 可以仅指示初始子帧占用的 PRB, 此时, 认为后续子帧占用的 PRB与初始子帧占用的 PRB相同, 也可以分别指示多 子帧调度中每个子帧占用的 PRB;
( 4 )多子帧调度的 MCS, 可以仅指示初始子帧的 MCS, 此时, 认为后 续子帧的 MCS与初始子帧的 MCS相同, 也可以分别指示多子帧调度中每个 子帧的 MCS;
( 5 ) 多子帧调度中分配资源的子帧和进行传输的子帧的映射关系, 以 bitmap (位图) 的方式描述调度了哪些子帧的字段。 例如, RN通过 RRC信 令获得的多子帧调度的 HARQ时序表示在下行 backhaul子帧 D接收的上行授 权用于在上行 backhaul子帧 Ul、 U2、 U3进行上行传输, RN在子帧 D收到 上行授权, 其中本字段以 bitmap "110" 指示, 则意味着该上行授权用于 Ul、 U2两个上行子帧的上行传输。 该调度信息特别适用于非连续的多子帧调度。
RN在接收包含有上述专用 MAC CE的 MAC PDU的过程中, 会认为该 MAC CE是首传, 这样, RN接收该 MAC CE失败时, 则基站不需要重传, 这是因为 MAC CE的重传可能占用其指示的多子帧调度的子帧, 导致重传成 功的 MAC CE缺乏时效性,即 RN已经错过了 DeNB在 MAC CE中指示的子 帧。
RN可以通过专用 DCI获取多子帧调度的调度信息中以下一种或多种信 息, 其中, 专用 DCI可以在现有 DCI (如上行釆用 DCI format 0, 下行釆用 DCI format 1 )中增加指示多子帧调度的调度信息的字段来实现, 也可以使用 新定义的用于传递多子帧调度的调度信息的 DCI格式来实现, 指示下行和上 行的多子帧调度的调度信息的 DCI可以是不同的 DCI,也可以是相同的 DCI, 釆用相同的 DCI时, 该 DCI中包括一个标志位, 用于指示传递的是下行多子 帧调度的调度信息还是上行多子帧调度的调度信息: ( 1 ) 多子帧调度的标志位, 当多子帧调度的调度信息由 DCI单独指示 时, 若 DCI的其它字段与现有 DCI的字段相同, RN根据该标志位判断 DCI 指示的资源是用于多子帧调度还是单子帧调度;
( 2 )多子帧调度的子帧个数, 该子帧个数的取值为大于或等于 1的正整 数, 默认值可以为 1 , 即单子帧调度, 其中, RN可以分别获取下行多子帧调 度的子帧个数和上行多子帧调度的子帧个数, 当然, RN也可以只获取一个子 帧个数值, 此时表示下行多子帧调度的子帧个数和上行多子帧调度的子帧个 数相同;
( 3 )多子帧调度涉及的进程标识,可以仅指示初始子帧对应的进程标识, 后续子帧对应的进程标识可以根据初始子帧对应的进程标识以及设定算法 (如依次递增)获得; 也可以指示多子帧调度中每个子帧的进程标识;
( 4 )多子帧调度占用的 PRB, 可以仅指示初始子帧占用的 PRB, 此时, 认为后续子帧占用的 PRB与初始子帧占用的 PRB相同, 也可以分别指示多 子帧调度中每个子帧占用的 PRB;
( 5 )多子帧调度的 MCS, 可以仅指示初始子帧的 MCS, 此时, 认为后 续子帧的 MCS与初始子帧的 MCS相同, 也可以分别指示多子帧调度中每个 子帧的 MCS;
( 6 ) 多子帧调度中分配资源的子帧和进行传输的子帧的映射关系, 以 bitmap的方式描述调度了哪些子帧的字段。 例如, RN通过专用 RRC信令获 得的多子帧调度的 HARQ时序表示在下行 backhaul子帧 D接收的上行授权用 于在上行 backhaul子帧 Ul、 U2、 U3进行上行传输, RN在子帧 D收到上行 授权, 其中本字段以 bitmap "110" 指示, 则意味着该上行授权用于 Ul、 U2 两个上行子帧的上行传输。 该调度信息特别适用于非连续的多子帧调度。
步骤 203: RN确定下行指配或者上行授权, 从而接收下行数据或者发送 上行数据;
由于多子帧调度是指调度多个连续或者非连续的 bakchaul子帧的 HARQ 首传,为了实现多子帧调度, RN在步骤 202中获取了多子帧调度的调度信息, 即一次调度的子帧信息; 其中, 多子帧调度的一次调度的子帧信息中起始子帧可以是 RN获得多 子帧调度的下行指配或者上行授权的子帧与现有 HARQ时序共同指示的子帧 (如下行的起始子帧为 RN获得多子帧调度的下行指配的子帧; FDD模式中, 上行的起始子帧为 RN获得多子帧调度的上行授权的子帧 4ms之后的子帧; TDD模式中, 上行的起始子帧与具体的 TDD配置有关 ) ; 也可以是 RN获 得多子帧调度的下行指配或者上行授权的子帧与 RN专用的 HARQ时序共同 指示的子帧 (RN专用的 HARQ时序可以是系统预定义的, 也可以是在基站 在多子帧调度的配置信息中传递的, 也可以是在多子帧调度的调度信息中传 递的) 。 特别地, 当多子帧调度的调度信息由专用 MAC CE指示时, 起始子 帧还可以是专用 MAC CE发送的子帧与系统预定义的时间间隔共同指示的子 帧, 还可以是专用 MAC CE 正确接收的子帧之后的第一个下行或者上行 backhaul子帧。
一次调度的子帧信息中子帧个数可以是系统预定义的值, 或者是 RN通 过专用 RRC信令、 专用 MAC CE或专用 DCI获得的, 当然 RN也可以根据 专用 MAC CE或专用 DCI中 process个数、 PRB个数或者 MCS个数间接获 得子帧个数, 即多子帧调度的子帧个数与 process个数、 PRB个数和 MCS个 数均相同;
一次调度的子帧信息中位图指示是指 RN结合多子帧调度的 HARQ时序 和多子帧调度中分配资源的子帧和进行传输的子帧的映射关系来获得的非连 续的多子帧调度中调度了哪些子帧,其中多子帧调度的 HARQ时序通过 RRC 信令获得, 所述映射关系通过 MAC CE或者 DCI获得。 例如, RN通过 RRC 信令获得多子帧调度的 HARQ时序时, 若 RRC信令表示在下行 backhaul子 帧 D收到的上行授权用于上行 backhaul子帧 Ul、 U2、 U3的上行传输, 则 RN在子帧 D接收上行授权, 其中 DCI 中指示所述映射关系的字段以位图 "110" 指示本次多子帧调度中调度的子帧, 这意味着该上行授权用于 Ul、 U2两个上行子帧的上行传输;
每个子帧占用的 PRB (或 MCS )可以通过专用 MAC CE或专用 DCI获 得; 如果专用 MAC CE或专用 DCI包括用于多个子帧的 PRB (或 MCS ) , 则每个子帧釆用不同的 PRB (或 MCS ) 。 如果专用 MAC CE或 DCI只包括 用于一个子帧的 PRB (或 MCS ) , 则每个子帧釆用相同的 PRB (或 MCS ); 对于每个子帧的 HARQ信息中的 HARQ process id,可以通过系统预定义 或 RRC信令获取子帧与 HARQ process id的对应关系, 从而根据子帧号得到 该子帧占用的 HARQ process id (即同步 HARQ ) , 或者通过专用 MAC CE 或 DCI获得。 专用 MAC CE是通过引入新的用于传递 HARQ process id的 MAC CE来实现。 DCI可以是现有的 DCI (如上行釆用 DCI format 0, 下行釆 用 DCI format 1 ) , 也可以是专用 DCI。 专用 DCI是通过引入新的用于传递 HARQ process id的 DCI格式来实现。 如果专用 MAC CE或 DCI包括用于多 个子帧的 HARQ process id,则每个子帧依次釆用相应的 HARQ process id。如 果专用 MAC CE或 DCI只包括用于一个子帧的 HARQ process id, 即只给出 了初始子帧占用的 HARQ process id, 则后续子帧占用的 HARQ process id可 以根据初始子帧占用的 HARQ process id依次递增获得;
