WO2012163171A1 - 一种数据传输的方法及装置 - Google Patents

一种数据传输的方法及装置 Download PDF

Info

Publication number
WO2012163171A1
WO2012163171A1 PCT/CN2012/073460 CN2012073460W WO2012163171A1 WO 2012163171 A1 WO2012163171 A1 WO 2012163171A1 CN 2012073460 W CN2012073460 W CN 2012073460W WO 2012163171 A1 WO2012163171 A1 WO 2012163171A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
data
type
uplink
scheduling signaling
Prior art date
Application number
PCT/CN2012/073460
Other languages
English (en)
French (fr)
Inventor
徐婧
潘学明
沈祖康
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2012163171A1 publication Critical patent/WO2012163171A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for data transmission. Background technique
  • the time division long-term evolution of the time division synchronous code division multiple access (TD-SCDMA) system including the third generation communication system (3G) and the fourth generation communication system (4G)
  • the division of the uplink and downlink time slots is static or semi-static.
  • the uplink and downlink time slot ratios are determined and remain unchanged according to the cell type and the approximate service ratio. This is a relatively simple approach in the context of large coverage of macro cells, and is also more effective.
  • more and more low-power base stations such as Pico cells and Home NodeBs are deployed to provide local small coverage. In such cells, the number of users is small, and The user service requirements vary greatly. Therefore, there is a dynamic change in the proportion of uplink and downlink services in the cell.
  • the patent application number 201010567764.0 proposes a dynamic uplink and downlink subframe allocation scheme.
  • the scheme is: setting a four-seed frame type in a certain period of time, including a subframe fixed for downlink transmission, a subframe fixed for uplink transmission, and a subframe that is flexibly allocated, and the subframe can be used as an uplink. Or downlink transmission. As shown in FIG.
  • the time period is a radio frame (only one example, and may be other time periods), where subframe 0 and subframe 5 are fixed downlink subframes, and subframe 2 and subframe 7 are Fixed uplink subframes, subframe 1 and subframe 6 are special subframes (which can also be classified as fixed downlink subframes), and other subframes (ie, subframes 3, 4, 8, and 9) are flexible allocated subframes (Flexible Subframe) ).
  • the base station can be dynamically configured according to real-time service requirements and channel conditions to adapt to dynamic changes in service requirements.
  • the division of the uplink and downlink time slots is static or semi-static, so the hybrid automatic repeat (HARQ) timing and the uplink and downlink configurations are bound.
  • HARQ hybrid automatic repeat
  • the subframe structure is different from the static or semi-statically allocated subframes. Therefore, the existing HARQ timing design cannot be directly applied to the scheme of dynamically allocating uplink and downlink subframes, and retransmission scheduling and The timing of data retransmission needs to be improved, but there is no effective solution at present.
  • the embodiment of the invention provides a method and a device for data transmission, which are used for realizing data transmission when dynamically uplink and downlink subframes are allocated.
  • a method for processing uplink transmission at a transmitting end is applied to a dynamic subframe system, where the dynamic subframe system is composed of at least four types of subframes, wherein the first type of subframe can only be used for downlink transmission, and the second type of subframe is only used for downlink transmission.
  • the third type of subframe can be dynamically configured for uplink transmission or downlink transmission, and the third type of subframe cannot be used for both uplink transmission and downlink transmission, and the fourth type of subframe is a special subframe.
  • the fourth type of subframe includes a downlink pilot time slot DwPTS, a guard interval GP, and an uplink pilot time slot UpPTS.
  • the method includes the following steps:
  • the transmitting end receives the uplink scheduling signal only in the downlink pilot time slot of the first type of subframe or the fourth type of subframe;
  • the transmitting end transmits data in the second type of subframe or the third type of subframe.
  • a method for processing uplink transmission at a receiving end is applied to a dynamic subframe system, where the dynamic subframe system is composed of at least four types of subframes, wherein the first type of subframe can only be used for downlink transmission, and the second type of subframe is only used for downlink transmission.
  • the third type of subframe can be dynamically configured for uplink transmission or downlink transmission, and the third type of subframe cannot be used for both uplink transmission and downlink transmission, and the fourth type of subframe is a special subframe.
  • the fourth type of subframe includes a downlink pilot time slot DwPTS, a guard interval GP, and an uplink pilot time slot UpPTS.
  • the method includes the following steps:
  • the receiving end sends the uplink scheduling signal only in the downlink pilot time slot of the first type of subframe or the fourth type of subframe;
  • the receiving end receives data in the second type of subframe or the third type of subframe.
  • a transmitting end device for uplink transmission is applied to a dynamic subframe system, where the dynamic subframe system is composed of at least four types of subframes, wherein the first type of subframe can only be used for downlink transmission, and the second type of subframe can only be used for downlink transmission.
  • the third type of subframe may be dynamically configured for uplink transmission or downlink transmission, and the third type of subframe may not be used for both uplink transmission and downlink transmission, and the fourth type of subframe is a special subframe.
  • the fourth type of subframe includes a downlink pilot time slot DwPTS, a guard interval GP and an uplink pilot time slot UpPTS;
  • An interface module configured to receive uplink scheduling signaling only in a downlink pilot time slot of the first type of subframe or the fourth type of subframe; and in the second type of subframe or the third type Send data in a subframe;
  • a control module configured to determine, according to the uplink scheduling signaling, a subframe in which the sent data should be, and instruct the interface module to send data in the second type of subframe or the third type of subframe.
  • a receiving end device for uplink transmission is applied to a dynamic subframe system, where the dynamic subframe system is composed of at least four types of subframes, wherein the first type of subframe can only be used for downlink transmission, and the second type of subframe can only be used for downlink transmission.
  • the third type of subframe may be dynamically configured for uplink transmission or downlink transmission, and the third type of subframe may not be used for both uplink transmission and downlink transmission, and the fourth type of subframe is a special subframe.
  • the fourth type of subframe includes a downlink pilot time slot DwPTS, a guard interval GP and an uplink pilot time slot UpPTS;
  • An interface module configured to send uplink scheduling signaling only in a downlink pilot time slot of the first type of subframe or the fourth type of subframe; and in the second type of subframe or the third type Receiving data in a subframe;
  • control module configured to determine, according to the uplink scheduling signaling, a subframe in which the data to be received is located, and instruct the interface module Data is received in the second type of subframe or the third type of subframe.
  • a new HARQ transmission strategy is designed for the dynamic subframe system, and the uplink transmission of data is realized when the uplink and downlink subframes are dynamically allocated.
  • FIG. 1 is a schematic diagram of a radio frame structure in the prior art
  • FIG. 2 is a flowchart of a method for uplink transmission on a data transmitting end in a dynamic subframe system according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for uplink transmission at a data receiving end in a dynamic subframe system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a timing relationship according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for determining downlink data transmission in FIG. 4 and a frame structure configuration according to an embodiment of the present invention
  • FIG. 7 and FIG. 8 are schematic diagrams showing a timing relationship of FIG. 6 according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a method when uplink data transmission is determined by Table 1 (or Table 2) according to an embodiment of the present invention
  • FIG. 10 and FIG. 11 are schematic diagrams showing a timing relationship of FIG. 9 according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a timing relationship with respect to configuration 0 of FIG. 4 according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a timing relationship with respect to configuration 1 of FIG. 4 according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a timing relationship with respect to configuration 3 of FIG. 4 according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a timing relationship with respect to configuration 6 of FIG. 4 according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a timing relationship with respect to configuration 1 of FIG. 5 according to an embodiment of the present invention.
  • FIG. 17 is a structural diagram of a receiving end device according to an embodiment of the present invention.
  • FIG. 18 is a structural diagram of a device at a transmitting end according to an embodiment of the present invention. detailed description
  • a new HARQ transmission strategy is designed for the dynamic subframe system, and the uplink transmission of data is realized when the uplink and downlink subframes are dynamically allocated.
  • the dynamic subframe system is composed of at least four types of subframes, where the first type of subframes can only be used for downlink transmission, and can be called fixed downlink subframes; the second type of subframes can only be used for uplink transmission. It is called a fixed uplink subframe; the third type of subframe can be dynamically configured for uplink transmission or downlink transmission, which can be called a flexible configuration subframe, but the third type subframe cannot be used for uplink transmission and downlink simultaneously.
  • the fourth type of subframe is a special subframe, and the fourth type of subframe includes a downlink pilot time slot (DwPTS), a guard interval (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard interval
  • UpPTS uplink pilot time slot
  • Step 201 The transmitting end is only in the downlink pilot of the first type of subframe or the fourth type of subframe.
  • the uplink scheduling signaling is received in the slot.
  • Step 202 The transmitting end sends data in the second type of subframe or the third type of subframe.
  • the method for uplink transmission on the data receiving end in the dynamic subframe system in this embodiment is as follows:
  • Step 301 The receiving end sends the uplink scheduling signaling only in the downlink pilot time slots of the first type of subframe or the fourth type of subframe.
  • Step 302 The receiving end receives data in the second type of subframe or the third type of subframe.
  • the transmitted data includes at least uplink data on the uplink shared channel (PUSCH).
  • PUSCH uplink shared channel
  • Each of the second type of subframes or the third type of subframes available for data transmission corresponds to one or more scheduling subframes, and one of the second type of subframes or the third class in one data transmission
  • the subframe corresponds to one scheduling subframe
  • the scheduling subframe is a subframe in which the uplink scheduling signaling corresponding to the data is located.
  • the data transmission in this embodiment may occur between the UE and the base station, between the UE and the relay node (RN), or between the relay node and the base station.
  • the transmitting end is the UE
  • the receiving end is the base station.
  • the transmitting end is the UE
  • the receiving end is the relay node.
  • the transmitting end is a relay node
  • the receiving end is a base station.
  • the first solution is the transmission efficiency principle, and the interval between the initial transmission and the retransmission is as short as possible.
  • the second option is the compatibility principle, with full process backward compatibility.
  • the first solution is: when receiving the uplink scheduling signaling on the subframe n1, the transmitting end only sends data on the subframe nl+k1 or the subframe nl+7 or the subframe nl+k1 and the subframe nl+7.
  • the sub-frame n1 belongs to the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and k1 and 7 are determined by the subframe n1 and the preset first timing relationship, where the first timing relationship is specified.
  • the control signaling only occurs in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission only occurs in the second type of subframe or the third type of subframe, kl ⁇ 4.
  • Control signaling includes uplink scheduling signaling, and ACK or NACK.
  • the transmitting end and the receiving end pre-store a preset timing relationship, and then perform scheduling, data transmission, feedback, and the like according to the timing relationship.
  • a timing relationship see FIG. 4, where D represents a first type of subframe, U represents a second type of subframe, S represents a fourth type of subframe, X is a third type of subframe, and Xu represents a flexible configuration as an uplink sub-frame.
  • Frame, Xd indicates flexible configuration as a downlink subframe, A indicates a subframe in which feedback is transmitted, and "#" corresponds to a subframe for data transmission (including first data transmission and retransmission of data).
  • Table 1 the first timing relationship as shown in Table 1 can be extracted:
  • n denotes the uplink scheduling signaling (UL grant) and/or the subframe number of the response signaling transmission
  • k denotes the number of subframes between the UL grant and the PUSCH transmission, and between the NACK transmission and the PUSCH retransmission, so the subframe n +k or, subframe n+7 or subframe n+k and subframe n+7 represent subframes for PUSCH transmission.
  • the response signaling is ACK or NACK.
  • the ACK or NACK is transmitted through a Physical Hybrid Automatic Repeat Redirection Indicator Channel (PHICH).
  • PHICH Physical Hybrid Automatic Repeat Redirection Indicator Channel
  • the value of k can be determined by Table 1-1.
  • the transmitting end only sends data on the subframe nl+4.
  • Both the MSB and the least significant bit LSB are 1, and the transmitting end transmits the data only on subframes nl+6 and nl+7.
  • the second solution is: when receiving the uplink scheduling signaling on the subframe n1, the transmitting end only sends data on the subframe nl+k1 or the subframe nl+8 or the subframe nl+k1 and the subframe nl+8.
  • k1 and 8 are determined by the subframe n1 and the preset first timing relationship, where the first timing relationship specifies that the control signaling occurs only in the downlink pilot time slot of the first type of subframe or the fourth type of subframe.
  • the data transmission only occurs in the second type of subframe or the third type of subframe, kl ⁇ 4, and data transmission of at least part of the HARQ process only occurs in the second type of subframe.
  • n denotes the subframe number of the UL grant and/or response signaling transmission
  • k denotes the UL grant and PUSCH transmission
  • subframe n+k or subframe n+8 or subframe n+k And subframe n+8 represents a subframe of PUSCH transmission.
  • the response signaling is ACK or NACK.
  • the ACK or NACK is transmitted through the PHICH.
  • the control signal sent by the receiving end is further required to be received, and the control signaling sent by the receiving end includes: an ACK corresponding to the data, a NACK corresponding to the data, or uplink scheduling signaling (including Uplink scheduling signaling for retransmission scheduling and uplink scheduling signaling for scheduling new data), NACK and uplink scheduling signaling corresponding to the data, or ACK and uplink scheduling signaling corresponding to the data (including Uplink scheduling signaling for retransmission scheduling and uplink scheduling signaling for scheduling new data).
  • each of the second classes available for data transmission corresponds to one feedback subframe
  • the feedback subframe is a subframe in which the ACK or NACK corresponding to the data is located.
  • the implementation of the feedback on the sending end is: when transmitting data on the subframe n2, the transmitting end receives the ACK or NACK corresponding to the data only on the subframe n2+k2, where the subframe n2 belongs to the second type of sub- a frame or the third type of subframe, k2 is determined by the subframe n2 and a preset second timing relationship, and the second timing relationship specifies that the ACK or NACK feedback occurs only in the first type of subframe or the fourth type of subframe
  • the implementation of the feedback on the receiving end is: when the sending n2 belongs to the second type of subframe or the third type of subframe on the subframe n2, the k2 is determined by the subframe n2 and the preset second timing relationship, the second timing The relationship stipulates that the ACK or NACK feedback only occurs in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission only occurs in the second type of subframe or the third type of subframe Frame, k2 ⁇ 4.
  • n denotes the subframe number of the PUSCH transmission
  • k denotes the number of subframes between the ACK or NACK feedback and the PUSCH data transmission
  • n+k denotes the subframe number of the ACK or NACK feedback.
  • n is n2 and k is k2.
  • the transmitting end receives the ACK or NACK feedback of the data only in the subframes n2+4;
  • the transmitting end receives the ACK or NACK feedback of the data only in the subframes n2+7;
  • the transmitting end receives ACK or NACK feedback of the data only in subframe n2+6.
  • the receiving end transmits the data only in the subframe n2+6.
  • Case One the receiver correctly receives the data and sends an ACK. After the sender receives the ACK, it does nothing.
  • Case 2 the receiving end incorrectly receives the data and sends a NACK.
  • the transmitting end determines the retransmitted subframe according to FIG. 4 (or FIG. 5) or Table 1 (or Table 2). If the subframe is an available uplink subframe, retransmit the data in the subframe. If the subframe is not available, determine the next retransmitted subframe according to FIG. 4 (or FIG. 5) or Table 1 (or Table 2), and retransmit the data by using the most recently available uplink retransmission subframe.
  • Case 3 the receiving end erroneously receives data, and feeds back uplink scheduling signaling for retransmission scheduling.
  • the transmitting end determines the most recently available uplink retransmission subframe according to the scheduling of the receiving end and the timing relationship shown in Figure 4 (or Figure 5) or Table 1 (or Table 2), and retransmits the data in the subframe.
  • Case 4 the receiving end incorrectly receives the data, and sends a NACK and an uplink scheduling signaling for retransmission scheduling.
  • the transmitting end determines the most recently available uplink subframe according to the scheduling of the receiving end and the timing relationship shown in FIG. 4 (or FIG. 5) or Table 1 (or Table 2), and retransmits the data in the subframe.
  • Case 5 The receiving end incorrectly receives data, and sends an ACK and an uplink scheduling signaling for retransmission scheduling.
  • the ACK and the uplink scheduling signaling may be sent simultaneously or in time.
  • the sender does not perform any processing when receiving the ACK.
  • When receiving the uplink scheduling signaling it determines the most available uplink according to the scheduling of the receiving end and the timing relationship shown in Figure 4 (or Figure 5) or Table 1 (or Table 2). Retransmit the subframe and retransmit the data on the subframe.
  • the preferred implementation manner is: the transmitting end side: when receiving the NACK or the uplink scheduling signaling corresponding to the data fed back in the subframe n3, the NACK corresponding to the data
  • the transmitting end retransmits only in the subframe n3+k3 or the subframe n3+7 or the subframe n3+k3 and the subframe n3+7.
  • the subframe n3 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe
  • k3 and 7 are determined by the subframe n3 and the preset first timing relationship
  • the first timing relationship Determining that control signaling occurs only in downlink pilot time slots of the first type of subframe or the fourth type of subframe, and data transmission occurs only in the second type of subframe or the third type of subframe.
  • Receiving end side when transmitting NACK corresponding to the data, or uplink scheduling signaling, or NACK and uplink scheduling signaling corresponding to the data, or ACK and uplink scheduling signaling corresponding to the data, on subframe n3
  • the receiving end receives the retransmitted data only on the subframe n3+k3 or n3+7, where the subframe n3 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe, k3 And 7 are determined by the subframe n3 and the preset first timing relationship, where the first timing relationship specifies that the control signaling occurs only in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission Only occurs in the second type of subframe or the third type of subframe, k3 ⁇ 4.
  • the transmitting end when transmitting, the transmitting end resends the data only in subframe n3+7;
  • the receiving end when transmitting, the receiving end re-receives the data only in subframe n3+7;
  • the receiving end re-receives the data only in the subframe n+7;
  • Both the MSB and the least significant bit LSB are 1, and the receiving end receives the data only on subframes n3+6 and n3+7.
  • the transmitting end when sending data, retransmits data only on the subframes n2+k4, where the subframe n2 belongs to the second type of subframe or the third type of subframe, and k4 is composed of the subframe n2 and the preset third timing.
  • the relationship determines that the third timing relationship specifies that data transmission occurs only in the second type of subframe or the third type of subframe, k4 ⁇ 8.
  • the third timing relationship can be obtained by FIG.
  • the transmitting end transmits the data only m+1 times in the subframe n2+l, and m is a positive integer;
  • the transmitting end transmits the data only m+1th times in subframe n2+13, and m is a positive integer.
  • the data, m is a positive integer;
  • the transmitting end side when receiving the NACK corresponding to the data fed back in the subframe n3, or the uplink scheduling signaling used for retransmission scheduling, or When the NACK corresponding to the data and the uplink scheduling signaling for retransmission scheduling, the ACK corresponding to the data, and the uplink scheduling signaling used for retransmission scheduling, the transmitting end is only in the subframe n3+k3 or n3+8 Retransmitting the data, where the subframe n3 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe, and k3 and 8 are determined by the subframe n3 and the preset first timing relationship, A timing relationship specifies that control signaling occurs only in downlink pilot time slots of the first type of subframe or the fourth type of subframe, and data transmission occurs only in the second type of subframe or the third type Subframe, k3 ⁇ 4, data transmission of at least part of the HARQ process
  • Receiving end side when transmitting NACK corresponding to the data, uplink scheduling signaling for retransmission scheduling, NACK corresponding to the data, and uplink scheduling signaling for retransmission scheduling, or When the ACK corresponding to the data and the uplink scheduling signaling used for the retransmission scheduling, the receiving end receives the retransmitted data only on the subframe n3+k3 or n3+8, where the subframe n3 belongs to the first class.
  • a downlink pilot time slot of the subframe or the fourth type of subframe, k3 and 8 are determined by the subframe n3 and a preset first timing relationship, and the first timing relationship specifies that the control signaling occurs only in the first class a downlink pilot time slot of the frame or the fourth type of subframe, data transmission only occurs in the second type of subframe or the third type of subframe, k3 ⁇ 4, and at least part of the HARQ process data transmission only occurs In the second type of subframe.
  • the receiving end when transmitting, the receiving end re-receives the data only in subframe n3+8;
  • the transmitting end when transmitting data in the subframe n2, the transmitting end retransmits the data only in the subframe n2+k4, where the subframe n2 Subordinate to the second type of subframe or the third type of subframe, k4 is determined by the subframe n2 and a preset third timing relationship, and the third timing relationship specifies that the data transmission only occurs in the second type of subframe or The third type of subframe, k4 ⁇ 8, the data transmission of at least part of the HARQ process only occurs in the second type of subframe.
  • the third timing relationship can be obtained by using FIG.
  • the transmitting end transmits the data only m+1 times in the subframe n2+l, and m is a positive integer;
  • the transmitting end transmits the data only m+1 times in subframe n2+14, where m is a positive integer.
  • the data, m is a positive integer;
  • the method of the uplink data transmission in the embodiment is determined by the combination of FIG. 4 and the frame structure configuration as follows: Take the transmission between the UE and the base station as an example.
  • Step 601 The base station sends uplink scheduling signaling by using the PDCCH on the downlink subframe n1.
  • Step 602 The UE sends data through the PUSCH on the uplink subframe closest to the subframe n1 according to the first timing relationship.
  • Step 603 The base station detects the uplink data sent by the UE. If it is received correctly, the process continues to step 604. Otherwise, the process continues to step 606.
  • Step 604 The base station sends an ACK on the subframe n2+k2. N2+k2 is determined by the second timing relationship shown in Table 3.
  • Step 605 The UE receives an ACK at the corresponding location.
  • Step 606 The base station sends a NACK on the subframe n2+k2.
  • Step 607 The UE receives the NACK at the corresponding location.
  • Step 608 The UE retransmits the data on the available uplink subframes closest to the subframes n2+k2 according to the first timing relationship.
  • a specific example is shown in the uplink HARQ timing shown in FIG.
  • the base station initiates uplink scheduling in subframe 0, and the UE receives and calculates available transmission subframes according to the uplink HARQ timing relationship: subframe 4 (radio frame n ), subframe 7 (radio frame n+1), and subframe 8 ( Radio frame n+2), subframe 9 (radio frame n+3).
  • the subframe 4 (radio frame n ) is flexibly configured as a downlink subframe and cannot be used for uplink transmission.
  • the subframe 7 (radio frame n+1) is the uplink subframe closest to the subframe 0, and the UE selects the subframe.
  • the frame sends uplink data. Since the subframes in the prior art are static or semi-statically allocated, the HARQ timing is bound to the subframe configuration, so the subframe determined by the HARQ timing relationship must be available, and there is no process of determining whether the corresponding subframe is available. In this embodiment, the HARQ timing relationship is designed for the dynamically allocated subframe. Therefore, when the timing relationship is applied, it is required to determine whether the corresponding subframe is available.
  • the base station receives data in the corresponding subframe, but receives an error, and then feeds back in subframe 1 (radio frame n+2), sends a NACK through the PHICH, or feeds back scheduling signaling through the PDCCH, or simultaneously sends a NACK through the PHICH and through the PDCCH.