每个子帧的 HARQ信息中 NDI用于与上一次收到的 NDI比较是否变化 来判断当前收到的是首传还是重传。对多子帧调度而言, 每个 process都是首 传, 因此不需要根据 NDI来判断。但是为了后续需要根据 NDI比较来判断首 传或者重传的单子帧调度, 预定义用于多子帧调度的 NDI。 后续收到的指示 单子帧调度的 DCI中若 NDI取值与预定义的用于多子帧调度的 NDI取值相 同, 表示所述单子帧调度的是重传, 否则若 NDI取值不同, 表示所述单子帧 调度的是首传;
每个子帧的 HARQ信息中 RV是下行或者上行传输的冗余版本, 对首传 而言, 冗余版本为第 0个版本。 不论收到的 DCI中指示 RV是哪个版本, 多 子帧调度的传输默认为是第 0个版本;
RN根据上述调度信息在相应的子帧上接收下行数据或者发送上行数据。 在上述流程中, RN确定下行指配或者上行授权的过程中, 保留步骤 202 所获取的调度信息, 直至多子帧调度结束。
下面结合实际应用场景, 说明 RN确定下行指配以接收下行数据, 确定 上行授权以发送上行数据的具体过程。
例如, 多子帧调度的调度信息由专用 RRC信令单独指示给 RN, 当该专 用 RRC信令配置了多子帧调度专用的 RNTI (本实施例中上下行釆用相同的 专用的 RNTI ) , 系统预定义或者该专用 RRC信令配置了子帧个数(本实施 例以 3为例)时, RN用专用 RRC信令指示的专用的 RNTI在每个下行 backhaul 子帧检测 R-PDCCH, 若 RN在子帧 D1检测到下行指配( DCI format 1 ) , 且 该下行指配中指示了初始子帧的 process id(本实施例以 processl为例)、PRB、 MCS, 则在不考虑重传的情况下, RN在 D1以及接下来的 2个下行 backhaul 子帧 D2、 D3上根据下行指配中的 PRB、 MCS接收下行数据, 以 process 1、 process2 (或系统预定义的 D2对应的 process ) 、 process3 (或系统预定义的 D3对应的 process )作首传处理;若 RN在子帧 D1检测到上行授权( DCI format 0 ) , 且该上行授权中指示了初始子帧的 PRB、 MCS, 则在不考虑重传的情 况下, RN在接下来的 3个上行 backhaul子帧 Ul、 U2、 U3上根据上行授权 中的 PRB、 MCS发送上行数据, 以系统预定义的 U1对应的 process (本实施 例以 rocessl为例 )、 rocess2 (或系统予贞定义的 U2对应的 rocess )、 process3 (或系统预定义的 U3对应的 process )作首传处理;
从上可以看出, RN正确接收到包含有上下行所釆用的相同的多子帧调度 专用的 RNTI的专用 RRC信令之后, R-PDCCH上该专用的 RNTI指示的下行 指配或者上行授权就是用于多子帧调度的下行指配或者上行授权; RN正确接 收到包含下行多子帧调度专用的 RNTI 的 RRC信令之后, R-PDCCH上该 RNTI指示的下行指配就是用于多子帧调度的下行指配; RN正确接收到包含 上行多子帧调度专用的 RNTI的 RRC信令之后, R-PDCCH上该 RNTI指示的 上行授权就是用于多子帧调度的上行授权。
又如, 多子帧调度的调度信息由专用 DCI格式单独指示给 RN, 或者由 专用 DCI格式联合专用 RRC信令共同指示给 RN, 当系统预定义或者专用 RRC信令配置了子帧个数(本实施例以 3为例 )时, RN用 C-RNTI在每个下 行 backhaul子帧中检测 R-PDCCH, 若 RN在子帧 D1检测到下行指配(专用 DCI ) , 且该下行指配中指示了标志位、 初始子帧的 process (本实施例以 processl为例) 、 PRB、 MCS, 则在不考虑重传的情况下, RN在 D1 以及接 下来的 2个下行 backhaul子帧 D2、 D3上根据下行指配中的 PRB、 MCS接收 下行数据,以 processl、process2(或系统予贞定义的 D2对应的 rocess )、process3 (或系统预定义的 D3对应的 process )作首传处理, 当子帧个数、 各子帧的 process, PRB、 MCS也在下行指配(专用 DCI ) 中予以指示时, 可以不需要 标志位来区分多或者单子帧调度; 若 RN在子帧 D1检测到上行授权(专用 DCI ) , 且该上行授权中指示了标志位及初始子帧的 PRB、 MCS, 则在不考 虑重传的情况下, RN在接下来的 3个上行 backhaul子帧 Ul、 U2、 U3上根 据上行授权中的 PRB、MCS发送上行数据,以系统预定义的 U1对应的 process (以 rocess 1为例 )、 rocess2 (或系统予贞定义的 D2对应的 rocess )、 process3 (或系统预定义的 D3对应的 process )作首传处理, 当子帧个数、 各子帧的 process, PRB、 MCS也在上行授权(专用 DCI ) 中予以指示时, 可以不需要 标志位来区分多或者单子帧调度;
此外, 专用 DCI格式还向 RN指示非连续的多子帧调度, 系统预定义或 者专用 RRC信令配置了子帧个数(本实施例以 3为例 ) , 且专用 RRC信令 配置了多子帧调度的 HARQ时序 (如在下行 backhaul子帧 D1的下行指配可 用于指示 Dl、 D2、 D3三个下行 backhaul子帧的下行传输)时, RN用 C-RNTI 在每个下行 backhaul子帧上检测 R-PDCCH,若 RN在 D 1检测到下行指配(专 用 DCI ) , 且该下行指配中指示了标志位、 初始子帧的 process (以 process 1 为例) 、 PRB、 MCS以及指示多子帧调度的子帧 (以位图 "101" 的方式) , 则在不考虑重传的情况下, RN在 D1和 D3根据下行指配中的 PRB、 MCS接 收下行数据, 以 process 1、 process2 (或系统预定义的 D3对应的 process )作 首传处理。 此时, D1和 D3之间的下行 backhaul子帧 D2由于在多子帧调度 的子帧中没有指示, 因此不参与此次多子帧调度。 其他处理方式与连续的多 子帧调度类似, 在此不再一一赘述。
再如, 当多子帧调度由专用 MAC CE单独指示给 RN, 或者由专用 MAC CE联合专用 RRC信令共同指示给 RN, 系统预定义或者 RRC信令配置了子 帧个数(本实施例以 3为例)时, RN用 C-RNTI在每个下行 backhaul子帧上 检测 R-PDCCH, 若 RN在子帧 D1检测到下行指配( DCI format 1 ) , 则在不 考虑重传的情况下, RN在 D1根据下行指配( DCI format 1 )指示正确接收包 含专用 MAC CE的 MAC PDU, 专用 MAC CE指示了初始子帧的 process (本 实施例以 processl为例)及其 PRB、 MCS, 并在标志位指示用于下行多子帧 调度, RN在接下来的 3个下行 backhaul子帧 D2、 D3、 D4根据专用 MAC CE 中的 PRB、 MCS接收下行数据, 以 process 1 (或系统预定义的 D2对应的 process ) 、 process2 (或系统予贞定义的 D3对应的 process ) 、 process3 (或系 统预定义的 D4对应的 process )作首传处理, 子帧个数、 各子帧的 process, PRB、 MCS也可以在专用 MAC CE中予以指示; 若 RN在子帧 D1检测到下 行指配(DCI format 1 ) , 则在不考虑重传的情况下, RN在 D1根据下行指配 ( DCI format 1 )指示正确接收包含专用 MAC CE的 MAC PDU,专用 MAC CE 指示了初始子帧的 PRB、 MCS, 并在标志位指示用于上行多子帧调度, RN 在接下来的 3个上行 backhaul子帧 Ul、 U2、 U3根据专用 MAC CE中的 PRB、 MCS发送上行数据, 以系统预定义的 U1对应的 process (以 process 1为例 )、 process2 (或系统预定义的 U2对应的 process ) 、 process3 (或系统预定义的 U3对应的 process )作首传处理, 子帧个数、 各子帧的 process, PRB、 MCS 也可以在专用 MAC CE中予以指示。
在其他实施例中, RN接收包含上行多子帧调度的专用 MAC CE的过程 中, 若接收失败, 意味着本次多子帧调度失败。 如图 3 所示, D表示下行 backhaul子帧, Ux表示上行多子帧调度中第 x个上行 backhaul子帧, DeNB 在子帧 D分配了下行指配和上行授权给 RN, 按照正常流程, RN需要根据下 行指配在子帧 D接收包含指示上行多子帧调度的专用 MAC CE的 MAC PDU, 并保留上行授权, 其中专用 MAC CE中指示 RN分别在子帧 Ul、 U2、 U3调 度 process l、process2、process3 ,上行授权中指示了 RN在子帧 U1调度 processl 所使用的 PRB、 MCS等调度信息, RN根据上行授权在子帧 U1发送多子帧 调度的第一个子帧(processl )的数据, 同时在该子帧 RN反馈包含上述专用 MAC CE的 MAC PDU是否接收成功; 但当 RN接收包含上述 MAC CE的 MAC PDU失败时, RN无法获得所述 MAC CE中的上行多子帧调度信息, 则 RN在后续不做多子帧调度,这样, DeNB在子帧 U1收到反馈的 NACK(表 示 RN接收失败) , 得知 RN没有获得上行多子帧调度信息, 则本次多子帧 调度失败, DeNB可以在后续的下行 backhaul子帧重新发送指示多子帧调度 的 MAC CE。
还有一些实施例中, RN接收下行多子帧调度的专用 MAC CE时, 若接 收失败, 其具体处理过程, 如图 4所示, Dx表示下行多子帧调度中第 X个下 行 backhaul子帧。 DeNB在子帧 D分配了下行指配给 RN,下行指配釆用现有 的 DCI formatl , 按照正常流程, RN需要根据下行指配的指示在子帧 D接收 包含专用 MAC CE的 MAC PDU, 专用 MAC CE指示 RN在 Dl、 D2、 D3分 别调度 processl、 process2、 process3 , 包括相应的 PRB、 MCS等调度信息, RN在相应的上行 backhaul子帧反馈该 MAC PDU是否接收成功;但当 RN接 收包含专用 MAC CE的 MAC PDU失败时, RN无法获得所述 MAC CE中的 下行多子帧调度信息, 则 RN在后续不做多子帧调度, DeNB 收到反馈的 NACK (表示 RN接收失败), 得知 RN没有获得下行多子帧调度信息, 则本 次多子帧调度失败, DeNB可以在后续的下行 backhaul子帧重新发送指示多 子帧调度的 MAC CE。
步骤 204: RN发送或者接收多子帧调度中各子帧的 HARQ反馈。
该步骤中, RN可以按照现有技术对多子帧调度中的每个子帧单独反馈, 也可以参考现有 TDD中 ACK或者 NACK bundling (打捆 ) 的方式, 对多个 子帧共同反馈。
上述流程中, 专用 RRC信令为指定 UE或指定 RN的专用信令, 获取多 子帧调度的调度信息的专用 RRC信令是通过在现有 RRC信令(如 RRC重配 消息) 中增加指示多子帧调度的调度信息的字段, 或引入新的用于传递多子 帧调度的调度信息的 RRC信令来实现。 其中, 可以通过同一条专用 RRC信 令, 或者通过多条不同的专用 RRC信令传输多子帧调度的调度信息、 下行 backhaul子帧配置信息和上行 backhaul子帧配置信息。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
本发明提供的中继节点及其传输数据的方法, 解决了为中继节点调度多 个子帧的资源的问题。 相比现有技术中动态调度和半持久调度的方法, 本发 明技术方案可以更为灵活的配置和利用资源, 保证基站与中继节点之间的回 程链路的传输。

Claims

权 利 要 求 书
1、 一种中继节点 (RN )传输数据的方法, 包括:
所述 RN根据获取的下行多子帧调度的调度信息在相应的多个连续或者 非连续的下行回程子帧上接收数据; 和 /或
所述 RN根据获取的上行多子帧调度的调度信息在相应的多个连续或者 非连续的上行回程子帧上发送数据。
2、 如权利要求 1所述的方法, 其中,
所述 RN在相应的多个连续或者非连续的下行回程子帧上接收的数据为 混合自动重传请求(HARQ )首传, 所述 RN在相应的多个连续或者非连续的 上行回程子帧上发送的数据为 HARQ首传。
3、 如权利要求 1所述的方法, 其中,
所述 RN获取所述调度信息的过程包括:
所述 RN根据小区 -无线网络临时标识( C-RNTI )或者用于多子帧调度的 RNTI在 RN专用的物理下行控制信道(R-PDCCH )上接收下行指配或者上 行授权, 所述下行指配或者上行授权包括所述调度信息。
4、 如权利要求 1所述的方法, 其中,
所述调度信息包括下列信息中的一种或多种:
多子帧调度的子帧个数、 多子帧调度中涉及的进程标识, 各子帧的物理 资源块(PRB ) 、 各子帧的调制编码方案 (MCS ) 、 多子帧调度中分配资源 的子帧和传输数据的子帧的映射关系、 各子帧的新数据指示符(NDI ) 、 各 子帧的冗余版本(RV ) 。
5、 如权利要求 3所述的方法, 其中,