  • Feedback scheduling signaling The UE receives the PHICH, or PDCCH, or PHICH and PDCCH in the corresponding subframe, and calculates a retransmission subframe according to the uplink HARQ timing relationship: subframe 8 (radio frame n+2), subframe 9 (radio frame n+3) ).
  • the subframe 8 (radio frame n+2) is flexibly configured as a downlink subframe and cannot be used for uplink transmission. Then, the subframe 9 (radio frame n+3) is the closest to the subframe 1 (the radio frame n+2).
  • the uplink subframe the UE selects this subframe to resend the old data, that is, retransmits the data.
  • the base station receives data in the corresponding subframe.
  • the uplink HARQ timing shown in FIG. 8 For another example, for the timing relationship shown in FIG. 5, a specific example is shown in the uplink HARQ timing shown in FIG. 8.
  • the base station initiates uplink scheduling in subframe 0, and the UE receives and calculates available transmission subframes according to the uplink HARQ timing relationship: subframe 4 (radio frame n ), subframe 8 (radio frame n+1 ), and subframe 9 ( Radio frame n+2), subframe 3 (radio frame n+4).
  • the subframe 4 (radio frame n ) is flexibly configured as a downlink subframe and cannot be used for uplink transmission.
  • the subframe 8 (radio frame n+1) is a subframe that is closest to the subframe 0 and is flexibly configured.
  • the UE selects this subframe to transmit uplink data. Since the subframes in the prior art are static or semi-statically allocated, the HARQ timing is bound to the subframe configuration, so the subframe determined by the HARQ timing relationship must be available, and there is no process of determining whether the corresponding subframe is available. In this embodiment, the HARQ timing relationship is designed for the dynamically allocated subframe. Therefore, when the timing relationship is applied, it is required to determine whether the corresponding subframe is available.
  • the base station receives data in the corresponding subframe, but receives an error, and then feeds back in subframe 5 (radio frame n+2), sends a NACK through the PHICH, or feeds back scheduling signaling through the PDCCH, or simultaneously transmits a NACK through the PHICH and through the PDCCH.
  • Feedback scheduling signaling The UE receives the PHICH, or the PDCCH, or the PHICH and the PDCCH in the corresponding subframe, and calculates the retransmission subframe according to the uplink HARQ timing relationship: subframe 9 (radio frame n+2), subframe 3 (radio frame n+4) ).
  • the subframe 9 (radio frame n+2) is flexibly configured as a downlink subframe and cannot be used for uplink transmission. Then the subframe 3 (radio frame n+4) is the closest to the subframe 5 (radio frame n+2).
  • the uplink subframe that is flexibly configured, the UE selects this subframe to resend the old data, that is, retransmits the data.
  • the base station receives data in the corresponding subframe.
  • the timing relationship shown in FIG. 4 (or FIG. 5) or Table 1 (or Table 2) or Table 3 is directly applied, and the corresponding subframe may have been configured as an unavailable sub-sub-frame.
  • the base station is before scheduling Considering the configuration of the frame structure, adjusting the subframe in which the scheduling signaling is located, so that the UE can apply the timing relationship shown in FIG. 4 (or FIG. 5) or Table 1 (or Table 2) or Table 3, and then the available timing can be determined.
  • Sub-frames see the embodiment below.
  • the method is as follows: Take the transmission between the UE and the base station as an example.
  • Step 901 The base station determines to send uplink scheduling signaling through the PDCCH on the fixed downlink subframe n1 (such as a certain radio frame t).
  • Step 902 The base station determines a corresponding subframe according to the timing relationship shown in Table 1 (or Table 2), and determines whether the corresponding subframe is available, that is, determines the corresponding second type subframe or the third class. Whether the subframe is available, and if so, proceeds to step 903, otherwise proceeds to step 904.
  • Step 903 The base station sends uplink scheduling signaling on the determined fixed downlink subframe. Continue with step 905.
  • Step 904 The base station searches for the next corresponding subframe according to the first timing relationship. Continue with step 902.
  • Step 905 The UE is in the third timing relationship (or the first timing relationship and the second timing relationship), and sends data through the PUSCH on the available second type subframe or the third type subframe that is closest to the subframe n.
  • the subframe n in this step is a subframe in which the uplink scheduling signaling is finally transmitted, and the subframe may be nl in step 901, or may be other subframes after searching in step 904.
  • Step 906 The base station detects the uplink data sent by the UE. If it is correctly received, the process proceeds to step 907. Otherwise, the process proceeds to step 907 and step 908.
  • Step 907 The base station sends an ACK on the subframe n2+k2.
  • N2+k2 is determined by the second timing relationship shown in Table 2.
  • the subframe n2 is a subframe for transmitting uplink data.
  • Step 908 The base station feeds back uplink scheduling signaling by using the PDCCH.
  • This step can be implemented in the same subframe as the ACK, or in other fixed downlink subframes.
  • the base station may first determine whether the corresponding subframe is available according to the subframe in which the PDCCH is transmitted and through Table 1 (or Table 2). If available, transmit the uplink scheduling signaling on the currently determined subframe, otherwise, for the first timing.
  • the downlink pilot time slot of the next first type of subframe or the fourth type of subframe indicated by the relationship is determined until the corresponding subframe is available, and then the uplink scheduling signaling is transmitted on the corresponding subframe.
  • Step 909 The UE receives an ACK at the corresponding location. At this time, the UE does not perform other processing.
  • Step 910 The UE receives the uplink scheduling signaling by using the PDCCH at the corresponding location, and determines the corresponding subframe according to the timing relationship shown in Table 1 (or Table 2).
  • Step 911 The UE retransmits the data on the determined subframe.
  • the base station needs to schedule uplink data in subframe 0 (radio frame n), but the transmission subframe 4 directly corresponds to subframe 0.
  • radio frame n is configured as downlink, cannot send uplink data, and can only lag scheduling.
  • the base station finds the last available scheduling subframe 0 (radio frame n+1), and transmits a UL grant (uplink scheduling signaling) to schedule uplink data.
  • the UE receives the corresponding subframe and calculates the transmission subframe according to the uplink HARQ timing relationship: subframe 7 (radio frame n+1), UE Select this subframe to send uplink data.
  • the base station receives data in the corresponding subframe, but receives an error, and feeds back in subframe 1 (radio frame n+2).
  • the base station Since the transmission subframe 8 (radio frame n+2) directly corresponding to the subframe 1 (radio frame n+2) is configured to be downlink, the uplink data cannot be transmitted. Therefore, the base station sends an ACK, and then schedules retransmission through the PDCCH.
  • the UE receives the PHICH in the corresponding subframe and finds that it is an ACK, and does not perform any processing.
  • the base station finds the most recently available scheduling subframe 5 (radio frame n+3) in the subsequent subframe, and transmits the UL grant in the subframe to trigger the UE to retransmit.
  • the UE detects the PDCCH at the corresponding location and calculates the retransmission subframe according to the uplink HARQ timing relationship as: subframe 9 (radio frame n+3), and the UE selects the subframe to retransmit the old data.
  • the base station receives data in the corresponding subframe.
  • the base station needs to schedule uplink data in subframe 0 (radio frame n), but since the transmission frame 4 (radio frame n) directly corresponding to subframe 0 is configured as downlink, uplink data cannot be transmitted, and scheduling can only be delayed.
  • the base station finds the last available scheduling subframe 0 (radio frame n+1), and determines that the corresponding subframe is an available and flexiblely configured uplink subframe 8 (radio frame n+1), and therefore in subframe 0. (Radio frame n+1)
  • the PDCCH is transmitted to schedule uplink data.
  • the UE receives the corresponding subframe and calculates the transmission subframe as the subframe 8 (radio frame n+1) according to the uplink HARQ timing relationship, and the UE selects the subframe to send the uplink data.
  • the base station receives data in the corresponding subframe, but receives an error, and feeds back in subframe 5 (radio frame n+2). Since the transmission subframe 9 (radio frame n+2) directly corresponding to the subframe 5 (radio frame n+2) is configured to be downlink, the uplink data cannot be transmitted. Therefore, the base station sends an ACK and then schedules retransmission through the PDCCH.
  • the UE receives the PHICH in the corresponding subframe and finds that it is an ACK without any processing.
  • the base station finds the most recently available scheduling subframe 5 (radio frame n+3) in the subsequent subframe, and transmits a PDCCH in the subframe to trigger the UE to retransmit.
  • the UE detects the PDCCH at the corresponding location and calculates a retransmission subframe according to the uplink HARQ timing relationship as: subframe 3 (radio frame n+4), and the UE selects the subframe to retransmit the old data.
  • the base station receives data in the corresponding subframe.
  • this embodiment may provide a compatible solution.
  • the control information sent by the base station also includes uplink and downlink configuration type information.
  • the base station schedules the uplink data in the same timing in the two timing relationships according to the timing relationship corresponding to the uplink and downlink configuration type and the timing relationship preset by the dynamic subframe system.
  • the timing relationship shown in Figure 4 in this embodiment is compatible with at least some of the timings of Configuration 0, Configuration 1, Configuration 3, and Configuration 6 specified in the current protocol. Refer to the HARQ timing relationship of configuration 0, configuration 1, configuration 3, and configuration 6 shown in Figure 12 - Figure 15, where the timing relationship determined by the block is a compatible timing relationship. As can be seen from Fig.
  • the timing relationship in this embodiment is completely compatible with configuration 0.
  • the timing relationship in this embodiment is compatible with configuration 1 in timing 2.
  • the timing relationship in this embodiment is compatible with configuration 3 in timing 1.
  • the timing relationship in this embodiment is compatible with the configuration 6 at timings 2, 3. Therefore, the sending end can also carry process information (such as a process number) in the scheduling signaling.
  • the uplink service can be scheduled on the subframe 2, 3, 4, 7, 8 or 9 of all processes.
  • the uplink service can be scheduled at On the subframe 7 of all processes.
  • the uplink traffic can be scheduled on subframe 4 of all processes.
  • the uplink traffic can be scheduled on subframes 7 or 8 of all processes.
  • the timing relationship shown in FIG. 5 in this embodiment is at least partially time-compatible with the configuration 1 specified in the current protocol.
  • the process is mainly implemented by the receiving end and the transmitting end.
  • the internal structure and functions of the receiving end device and the transmitting end device are introduced below.
  • the receiving end device in this embodiment includes: an interface module 1701 and a control module 1702.
  • the receiving device can be a user device or a relay device.
  • the interface module 1701 is configured to receive and send various signaling and data, and in particular, receive uplink scheduling signaling only in a downlink pilot time slot of the first type of subframe or the fourth type of subframe; Transmitting data in the second type of subframe or the third type of subframe.
  • the data sent by the interface module 1701 includes at least uplink data on the uplink shared channel.
  • Each of the second type of subframes or the third type of subframes available for data transmission corresponds to one or more scheduling subframes, and one of the second type of subframes or the third class in one data transmission
  • the subframe corresponds to one scheduling subframe, and the scheduling subframe is a subframe in which the uplink scheduling signaling corresponding to the data is located.
  • the control module 1702 is configured to generate various signaling and data, and determine, according to the uplink scheduling signaling, a subframe in which the sent data should be, and instruct the interface module to be in the second type of subframe or the third type of subframe. send data.
  • the interface module 1701 when receiving the uplink scheduling signaling on the subframe n1, transmits data only in the subframe nl+k1 or the subframe nl+7 or the subframe nl+k1 and the subframe nl+7, where
  • the subframe n1 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe, and k1 and 7 are determined by the subframe n1 and the preset first timing relationship, and the first timing relationship specifies the control signal.
  • the data transmission In the downlink pilot time slot of the first type of subframe or the fourth type of subframe, the data transmission only occurs in the second type of subframe or the third type of subframe, kl ⁇ 4 .
  • Control signaling includes uplink scheduling signaling, and ACK or NACK.
  • the interface module 1701 transmits data only in the subframe nl+4;
  • the interface module 1701 when receiving the uplink scheduling signaling on the subframe n1, transmits data only on the subframe nl+k1 or the subframe nl+8 or the subframe nl+k1 and the subframe nl+8, where kl And 8 are determined by the subframe n1 and the preset first timing relationship, where the first timing relationship specifies that the control signaling occurs only in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission Only occurs in the second type of subframe or the third type of subframe, kl ⁇ 4, and data transmission of at least part of the HARQ process only occurs in the second type of subframe.
  • the interface module 1701 is further configured to receive, in a downlink pilot time slot of the first type of subframe or the fourth type of subframe, an ACK corresponding to the data fed back by the receiving end, or a NACK corresponding to the data, or And uplink scheduling signaling for retransmission scheduling, NACK corresponding to the data, uplink scheduling signaling for retransmission scheduling, ACK corresponding to the data, and uplink scheduling signaling for retransmission scheduling.
  • Each of the second type of subframes or the third type of subframes that can be used for data transmission corresponds to one feedback subframe, and the feedback subframe is a subframe in which the ACK or NACK corresponding to the data is located.
  • the interface module 1701 when transmitting data on the subframe n2, the interface module 1701 receives the data only on the subframes n2+k2.
  • ACK or NACK feedback where subframe n2 belongs to the second type of subframe or the third type of subframe, k2 is determined by subframe n2 and a preset second timing relationship, and the second timing relationship defines ACK or The NACK feedback only occurs in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission only occurs in the second type of subframe or the third type of subframe, k2 ⁇ 4.
  • the interface module 1701 receives the ACK or NACK feedback of the data only in the subframe n2+4;
  • the interface module 1701 receives ACK or NACK feedback of the data only in subframes n2+7;
  • the interface module 1701 receives ACK or NACK feedback of the data only in subframes n2+6.
  • the interface module 1701 is further configured to retransmit data in the second type of subframe or the third type of subframe.
  • the sub-frame n3 is received.
  • the interface module 1701 retransmits data only on the subframe n3+k or the subframe n3+7 or the subframe n3+k3 and the subframe n3+7, wherein the subframe n3 belongs to the first type of subframe or
  • the downlink pilot time slots of the fourth type of subframes, k3 and 7 are determined by the subframe n3 and a preset first timing relationship, where the first timing relationship specifies that the control signaling occurs only in the first type of subframe or For the downlink pilot time slot of the fourth type of subframe, the data transmission only occurs in the second type of subframe or the third type of subframe, k3 ⁇ 4.
  • the interface module 1701 resends the data only in subframe n3+7 ;
  • the interface module 1701 transmits data only in the subframe n3+4;
  • the MSB is 1, and the interface module 1701 transmits the data only on the subframe n3+6;
  • the interface module 1701 retransmits data only on the subframe n3+k3 or n3+8, where the subframe n3 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe, k3 and 8 is determined by the subframe n3 and the preset first timing relationship, where the first timing relationship specifies that the control signaling only occurs in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission is only Occurring in the second type of subframe or the third type of subframe, k3 ⁇ 4, data transmission of at least part of the HARQ process only occurs in the second type of subframe.
  • the interface module 1701 resends the data only in subframe n3+8 ;
  • the interface end 1701 retransmits data only on subframes n2+k4, where subframe n2 belongs to the second type of subframe. Or the third type of subframe, k4
  • the subframe n2 and the preset third timing relationship determine that the third timing relationship specifies that data transmission occurs only in the second type of subframe or the third type of subframe, k4 ⁇ 8.
  • the interface module 1701 sends the data only in the m+1th time on the subframe n2+11, where m is a positive integer. ;
  • the interface module 1701 transmits the data only m+1 times on the subframe n2+l, where m is a positive integer;
  • the interface module 1701 transmits the data only m+1 times on the subframe n2+13, where m is a positive integer.
  • the interface module 1701 when transmitting data on the subframe n2, the interface module 1701 retransmits data only on the subframe n2+k4, where the subframe n2 belongs to the second type subframe or the third type subframe, k4 Determining, by the subframe n2 and the preset third timing relationship, the third timing relationship specifies that data transmission occurs only in the second type of subframe or the third type of subframe, k4 ⁇ 8, and at least part of the HARQ process data transmission Only occurs in the second type of subframe.
  • the interface module 1701 sends the data only in the m+1th time on the subframe n2+10, where m is a positive integer. ;
  • the interface module 1701 transmits the data only m+1 times on the subframe n2+l, where m is a positive integer;
  • the interface module 1701 transmits the data only m+1 times on the subframe n2+14, where m is a positive integer.
  • the receiving end device for uplink transmission in this embodiment includes: an interface module 1801 and a control module 1802.
  • the receiving device can be a base station or a relay device.
  • the interface module 1801 is configured to transmit various signaling and data, and in particular, only send uplink scheduling signaling in a downlink pilot time slot of the first type of subframe or the fourth type of subframe;
  • the data is received in the second type of subframe or the third type of subframe.
  • the data received by the interface module 1801 includes at least uplink data on the uplink shared channel.
  • Each of the second type of subframes or the third type of subframes available for data transmission corresponds to one or more scheduling subframes, and one of the second type of subframes or the third class in one data transmission
  • the subframe corresponds to one scheduling subframe
  • the scheduling subframe is a subframe in which the uplink scheduling signaling corresponding to the data is located.
  • the control module 1802 is configured to generate various signaling and data, and determine, according to the uplink scheduling signaling, a subframe in which the data to be received is located, and instruct the interface module to be in the second type of subframe or the third type of subframe. Receive data.
  • the interface module 1801 receives data only in the subframe n1+k1 or the subframe nl+7 or the subframe nl+k1 and the subframe nl+7, where
  • the subframe n1 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe, and k1 and 7 are determined by the subframe n1 and the preset first timing relationship, and the first timing relationship specifies the control signal.
  • the data transmission only occurs in the second type of subframe or the third type of subframe, kl ⁇ 4 .
  • the interface module 1801 when transmitting the uplink scheduling signaling on the subframe n1, the interface module 1801 receives the data only on the subframe nl+k1 or the subframe nl+7 or the subframe nl+k1 and the subframe nl+7, where kl And 8 are determined by the subframe n1 and the preset first timing relationship, where the first timing relationship specifies that the control signaling occurs only in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission Only occurs in the second type of subframe or the third type of subframe, kl ⁇ 4, and data transmission of at least part of the HARQ process only occurs in the second type of subframe.
  • Both the MSB and the least significant bit LSB are 1, and the interface module receives the data only on subframes nl+6 and nl+8.
  • the interface module 1801 is further configured to send only in a downlink pilot time slot of the first type of subframe or the fourth type of subframe. Sending an ACK corresponding to the data, a NACK corresponding to the data, an uplink scheduling signaling used for retransmission scheduling, a NACK corresponding to the data, and an uplink scheduling signaling used for retransmission scheduling, or The ACK corresponding to the data and the uplink scheduling signaling used for the retransmission scheduling.
  • Each of the second type of subframes or the third type of subframes that can be used for data transmission corresponds to one feedback subframe, where the feedback subframe is a subframe in which the ACK or NACK corresponding to the data is located.
  • the interface module 1801 sends the ACK or NACK feedback corresponding to the data only on the subframe n2+k2, where the subframe n2 belongs to the second type of subframe or the
  • the third type of subframe, k2 is determined by the subframe n2 and the preset second timing relationship, and the second timing relationship specifies that the ACK or NACK feedback only occurs in the downlink of the first type of subframe or the fourth type of subframe. Pilot time slot, data transmission occurs only in the second type of subframe or the third type of subframe, k2 ⁇ 4.
  • the interface module 1801 transmits ACK or NACK feedback of the data only in subframes n2+6.
  • the interface module 1801 is further configured to receive the retransmitted data in the second type of subframe or the third type of subframe. Specifically, when the NACK or the uplink scheduling signaling corresponding to the data, the NACK and uplink scheduling signaling corresponding to the data, or the ACK and uplink scheduling signaling corresponding to the data are sent on the subframe n3, The interface module 1801 receives the retransmitted data only on the subframe n3+k3 or n3+7, where the subframe n3 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe, k3 And 7 are determined by the subframe n3 and the preset first timing relationship, where the first timing relationship specifies that the control signaling occurs only in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and the data transmission Only occurs in the second type of subframe or the third type of subframe, k3 ⁇ 4. Or 9 when transmitting, the interface module 1801 re-receives the data
  • the interface module 1801 when transmitting, the interface module 1801 re-receives the data only in the subframe n3+7;
  • the interface module 1801 receives data only in the subframe n3+4;
  • the interface receives the retransmitted data only on the subframe n3+k3 or n3+8, wherein the subframe n3 belongs to the downlink pilot slot of the first type of subframe or the fourth type of subframe, k3 and 8 Determined by the subframe n3 and the preset first timing relationship, the first timing relationship specifies that the control signaling only occurs in the downlink pilot time slot of the first type of subframe or the fourth type of subframe, and data transmission only occurs.
  • k3 ⁇ 4 data transmission of at least part of the HARQ process only occurs in the second type of subframe. Or 9 when transmitting, the interface module 1801 re-receives the data only in the subframe n3+4;
  • the interface module 1801 when transmitting, the interface module 1801 re-receives the data only in the subframe n3+8;
  • the MSB is 1, and the interface module 1801 receives the data only in the subframe n3+6;
  • the data is received on n3+8.
  • the interface module 1801 For the uplink scheduling signaling only for the retransmission scheduling, when receiving data on the subframe n2, the interface module 1801 receives the retransmitted data only on the subframes n2+k4, wherein the subframe n2 belongs to the second a class-like subframe or the third-type subframe, k4 is determined by the subframe n2 and a preset third timing relationship, and the third timing relationship specifies that the data transmission only occurs in the second type of subframe or the third type of subframe Frame, k4 ⁇ 8.
  • the interface module 1801 when receiving data on the subframe n2, the interface module 1801 receives the retransmitted data only on the subframes n2+k4, where the subframe n2 belongs to the second type of subframe or the third type of subframe, K4 is determined by the subframe n2 and the preset third timing relationship, and the third timing relationship specifies that the data transmission only occurs in the second type of subframe or the third type of subframe, k4 ⁇ 8, at least part of the HARQ process data The transmission only occurs in the second type of subframe.
  • the control module 1802 is further configured to determine, according to the first timing relationship of the scheduling signaling and the data transmission, whether the corresponding second type of subframe or the third type of subframe indicated by the first timing relationship is available; if yes, indicating the interface
  • the module 1801 sends the uplink scheduling signaling on the corresponding subframe indicated by the first timing relationship; otherwise, the control module 1802 searches for the next corresponding second type subframe or the third type subframe according to the first timing relationship. And determine if the subframe is available.
  • a new HARQ transmission strategy is designed for the dynamic subframe system, and the uplink transmission of data is realized when the uplink and downlink subframes are dynamically allocated.
  • the HARQ timing relationship provided by the embodiment of the present invention also has better backward compatibility.
  • the receiving end considers whether a subframe directly corresponding to the timing relationship is available before performing scheduling, and further determines a subframe that is recently available, determines a subframe in which the scheduling signaling is located according to the subframe and the timing relationship, and sends scheduling signaling.
  • the direct distance between the scheduling and the data transmission is shortened, which helps to shorten the distance between data transmission and retransmission, that is, to make the RTT (Round Trip Time) as small as possible.
  • RTT Random Trip Time
  • the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the present invention is in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输的方法,用于在动态分配上下行子帧时实现数据的传输。所述动态子帧系统至少由四类子帧组成,其中第一类子帧仅能用于下行传输,第二类子帧仅能用于上行传输,第三类子帧可以动态地配置为用于上行传输或者下行传输,所述第三类子帧不能同时用于上行传输和下行传输,第四类子帧是特殊子帧,所述第四类子帧包括下行导频时隙(DwPTS),保护间隔(GP)和上行导频时隙(UpPTS);发送端侧方法包括:发送端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接收上行调度信令;发送端在所述第二类子帧或者所述第三类子帧中发送数据。本申请还公开了接收端侧的方法及用于实现上述方法的装置。