所述下行指配和上行授权由相同的用于多子帧调度的下行控制信息 ( DCI )指示给 RN, 或者所述下行指配和上行授权分别由不同的用于多子帧 调度的 DCI指示;
当所述下行指配和上行授权由相同的用于多子帧调度的 DCI指示时, 在 用于多子帧调度的 DCI中增加标志位以表示该 DCI指示的是用于下行多子帧 调度的下行指配还是用于上行多子帧调度的上行授权。
6、 如权利要求 5所述的方法, 其中,
所述指示下行指配的 DCI为 DCI格式 1 ;
所述指示上行授权的 DCI为 DCI格式 0。
7、 如权利要求 3所述的方法, 其中,
所述 RN通过无线资源控制 (RRC )信令获取所述用于多子帧调度的 RNTL
8、 如权利要求 3所述的方法, 其中,
所述多子帧调度中的起始子帧是所述 RN接收所述下行指配或者上行授 权的子帧和混合自动重传请求(HARQ ) 时序共同指示的子帧; 或者
所述多子帧调度中的起始子帧是所述 RN接收所述下行指配或者上行授 权的子帧和和 RN专用的 HARQ时序共同指示的子帧; 或者
所述多子帧调度中的起始子帧是 RN专用的 HARQ时序和分配资源的子 帧和传输数据的子帧的映射关系共同指示的子帧;
其中, 所述 RN通过系统预定义或者无线资源控制 (RRC )信令获取所 述 RN专用的 HARQ时序。
9、 如权利要求 1所述的方法, 其中,
所述多子帧调度中的后续子帧是 RN专用的混合自动重传请求( HARQ ) 时序和分配资源的子帧和传输数据的子帧的映射关系共同指示的子帧;
所述 RN通过系统预定义或者无线资源控制 (RRC )信令获取所述 RN 专用的 HARQ时序。
10、 如权利要求 1所述的方法, 其中,
所述 RN获取所述调度信息的过程包括:
所述 RN通过媒体接入控制(MAC )控制元(CE )获取下行指配或者上 行授权, 所述下行指配或者上行授权包括所述调度信息。
11、 如权利要求 10所述的方法, 其中, 所述 RN通过相同的 MAC CE获取下行指配和上行授权, 或者通过不同 的 MAC CE获取下行指配和上行授权;
当所述 RN通过相同的 MAC CE获取所述下行指配和上行授权时, 该 MAC CE中新增有标志位以表示该 MAC CE指示的是用于下行多子帧调度的 下行指配还是用于上行多子帧调度的上行授权。
12、 如权利要求 10所述的方法, 还包括:
所述 RN接收所述 MAC CE失败时, 告知基站接收失败。
13、 如权利要求 12所述的方法, 其中,
当基站被告知所述 RN接收所述 MAC CE失败时, 基站不再重传所述 MAC CE。
14、 如权利要求 3或 10所述的方法, 还包括:
当所述下行指配或者上行授权中不包括所述多子帧调度的子帧个数时, 所述 RN在接收所述下行指配或上行授权之前, 通过系统预定义或者无线资 源控制 (RRC )信令获取所述多子帧调度的子帧个数;
当所述下行指配或者上行授权中不包括所述多子帧调度中涉及的进程标 识时, 所述 RN通过系统预定义或者 RRC信令中子帧与进程标识的对应关系 中获取多子帧调度的起始子帧的进程标识和后续子帧的进程标识, 或者通过 系统预定义或者 RRC信令获取多子帧调度的起始子帧的进程标识,对起始子 帧的进程标识依次递增以获取后续子帧的进程标识;
当所述下行指配或者上行授权中只包括一个物理资源块( PRB ) 时, 所 述 RN得知多子帧调度中各子帧占用相同的 PRB;
当所述下行指配或者上行授权中只包括一个调制编码方案 (MCS ) 时, 所述 RN得知多子帧调度中各子帧釆用相同的 MCS;
当所述下行指配或者上行授权不包括新数据指示符(NDI )时, 所述 RN 得知多子帧调度中各子帧的 NDI为默认值; 以及
当所述下行指配或者上行授权不包括冗余版本(RV )时, 所述 RN得知 多子帧调度中各子帧的 RV为默认值。
15、 如权利要求 10所述的方法, 其中,
所述多子帧调度中的起始子帧是所述 RN接收所述 MAC CE的子帧与系 统预定义的时间间隔共同指示的子帧; 或者
所述多子帧调度中的起始子帧是所述 RN正确接收所述 MAC CE的子帧 之后的第一个下行回程子帧或者上行回程子帧。
16、 如权利要求 1所述的方法, 其中,
所述 RN获取所述调度信息的过程包括:
所述 RN通过专用无线资源控制 (RRC )信令获取用于多子帧调度的无 线网络临时标识( RNTI ) , 再根据所述用于多子帧调度的 RNTI在 RN专用 的物理下行控制信道(R-PDCCH )上接收下行指配或者上行授权, 所述下行 指配或者上行授权包括所述调度信息。
17、 如权利要求 16所述的方法, 其中,
所述下行指配包括以下调度信息:
多子帧调度中起始子帧的物理资源块(PRB ) 、 多子帧调度中起始子帧 的调制编码方案(MCS ) 、 多子帧调度中起始子帧的新数据指示符(NDI ) 、 多子帧调度中起始子帧的冗余版本(RV )、 多子帧调度中起始子帧的进程标 识;
所述上行授权包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、 多子帧调度中起始子帧的 RV。
18、 如权利要求 16所述的方法, 其中,
所述下行指配由下行控制信息(DCI )格式 1指示给所述 RN, 所述上行 授权由 DCI格式 0指示给所述 RN。
19、 如权利要求 16所述的方法, 其中,
所述多子帧调度中的起始子帧为所述 RN接收所述下行指配或者上行授 权的子帧和混合自动重传请求(HARQ ) 时序共同指示的子帧; 或者
所述多子帧调度中的起始子帧为所述 RN接收所述下行指配或者上行授 权的子帧和 RN专用的 HARQ时序共同指示的子帧;
其中,所述 RN通过系统预定义或者 RRC信令获取所述 RN专用的 HARQ 时序。
20、 如权利要求 16所述的方法, 还包括:
当所述 RN从所述下行指配或者上行授权中获取所述多子帧调度中起始 子帧的物理资源块(PRB ) 时, 获知所述多子帧调度中后续子帧的 PRB与所 述起始子帧的 PRB相同; 以及
当所述 RN从所述下行指配或者上行授权中获取所述多子帧调度中起始 子帧的调制编码方案 (MCS ) 时, 获知所述多子帧调度中后续子帧的 MCS 与所述起始子帧的 MCS相同。
21、 如权利要求 16所述的方法, 还包括:
所述 RN在接收所述下行指配或上行授权之前, 通过系统预定义或者 RRC信令获取所述多子帧调度的子帧个数;
所述 RN获知所述多子帧调度中后续子帧的新数据指示符( NDI )是与起 始子帧的 NDI相同的值,或者所述 RN获知所述多子帧调度中后续子帧的 NDI 是默认值; 以及
所述 RN获知所述多子帧调度中后续子帧的冗余版本(RV )是与起始子 帧的 RV相同的值,或者所述 RN获知所述多子帧调度中后续子帧的 RV是默 认值。
22、 如权利要求 16所述的方法, 还包括:
所述 RN通过系统预定义或 RRC信令获取子帧与进程标识的对应关系以 获得所述多子帧调度的后续子帧的进程标识; 或者
所述 RN对所述多子帧调度的起始子帧的进程标识依次递增以获得所述 多子帧调度的后续子帧的进程标识。
23、 如权利要求 16所述的方法, 其中,
所述 RN通过 RRC信令获取所述用于多子帧调度的 RNTI,所述 RRC信 令为 RRC连接重配消息或者为新增的 RRC信令。
24、 一种中继节点 (RN ) , 包括获取模块和传输模块, 其中:
所述获取模块, 设置为获取下行多子帧调度的调度信息和上行多子帧调 度的调度信息;
所述传输模块, 设置为在所述下行多子帧调度的调度信息指示的多个连 续或者非连续的下行回程子帧上接收数据, 以及在所述下行多子帧调度的调 度信息指示的多个连续或者非连续的上行回程子帧上发送数据。
25、 如权利要求 24所述的中继节点, 其中,
所述获取模块,设置为根据小区 -无线网络临时标识 ( C-RNTI )或者用于 多子帧调度的 RNTI在 RN专用的物理下行控制信道( R-PDCCH )上接收下 行指配或者上行授权, 所述下行指配或者上行授权包括所述调度信息。
26、 如权利要求 24所述的中继节点, 其中,
所述调度信息包括下列信息中的一种或多种:
多子帧调度的子帧个数、 多子帧调度中涉及的进程标识, 各子帧的物理 资源块(PRB ) 、 各子帧的调制编码方案 (MCS ) 、 多子帧调度中分配资源 的子帧和传输数据的子帧的映射关系、 各子帧的新数据指示符(NDI ) 、 各 子帧的冗余版本(RV ) 。
27、 如权利要求 24所述的中继节点, 其中,
所述获取模块, 设置为通过媒体接入控制(MAC )控制元(CE )获取下 行指配或者上行授权, 所述下行指配或者上行授权包括所述调度信息。
28、 如权利要求 24所述的中继节点, 其中,
所述获取模块, 设置为通过专用无线资源控制 (RRC )信令获取用于多 子帧调度的无线网络临时标识( RNTI ) ,再根据所述用于多子帧调度的 RNTI 在 RN专用的物理下行控制信道( R-PDCCH )上接收下行指配或者上行授权, 所述下行指配或者上行授权包括所述调度信息。
29、 如权利要求 28所述的中继节点, 其中,
所述下行指配包括以下调度信息:
多子帧调度中起始子帧的物理资源块(PRB ) 、 多子帧调度中起始子帧 的调制编码方案(MCS ) 、 多子帧调度中起始子帧的新数据指示符(NDI ) 、 多子帧调度中起始子帧的冗余版本(RV )、 多子帧调度中起始子帧的进程标 识;
所述上行授权包括以下调度信息:
多子帧调度中起始子帧的 PRB、 多子帧调度中起始子帧的 MCS、 多子帧 调度中起始子帧的 NDI、 多子帧调度中起始子帧的 RV。
PCT/CN2010/076069 2009-09-29 2010-08-17 一种中继节点及其传输数据的方法 WO2011038618A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/384,309 US8897202B2 (en) 2009-09-29 2010-08-17 Relay node for transmitting data by using scheduling information of multiple subframes scheduling and method for the relay node transmitting data by scheduling information of multiple subframes scheduling
EP10819847.4A EP2448347A4 (en) 2009-09-29 2010-08-17 RELAY NODE AND METHOD FOR TRANSMITTING DATA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910174167.9A CN102036398B (zh) 2009-09-29 2009-09-29 一种中继节点及其传输数据的方法
CN200910174167.9 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011038618A1 true WO2011038618A1 (zh) 2011-04-07

Family

ID=43825535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076069 WO2011038618A1 (zh) 2009-09-29 2010-08-17 一种中继节点及其传输数据的方法

Country Status (4)

Country Link
US (1) US8897202B2 (zh)
EP (1) EP2448347A4 (zh)
CN (1) CN102036398B (zh)
WO (1) WO2011038618A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137504A (zh) * 2011-04-12 2011-07-27 电信科学技术研究院 一种调度多子帧传输的方法及装置
US20140269582A1 (en) * 2011-11-30 2014-09-18 Huawei Technologies Co., Ltd. Method and apparatus for transmitting multi-subframe scheduling signaling
WO2014180188A1 (zh) * 2013-05-10 2014-11-13 中兴通讯股份有限公司 一种多子帧调度方法、基站、终端和系统

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090086958A (ko) * 2006-10-27 2009-08-14 후지쯔 가부시끼가이샤 무선 통신 시스템에서의 전송 제어 방법, 송신 장치 및 수신 장치
CN101500189B (zh) * 2008-02-03 2011-06-01 华为技术有限公司 实现系统信息调度的方法、系统及终端
CN101940023A (zh) * 2008-02-14 2011-01-05 松下电器产业株式会社 无线通信基站装置、无线通信中继站装置、无线通信终端装置、无线通信系统及无线通信方法
CN102202408B (zh) * 2010-03-22 2014-01-01 华为技术有限公司 多子帧调度方法、系统和设备
US9591664B2 (en) * 2011-02-21 2017-03-07 Lg Electronics Inc. Method for setting search space for relay node in wireless communication system and device therefor
CN103416012B (zh) * 2011-03-11 2016-10-19 Lg电子株式会社 在无线通信系统中设置动态子帧的方法及其设备
CN102781095B (zh) * 2011-05-09 2015-07-29 华为技术有限公司 数据传输的方法、基站、用户设备及系统
CN102263746B (zh) * 2011-08-26 2017-03-15 中兴通讯股份有限公司 数据传输方法及装置
WO2013032202A2 (ko) * 2011-08-26 2013-03-07 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