Description

一种数据传输的方法及装置 本申请要求在 2011年 06月 03 日提交中国专利局、 申请号为 201110149646.2、发明名 称为"一种数据传输的方法及装置 "的中国专利申请的优先权, 其全部内容通过引用结合在 本申请中。 技术领域
本发明涉及通信领域, 特别是涉及数据传输的方法及装置。 背景技术
在常见的时分双工(TDD ) 系统中, 包括第三代通信系统(3G )的时分同步码分多址 接入(TD-SCDMA ) 系统和第四代通信系统(4G ) 的时分长期演进 ( TD-LTE ) 系统, 上 行和下行时隙的划分是静态或半静态的, 通常的做法是在网络规划过程中根据小区类型和 大致的业务比例确定上下行时隙比例划分并保持不变。 这在宏小区大覆盖的背景下是较为 筒单的做法, 并且也较为有效。 而随着技术发展, 越来越多的微小区 (Pico cell)、 家庭基站 (Home NodeB)等低功率基站被部署用于提供局部的小覆盖,在这类小区中,用户数量较少, 且用户业务需求变化较大, 因此小区的上下行业务比例需求存在动态改变的情况。
申请号为 201010567764.0的专利提出了一种动态的上下行子帧分配方案。 该方案是: 在一定时间周期内, 设定四种子帧类型, 包括固定用于下行传输的子帧, 固定用于上行传 输的子帧, 以及灵活分配的子帧, 该子帧可用作上行或下行传输。 以图 1所示为例, 所述 时间周期为一个无线帧 (仅是一个例子, 也可能为其它时间周期), 其中子帧 0和子帧 5为 固定下行子帧, 子帧 2和子帧 7为固定上行子帧, 子帧 1和子帧 6为特殊子帧 (也可以归为 固定下行子帧), 其它子帧(即子帧 3、 4、 8和 9)为灵活分配的子帧 (Flexible Subframe )。 对灵活分配的子帧, 基站可根据实时的业务需求和信道状况进行动态配置, 以适应业务需 求的动态变化。
现有技术中上行和下行时隙的划分是静态或半静态的, 因此混合自动重传 (HARQ ) 时序与上下行配置为绑定设计。 对于动态分配上下行子帧的方案, 其子帧结构与静态或半 静态分配的子帧不同,因此现有的 HARQ时序设计不能直接应用在动态分配上下行子帧的 方案中, 重传调度和数据的重传时机也需要改进, 但目前尚无有效的解决方案。 发明内容
本发明实施例提供一种数据传输的方法及装置, 用于在动态分配上下行子帧时实现数 据的传输。 一种上行传输在发送端的处理方法, 应用于动态子帧系统, 所述动态子帧系统至少由 四类子帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用于上行传输, 第三 类子帧可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧不能同时用于上行 传输和下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导频时隙 DwPTS, 保 护间隔 GP和上行导频时隙 UpPTS; 所述方法包括以下步骤:
发送端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接收上行调度信 令;
发送端在所述第二类子帧或者所述第三类子帧中发送数据。
一种上行传输在接收端的处理方法, 应用于动态子帧系统, 所述动态子帧系统至少由 四类子帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用于上行传输, 第三 类子帧可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧不能同时用于上行 传输和下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导频时隙 DwPTS, 保 护间隔 GP和上行导频时隙 UpPTS; 所述方法包括以下步骤:
接收端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中发送上行调度信 令;
接收端在所述第二类子帧或者所述第三类子帧中接收数据。
一种上行传输的发送端设备, 应用于动态子帧系统, 所述动态子帧系统至少由四类子 帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用于上行传输, 第三类子帧 可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧不能同时用于上行传输和 下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导频时隙 DwPTS, 保护间隔 GP和上行导频时隙 UpPTS; 所述发送端设备包括:
接口模块, 用于仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接收上行 调度信令; 以及在所述第二类子帧或者所述第三类子帧中发送数据;
控制模块, 用于根据上行调度信令确定发送的数据应在的子帧, 并指示接口模块在所 述第二类子帧或者所述第三类子帧中发送数据。
一种上行传输的接收端设备, 应用于动态子帧系统, 所述动态子帧系统至少由四类子 帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用于上行传输, 第三类子帧 可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧不能同时用于上行传输和 下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导频时隙 DwPTS, 保护间隔 GP和上行导频时隙 UpPTS; 所述接收端设备包括:
接口模块, 用于仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中发送上行 调度信令; 以及在所述第二类子帧或者所述第三类子帧中接收数据;
控制模块, 用于根据上行调度信令确定需要接收的数据所在的子帧, 并指示接口模块 在所述第二类子帧或者所述第三类子帧中接收数据。
本发明实施例中针对动态子帧系统设计了新的 HARQ传输策略,在动态分配上下行子 帧时实现了数据的上行传输。 附图说明
图 1为现有技术中无线帧结构的示意图;
图 2为本发明实施例中在动态子帧系统中上行传输在数据发送端的方法流程图; 图 3为本发明实施例中在动态子帧系统中上行传输在数据接收端的方法流程图; 图 4和图 5为本发明实施例中时序关系的示意图;
图 6为本发明实施例中下行数据传输由图 4和帧结构配置共同决定时的方法流程图; 图 7和图 8为本发明实施例中关于图 6的一种时序关系的示意图;
图 9为本发明实施例中上行数据传输由表 1 (或表 2 ) 决定时的方法流程图; 图 10和图 11为本发明实施例中关于图 9的一种时序关系的示意图;
图 12为本发明实施例中针对图 4的关于配置 0的时序关系的示意图;
图 13为本发明实施例中针对图 4的关于配置 1的时序关系的示意图;
图 14为本发明实施例中针对图 4的关于配置 3的时序关系的示意图;
图 15为本发明实施例中针对图 4的关于配置 6的时序关系的示意图;
图 16为本发明实施例中针对图 5的关于配置 1的时序关系的示意图;
图 17为本发明实施例中接收端设备的结构图;
图 18为本发明实施例中发送端设备的结构图。 具体实施方式
本发明实施例中针对动态子帧系统设计了新的 HARQ传输策略,在动态分配上下行子 帧时实现了数据的上行传输。
本实施例中动态子帧系统至少由四类子帧组成, 其中第一类子帧仅能用于下行传输, 可称为固定下行子帧; 第二类子帧仅能用于上行传输, 可称为固定上行子帧; 第三类子帧 可以动态地配置为用于上行传输或者下行传输, 可称为灵活配置的子帧, 但是所述第三类 子帧不能同时用于上行传输和下行传输; 第四类子帧是特殊子帧, 所述第四类子帧包括下 行导频时隙 ( DwPTS ), 保护间隔 ( GP )和上行导频时隙 ( UpPTS )。
参见图 2, 本实施例在动态子帧系统中上行传输在数据发送端的方法流程如下: 步骤 201 : 发送端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接收上 行调度信令。
步骤 202: 发送端在所述第二类子帧或者所述第三类子帧中发送数据。 参见图 3 , 与发送端对应的, 本实施例在动态子帧系统中上行传输在数据接收端的方 法流程如下:
步骤 301 : 接收端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中发送上 行调度信令。
步骤 302: 接收端在所述第二类子帧或者所述第三类子帧中接收数据。
传输的数据至少包括上行共享信道(PUSCH )上的上行数据。 每个可用于数据传输的 所述第二类子帧或者所述第三类子帧对应一个或多个调度子帧, 在一次数据传输中一个所 述第二类子帧或者所述第三类子帧对应一个调度子帧, 该调度子帧为数据对应的上行调度 信令所在的子帧。
本实施例中的数据传输可以发生在 UE与基站之间, UE与中继节点 ( RN )之间, 或 中继节点与基站之间。 发生在 UE与基站之间时, 发送端为 UE, 接收端为基站。 发生在 UE与中继节点之间时,发送端为 UE,接收端为中继节点。发生在中继节点与基站之间时, 发送端为中继节点, 接收端为基站。
本实施例提供两种较佳的方案, 第一种方案是传输效率原则, 初次传输和重传之间的 间隔尽可能短。 第二种方案是兼容原则, 有完整的进程向后兼容性。
第一种方案是: 当在子帧 nl上接收上行调度信令时, 发送端仅在子帧 nl+kl或、 子 帧 nl+7或、 子帧 nl+kl和子帧 nl+7上发送数据, 其中, 子帧 nl属于所述第一类子帧或 者所述第四类子帧的下行导频时隙, kl和 7由子帧 nl和预设的第一时序关系确定, 第一 时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数 据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4。控制信令包括上行调度信令、 及 ACK或 NACK。
本实施例中发送端和接收端都预先存有预设的时序关系, 然后各自按照该时序关系进 行调度、 数据的传输和反馈等。 一个时序关系的实例参见图 4所示, D表示第一类子帧, U表示第二类子帧, S表示第四类子帧, X为第三类子帧, Xu表示灵活配置为上行子帧, Xd表示灵活配置为下行子帧, A表示传输反馈的子帧, "# "对应的子帧用于数据传输(包 括首次数据传输和重传数据)。 从图 4中可以提炼出如表 1所示的第一时序关系:
Dynamic TDD Subframe index n (子帧索引
configuration (动态时 n )
分双工配置) 0 1 2 3 4 5 6 7 8 9
Subf Case 4 6 4 6
rame 1(情况 1 )
interval k Case 7 7
Figure imgf000007_0001
表 1
其中, n表示上行调度信令 ( UL grant )和 /或应答信令传输的子帧号, k表示 UL grant 和 PUSCH传输, NACK传输和 PUSCH重传之间间隔的子帧数, 因此子帧 n+k或、 子帧 n+7或、 子帧 n+k和子帧 n+7表示 PUSCH传输的子帧。应答信令为 ACK或 NACK。 ACK 或 NACK通过物理混合自动重传指示信道( PHICH )传输。首次传输时, n为 nl , k为 kl; 重传时, n为 n3 , k为 k3。
针对表 1中的情况 1 , 还可以有另一种表现形式, 参见表 1-1所示。
Figure imgf000007_0002
表 1-1
其中 k的取值可通过表 1-1来确定。
具体的, 在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高 有效位 MSB为 1时, 所述发送端仅在子帧 nl+4上发送数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 nl+7上发送所述数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 nl+4和 nl+7上发送所述数据; 在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述发送端仅在子帧 nl+6上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 nl+7上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位
MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 nl+6和 nl+7上发送所述数据。 与发送端相对的, 接收端的具体实现如下: 在子帧 nl且 nl=0或者 5上发送所述上行 调度信令, 且上行链路索引的最高有效位 MSB为 1时, 所述接收端仅在子帧 nl+4上接收 数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 nl+7上接收所述数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 nl+4和 nl+7上接收所述数据; 在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接收端仅在子帧 nl+6上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 nl+7上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 nl+6和 nl+7上接收所述数据。
第二种方案是: 当在子帧 nl上接收上行调度信令时, 发送端仅在子帧 nl+kl或、 子 帧 nl+8或、 子帧 nl+kl和子帧 nl+8上发送数据, 其中 kl和 8由子帧 nl和预设的第一时 序关系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的 下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4, 至少部分 HARQ进程的数据传输仅发生在第二类子帧。
一个时序关系的实例参见图 5所示, 从图 5中可以提炼出如表 2所示的另一种第一时 序关系:
Figure imgf000008_0001
表 2 其中, n表示 UL grant和 /或应答信令传输的子帧号, k表示 UL grant和 PUSCH传输,
NACK传输和 PUSCH重传之间间隔的子帧数, 因此子帧 n+k或、 子帧 n+8或、 子帧 n+k 和子帧 n+8表示 PUSCH传输的子帧。 应答信令为 ACK或 NACK。 ACK或 NACK通过 PHICH传输。 首次传输时, n为 nl , k为 kl ; 重传时, n为 n3 , k为 k3。
针对表 2中的情况 1 , 还可以有另一种表现形式, 参见表 1-1所示。
具体的, 在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高 有效位 MSB为 1 , 所述发送端仅在子帧 nl+4上发送所述数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 nl+8上发送所述数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 nl+4和 nl+8上发送所述数据; 在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述发送端仅在子帧 nl+6上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 nl+8上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 nl+6和 nl+8上发送所述数据。
与发送端相对的, 接收端的具体实现如下: 在子帧 nl且 nl=0或者 5上发送所述上行 调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接收端仅在子帧 nl+4上接收所 述数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 nl+8上接收所述数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 nl+4和 nl+8上接收所述数据; 在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接收端仅在子帧 nl+6上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 nl+8上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 nl+6和 nl+8上接收所述数据。
发送端发送上行数据后, 还需要继续接收接收端发送的控制信令, 接收端发送的控制 信令包括: 所述数据对应的 ACK或、 所述数据对应的 NACK或、 上行调度信令(包括用 于重传调度的上行调度信令和用于调度新数据的上行调度信令)或、所述数据对应的 NACK 和上行调度信令或、 所述数据对应的 ACK和上行调度信令(包括用于重传调度的上行调 度信令和用于调度新数据的上行调度信令)。 较佳的, 每个可用于数据传输的所述第二类 子帧或者所述第三类子帧对应一个反馈子帧,该反馈子帧为所述数据对应的 ACK或 NACK 所在的子帧。发送端关于反馈的实现是:当在子帧 n2上发送数据时,发送端仅在子帧 n2+k2 上接收所述数据对应的 ACK或 NACK, 其中, 子帧 n2属于所述第二类子帧或者所述第三 类子帧, k2由子帧 n2和预设的第二时序关系确定, 第二时序关系规定 ACK或 NACK反 馈仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述 第二类子帧或者所述第三类子帧, k2≥4。 接收端关于反馈的实现是: 当在子帧 n2上发送 n2属于所述第二类子帧或者所述第三类子帧, k2由子帧 n2和预设的第二时序关系确定, 第二时序关系规定 ACK或 NACK反馈仅发生在所述第一类子帧或者所述第四类子帧的下 行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, k2≥4。
从图 4和图 5中可获得如表 3所示的一个第二时序关系的实例。
Figure imgf000010_0001
表 3
其中, n表示 PUSCH传输的子帧号, k表示 ACK或 NACK反馈与 PUSCH数据传输 之间间隔的子帧数, 因此 n+k表示 ACK或 NACK反馈的子帧号。 此时 n为 n2 , k为 k2。
具体的, 在子帧 n2且 n2=2或 7上发送所述数据时, 所述发送端仅在子帧 n2+4接收 所述数据的 ACK或 NACK反馈;
在子帧 n2且 n2=3或 8上发送所述数据时, 所述发送端仅在子帧 n2+7接收所述数据 的 ACK或 NACK反馈;
在子帧 n2且 n2=4或 9上发送所述数据时, 所述发送端仅在子帧 n2+6接收所述数据 的 ACK或 NACK反馈。
与发送端相对的,接收端的具体实现如下:在子帧 n2且 n2=2或 7上接收所述数据时, 所述接收端仅在子帧 n2+4发送所述数据的 ACK或 NACK反馈;
在子帧 n2且 n2=3或 8上接收所述数据时, 所述接收端仅在子帧 n2+7发送所述数据 的 ACK或 NACK反馈;
在子帧 n2且 n2=4或 9上接收所述数据时, 所述接收端仅在子帧 n2+6发送所述数据 的 ACK或 NACK反馈。
发送端在收到反馈后, 针对部分反馈需要做出相应的反应, 有多种可能的情况。 情况 一,接收端正确接收数据, 并发送 ACK。发送端接收到 ACK后, 不做任何处理。情况二, 接收端错误接收数据, 并发送 NACK。 发送端接收到 NACK后, 根据图 4 (或图 5 )或表 1 (或表 2 )确定重传的子帧, 如果该子帧为可用的上行子帧, 则在该子帧上重传数据, 如 果该子帧不可用, 则依据图 4 (或图 5 )或表 1 (或表 2 )确定下一个重传的子帧, 利用最 近可用的上行重传子帧重传数据。 情况三, 接收端错误接收数据, 并反馈用于重传调度的 上行调度信令。 发送端根据接收端的调度及图 4 (或图 5 )或表 1 (或表 2 )所示的时序关 系, 确定最近可用的上行重传子帧, 并在该子帧上重传数据。 情况四, 接收端错误接收数 据, 并发送 NACK和用于重传调度的上行调度信令。 发送端根据接收端的调度及图 4 (或 图 5 )或表 1 (或表 2 )所示的时序关系, 确定最近可用的上行子帧, 并在该子帧上重传数 据。 情况五, 接收端错误接收数据, 并发送 ACK和用于重传调度的上行调度信令, ACK 和上行调度信令可以同时发送也可以分时发送。 发送端收到 ACK时不做任何处理, 收到 上行调度信令时, 根据接收端的调度及图 4 (或图 5 )或表 1 (或表 2 )所示的时序关系, 确定最近可用的上行重传子帧, 并在该子帧上重传数据。
针对图 4所示的时序关系, 较佳的实现方式是: 发送端侧: 当在子帧 n3上接收反馈 的所述数据对应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令 或、 所述数据对应的 ACK和上行调度信令时, 发送端仅在子帧 n3+k3或、 子帧 n3+7或、 子帧 n3+k3和子帧 n3+7上重传数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类 子帧的下行导频时隙, k3和 7由子帧 n3和预设的第一时序关系确定, 第一时序关系规定 控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生 在所述第二类子帧或者所述第三类子帧, k3≥4。 接收端侧: 当在子帧 n3上发送所述数据 对应的 NACK、 或上行调度信令、 或所述数据对应的 NACK和上行调度信令、 或所述数据 对应的 ACK和上行调度信令时,接收端仅在子帧 n3+k3或 n3+7上接收重传的数据,其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧的下行导频时隙, k3和 7由子帧 n3和预 设的第一时序关系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第 四类子帧的下行导频时隙,数据传输仅发生在所述第二类子帧或者所述第三类子帧, k3≥4。
具体的, 发送端收到反馈的 ACK或 NACK需进行重传时的实现如下: 在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据不在子帧 4或 9发送时,所述 发送端仅在子帧 n3+4重新发送所述数据;
在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据在子帧 4或
9发送时, 所述发送端仅在子帧 n3+7重新发送所述数据;
在子帧 n3且 n3=l或 6上接收所述数据的 ACK或 NACK反馈时, 所述发送端仅在子 帧 n+7重新发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 n3+4上发送数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 n3+7上发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 n3+4和 n3+7上发送所述数据; 在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述发送端仅在子帧 n3+6上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 n3+7上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 n3+6和 n3+7上发送所述数据。
与发送端相对的, 接收端的具体实现如下: 在子帧 n3且 n3=0或 5上发送所述数据的 ACK或 NACK反馈且所述数据不在子帧 4或 9发送时,所述接收端仅在子帧 n3+4重新接 收所述数据;
9发送时, 所述接收端仅在子帧 n3+7重新接收所述数据;
在子帧 n3且 n3=l或 6上发送所述数据的 ACK或 NACK反馈时, 所述接收端仅在子 帧 n+7重新接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1时, 所述接收端仅在子帧 n3+4上接收数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 n3+7上接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 n3+4和 n3+7上接收所述数据; 在子帧 n3且 n3=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接收端仅在子帧 n3+6上接收所述数据;
在子帧 n3且 n3=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 n3+7上接收所述数据;
在子帧 n3且 n3=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位
MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 n3+6和 n3+7上接收所述数据。