CN102394728B (zh) * 2011-11-17 2014-08-20 电信科学技术研究院 下行进程号的确定方法和设备
KR101758845B1 (ko) * 2012-04-02 2017-07-17 삼성전자주식회사 양방향 트래픽을 위한 물리 계층 네트워크 코딩에 기반한 스케줄링 방법 및 장치
US9432986B2 (en) * 2012-05-08 2016-08-30 Lg Electronics Inc. Control signal transceiving method and apparatus for same
CN103391618A (zh) * 2012-05-09 2013-11-13 中兴通讯股份有限公司 子帧配置方法及装置
CN103546411B (zh) * 2012-07-09 2019-01-04 中兴通讯股份有限公司 上行授权信息发送方法、授权信息指示方法及基站
US9402253B2 (en) 2012-08-01 2016-07-26 Lg Electronics Inc. Method for signaling control information, and apparatus therefor
CN103873214B (zh) * 2012-12-14 2017-12-19 电信科学技术研究院 一种数据传输方法及装置
KR102190404B1 (ko) 2012-12-18 2020-12-11 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보 전송 방법 및 장치
EP3116281B1 (en) * 2012-12-21 2019-01-02 Telefonaktiebolaget LM Ericsson (publ) Non-consecutive subframes in multi-tti scheduling messages
US20140328260A1 (en) * 2013-02-26 2014-11-06 Samsung Electronics Co., Ltd. Scheduling over multiple transmission time intervals
US10123344B2 (en) 2013-03-06 2018-11-06 Qualcomm Incorporated Methods and apparatus for multi-subframe scheduling
KR20140135331A (ko) * 2013-05-15 2014-11-26 삼성전자주식회사 무선 통신 시스템에서 동적 시분할 복식 시스템 운영 방법 및 장치
EP3057260B1 (en) 2013-11-08 2021-05-05 Huawei Technologies Co., Ltd. Method and device for transmitting scheduling signaling
US10015031B2 (en) * 2013-11-28 2018-07-03 Lg Electronics Inc. Data receiving method and apparatus supporting expansion modulation scheme
JP6345257B2 (ja) * 2014-01-26 2018-06-20 華為終端(東莞)有限公司 送信方法およびユーザ機器
AU2015316199B2 (en) 2014-09-10 2019-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Radio access node, communication terminal and methods performed therein
US9794921B2 (en) 2015-07-14 2017-10-17 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
US9775141B2 (en) 2015-07-14 2017-09-26 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
US9717079B2 (en) 2015-07-14 2017-07-25 Motorola Mobility Llc Method and apparatus for selecting a resource assignment
US20170099664A1 (en) * 2015-10-01 2017-04-06 Nokia Solutions And Networks Oy Method, apparatus and computer program for transmission scheduling
US11171737B2 (en) * 2015-12-09 2021-11-09 Qualcomm Incorporated Flexible resource mapping and MCS determination
US20190045505A1 (en) * 2016-01-08 2019-02-07 Lg Electronics Inc. Method and apparatus for transmitting and receiving wireless signal in wireless communication system
WO2017136004A1 (en) * 2016-02-05 2017-08-10 Intel IP Corporation Systems and methods for flexible time-domain resource mapping for npdcch and npdsch in nb-iot systems
CN105611572B (zh) * 2016-02-17 2018-11-09 河南工业大学 一种中继子帧的重配置方法及系统
CN106231680A (zh) * 2016-07-21 2016-12-14 深圳市金立通信设备有限公司 一种控制信息设计方法、基站、终端及系统
US10645750B2 (en) * 2016-08-15 2020-05-05 Futurewei Technologies, Inc. Advance scheduling for discontinuous transmission and reception using uplink beacons
KR102156668B1 (ko) * 2016-11-16 2020-09-17 주식회사 케이티 차세대 무선망에서 하향링크 신호를 송수신하는 방법 및 그 장치
CN108365912B (zh) * 2017-01-26 2020-11-17 华为技术有限公司 传输模式切换方法及装置
US10849124B2 (en) * 2017-12-21 2020-11-24 Qualcomm Incorporated Grant-free downlink transmission
CN115474284A (zh) * 2017-12-27 2022-12-13 北京小米移动软件有限公司 调度方法、基站、终端及存储介质
WO2019156505A1 (en) * 2018-02-08 2019-08-15 Samsung Electronics Co., Ltd. Method for transmitting physical channels, user equipment therefor, method and user equipment for relay transmission
CN110139247B (zh) * 2018-02-08 2024-04-12 北京三星通信技术研究有限公司 物理信道传输的方法及设备
TWI708517B (zh) * 2018-05-06 2020-10-21 南韓商Lg電子股份有限公司 用於傳輸和接收下行鏈路資料的方法及裝置
CN110545556B (zh) * 2018-05-28 2023-01-13 中国移动通信有限公司研究院 一种mac ce、信息发送方法、接收方法及通信设备
US20210266106A1 (en) * 2018-08-10 2021-08-26 Lenovo (Beijing) Limited Method and apparatus for scheduling transport blocks
CN112399616B (zh) * 2019-08-15 2022-09-09 中国信息通信研究院 一种上行调度资源多配置数据传送方法、设备和系统
JP7466662B2 (ja) * 2020-02-14 2024-04-12 オッポ広東移動通信有限公司 ハイブリッド自動再送要求応答コードブックの決定方法、装置及びそのデバイス
US20220007456A1 (en) * 2020-07-06 2022-01-06 Qualcomm Incorporated Inactivity timer mechanisms in discontinuous reception

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322327A (zh) * 2005-11-29 2008-12-10 艾利森电话股份有限公司 无线多跳中继网络中的调度
CN101478337A (zh) * 2008-01-04 2009-07-08 华为技术有限公司 一种无线通信系统、传输方法与装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001237043A1 (en) * 2000-02-24 2001-09-03 Zarlink Semiconductor V. N. Inc. Unified algorithm for frame scheduling and buffer management in differentiated services networks
JP4459204B2 (ja) * 2006-09-22 2010-04-28 京セラ株式会社 Ofdma方式の通信システム及び通信方法
EP2078368B1 (en) * 2006-10-31 2015-05-06 Telefonaktiebolaget LM Ericsson (publ) Harq in spatial multiplexing mimo system
JP2009010721A (ja) * 2007-06-28 2009-01-15 Kyocera Corp 通信方法および通信システム
FI20075761A0 (fi) * 2007-10-29 2007-10-29 Nokia Siemens Networks Oy Käyttäjälaitetunnisteen allokointi
US8248941B2 (en) * 2008-02-01 2012-08-21 Nokia Siemens Networks Oy Method, apparatus and computer program for uplink scheduling in a network that employs relay nodes
US8509162B2 (en) * 2008-02-13 2013-08-13 Qualcomm Incorporated System and method for scheduling over multiple hops
US9078270B2 (en) * 2008-07-03 2015-07-07 Qualcomm Incorporated Opportunistic relay scheduling in wireless communications
KR101649493B1 (ko) * 2008-09-18 2016-08-19 삼성전자주식회사 Crc 길이의 가상 확장 방법 및 장치
WO2010057521A1 (en) * 2008-11-18 2010-05-27 Nokia Corporation Relaying in a communication system
US8311061B2 (en) * 2008-12-17 2012-11-13 Research In Motion Limited System and method for multi-user multiplexing
KR101584814B1 (ko) * 2008-12-23 2016-01-13 엘지전자 주식회사 무선통신 시스템에서 스케줄링 요청 전송방법 및 장치
KR101489516B1 (ko) * 2009-01-22 2015-02-06 엘지전자 주식회사 중계기가 도입된 무선통신 시스템에서 백홀신호 전송방법
US20100254329A1 (en) * 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
US9265053B2 (en) * 2009-04-06 2016-02-16 Futurewei Technologies, Inc. System and method for assigning backhaul resources
US8289895B2 (en) * 2009-04-24 2012-10-16 Research In Motion Limited Relay link HARQ operation
US8649281B2 (en) * 2009-04-27 2014-02-11 Samsung Electronics Co., Ltd. Control design for backhaul relay to support multiple HARQ processes
EP2443782A2 (en) * 2009-06-16 2012-04-25 InterDigital Patent Holdings, Inc. Method and apparatus for synchronous harq operation and interference avoidance