具体的, 发送端仅收到反馈的上行调度信令需进行重传的情况下, 当在子帧 n2上发 送数据时, 发送端仅在子帧 n2+k4上重传数据, 其中子帧 n2属于所述第二类子帧或者所 述第三类子帧, k4由子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅 发生在所述第二类子帧或者所述第三类子帧, k4≥8。 第三时序关系可通过图 4获得。 具体 实现如下: 在子帧 n2且 n2=2或 7上第 m次发送所述数据时, 所述发送端仅在子帧 n2+l l 上第 m+1次发送所述数据, m为正整数;
在子帧 n2且 n2=3或 8上第 m次发送所述数据时, 所述发送端仅在子帧 n2+l l上第 m+ 1次发送所述数据 , m为正整数;
在子帧 n2且 n2=4或 9上第 m次发送所述数据时, 所述发送端仅在子帧 n2+13上第 m+1次发送所述数据, m为正整数。
与发送端相对的,接收端的具体实现如下: 在子帧 n2且 n2=2或 7上第 m次接收所述 数据时, 所述接收端仅在子帧 n2+l l上第 m+1次接收所述数据, m为正整数;
在子帧 n2且 n2=3或 8上第 m次接收所述数据时, 所述接收端仅在子帧 n2+l l上第 m+ 1次接收所述数据 , m为正整数;
在子帧 n2且 n2=4或 9上第 m次接收所述数据时, 所述接收端仅在子帧 n2+13上第 m+1次接收所述数据, m为正整数。
针对图 5所示的时序关系, 较佳的实现方式是: 发送端侧: 当在子帧 n3上接收反馈 的所述数据对应的 NACK或、 用于重传调度的上行调度信令或、 所述数据对应的 NACK 和用于重传调度的上行调度信令或、 所述数据对应的 ACK和用于重传调度的上行调度信 令时, 发送端仅在子帧 n3+k3或 n3+8上重传数据, 其中, 子帧 n3属于所述第一类子帧或 者所述第四类子帧的下行导频时隙, k3和 8由子帧 n3和预设的第一时序关系确定, 第一 时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数 据传输仅发生在所述第二类子帧或者所述第三类子帧, k3≥4, 至少部分 HARQ进程的数 据传输仅发生在第二类子帧。 接收端侧: 当在子帧 n3上发送所述数据对应的 NACK或、 用于重传调度的上行调度信令或、所述数据对应的 NACK和用于重传调度的上行调度信令 或、 所述数据对应的 ACK和用于重传调度的上行调度信令时, 接收端仅在子帧 n3+k3或 n3+8上接收重传的数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧的下行 导频时隙, k3和 8由子帧 n3和预设的第一时序关系确定, 第一时序关系规定控制信令仅 发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二 类子帧或者所述第三类子帧, k3≥4, 至少部分 HARQ进程的数据传输仅发生在第二类子 帧。
具体的, 发送端收到反馈的 ACK或 NACK需进行重传时的实现如下: 在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据不在子帧 4或 9发送时,所述 发送端仅在子帧 n3+4重新发送所述数据; 在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据在子帧 4或 9发送时, 所述发送端仅在子帧 n3+8重新发送所述数据;
在子帧 n3且 n3=l或 6上接收所述数据的 ACK或 NACK反馈时, 所述发送端仅在子 帧 n3+6重新发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述发送端仅在子帧 n3+4上发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 n3+8上发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 n3+4和 n3+8上发送所述数据; 在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述发送端仅在子帧 n3+6上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述发送端仅在子帧 n3+8上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述发送端仅在子帧 n3+6和 n3+8上发送所述数据。
与发送端相对的, 接收端的具体实现如下: 在子帧 n3且 n3=0或 5上发送所述数据的 ACK或 NACK反馈且所述数据不在子帧 4或 9发送时,所述接收端仅在子帧 n3+4重新接 收所述数据;
9发送时, 所述接收端仅在子帧 n3+8重新接收所述数据;
在子帧 n3且 n3=l或 6上发送所述数据的 ACK或 NACK反馈时, 所述接收端仅在子 帧 n3+6重新接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接收端仅在子帧 n3+4上接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 n3+8上接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 n3+4和 n3+8上接收所述数据; 在子帧 n3且 n3=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接收端仅在子帧 n3+6上接收所述数据;
在子帧 n3且 n3=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接收端仅在子帧 n3+8上接收所述数据; 在子帧 n3且 n3=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接收端仅在子帧 n3+6和 n3+8上接收所述数据。
具体的, 发送端仅收到反馈的上行调度信令需进行重传的情况下, 当在子帧 n2上发 送数据时, 发送端仅在子帧 n2+k4上重传数据, 其中子帧 n2属于所述第二类子帧或者所 述第三类子帧, k4由子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅 发生在所述第二类子帧或者所述第三类子帧, k4≥8 , 至少部分 HARQ进程的数据传输仅 发生在第二类子帧。 第三时序关系可通过图 5获得, 具体实现如下: 在子帧 n2且 n2=2或 7上第 m次发送所述数据时,所述发送端仅在子帧 n2+10上第 m+1次发送所述数据, m为 正整数;
在子帧 n2且 n2=3或 8上第 m次发送所述数据时, 所述发送端仅在子帧 n2+l l上第 m+ 1次发送所述数据 , m为正整数;
在子帧 n2且 n2=4或 9上第 m次发送所述数据时, 所述发送端仅在子帧 n2+14上第 m+1次发送所述数据, m为正整数。
与发送端相对的,接收端的具体实现如下: 在子帧 n2且 n2=2或 7上第 m次接收所述 数据时, 所述接收端仅在子帧 n2+10上第 m+1次接收所述数据, m为正整数;
在子帧 n2且 n2=3或 8上第 m次接收所述数据时, 所述接收端仅在子帧 n2+l l上第 m+ 1次接收所述数据 , m为正整数;
在子帧 n2且 n2=4或 9上第 m次接收所述数据时, 所述接收端仅在子帧 n2+14上第 m+1次接收所述数据, m为正整数。
下面通过实施例来详细介绍下行数据传输的实现过程。
参见图 6,本实施例中上行数据传输由图 4和帧结构配置共同决定时的方法流程如下: 以 UE与基站之间的传输为例。
步骤 601: 基站在下行子帧 nl上通过 PDCCH发送上行调度信令。
步骤 602: UE根据第一时序关系, 在距离子帧 nl最近的上行子帧上通过 PUSCH发 送数据。
步骤 603 : 基站检测 UE发送的上行数据, 如果正确接收, 继续步骤 604, 否则继续步 骤 606。
步骤 604: 基站在子帧 n2+k2上发送 ACK。 n2+k2由表 3所示的第二时序关系确定。 步骤 605: UE在相应位置上接收 ACK。
步骤 606: 基站在子帧 n2+k2上发送 NACK。
步骤 607: UE在相应位置上接收 NACK。
步骤 608: UE根据第一时序关系,在距离子帧 n2+k2最近的可用上行子帧上重传数据。 例如, 针对图 4所示的时序关系, 一个具体的实例参见图 7所示的上行 HARQ时序。 基站在子帧 0发起上行调度, UE接收并根据上行 HARQ时序关系计算出可用的传输子帧 为:子帧 4 ( radio frame n ),子帧 7(radio frame n+1),子桢 8 ( radio frame n+2 ),子帧 9 ( radio frame n+3 ) ... ...。 其中, 子帧 4 ( radio frame n )被灵活配置为下行子帧, 不能用于上行传 输,则子帧 7(radio frame n+1)是距离子帧 0最近的上行子帧, UE选择这个子帧发送上行数 据。 由于现有技术中子帧为静态或半静态分配, HARQ 时序与子帧配置绑定, 因此通过 HARQ时序关系确定的子帧一定可用, 不存在判断相应的子帧是否可用的过程。 而本实施 例针对动态分配的子帧设计的 HARQ时序关系,因此在应用该时序关系时需判断相应的子 帧是否可用。之后,基站在对应子帧接收数据,但接收错误,则在子帧 1 ( radio frame n+2 ) 反馈, 通过 PHICH发送 NACK, 或者通过 PDCCH反馈调度信令, 或者同时通过 PHICH 发送 NACK和通过 PDCCH反馈调度信令。 UE在对应子帧接收 PHICH、 或 PDCCH、 或 PHICH和 PDCCH,并根据上行 HARQ时序关系计算出重传子帧为:子帧 8( radio frame n+2 ), 子帧 9 ( radio frame n+3 ) 。 其中, 子帧 8 ( radio frame n+2 )被灵活配置为下行子帧, 不能用于上行传输, 则子帧 9(radio frame n+3)是距离子帧 1 ( radio frame n+2 )最近的上行 子帧, UE选择这个子帧重新发送旧数据, 即重传数据。 基站在对应子帧接收数据。
又如, 针对图 5所示的时序关系, 一个具体的实例参见图 8所示的上行 HARQ时序。 基站在子帧 0发起上行调度, UE接收并根据上行 HARQ时序关系计算出可用的传输子帧 为:子帧 4 ( radio frame n ),子桢 8 ( radio frame n+1 ),子桢 9 ( radio frame n+2 ),子帧 3 (radio frame n+4) ... ...。 其中, 子帧 4 ( radio frame n )被灵活配置为下行子帧, 不能用于上行传 输,则子帧 8(radio frame n+1)是距离子帧 0最近的且灵活配置的上行子帧, UE选择这个子 帧发送上行数据。由于现有技术中子帧为静态或半静态分配, HARQ时序与子帧配置绑定, 因此通过 HARQ时序关系确定的子帧一定可用, 不存在判断相应的子帧是否可用的过程。 而本实施例针对动态分配的子帧设计的 HARQ时序关系,因此在应用该时序关系时需判断 相应的子帧是否可用。之后,基站在对应子帧接收数据,但接收错误,则在子帧 5( radio frame n+2 )反馈,通过 PHICH发送 NACK,或者通过 PDCCH反馈调度信令,或者同时通过 PHICH 发送 NACK和通过 PDCCH反馈调度信令。 UE在对应子帧接收 PHICH、 或 PDCCH、 或 PHICH和 PDCCH,并根据上行 HARQ时序关系计算出重传子帧为:子帧 9( radio frame n+2 ), 子帧 3 ( radio frame n+4 ) 。 其中, 子帧 9 ( radio frame n+2 )被灵活配置为下行子帧 , 不能用于上行传输, 则子帧 3(radio frame n+4)是距离子帧 5 ( radio frame n+2 )最近的且灵 活配置的上行子帧, UE选择这个子帧重新发送旧数据, 即重传数据。 基站在对应子帧接 收数据。
从图 6所示的实施例可以看出, 直接应用图 4 (或图 5 )或表 1 (或表 2 )或表 3所示 的时序关系, 相应的子帧可能已配置为不可用的子帧, 则需要二次应用图 4 (或图 5 )或 表 1 (或表 2 )或表 3所示的时序关系来确定可用的子帧。 较佳的方式是, 基站在调度前 就考虑到帧结构的配置, 调整调度信令所在的子帧, 以便 UE—次应用图 4 (或图 5 )或表 1 (或表 2 )或表 3所示的时序关系, 即可确定可用的子帧, 参见下面的实施例。
参见图 9 , 本实施例中上行数据传输由表 1 (或表 2 ) 决定时的方法流程如下: 以 UE与基站之间的传输为例。
步骤 901 : 基站确定在固定下行子帧 nl (如某个无线帧 t )上通过 PDCCH发送上行调 度信令。
步骤 902: 基站根据表 1 (或表 2 )所示的时序关系确定相应的子帧, 并判断该相应的 子帧是否可用, 即判断相应的所述第二类子帧或者所述第三类子帧是否可用, 若是, 则继 续步骤 903 , 否则继续步骤 904。
步骤 903: 基站在确定的固定下行子帧上发送上行调度信令。 继续步骤 905。
步骤 904: 基站依据第一时序关系查找下一个相应的子帧。 继续步骤 902。
步骤 905: UE才 居第三时序关系 (或者第一时序关系和第二时序关系), 在距离子帧 n最近的可用第二类子帧或者第三类子帧上通过 PUSCH发送数据。此步骤中的子帧 n为最 终传输上行调度信令的子帧, 该子帧可能是步骤 901中的 nl , 也可能是经过步骤 904查找 后的其它子帧。
步骤 906: 基站检测 UE发送的上行数据, 如果正确接收, 继续步骤 907, 否则继续步 骤 907和步骤 908。
步骤 907: 基站在子帧 n2+k2上发送 ACK。 n2+k2由表 2所示的第二时序关系确定。 子帧 n2为传输上行数据的子帧。
步骤 908: 基站通过 PDCCH反馈上行调度信令。 此步骤可以与 ACK在同一子帧中实 现, 也可以在其它固定下行子帧中实现。 此时基站可以先根据传输 PDCCH的子帧及通过 表 1 (或表 2 )判断相应的子帧是否可用, 如果可用, 则在当前确定的子帧上传输上行调 度信令, 否则针对第一时序关系指示的下一个第一类子帧或者所述第四类子帧的下行导频 时隙进行判断, 直至相应的子帧可用, 然后在相应的子帧上传输上行调度信令。
步骤 909: UE在相应位置上接收 ACK。 此时 UE不做其它处理。
步骤 910: UE在相应位置上通过 PDCCH接收上行调度信令, 并依据表 1 (或表 2 ) 所示的时序关系确定相应的子帧。
步骤 911 : UE在确定的子帧上重传数据。
例如,针对图 4所示的时序关系,一个具体的实例参见图 10所示的上行 HARQ时序。 基站在子帧 0 ( radio frame n ) 有上行数据需要调度, 但由于子帧 0直接对应的传输子帧 4
( radio frame n )配置为下行, 无法发送上行数据, 只能滞后调度。 基站找到最近一个可用 的调度子帧 0 ( radio frame n+1 ),发送 UL grant (上行调度信令 )调度上行数据。 UE在对 应子帧接收并根据上行 HARQ时序关系计算出传输子帧为: 子帧 7(radio frame n+1), UE 选择这个子帧发送上行数据。 基站在对应子帧接收数据, 但接收错误, 则在子帧 1 ( radio frame n+2 )反馈。 由于子帧 1 ( radio frame n+2 )直接对应的传输子帧 8 ( radio frame n+2 ) 配置为下行, 无法发送上行数据。 故基站发发送 ACK, 并之后通过 PDCCH调度重传。 UE 在对应子帧接收 PHICH, 发现为 ACK, 不作任何处理。 基站在后续子帧中找到最近可用 的调度子帧 5 ( radio frame n+3 ), 并在该子帧发送 UL grant触发 UE重传。 UE在相应位置 检测 PDCCH并根据上行 HARQ时序关系计算出重传子帧为: 子帧 9 ( radio frame n+3 ), UE选择这个子帧重新发送旧数据。 基站在对应子帧接收数据。
又如,针对图 5所示的时序关系,一个具体的实例参见图 11所示的上行 HARQ时序。 基站在子帧 0 ( radio frame n ) 有上行数据需要调度, 但由于子帧 0直接对应的传输子帧 4 ( radio frame n )配置为下行, 无法发送上行数据, 只能滞后调度。 基站找到最近一个可用 的调度子帧 0 ( radio frame n+1 ), 经过判断, 确定对应的子帧为可用的且灵活配置的上行 子帧 8(radio frame n+1), 因此在子帧 0 ( radio frame n+1 )发送 PDCCH以调度上行数据。 UE在对应子帧接收并根据上行 HARQ时序关系计算出传输子帧为:子帧 8(radio frame n+1), UE选择这个子帧发送上行数据。基站在对应子帧接收数据,但接收错误,则在子帧 5 ( radio frame n+2 )反馈。 由于子帧 5 ( radio frame n+2 )直接对应的传输子帧 9 ( radio frame n+2 ) 配置为下行, 无法发送上行数据。 故基站发发送 ACK, 并之后通过 PDCCH调度重传。 UE 在对应子帧接收 PHICH, 发现为 ACK, 不作任何处理。 基站在后续子帧中找到最近可用 的调度子帧 5 ( radio frame n+3 ), 并在该子帧发送 PDCCH触发 UE重传。 UE在相应位置 检测 PDCCH并根据上行 HARQ时序关系计算出重传子帧为: 子帧 3 ( radio frame n+4 ), UE选择这个子帧重新发送旧数据。 基站在对应子帧接收数据。
对于不支持动态 TDD上下行配置的 UE, 本实施例可提供兼容方案。 基站发送的控制 信息还包括上下行配置类型信息。 基站根据上下行配置类型对应的时序关系与动态子帧系 统预设的时序关系, 将上行数据调度在两种时序关系中相同的时序上。 本实施例中图 4所 示的时序关系与目前协议中规定的配置 0、配置 1、配置 3和配置 6有至少部分时序兼容。 参见图 12-图 15所示的配置 0、 配置 1、 配置 3和配置 6的 HARQ时序关系, 其中方框圏 定的时序关系为兼容的时序关系。 由图 12可知, 本实施例中的时序关系与配置 0完全兼 容。 由图 13可知, 本实施例中的时序关系与配置 1在时序 2上兼容。 由图 14可知, 本实 施例中的时序关系与配置 3在时序 1上兼容。 由图 15可知, 本实施例中的时序关系与配 置 6在时序 2、 3上兼容。 因此, 发送端在调度信令中还可以携带进程信息 (如进程号) 等。
具体的, 如果基站向 Rel-8/9/lO UE通知为釆用 TDD UL/DL configurationO , 上行业务 可调度在所有进程的子帧 2, 3 , 4, 7, 8或 9上。
如果基站向 Rel-8/9/lO UE通知为釆用 TDD UL/DL configuration 1 , 上行业务可调度在 所有进程的子帧 7上。
如果基站向 Rel-8/9/lO UE通知为釆用 TDD UL/DL configurations , 上行业务可调度在 所有进程的子帧 4上。
如果基站向 Rel-8/9/lO UE通知为釆用 TDD UL/DL configuration , 上行业务可调度在 所有进程的子帧 7或 8上。
本实施例中图 5所示的时序关系与目前协议中规定的配置 1有至少部分时序兼容。 参 见图 16所示的配置 1的 HARQ时序关系, 其中方框圏定的时序关系为兼容的时序关系。 由图 16可知, 本实施例中的时序关系与配置 1在时序 6、 7上兼容。
通过以上描述了解了下行数据传输的实现过程, 该过程主要由接收端和发送端实现, 下面对接收端设备和发送端设备的内部结构和功能进行介绍。
参见图 17, 本实施例中接收端设备包括: 接口模块 1701和控制模块 1702。 接收端设 备可以是用户设备或中继设备。
接口模块 1701 用于接收和发送各种信令和数据, 尤其是仅在所述第一类子帧或者所 述第四类子帧的下行导频时隙中接收上行调度信令; 以及在所述第二类子帧或者所述第三 类子帧中发送数据。 接口模块 1701 发送的数据至少包括上行共享信道上的上行数据。 每 个可用于数据传输的所述第二类子帧或者所述第三类子帧对应一个或多个调度子帧, 在一 次数据传输中一个所述第二类子帧或者所述第三类子帧对应一个调度子帧, 该调度子帧为 数据对应的上行调度信令所在的子帧。
控制模块 1702 用于生成各种信令和数据, 以及根据上行调度信令确定发送的数据应 在的子帧, 并指示接口模块在所述第二类子帧或者所述第三类子帧中发送数据。
具体的, 接口模块 1701当在子帧 nl上接收上行调度信令时, 仅在子帧 nl+kl或、 子 帧 nl+7或、 子帧 nl+kl和子帧 nl+7上发送数据, 其中, 子帧 nl属于所述第一类子帧或 者所述第四类子帧的下行导频时隙, kl和 7由子帧 nl和预设的第一时序关系确定, 第一 时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数 据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4。控制信令包括上行调度信令、 及 ACK或 NACK。
在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块 1701仅在子帧 nl+4上发送数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 nl+7上发送所述数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 nl+4和 nl+7上发送所述数 据; 在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1701仅在子帧 nl+6上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 nl+7上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 nl+6和 nl+7上发送所述数 据。
或者: 当在子帧 nl上接收上行调度信令时, 接口模块 1701仅在子帧 nl+kl或、 子帧 nl+8或、 子帧 nl+kl和子帧 nl+8上发送数据, 其中 kl和 8由子帧 nl和预设的第一时序 关系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下 行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4, 至少部分 HARQ进程的数据传输仅发生在第二类子帧。
在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1701仅在子帧 nl+4上发送所述数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 nl+8上发送所述数据;
在子帧 nl且 nl=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 nl+4和 nl+8上发送所述数 据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1701仅在子帧 nl+6上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 nl+8上发送所述数据;
在子帧 nl且 nl=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 nl+6和 nl+8上发送所述数 据。
接口模块 1701 还用于仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接 收接收端反馈的所述数据对应的 ACK或、 所述数据对应的 NACK或、 用于重传调度的上 行调度信令或、所述数据对应的 NACK和用于重传调度的上行调度信令或、所述数据对应 的 ACK和用于重传调度的上行调度信令。 每个可用于数据传输的所述第二类子帧或者所 述第三类子帧对应一个反馈子帧, 该反馈子帧为所述数据对应的 ACK或 NACK所在的子 帧。
具体的, 当在子帧 n2上发送数据时, 接口模块 1701仅在子帧 n2+k2上接收所述数据 对应的 ACK或 NACK反馈, 其中, 子帧 n2属于所述第二类子帧或者所述第三类子帧, k2 由子帧 n2和预设的第二时序关系确定,第二时序关系规定 ACK或 NACK反馈仅发生在所 述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或 者所述第三类子帧, k2≥4。
在子帧 n2且 n2=2或 7上发送所述数据时, 所述接口模块 1701仅在子帧 n2+4接收所 述数据的 ACK或 NACK反馈;
在子帧 n2且 n2=3或 8上发送所述数据时, 所述接口模块 1701仅在子帧 n2+7接收所 述数据的 ACK或 NACK反馈;
在子帧 n2且 n2=4或 9上发送所述数据时, 所述接口模块 1701仅在子帧 n2+6接收所 述数据的 ACK或 NACK反馈。
接口模块 1701还用于在所述第二类子帧或者所述第三类子帧中重传数据。
具体的, 当在子帧 n3上接收反馈的所述数据对应的 NACK或、 上行调度信令或、 所 述数据对应的 NACK和上行调度信令或、 所述数据对应的 ACK和上行调度信令时, 接口 模块 1701仅在子帧 n3+k或、 子帧 n3+7或、 子帧 n3+k3和子帧 n3+7上重传数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧的下行导频时隙, k3和 7由子帧 n3和预 设的第一时序关系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第 四类子帧的下行导频时隙,数据传输仅发生在所述第二类子帧或者所述第三类子帧, k3≥4。
在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据不在子帧 4 或 9发送时, 所述接口模块 1701仅在子帧 n3+4重新发送所述数据;
在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据在子帧 4或 9发送时, 所述接口模块 1701仅在子帧 n3+7重新发送所述数据;
在子帧 n3且 n3=l或 6上接收所述数据的 ACK或 NACK反馈时,所述接口模块 1701 仅在子帧 n+7重新发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块 1701仅在子帧 n3+4上发送数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 n3+7上发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 n3+4和 n3+7上发送所述数 据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位
MSB为 1 , 所述接口模块 1701仅在子帧 n3+6上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 n3+7上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 n3+6和 n3+7上发送所述数 据。
或者: 当在子帧 n3上接收反馈的所述数据对应的 NACK或、 上行调度信令或、 所述 数据对应的 NACK和上行调度信令或、 所述数据对应的 ACK和上行调度信令时, 接口模 块 1701仅在子帧 n3+k3或 n3+8上重传数据, 其中, 子帧 n3属于所述第一类子帧或者所 述第四类子帧的下行导频时隙, k3和 8由子帧 n3和预设的第一时序关系确定, 第一时序 关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传 输仅发生在所述第二类子帧或者所述第三类子帧, k3≥4, 至少部分 HARQ进程的数据传 输仅发生在第二类子帧。
在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据不在子帧 4 或 9发送时, 所述接口模块 1701仅在子帧 n3+4重新发送所述数据;
在子帧 n3且 n3=0或 5上接收所述数据的 ACK或 NACK反馈且所述数据在子帧 4或 9发送时, 所述接口模块 1701仅在子帧 n3+8重新发送所述数据;
在子帧 n3且 n3=l或 6上接收所述数据的 ACK或 NACK反馈时,所述接口模块 1701 仅在子帧 n3+6重新发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1701仅在子帧 n3+4上发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 n3+8上发送所述数据;
在子帧 n3且 n3=0或者 5上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 n3+4和 n3+8上发送所述数 据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1701仅在子帧 n3+6上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1701仅在子帧 n3+8上发送所述数据;
在子帧 n3且 n3=l或者 6上接收所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1701仅在子帧 n3+6和 n3+8上发送所述数 据。
针对仅有用于重传调度的上行控制信令, 当在子帧 n2上发送数据时, 接口端 1701仅 在子帧 n2+k4上重传数据, 其中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由 子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生在所述第二类子 帧或者所述第三类子帧, k4≥8。
具体的, 在子帧 n2且 n2=2或 7上第 m次发送所述数据时, 所述接口模块 1701仅在 子帧 n2+l l上第 m+1次发送所述数据, m为正整数;
在子帧 n2且 n2=3或 8上第 m次发送所述数据时,所述接口模块 1701仅在子帧 n2+l l 上第 m+1次发送所述数据, m为正整数;
在子帧 n2且 n2=4或 9上第 m次发送所述数据时,所述接口模块 1701仅在子帧 n2+13 上第 m+1次发送所述数据, m为正整数。
或者: 当在子帧 n2上发送数据时, 接口模块 1701端仅在子帧 n2+k4上重传数据, 其 中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由子帧 n2和预设的第三时序关系 确定, 第三时序关系规定数据传输仅发生在所述第二类子帧或者所述第三类子帧, k4≥8 , 至少部分 HARQ进程的数据传输仅发生在第二类子帧。
具体的, 在子帧 n2且 n2=2或 7上第 m次发送所述数据时, 所述接口模块 1701仅在 子帧 n2+10上第 m+1次发送所述数据, m为正整数;
在子帧 n2且 n2=3或 8上第 m次发送所述数据时,所述接口模块 1701仅在子帧 n2+l l 上第 m+1次发送所述数据, m为正整数;
在子帧 n2且 n2=4或 9上第 m次发送所述数据时,所述接口模块 1701仅在子帧 n2+14 上第 m+1次发送所述数据, m为正整数。
参见图 18 ,本实施例中上行传输的接收端设备包括:接口模块 1801和控制模块 1802。 接收端设备可以是基站或中继设备。
接口模块 1801 用于传输各种信令和数据, 尤其是仅在所述第一类子帧或者所述第四 类子帧的下行导频时隙中发送上行调度信令; 以及在所述第二类子帧或者所述第三类子帧 中接收数据。 接口模块 1801 接收的数据至少包括上行共享信道上的上行数据。 每个可用 于数据传输的所述第二类子帧或者所述第三类子帧对应一个或多个调度子帧, 在一次数据 传输中一个所述第二类子帧或者所述第三类子帧对应一个调度子帧, 该调度子帧为数据对 应的上行调度信令所在的子帧。
控制模块 1802 用于生成各种信令和数据, 以及根据上行调度信令确定需要接收的数 据所在的子帧, 并指示接口模块在所述第二类子帧或者所述第三类子帧中接收数据。
具体的, 当在子帧 nl上发送上行调度信令时, 接口模块 1801仅在子帧 nl+kl或、 子 帧 nl+7或、 子帧 nl+kl和子帧 nl+7上接收数据, 其中, 子帧 nl属于所述第一类子帧或 者所述第四类子帧的下行导频时隙, kl和 7由子帧 nl和预设的第一时序关系确定, 第一 时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数 据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4。 在子帧 nl且 nl=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块 1801仅在子帧 nl+4上接收数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 nl+7上接收所述数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1801仅在子帧 nl+4和 nl+7上接收所述数 据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1801仅在子帧 nl+6上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 nl+7上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1801仅在子帧 nl+6和 nl+7上接收所述数 据。
或者: 当在子帧 nl上发送上行调度信令时, 接口模块 1801仅在子帧 nl+kl或、 子帧 nl+7或、 子帧 nl+kl和子帧 nl+7上接收数据, 其中 kl和 8由子帧 nl和预设的第一时序 关系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下 行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4, 至少部分 HARQ进程的数据传输仅发生在第二类子帧。
在子帧 nl且 nl=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1801仅在子帧 nl+4上接收所述数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 nl+8上接收所述数据;
在子帧 nl且 nl=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1801仅在子帧 nl+4和 nl+8上接收所述数 据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1801仅在子帧 nl+6上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 nl+8上接收所述数据;
在子帧 nl且 nl=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位
MSB和最低有效位 LSB都为 1 , 所述接口模块仅在子帧 nl+6和 nl+8上接收所述数据。
接口模块 1801 还用于仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中发 送所述数据对应的 ACK或、所述数据对应的 NACK或、用于重传调度的上行调度信令或、 所述数据对应的 NACK和用于重传调度的上行调度信令或、 所述数据对应的 ACK和用于 重传调度的上行调度信令。 每个可用于数据传输的所述第二类子帧或者所述第三类子帧对 应一个反馈子帧, 该反馈子帧为所述数据对应的 ACK或 NACK所在的子帧。
具体的, 当在子帧 n2上发送数据时, 接口模块 1801仅在子帧 n2+k2上发送所述数据 对应的 ACK或 NACK反馈, 其中, 子帧 n2属于所述第二类子帧或者所述第三类子帧, k2 由子帧 n2和预设的第二时序关系确定,第二时序关系规定 ACK或 NACK反馈仅发生在所 述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或 者所述第三类子帧, k2≥4。
在子帧 n2且 n2=2或 7上接收所述数据时, 所述接口模块 1801仅在子帧 n2+4发送所 述数据的 ACK或 NACK反馈;
在子帧 n2且 n2=3或 8上接收所述数据时, 所述接口模块 1801仅在子帧 n2+7发送所 述数据的 ACK或 NACK反馈;
在子帧 n2且 n2=4或 9上接收所述数据时, 所述接口模块 1801仅在子帧 n2+6发送所 述数据的 ACK或 NACK反馈。
接口模块 1801还用于在所述第二类子帧或者所述第三类子帧中接收重传的数据。 具体的, 当在子帧 n3上发送所述数据对应的 NACK或、 上行调度信令或、 所述数据 对应的 NACK和上行调度信令或、所述数据对应的 ACK和上行调度信令时,接口模块 1801 仅在子帧 n3+k3或 n3+7上接收重传的数据, 其中, 子帧 n3属于所述第一类子帧或者所述 第四类子帧的下行导频时隙, k3和 7由子帧 n3和预设的第一时序关系确定, 第一时序关 系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输 仅发生在所述第二类子帧或者所述第三类子帧, k3≥4。 或 9发送时, 所述接口模块 1801仅在子帧 n3+4重新接收所述数据;
9发送时, 所述接口模块 1801仅在子帧 n3+7重新接收所述数据;
在子帧 n3且 n3=l或 6上发送所述数据的 ACK或 NACK反馈时,所述接口模块 1801 仅在子帧 n+7重新接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块 1801仅在子帧 n3+4上接收数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 n3+7上接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1801仅在子帧 η3+4和 η3+7上接收所述数 据;
在子帧 η3且 η3=1或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1801仅在子帧 n3+6上接收所述数据;
在子帧 n3且 n3=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 n3+7上接收所述数据;
在子帧 n3且 n3=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1801仅在子帧 n3+6和 n3+7上接收所述数 据。
或者: 当在子帧 n3上发送所述数据对应的 NACK、 或上行调度信令、 或所述数据对 应的 NACK和上行调度信令、 或所述数据对应的 ACK和上行调度信令时, 接口模块仅在 子帧 n3+k3或 n3+8上接收重传的数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四 类子帧的下行导频时隙, k3和 8由子帧 n3和预设的第一时序关系确定, 第一时序关系规 定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发 生在所述第二类子帧或者所述第三类子帧, k3≥4, 至少部分 HARQ进程的数据传输仅发 生在第二类子帧。 或 9发送时, 所述接口模块 1801仅在子帧 n3+4重新接收所述数据;
9发送时, 所述接口模块 1801仅在子帧 n3+8重新接收所述数据;
在子帧 n3且 n3=l或 6上发送所述数据的 ACK或 NACK反馈时,所述接口模块 1801 仅在子帧 n3+6重新接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块 1801仅在子帧 n3+4上接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 n3+8上接收所述数据;
在子帧 n3且 n3=0或者 5上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1801仅在子帧 n3+4和 n3+8上接收所述数 据;
在子帧 n3且 n3=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位
MSB为 1 , 所述接口模块 1801仅在子帧 n3+6上接收所述数据;
在子帧 n3且 n3=l或者 6上发送所述上行调度信令,且上行链路索引的最低有效位 LSB 为 1 , 所述接口模块 1801仅在子帧 n3+8上接收所述数据; 在子帧 n3且 n3=l或者 6上发送所述上行调度信令, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块 1801仅在子帧 n3+6和 n3+8上接收所述数 据。
针对仅有用于重传调度的上行调度信令时,当在子帧 n2上接收数据时,接口模块 1801 仅在子帧 n2+k4上接收重传的数据, 其中子帧 n2属于所述第二类子帧或者所述第三类子 帧, k4由子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生在所述 第二类子帧或者所述第三类子帧, k4≥8。
具体的, 在子帧 n2且 n2=2或 7上第 m次接收所述数据时, 所述接口模块 1801仅在 子帧 n2+l l上第 m+1次接收所述数据, m为正整数;
在子帧 n2且 n2=3或 8上第 m次接收所述数据时,所述接口模块 1801仅在子帧 n2+l l 上第 m+1次接收所述数据, m为正整数;
在子帧 n2且 n2=4或 9上第 m次接收所述数据时,所述接口模块 1801仅在子帧 n2+13 上第 m+1次接收所述数据, m为正整数。
或者:当在子帧 n2上接收数据时,接口模块 1801仅在子帧 n2+k4上接收重传的数据, 其中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由子帧 n2和预设的第三时序关 系确定,第三时序关系规定数据传输仅发生在所述第二类子帧或者所述第三类子帧, k4≥8 , 至少部分 HARQ进程的数据传输仅发生在第二类子帧。
具体的, 在子帧 n2且 n2=2或 7上第 m次接收所述数据时, 所述接口模块 1801仅在 子帧 n2+10上第 m+1次接收所述数据, m为正整数;
在子帧 n2且 n2=3或 8上第 m次接收所述数据时,所述接口模块 1801仅在子帧 n2+l l 上第 m+1次接收所述数据, m为正整数;
在子帧 n2且 n2=4或 9上第 m次接收所述数据时,所述接口模块 1801仅在子帧 n2+14 上第 m+1次接收所述数据, m为正整数。
控制模块 1802还用于根据调度信令与数据传输的第一时序关系, 判断第一时序关系 指示的相应所述第二类子帧或者所述第三类子帧是否可用; 若是, 则指示接口模块 1801 在第一时序关系指示的相应子帧上发送上行调度信令; 否则, 控制模块 1802依据第一时 序关系查找下一个相应的所述第二类子帧或者所述第三类子帧, 并判断该子帧是否可用。
本发明实施例中针对动态子帧系统设计了新的 HARQ传输策略,在动态分配上下行子 帧时实现了数据的上行传输。本发明实施例提供的 HARQ时序关系还具有较好的向后兼容 性。 并且, 接收端在进行调度前先考虑到时序关系直接对应的子帧是否可用, 进而确定最 近可用的子帧, 根据该子帧和时序关系确定调度信令所在的子帧并发送调度信令, 从而缩 短调度与数据传输直接的距离,有助于缩短数据传输与重传之间的距离,即,使 RTT( Round Trip Time, 往返时间)尽可能小。 本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形 式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种上行传输在发送端的处理方法, 应用于动态子帧系统, 其特征在于, 所述动 态子帧系统至少由四类子帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用 于上行传输, 第三类子帧可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧 不能同时用于上行传输和下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导 频时隙 DwPTS , 保护间隔 GP和上行导频时隙 UpPTS; 所述方法包括以下步骤:
发送端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接收上行调度信 令;
发送端在所述第二类子帧或者所述第三类子帧中发送数据。
2、 如权利要求 1 所述的方法, 其特征在于, 发送端发送的数据至少包括上行共享信 道上的上行数据。
3、 如权利要求 1 所述的方法, 其特征在于, 每个可用于数据传输的所述第二类子帧 或者所述第三类子帧对应一个或多个调度子帧, 在一次数据传输中一个所述第二类子帧或 者所述第三类子帧对应一个调度子帧, 该调度子帧为数据对应的上行调度信令所在的子帧。
4、 如权利要求 1、 2或 3所述的方法, 其特征在于, 发送端在所述第二类子帧或者所 述第三类子帧中发送数据的步骤包括: 当在子帧 nl 上接收上行调度信令时, 发送端仅在 子帧 nl+kl或、 子帧 nl+7或、 子帧 nl+kl和子帧 nl+7上发送数据, 其中, 子帧 nl属于 所述第一类子帧或者所述第四类子帧的下行导频时隙, kl和 7由子帧 nl和预设的第一时 序关系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的 下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4, 控制信令 包括上行调度信令。
5、 如权利要求 4所述的方法, 其特征在于, 当在子帧 nl上接收上行调度信令时, 发 送端仅在子帧 nl+kl或、 子帧 nl+7或、 子帧 nl+kl和子帧 nl+7上发送数据的步骤包括: 在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 nl+4上发送数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位 LSB为 1 , 所述发送端仅在子帧 nl+7上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 ,所述发送端仅在子帧 nl+4和子帧 nl+7上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位
MSB为 1 , 所述发送端仅在子帧 nl+6上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最低有效位 LSB为 1 , 所述发送端仅在子帧 nl+7上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 ,所述发送端仅在子帧 nl+6和子帧 nl+7上发送所述数据。
6、 如权利要求 1、 2或 3所述的方法, 其特征在于, 发送端在所述第二类子帧或者所 述第三类子帧中发送数据的步骤包括: 当在子帧 nl 上接收上行调度信令时, 发送端仅在 子帧 nl+kl或、 子帧 nl+8或、 子帧 nl+kl和子帧 nl+8上发送数据, 其中 kl和 8由子帧 nl和预设的第一时序关系确定,第一时序关系规定控制信令仅发生在所述第一类子帧或者 所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, kl >4, 至少部分混合自动请求重传 HARQ进程的数据传输仅发生在第二类子帧, 控制信 令包括上行调度信令。
7、 如权利要求 6所述的方法, 其特征在于, 当在子帧 nl上接收上行调度信令时, 发 送端仅在子帧 nl+kl或、 子帧 nl+8或、 子帧 nl+kl和子帧 nl+8上发送数据的步骤包括: 在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 nl+4上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述发送端仅在子帧 nl+8上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述发送端仅在子帧 nl+4和子帧 nl+8上发送所述数 据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 nl+6上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述发送端仅在子帧 nl+8上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述发送端仅在子帧 nl+6和子帧 nl+8上发送所述数 据。
8、 如权利要求 1 所述的方法, 其特征在于, 发送端发送数据后, 还包括步骤: 发送 端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接收接收端发送的所述数 据对应的肯定应答 ACK或、 所述数据对应的否定应答 NACK或、 上行调度信令或、 所述 数据对应的 NACK和上行调度信令或、 所述数据对应的 ACK和上行调度信令。
9、 如权利要求 8 所述的方法, 其特征在于, 每个可用于数据传输的所述第二类子帧 或者所述第三类子帧对应一个反馈子帧, 该反馈子帧为所述数据对应的 ACK或 NACK所 在的子帧。
10、 如权利要求 8或 9所述的方法, 其特征在于, 发送端仅在所述第一类子帧或者所 述第四类子帧的下行导频时隙中接收接收端反馈的所述数据对应的 ACK或、 所述数据对 应的 NACK的步骤包括: 当在子帧 n2上发送数据时, 发送端仅在子帧 n2+k2上接收所述 数据对应的 ACK或 NACK, 其中, 子帧 n2属于所述第二类子帧或者所述第三类子帧, k2 由子帧 n2和预设的第二时序关系确定,第二时序关系规定 ACK或 NACK反馈仅发生在所 述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或 者所述第三类子帧, k2≥4。
11、 如权利要求 10所述的方法, 其特征在于, 当在子帧 n2上发送数据时, 发送端仅 在子帧 n2+k2上接收所述数据对应的 ACK或 NACK的步骤包括:
在子帧 n2上发送所述数据、 且 n2=2或 7时, 所述发送端仅在子帧 n2+4接收所述数 据的 ACK或 NACK; 或者,
在子帧 n2上发送所述数据、 且 n2=3或 8时, 所述发送端仅在子帧 n2+7接收所述数 据的 ACK或 NACK; 或者,
在子帧 n2上发送所述数据、 且 n2=4或 9时, 所述发送端仅在子帧 n2+6接收所述数 据的 ACK或 NACK。
12、 如权利要求 8所述的方法, 其特征在于, 发送端接收到接收端反馈的所述数据对 应的 NACK或、 用于重传调度的上行调度信令或、 所述数据对应的 NACK和用于重传调 度的上行调度信令或、 所述数据对应的 ACK和用于重传调度的上行调度信令时, 还包括 步骤: 发送端在所述第二类子帧或者所述第三类子帧中重传数据。
13、 如权利要求 12 所述的方法, 其特征在于, 发送端在所述第二类子帧或者所述第 三类子帧中重传数据的步骤包括: 当在子帧 n3上接收反馈的所述数据对应的 NACK或、 用于重传调度的上行调度信令或、所述数据对应的 NACK和用于重传调度的上行调度信令 或、所述数据对应的 ACK和用于重传调度的上行调度信令时,发送端仅在子帧 n3+k3或、 子帧 n3+7或、 子帧 n3+k3和子帧 n3+7上重传数据, 其中, 子帧 n3属于所述第一类子帧 或者所述第四类子帧的下行导频时隙, k3和 7由子帧 n3和预设的第一时序关系确定, 第 一时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, k3≥4,控制信令包括上行调度信 令、 ACK或 NACK。
14、 如权利要求 13所述的方法, 其特征在于, 当在子帧 n3上接收反馈的所述数据对 应的 NACK或、 用于重传调度的上行调度信令或、 所述数据对应的 NACK和用于重传调 度的上行调度信令或、 所述数据对应的 ACK和用于重传调度的上行调度信令时, 发送端 仅在子帧 n3+k3或、 子帧 n3+7或、 子帧 n3+k3和子帧 n3+7上重传数据的步骤包括: 在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据不在子帧 4 或子帧 9发送时, 所述发送端仅在子帧 n3+4重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 子帧 9发送时, 所述发送端仅在子帧 n3+7重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=l或 6时, 所述发送端仅在子帧 n+7重新发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 n3+4上发送数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述发送端仅在子帧 n3+7上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述发送端仅在子帧 n3+4和子帧 n3+7上发送所述数 据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 n3+6上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 n3=l或者 6,且上行链路索引的最低有效位 LSB 为 1时, 所述发送端仅在子帧 n3+7上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 n3=l或者 6,且上行链路索引的最高有效位 MSB 和最低有效位 LSB都为 1时, 所述发送端仅在子帧 n3+6和子帧 n3+7上发送所述数据。
15、 如权利要求 12 所述的方法, 其特征在于, 发送端在所述第二类子帧或者所述第 三类子帧中重传数据的步骤包括: 当在子帧 n3上接收反馈的所述数据对应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所述数据对应的 ACK和上 行调度信令时, 发送端仅在子帧 n3+k3或子帧 n3+8上重传数据, 其中, 子帧 n3属于所述 第一类子帧或者所述第四类子帧的下行导频时隙, k3和 8由子帧 n3和预设的第一时序关 系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子帧的下行 导频时隙,数据传输仅发生在所述第二类子帧或者所述第三类子帧, k3≥4,至少部分 HARQ 进程的数据传输仅发生在第二类子帧, 控制信令包括上行调度信令、 ACK或 NACK。
16、 如权利要求 15所述的方法, 其特征在于, 当在子帧 n3上接收反馈的所述数据对 应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所述数据 对应的 ACK和上行调度信令时,发送端仅在子帧 n3+k3或子帧 n3+8上重传数据的步骤包 括:
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据不在子帧 4 或子帧 9发送时, 所述发送端仅在子帧 n3+4重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 子帧 9发送时, 所述发送端仅在子帧 n3+8重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK反馈、 且 n3=l或 6时, 所述发送端仅在 子帧 n3+6重新发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 n3+4上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述发送端仅在子帧 n3+8上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述发送端仅在子帧 n3+4和子帧 n3+8上发送所述数 据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述发送端仅在子帧 n3+6上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述发送端仅在子帧 n3+8上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述发送端仅在子帧 n3+6和子帧 n3+8上发送所述数 据。
17、 如权利要求 12 所述的方法, 其特征在于, 发送端仅接收到用于重传调度的上行 调度信令且在子帧 n2上发送数据时, 发送端在所述第二类子帧或者所述第三类子帧中重 传数据的步骤包括: 当在子帧 n2上发送数据时, 发送端仅在子帧 n2+k4上重传数据 , 其 中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由子帧 n2和预设的第三时序关系 确定, 第三时序关系规定数据传输仅发生在所述第二类子帧或者所述第三类子帧, k4≥8。
18、 如权利要求 17所述的方法, 其特征在于, 当在子帧 n2上发送数据时, 发送端仅 在子帧 n2+k4上重传数据的步骤包括:
在子帧 n2上第 m次发送所述数据、且 n2=2或 7时, 所述发送端仅在子帧 n2+l l上第 m+1次发送所述数据, m为正整数; 或者,
在子帧 n2上第 m次发送所述数据、且 n2=3或 8时, 所述发送端仅在子帧 n2+l l上第 m+1次发送所述数据, m为正整数; 或者,
在子帧 n2上第 m次发送所述数据、且 n2=4或 9时,所述发送端仅在子帧 n2+13上第 m+1次发送所述数据, m为正整数。
19、 如权利要求 12 所述的方法, 其特征在于, 发送端仅接收到用于重传调度的上行 调度信令且在子帧 n2上发送数据时, 发送端在所述第二类子帧或者所述第三类子帧中重 传数据的步骤包括: 当在子帧 n2上发送数据时, 发送端仅在子帧 n2+k4上重传数据 , 其 中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由子帧 n2和预设的第三时序关系 确定, 第三时序关系规定数据传输仅发生在所述第二类子帧或者所述第三类子帧, k4≥8 , 至少部分 HARQ进程的数据传输仅发生在第二类子帧。
20、 如权利要求 19所述的方法, 其特征在于, 当在子帧 n2上发送数据时, 发送端仅 在子帧 n2+k4上重传数据的步骤包括:
在子帧 n2上第 m次发送所述数据、且 n2=2或 7时,所述发送端仅在子帧 n2+10上第 m+1次发送所述数据, m为正整数; 或者,
在子帧 n2上第 m次发送所述数据、且 n2=3或 8时, 所述发送端仅在子帧 n2+l l上第 m+1次发送所述数据, m为正整数; 或者,
在子帧 n2上第 m次发送所述数据、且 n2=4或 9时,所述发送端仅在子帧 n2+14上第 m+1次发送所述数据, m为正整数。
21、 一种上行传输在接收端的处理方法, 应用于动态子帧系统, 其特征在于, 所述动 态子帧系统至少由四类子帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用 于上行传输, 第三类子帧可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧 不能同时用于上行传输和下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导 频时隙 DwPTS , 保护间隔 GP和上行导频时隙 UpPTS; 所述方法包括以下步骤:
接收端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中发送上行调度信 令;
接收端在所述第二类子帧或者所述第三类子帧中接收数据。
22、 如权利要求 21 所述的方法, 其特征在于, 接收端接收的数据至少包括上行共享 信道上的上行数据。
23、 如权利要求 21 所述的方法, 其特征在于, 每个可用于数据传输的所述第二类子 帧或者所述第三类子帧对应一个或多个调度子帧, 在一次数据传输中一个所述第二类子帧 或者所述第三类子帧对应一个调度子帧, 该调度子帧为数据对应的上行调度信令所在的子 帧。
24、 如权利要求 21、 22或 23所述的方法, 其特征在于, 接收端在所述第二类子帧或 者所述第三类子帧中接收数据的步骤包括: 当在子帧 nl 上发送上行调度信令时, 接收端 仅在子帧 nl+kl或、 子帧 nl+7或、 子帧 nl+kl和子帧 nl+7上接收数据, 其中, 子帧 nl 属于所述第一类子帧或者所述第四类子帧的下行导频时隙, kl和 7由子帧 nl和预设的第 一时序关系确定, 第一时序关系规定控制信令仅发生在所述第一类子帧或者所述第四类子 帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, kl≥4, 控制 信令包括上行调度信令。
25、 如权利要求 24所述的方法, 其特征在于, 当在子帧 nl上发送上行调度信令时, 接收端仅在子帧 nl+kl或、子帧 nl+7或、子帧 nl+kl和子帧 nl+7上接收数据的步骤包括: 在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位
MSB为 1时, 所述接收端仅在子帧 nl+4上接收数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位
LSB为 1时, 所述接收端仅在子帧 nl+7上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位
MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 nl+4和子帧 nl+7上接收所述数 据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述接收端仅在子帧 nl+6上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接收端仅在子帧 nl+7上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 nl+6和子帧 nl+7上接收所述数 据。
26、 如权利要求 21、 22或 23所述的方法, 其特征在于, 接收端在所述第二类子帧或 者所述第三类子帧中接收数据的步骤包括: 当在子帧 nl 上发送上行调度信令时, 接收端 仅在子帧 nl+kl或、 子帧 nl+8或、 子帧 nl+kl和子帧 nl+8上接收数据, 其中 kl和 8由 子帧 nl 和预设的第一时序关系确定, 第一时序关系规定控制信令仅发生在所述第一类子 帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三 类子帧, kl≥4, 至少部分 HARQ进程的数据传输仅发生在第二类子帧, 控制信令包括上 行调度信令。
27、 如权利要求 26所述的方法, 其特征在于, 当在子帧 nl上发送上行调度信令时, 接收端仅在子帧 nl+kl或、子帧 nl+8或、子帧 nl+kl和子帧 nl+8上接收数据的步骤包括: 在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接收端仅在子帧 nl+4上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接收端仅在子帧 nl+8上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 nl+4和子帧 nl+8上接收所述数 据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位
MSB为 1时, 所述接收端仅在子帧 nl+6上接收所述数据; 或者, 在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接收端仅在子帧 nl+8上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 nl+6和子帧 nl+8上接收所述数 据。
28、 如权利要求 21 所述的方法, 其特征在于, 接收端接收数据后, 还包括步骤: 接 收端仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中发送所述数据对应的 ACK或、 所述数据对应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调 度信令或、 所述数据对应的 ACK和上行调度信令。
29、 如权利要求 28 所述的方法, 其特征在于, 每个可用于数据传输的所述第二类子 帧或者所述第三类子帧对应一个反馈子帧, 该反馈子帧为所述数据对应的 ACK或 NACK 所在的子帧。
30、 如权利要求 28或 29所述的方法, 其特征在于, 接收端仅在所述第一类子帧或者 所述第四类子帧的下行导频时隙中发送所述数据对应的 ACK或、 所述数据对应的 NACK 的步骤包括: 当在子帧 n2上发送数据时, 接收端仅在子帧 n2+k2上发送所述数据对应的 ACK或 NACK, 其中, 子帧 n2属于所述第二类子帧或者所述第三类子帧, k2由子帧 n2 和预设的第二时序关系确定, 第二时序关系规定 ACK或 NACK反馈仅发生在所述第一类 子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第 三类子帧, k2≥4。
31、 如权利要求 30所述的方法, 其特征在于, 当在子帧 n2上接收数据时, 接收端仅 在子帧 n2+k2上发送所述数据对应的 ACK或 NACK的步骤包括:
在子帧 n2上接收所述数据、 且 n2=2或 7时, 所述接收端仅在子帧 n2+4发送所述数 据的 ACK或 NACK; 或者,
在子帧 n2上接收所述数据、 且 n2=3或 8时, 所述接收端仅在子帧 n2+7发送所述数 据的 ACK或 NACK; 或者,
在子帧 n2上接收所述数据、 且 n2=4或 9时, 所述接收端仅在子帧 n2+6发送所述数 据的 ACK或 NACK。
32、如权利要求 28所述的方法,其特征在于,接收端发送所述数据对应的 NACK或、 用于重传调度的上行调度信令或、所述数据对应的 NACK和用于重传调度的上行调度信令 或、 所述数据对应的 ACK和用于重传调度的上行调度信令后, 还包括步骤: 接收端在所 述第二类子帧或者所述第三类子帧中接收重传的数据。
33、 如权利要求 32 所述的方法, 其特征在于, 接收端在所述第二类子帧或者所述第 三类子帧中接收重传的数据的步骤包括: 当在子帧 n3上发送所述数据对应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所述数据对应的 ACK和上 行调度信令时, 接收端仅在子帧 n3+k3或、 子帧 n3+7或、 子帧 n3+k3和子帧 n3+7上接收 重传的数据, 其中, 子帧 n3 属于所述第一类子帧或者所述第四类子帧的下行导频时隙, k3和 7由子帧 n3和预设的第一时序关系确定, 第一时序关系规定控制信令仅发生在所述 第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者 所述第三类子帧, k3≥4, 控制信令包括上行调度信令、 ACK或 NACK。
34、如权利要求 33所述的方法,其特征在于,当在子帧 n3上发送所述数据对应的 NACK 或、用于重传调度的上行调度信令或、所述数据对应的 NACK和用于重传调度的上行调度 信令或、所述数据对应的 ACK和用于重传调度的上行调度信令时,接收端仅在子帧 n3+k3 或、 子帧 n3+7或、 子帧 n3+k3和子帧 n3+7上接收重传的数据的步骤包括:
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据不在子帧 4 或子帧 9发送时, 所述接收端仅在子帧 n3+4重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 子帧 9发送时, 所述接收端仅在子帧 n3+7重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=l或 6时, 所述接收端仅在子帧 n+7重新接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接收端仅在子帧 n3+4上接收数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接收端仅在子帧 n3+7上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 n3+4和子帧 n3+7上接收所述数 据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述接收端仅在子帧 n3+6上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接收端仅在子帧 n3+7上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 n3+6和子帧 n3+7上接收所述数 据。
35、 如权利要求 32 所述的方法, 其特征在于, 接收端在所述第二类子帧或者所述第 三类子帧中接收重传的数据的步骤包括: 当在子帧 n3上发送所述数据对应的 NACK或、 用于重传调度的上行调度信令或、所述数据对应的 NACK和用于重传调度的上行调度信令 或、 所述数据对应的 ACK和用于重传调度的上行调度信令时, 接收端仅在子帧 n3+k3或 子帧 n3+8上接收重传的数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧的 下行导频时隙, k3和 8由子帧 n3和预设的第一时序关系确定, 第一时序关系规定控制信 令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述 第二类子帧或者所述第三类子帧, k3≥4, 至少部分 HARQ进程的数据传输仅发生在第二 类子帧, 控制信令包括上行调度信令、 ACK或 NACK。
36、如权利要求 35所述的方法,其特征在于,当在子帧 n3上发送所述数据对应的 NACK 或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所述数据对应的 ACK 和上行调度信令时, 接收端仅在子帧 n3+k3或子帧 n3+8上接收重传的数据的步骤包括: 在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据不在子帧 4 或子帧 9发送时, 所述接收端仅在子帧 n3+4重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 9 发送时, 所述接收端仅在子帧 n3+8重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=l或 6时, 所述接收端仅在子帧 n3+6重新接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接收端仅在子帧 n3+4上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接收端仅在子帧 n3+8上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 n3+4和子帧 n3+8上接收所述数 据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB为 1 , 所述接收端仅在子帧 n3+6上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接收端仅在子帧 n3+8上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接收端仅在子帧 n3+6和子帧 n3+8上接收所述数 据。
37、 如权利要求 32 所述的方法, 其特征在于, 接收端在所述第二类子帧或者所述第 三类子帧中接收重传的数据的步骤包括:当在子帧 n2上接收数据时,接收端仅在子帧 n2+k4 上接收重传的数据, 其中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由子帧 n2 和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生在所述第二类子帧或者所 述第三类子帧, k4≥8。
38、 如权利要求 37所述的方法, 其特征在于, 当在子帧 n2上接收数据时, 接收端仅 在子帧 n2+k4上接收重传的数据的步骤包括:
在子帧 n2上第 m次接收所述数据、且 n2=2或 7时, 所述接收端仅在子帧 n2+l l上第 m+ 1次接收所述数据 , m为正整数; 或者,
在子帧 n2上第 m次接收所述数据、且 n2=3或 8时, 所述接收端仅在子帧 n2+l l上第 m+ 1次接收所述数据 , m为正整数; 或者,
在子帧 n2上第 m次接收所述数据、且 n2=4或 9时,所述接收端仅在子帧 n2+13上第 m+1次接收所述数据, m为正整数。
39、 如权利要求 32 所述的方法, 其特征在于, 接收端在所述第二类子帧或者所述第 三类子帧中接收重传的数据的步骤包括:当在子帧 n2上接收数据时,接收端仅在子帧 n2+k4 上接收重传的数据, 其中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由子帧 n2 和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生在所述第二类子帧或者所 述第三类子帧, k4≥8 , 至少部分 HARQ进程的数据传输仅发生在第二类子帧。
40、 如权利要求 39所述的方法, 其特征在于, 当在子帧 n2上接收数据时, 接收端仅 在子帧 n2+k4上接收重传的数据的步骤包括:
在子帧 n2上第 m次接收所述数据、且 n2=2或 7时,所述接收端仅在子帧 n2+10上第 m+ 1次接收所述数据 , m为正整数; 或者,
在子帧 n2上第 m次接收所述数据、且 n2=3或 8时, 所述接收端仅在子帧 n2+l l上第 m+ 1次接收所述数据 , m为正整数; 或者,
在子帧 n2上第 m次接收所述数据、且 n2=4或 9时,所述接收端仅在子帧 n2+14上第 m+1次接收所述数据, m为正整数。
41、 如权利要求 21或 28所述的方法, 其特征在于, 接收端发送上行调度信令之前, 还包括步骤: 接收端根据调度信令与数据传输的第一时序关系, 判断第一时序关系指示的 相应所述第二类子帧或者所述第三类子帧是否可用;
若是, 则接收端在第一时序关系指示的相应子帧上发送上行调度信令;
否则, 接收端依据第一时序关系查找下一个相应的所述第二类子帧或者所述第三类子 帧, 并判断该子帧是否可用。
42、 一种上行传输的发送端设备, 应用于动态子帧系统, 其特征在于, 所述动态子帧 系统至少由四类子帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用于上行 传输, 第三类子帧可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧不能同 时用于上行传输和下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导频时隙
DwPTS , 保护间隔 GP和上行导频时隙 UpPTS; 所述发送端设备包括: 接口模块, 用于仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中接收上行 调度信令; 以及在所述第二类子帧或者所述第三类子帧中发送数据;
控制模块, 用于根据上行调度信令确定发送的数据应在的子帧, 并指示接口模块在所 述第二类子帧或者所述第三类子帧中发送数据。
43、 如权利要求 42 所述的发送端设备, 其特征在于, 接口模块发送的数据至少包括 上行共享信道上的上行数据。
44、 如权利要求 42 所述的发送端设备, 其特征在于, 每个可用于数据传输的所述第 二类子帧或者所述第三类子帧对应一个或多个调度子帧, 在一次数据传输中一个所述第二 类子帧或者所述第三类子帧对应一个调度子帧, 该调度子帧为数据对应的上行调度信令所 在的子帧。
45、 如权利要求 42、 43或 44所述的发送端设备, 其特征在于, 接口模块当在子帧 nl 上接收上行调度信令时, 仅在子帧 nl+kl或、 子帧 nl+7或、 子帧 nl+kl和子帧 nl+7上发 送数据, 其中, 子帧 nl属于所述第一类子帧或者所述第四类子帧的下行导频时隙, kl和 7由子帧 nl和预设的第一时序关系确定,第一时序关系规定控制信令仅发生在所述第一类 子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第 三类子帧, kl≥4, 控制信令包括上行调度信令。
46、 如权利要求 45所述的发送端设备, 其特征在于, 在子帧 nl上接收所述上行调度 信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子 帧 nl+4上发送数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+7上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+4和子帧 nl+7上发送所述 数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 nl+6上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+7上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+6和子帧 nl+7上发送所述 数据。
47、 如权利要求 42、 43或 44所述的发送端设备, 其特征在于, 当在子帧 nl上接收 上行调度信令时, 接口模块仅在子帧 nl+kl或、 子帧 nl+8或、 子帧 nl+kl和子帧 nl+8上 发送数据, 其中 kl和 8由子帧 nl和预设的第一时序关系确定, 第一时序关系规定控制信 令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述 第二类子帧或者所述第三类子帧, kl≥4 , 至少部分 HARQ进程的数据传输仅发生在第二 类子帧, 控制信令包括上行调度信令。
48、 如权利要求 47所述的发送端设备, 其特征在于, 在子帧 nl上接收所述上行调度 信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子 帧 nl +4上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+8上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+4和子帧 nl+8上发送所述 数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 nl +6上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+8上发送所述数据; 或者,
在子帧 nl上接收所述上行调度信令、 且 nl=l或者 6 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+6和子帧 nl+8上发送所述 数据。
49、 如权利要求 42 所述的发送端设备, 其特征在于, 接口模块还用于仅在所述第一 类子帧或者所述第四类子帧的下行导频时隙中接收接收端反馈的所述数据对应的 AC或 K、 所述数据对应的 NACK或、上行调度信令或、所述数据对应的 NACK和上行调度信令或、 所述数据对应的 ACK和上行调度信令。
50、 如权利要求 49 所述的发送端设备, 其特征在于, 每个可用于数据传输的所述第 二类子帧或者所述第三类子帧对应一个反馈子帧, 该反馈子帧为所述数据对应的 ACK或 NACK所在的子帧。
51、 如权利要求 49或 50所述的发送端设备, 其特征在于, 当在子帧 n2上发送数据 时, 接口模块仅在子帧 n2+k2上接收所述数据对应的 ACK或 NACK, 其中, 子帧 n2属于 所述第二类子帧或者所述第三类子帧, k2由子帧 n2和预设的第二时序关系确定, 第二时 序关系规定 ACK或 NACK反馈仅发生在所述第一类子帧或者所述第四类子帧的下行导频 时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, k2≥4。
52、 如权利要求 51所述的发送端设备, 其特征在于, 在子帧 n2上发送所述数据、 且 n2=2或 7时, 所述接口模块仅在子帧 n2+4接收所述数据的 ACK或 NACK; 或者, 在子帧 n2上发送所述数据、 且 n2=3或 8时, 所述接口模块仅在子帧 n2+7接收所述 数据的 ACK或 NACK; 或者,
在子帧 n2上发送所述数据、 且 n2=4或 9时, 所述接口模块仅在子帧 n2+6接收所述 数据的 ACK或 NACK。
53、 如权利要求 49 所述的发送端设备, 其特征在于, 接口模块还用于在所述第二类 子帧或者所述第三类子帧中重传数据。
54、 如权利要求 53所述的发送端设备, 其特征在于, 当在子帧 n3上接收反馈的所述 数据对应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所 述数据对应的 ACK和上行调度信令时, 接口模块仅在子帧 n3+k3或、 子帧 n3+7或、 子帧 n3+k3和子帧 n3+7上重传数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧 的下行导频时隙, k3和 7由子帧 n3和预设的第一时序关系确定, 第一时序关系规定控制 信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所 述第二类子帧或者所述第三类子帧, k3≥4 ,控制信令包括上行调度信令、 ACK或 NACK。
55、如权利要求 54所述的发送端设备,其特征在于,在子帧 n3上接收所述数据的 ACK 或 NACK、 且 n3=0或 5、 且所述数据不在子帧 4或子帧 9发送时, 所述接口模块仅在子帧 n3+4重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 子帧 9发送时, 所述接口模块仅在子帧 n3+7重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=l或 6时, 所述接口模块仅在子 帧 n+7重新发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 n3+4上发送数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 n3+7上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 n3+4和子帧 n3+7上发送所述 数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 n3+6上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 n3+7上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6 , 且上行链路索引的最高有效位
MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 n3+6和子帧 n3+7上发送所述 数据。
56、 如权利要求 43所述的发送端设备, 其特征在于, 当在子帧 n3上接收反馈的所述 数据对应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所 述数据对应的 ACK和上行调度信令时,接口模块仅在子帧 n3+k3或子帧 n3+8上重传数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧的下行导频时隙, k3和 8由子帧 n3和预设的第一时序关系确定,第一时序关系规定控制信令仅发生在所述第一类子帧或者 所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧 , k3 >4, 至少部分 HARQ进程的数据传输仅发生在第二类子帧, 控制信令包括上行调度信 令、 ACK或 NACK。
57、如权利要求 56所述的发送端设备,其特征在于,在子帧 n3上接收所述数据的 ACK 或 NACK反、 且 n3=0或 5、 且所述数据不在子帧 4或子帧 9发送时, 所述接口模块仅在 子帧 n3+4重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 子帧 9发送时, 所述接口模块仅在子帧 n3+8重新发送所述数据; 或者,
在子帧 n3上接收所述数据的 ACK或 NACK、 且 n3=l或 6时, 所述接口模块仅在子 帧 n3+6重新发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 n3+4上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 n3+8上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 n3+4和子帧 n3+8上发送所述 数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 n3+6上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 n3+8上发送所述数据; 或者,
在子帧 n3上接收所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 n3+6和子帧 n3+8上发送所述 数据。
58、 如权利要求 53所述的发送端设备, 其特征在于, 当在子帧 n2上发送数据时, 接 口端仅在子帧 n2+k4上重传数据,其中子帧 n2属于所述第二类子帧或者所述第三类子帧, k4由子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生在所述第二 类子帧或者所述第三类子帧, k4≥8。
59、 如权利要求 58所述的发送端设备, 其特征在于, 在子帧 n2上第 m次发送所述数 据、 且 n2=2或 7时, 所述接口模块仅在子帧 n2+l l上第 m+1次发送所述数据, m为正整 数; 或者,
在子帧 n2上第 m次发送所述数据、 且 n2=3或 8时, 所述接口模块仅在子帧 n2+l l 上第 m+1次发送所述数据, m为正整数; 或者,
在子帧 n2上第 m次发送所述数据、 且 n2=4或 9时, 所述接口模块仅在子帧 n2+13 上第 m+1次发送所述数据, m为正整数。
60、 如权利要求 53所述的发送端设备, 其特征在于, 当在子帧 n2上发送数据时, 接 口模块端仅在子帧 n2+k4上重传数据, 其中子帧 n2属于所述第二类子帧或者所述第三类 子帧, k4由子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生在所 述第二类子帧或者所述第三类子帧, k4≥8 , 至少部分 HARQ进程的数据传输仅发生在第 二类子帧。
61、 如权利要求 60所述的发送端设备, 其特征在于, 在子帧 n2上第 m次发送所述数 据、 且 n2=2或 7时, 所述接口模块仅在子帧 n2+10上第 m+1次发送所述数据, m为正整 数; 或者,
在子帧 n2上第 m次发送所述数据、 且 n2=3或 8时, 所述接口模块仅在子帧 n2+l l 上第 m+1次发送所述数据, m为正整数; 或者,
在子帧 n2上第 m次发送所述数据、 且 n2=4或 9时, 所述接口模块仅在子帧 n2+14 上第 m+1次发送所述数据, m为正整数。
62、 一种上行传输的接收端设备, 应用于动态子帧系统, 其特征在于, 所述动态子帧 系统至少由四类子帧组成, 其中第一类子帧仅能用于下行传输, 第二类子帧仅能用于上行 传输, 第三类子帧可以动态地配置为用于上行传输或者下行传输, 所述第三类子帧不能同 时用于上行传输和下行传输, 第四类子帧是特殊子帧, 所述第四类子帧包括下行导频时隙 DwPTS , 保护间隔 GP和上行导频时隙 UpPTS; 所述接收端设备包括:
接口模块, 用于仅在所述第一类子帧或者所述第四类子帧的下行导频时隙中发送上行 调度信令; 以及在所述第二类子帧或者所述第三类子帧中接收数据;
控制模块, 用于根据上行调度信令确定需要接收的数据所在的子帧, 并指示接口模块 在所述第二类子帧或者所述第三类子帧中接收数据。
63、 如权利要求 62 所述的接收端设备, 其特征在于, 接口模块接收的数据至少包括 上行共享信道上的上行数据。
64、 如权利要求 62 所述的接收端设备, 其特征在于, 每个可用于数据传输的所述第 二类子帧或者所述第三类子帧对应一个或多个调度子帧, 在一次数据传输中一个所述第二 类子帧或者所述第三类子帧对应一个调度子帧, 该调度子帧为数据对应的上行调度信令所 在的子帧。
65、 如权利要求 62、 63或 64所述的接收端设备, 其特征在于, 当在子帧 nl上发送 上行调度信令时, 接口模块仅在子帧 nl+kl或、 子帧 nl+7或、 子帧 nl+kl和子帧 nl+7上 接收数据, 其中, 子帧 nl 属于所述第一类子帧或者所述第四类子帧的下行导频时隙, kl 和 7由子帧 nl和预设的第一时序关系确定, 第一时序关系规定控制信令仅发生在所述第 一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所 述第三类子帧, kl≥4, 控制信令包括上行调度信令。
66、 如权利要求 65所述的接收端设备, 其特征在于, 在子帧 nl上发送所述上行调度 信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子 帧 nl+4上接收数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+7上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+4和子帧 nl+7上接收所述 数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 nl+6上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+7上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+6和子帧 nl+7上接收所述 数据。
67、 如权利要求 62、 63或 64所述的接收端设备, 其特征在于, 当在子帧 nl上发送 上行调度信令时, 接口模块仅在子帧 nl+kl或、 子帧 nl+8或、 子帧 nl+kl和子帧 nl+8上 接收数据, 其中 kl和 8由子帧 nl和预设的第一时序关系确定, 第一时序关系规定控制信 令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所述 第二类子帧或者所述第三类子帧, kl≥4, 至少部分 HARQ进程的数据传输仅发生在第二 类子帧, 控制信令包括上行调度信令。
68、 如权利要求 67所述的接收端设备, 其特征在于, 在子帧 nl上发送所述上行调度 信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子 帧 nl +4上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+8上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+4和子帧 nl+8上接收所述 数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 nl+6上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 nl+8上接收所述数据; 或者,
在子帧 nl上发送所述上行调度信令、 且 nl=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 nl+6和子帧 nl+8上接收所述 数据。
69、 如权利要求 62 所述的接收端设备, 其特征在于, 接口模块还用于仅在所述第一 类子帧或者所述第四类子帧的下行导频时隙中发送所述数据对应的 ACK或、 所述数据对 应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所述数据 对应的 ACK和上行调度信令。
70、 如权利要求 69 所述的接收端设备, 其特征在于, 每个可用于数据传输的所述第 二类子帧或者所述第三类子帧对应一个反馈子帧, 该反馈子帧为所述数据对应的 ACK或 NACK所在的子帧。
71、 如权利要求 69或 70所述的接收端设备, 其特征在于, 当在子帧 n2上发送数据 时, 接口模块仅在子帧 n2+k2上发送所述数据对应的 ACK或 NACK, 其中, 子帧 n2属于 所述第二类子帧或者所述第三类子帧, k2由子帧 n2和预设的第二时序关系确定, 第二时 序关系规定 ACK或 NACK反馈仅发生在所述第一类子帧或者所述第四类子帧的下行导频 时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧, k2≥4。
72、如权利要求 71所述的接收端设备,其特征在于,在子帧 n2接收所述数据、且 n2=2 或 7上时, 所述接口模块仅在子帧 n2+4发送所述数据的 ACK或 NACK; 或者,
在子帧 n2上接收所述数据、 且 n2=3或 8时, 所述接口模块仅在子帧 n2+7发送所述 数据的 ACK或 NACK; 或者,
在子帧 n2上接收所述数据、 且 n2=4或 9时, 所述接口模块仅在子帧 n2+6发送所述 数据的 ACK或 NACK。
73、 如权利要求 69 所述的接收端设备, 其特征在于, 接口模块还用于在所述第二类 子帧或者所述第三类子帧中接收重传的数据。
74、 如权利要求 73所述的接收端设备, 其特征在于, 当在子帧 n3上发送所述数据对 应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所述数据 对应的 ACK和上行调度信令时, 接口模块仅在子帧 n3+k3或、 子帧 n3+7或、 子帧 n3+k3 和子帧 n3+7上接收重传的数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧 的下行导频时隙, k3和 7由子帧 n3和预设的第一时序关系确定, 第一时序关系规定控制 信令仅发生在所述第一类子帧或者所述第四类子帧的下行导频时隙, 数据传输仅发生在所 述第二类子帧或者所述第三类子帧, k3≥4 ,控制信令包括上行调度信令、 ACK或 NACK。
75、如权利要求 74所述的接收端设备,其特征在于,在子帧 n3上发送所述数据的 ACK 或 NACK、 且 n3=0或 5、 且所述数据不在子帧 4或子帧 9发送时, 所述接口模块仅在子帧 n3+4重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 子帧 9发送时, 所述接口模块仅在子帧 n3+7重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=l或 6时, 所述接口模块仅在子 帧 n+7重新接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 n3+4上接收数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 n3+7上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 n3+4和子帧 n3+7上接收所述 数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6 , 且上行链路索引的最高有效位 MSB为 1时, 所述接口模块仅在子帧 n3+6上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6 , 且上行链路索引的最低有效位 LSB为 1时, 所述接口模块仅在子帧 n3+7上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1时, 所述接口模块仅在子帧 n3+6和子帧 n3+7上接收所述 数据。
76、 如权利要求 73所述的接收端设备, 其特征在于, 当在子帧 n3上发送所述数据对 应的 NACK或、 上行调度信令或、 所述数据对应的 NACK和上行调度信令或、 所述数据 对应的 ACK和上行调度信令时,接口模块仅在子帧 n3+k3或子帧 n3+8上接收重传的数据, 其中, 子帧 n3属于所述第一类子帧或者所述第四类子帧的下行导频时隙, k3和 8由子帧 n3和预设的第一时序关系确定,第一时序关系规定控制信令仅发生在所述第一类子帧或者 所述第四类子帧的下行导频时隙, 数据传输仅发生在所述第二类子帧或者所述第三类子帧 , k3 > 4 , 至少部分 HARQ进程的数据传输仅发生在第二类子帧, 控制信令包括上行调度信 令、 ACK或 NACK。
77、如权利要求 76所述的接收端设备,其特征在于,在子帧 n3上发送所述数据的 ACK 或 NACK、 且 n3=0或 5、 且所述数据不在子帧 4或子帧 9发送时, 所述接口模块仅在子帧 n3+4重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=0或 5、 且所述数据在子帧 4或 子帧 9发送时, 所述接口模块仅在子帧 n3+8重新接收所述数据; 或者,
在子帧 n3上发送所述数据的 ACK或 NACK、 且 n3=l或 6时, 所述接口模块仅在子 帧 n3+6重新接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块仅在子帧 n3+4上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最低有效位 LSB为 1 , 所述接口模块仅在子帧 n3+8上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=0或者 5 , 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块仅在子帧 n3+4和子帧 n3+8上接收所述数 据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB为 1 , 所述接口模块仅在子帧 n3+6上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最低有效位 LSB为 1 , 所述接口模块仅在子帧 n3+8上接收所述数据; 或者,
在子帧 n3上发送所述上行调度信令、 且 n3=l或者 6, 且上行链路索引的最高有效位 MSB和最低有效位 LSB都为 1 , 所述接口模块仅在子帧 n3+6和子帧 n3+8上接收所述数 据。
78、 如权利要求 73所述的接收端设备, 其特征在于, 当在子帧 n2上接收数据时, 接 口模块仅在子帧 n2+k4上接收重传的数据, 其中子帧 n2属于所述第二类子帧或者所述第 三类子帧, k4由子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生 在所述第二类子帧或者所述第三类子帧, k4≥8。
79、 如权利要求 78所述的接收端设备, 其特征在于, 在子帧 n2上第 m次接收所述数 据、 且 n2=2或 7时, 所述接口模块仅在子帧 n2+ll上第 m+1次接收所述数据, m为正整 数; 或者,
在子帧 n2上第 m次接收所述数据、 且 n2=3或 8时, 所述接口模块仅在子帧 n2+ll 上第 m+1次接收所述数据, m为正整数; 或者,
在子帧 n2上第 m次接收所述数据、 且 n2=4或 9时, 所述接口模块仅在子帧 n2+13 上第 m+1次接收所述数据, m为正整数。
80、 如权利要求 73所述的接收端设备, 其特征在于, 当在子帧 n2上接收数据时, 接 收端仅在子帧 n2+k4上接收重传的数据, 其中子帧 n2属于所述第二类子帧或者所述第三 类子帧, k4由子帧 n2和预设的第三时序关系确定, 第三时序关系规定数据传输仅发生在 所述第二类子帧或者所述第三类子帧, k4≥8, 至少部分 HARQ进程的数据传输仅发生在 第二类子帧。
81、 如权利要求 80所述的接收端设备, 其特征在于, 在子帧 n2且 n2=2或 7上第 m 次接收所述数据时,所述接口模块仅在子帧 n2+10上第 m+1次接收所述数据, m为正整数; 或者,
在子帧 n2上第 m次接收所述数据、 且 n2=3或 8时, 所述接口模块仅在子帧 n2+ll 上第 m+1次接收所述数据, m为正整数; 或者,
在子帧 n2上第 m次接收所述数据、 且 n2=4或 9时, 所述接口模块仅在子帧 n2+14 上第 m+1次接收所述数据, m为正整数。
82、 如权利要求 62或 69所述的接收端设备, 其特征在于, 控制模块还用于根据调度 信令与数据传输的第一时序关系, 判断第一时序关系指示的相应所述第二类子帧或者所述 第三类子帧是否可用;
若是, 则指示接口模块在第一时序关系指示的相应子帧上发送上行调度信令; 否则, 控制模块依据第一时序关系查找下一个相应的所述第二类子帧或者所述第三类 子帧, 并判断该子帧是否可用。
47
替换页 (细则第 26条)
PCT/CN2012/073460 2011-06-03 2012-04-01 一种数据传输的方法及装置 WO2012163171A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110149646.2A CN102231662B (zh) 2011-06-03 2011-06-03 一种数据传输的方法及装置
CN201110149646.2 2011-06-03

Publications (1)

Publication Number Publication Date
WO2012163171A1 true WO2012163171A1 (zh) 2012-12-06

Family

ID=44844203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073460 WO2012163171A1 (zh) 2011-06-03 2012-04-01 一种数据传输的方法及装置

Country Status (2)

Country Link
CN (1) CN102231662B (zh)
WO (1) WO2012163171A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231662B (zh) * 2011-06-03 2013-05-08 电信科学技术研究院 一种数据传输的方法及装置
CN103326840A (zh) * 2012-03-23 2013-09-25 电信科学技术研究院 一种时分双工通信的方法、系统和设备
CN103944693B (zh) * 2013-01-23 2017-09-08 中国移动通信集团公司 一种控制信息的发送、接收方法和相关装置
CN103944694B (zh) * 2013-01-23 2017-12-22 中国移动通信集团公司 一种下行ack/nack消息的传输方法、装置和系统
CN104144508A (zh) * 2013-05-08 2014-11-12 中国移动通信集团公司 一种调度上行子帧的方法、装置、系统及ue
JP6728388B2 (ja) 2016-03-31 2020-07-22 華為技術有限公司Huawei Technologies Co.,Ltd. アップリンクデータ送信方法、アップリンクデータスケジューリング方法、および装置
CN107317658A (zh) * 2016-04-26 2017-11-03 北京信威通信技术股份有限公司 Harq处理方法及装置
CN108282883B (zh) * 2017-01-06 2020-03-24 电信科学技术研究院 一种信息传输方法及装置
US11646833B2 (en) * 2018-07-24 2023-05-09 Koninklijke Kpn N.V. Reliable communication over shared resources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010049587A1 (en) * 2008-10-31 2010-05-06 Nokia Corporation Dynamic allocation of subframe scheduling for time division duplex operation in a packet-based wireless communication system
CN101926214A (zh) * 2008-03-24 2010-12-22 中兴通讯美国公司 动态调整和信令通知lte/tdd系统中的下行/上行分配比率
CN102064879A (zh) * 2010-11-30 2011-05-18 大唐移动通信设备有限公司 一种时分双工通信的方法、系统和设备
CN102231662A (zh) * 2011-06-03 2011-11-02 电信科学技术研究院 一种数据传输的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026477A1 (en) * 2007-08-14 2009-02-18 Nokia Corporation Radio communication system and method for coding data
CN101425841B (zh) * 2007-11-02 2012-06-27 电信科学技术研究院 时分双工系统的数据传输方法及装置
EP2234292B1 (en) * 2007-11-02 2014-08-27 China Academy of Telecommunications Technology A method and an apparatus for determining the radio frame structure of time division duplex system
CN101431362B (zh) * 2007-11-08 2012-10-03 电信科学技术研究院 时分双工系统的子帧分配方法及装置
CN101425840B (zh) * 2007-11-02 2013-04-10 电信科学技术研究院 一种传输数据的方法和装置
CN101442816B (zh) * 2007-11-23 2010-12-15 大唐移动通信设备有限公司 一种时分双工系统的上行控制信令传输方法
CN101483475B (zh) * 2008-01-07 2012-07-11 电信科学技术研究院 充分利用时分双工系统中特殊时隙资源的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101926214A (zh) * 2008-03-24 2010-12-22 中兴通讯美国公司 动态调整和信令通知lte/tdd系统中的下行/上行分配比率
WO2010049587A1 (en) * 2008-10-31 2010-05-06 Nokia Corporation Dynamic allocation of subframe scheduling for time division duplex operation in a packet-based wireless communication system
CN102064879A (zh) * 2010-11-30 2011-05-18 大唐移动通信设备有限公司 一种时分双工通信的方法、系统和设备
CN102231662A (zh) * 2011-06-03 2011-11-02 电信科学技术研究院 一种数据传输的方法及装置

Also Published As

Publication number Publication date
CN102231662B (zh) 2013-05-08
CN102231662A (zh) 2011-11-02

Similar Documents

Publication Publication Date Title
WO2012163168A1 (zh) 一种数据传输的方法及装置
WO2012163171A1 (zh) 一种数据传输的方法及装置
WO2016131344A1 (zh) 一种设备到设备发送、接收、调度方法和相应装置
WO2012163170A1 (zh) 一种数据传输的方法及装置
WO2014101233A1 (zh) 信息传输方法和装置
CN101388755B (zh) 单小区mbms数据重传调度方法、装置、系统和基站
CN102548011B (zh) 中继接入链路的半持续调度、接收方法、系统及装置
WO2012072009A1 (zh) 一种时分双工通信的方法、系统和设备
WO2013020508A1 (zh) Tdd无线帧中传输数据的方法、系统和设备
CN101931514B (zh) 一种混合自动重传请求中的通信方法、系统和设备
WO2011038618A1 (zh) 一种中继节点及其传输数据的方法
CN101682488A (zh) 通过发送时间间隔集束处理来增强上行链路传输
WO2013139208A1 (zh) 一种时分双工通信的方法、系统和设备
WO2010075706A1 (zh) 基于时分双工系统的混合自动重传请求的实现方法和装置
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
CN101931960B (zh) 一种避免上行传输冲突的方法、系统和装置
WO2010127624A1 (zh) 数据重传的指示方法、重传数据的方法、系统及中继站
WO2015027798A1 (zh) 一种tdd-fdd联合系统中的传输方法和装置
WO2009021349A1 (en) A communication method and equipment for controlling the data transmission and retransmission of mobile station at the base station
KR20100063600A (ko) 중계국을 위한 harq 수행방법
WO2013044880A1 (zh) 一种数据传输方法和装置
WO2012068953A1 (zh) 中继链路子帧配置切换时确认信息的反馈方法及装置
WO2015062078A1 (zh) 上行控制信息的传输方法、基站和用户设备
WO2016145927A1 (zh) 一种设备到设备通信的方法、装置及计算机存储介质
WO2015024248A1 (zh) 信息传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792667

Country of ref document: EP

Kind code of ref document: A1