US8861424B2 (en) * 2009-07-06 2014-10-14 Qualcomm Incorporated Downlink control channel for relay resource allocation
EP2996276B1 (en) * 2009-08-14 2018-12-05 InterDigital Technology Corporation Dl backhaul control channel design for relays
WO2011018123A1 (en) * 2009-08-14 2011-02-17 Nokia Siemens Networks Oy Resource allocation scheme for a relay backhaul link
EP2467964B1 (en) * 2009-08-21 2014-06-25 Telefonaktiebolaget LM Ericsson (publ) Controlling a transmission of information in a wireless communication network with a relay node

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101322327A (zh) * 2005-11-29 2008-12-10 艾利森电话股份有限公司 无线多跳中继网络中的调度
CN101478337A (zh) * 2008-01-04 2009-07-08 华为技术有限公司 一种无线通信系统、传输方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2448347A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102137504A (zh) * 2011-04-12 2011-07-27 电信科学技术研究院 一种调度多子帧传输的方法及装置
CN102137504B (zh) * 2011-04-12 2016-01-20 电信科学技术研究院 一种调度多子帧传输的方法及装置
US20140269582A1 (en) * 2011-11-30 2014-09-18 Huawei Technologies Co., Ltd. Method and apparatus for transmitting multi-subframe scheduling signaling
WO2014180188A1 (zh) * 2013-05-10 2014-11-13 中兴通讯股份有限公司 一种多子帧调度方法、基站、终端和系统

Also Published As

Publication number Publication date
US8897202B2 (en) 2014-11-25
CN102036398B (zh) 2015-06-03
EP2448347A4 (en) 2016-10-12
CN102036398A (zh) 2011-04-27
EP2448347A1 (en) 2012-05-02
US20120176957A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
WO2011038618A1 (zh) 一种中继节点及其传输数据的方法
US11234237B2 (en) Method and apparatus of handling time gap for sidelink hybrid automatic request (HARQ) in network scheduling mode in a wireless communication system
US8743816B2 (en) Scheduling method and system
TWI626840B (zh) 通訊系統之無線通訊處理方法
EP2880943B1 (en) Signaling and channel designs for d2d communications
KR101721015B1 (ko) 이동 통신 시스템에서 블라인드 스케쥴링 장치 및 방법
US8995329B2 (en) Method for detecting HARQ/NACK feedback signal from repeater
WO2016131344A1 (zh) 一种设备到设备发送、接收、调度方法和相应装置
TWI524708B (zh) Methods for dealing with HARQ collisions and PUSCH retransmission collisions in TDD
US20210167897A1 (en) Low latency harq protocol for urllc services
US9084237B2 (en) Method and apparatus for processing a data transmission conflict of a relay-node
WO2013020508A1 (zh) Tdd无线帧中传输数据的方法、系统和设备
WO2010051695A1 (zh) 半静态调度数据包的应答信息的反馈、接收方法及其装置
WO2011137741A1 (zh) 一种数据传输的方法及系统
WO2012163170A1 (zh) 一种数据传输的方法及装置
WO2012163168A1 (zh) 一种数据传输的方法及装置
US20130279465A1 (en) Method and arrangement for acknowledgement of contention-based uplink transmissions in a telecommunication system
WO2011021585A1 (ja) 移動通信方法、無線基地局及び移動局
TW201519680A (zh) 用於傳輸控制資訊的方法和設備
WO2014179936A1 (zh) 数据传输处理方法、装置和系统
WO2012163171A1 (zh) 一种数据传输的方法及装置
CN101677282A (zh) 无线资源调度的配置方法以及基站
WO2012116602A1 (zh) 数据传输方法、演进基站以及用户设备
WO2012041088A1 (zh) 一种时分双工系统及其中继链路的下行反馈方法
JPWO2008096627A1 (ja) 基地局装置、移動局、無線通信システム及び通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384309

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010819847

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE