WO2020220786A1 - 换热系统及电机 - Google Patents

换热系统及电机 Download PDF

Info

Publication number
WO2020220786A1
WO2020220786A1 PCT/CN2020/074544 CN2020074544W WO2020220786A1 WO 2020220786 A1 WO2020220786 A1 WO 2020220786A1 CN 2020074544 W CN2020074544 W CN 2020074544W WO 2020220786 A1 WO2020220786 A1 WO 2020220786A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
transmitter
controller
pump
information
Prior art date
Application number
PCT/CN2020/074544
Other languages
English (en)
French (fr)
Inventor
王丁会
李锦辉
刘军卫
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to EP20798309.9A priority Critical patent/EP3965269A4/en
Priority to AU2020266630A priority patent/AU2020266630B2/en
Priority to US17/607,336 priority patent/US11770050B2/en
Publication of WO2020220786A1 publication Critical patent/WO2020220786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/18Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the external part of the closed circuit comprises a heat exchanger structurally associated with the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • This application relates to the field of heat exchange, and specifically relates to a heat exchange system and a motor.
  • Wind power technology is a key technology for the development of renewable energy.
  • the heat loss mainly includes Joule heat due to ohmic resistance in the winding, hysteresis loss and eddy current loss in the iron core, and unavoidable stray loss.
  • the single-machine installed capacity of wind turbines is constantly increasing.
  • the increase of the single machine capacity will directly bring about the continuous increase of the heat loss of the wind turbine.
  • the cooling system can take away the heat generated by the wind turbine to a certain extent to facilitate the smooth operation of the wind turbine.
  • the cooling system of the existing wind power generator has a complicated structure, cannot operate with fault tolerance, and has low reliability.
  • the application provides a heat exchange system and a motor to improve the reliability of the heat exchange system.
  • the present application provides a heat exchange system for cooling heat-generating components of a motor, which includes: a first heat exchange unit disposed in the area to be cooled of the motor for heat exchange; the first heat exchange unit includes mutual A plurality of first heat exchange branches connected in parallel; a second heat exchange unit is arranged outside the motor, and the second heat exchange unit communicates with the first heat exchange unit through a pipeline assembly to form a closed loop heat exchange circuit, wherein each first A first heat exchanger, a first valve group and a first pressure information component are connected to the heat exchange branch, and the opening and closing of the first valve group is controlled according to the first pressure information of the first pressure information component.
  • the first heat exchanger is arranged in the area to be cooled;
  • the first valve group includes at least two first valves, and the first heat exchange branch has a first heat exchanger at its inlet and outlet.
  • the first pressure information component includes at least two first pressure transmitters, the inlet end and the outlet end of the first heat exchanger are respectively provided with first pressure transmitters, at least two first pressure transmitters output the first One pressure information.
  • the first heat exchange unit further includes a supply header and a return header.
  • the multiple first heat exchange branches are respectively connected to the supply header and the return header, wherein the supply header and the return header are both looped.
  • Shaped tube body, a plurality of first heat exchange branches are evenly distributed on the outer circumference of the supply main pipe and the return main pipe; the multiple first heat exchange branches are arranged in the same way.
  • the heat exchange system further includes: a pump unit connected to the closed-loop heat exchange circuit through a pipeline assembly, the pump unit includes two or more pump group branches arranged in parallel, each pump A pump, a second valve group and a first differential pressure transmitter are connected to the group branch, and the opening and closing of the second valve group is controlled according to the first pressure difference information of the first differential pressure transmitter.
  • the second valve group includes at least two second valves, and the inlet and outlet ends of the branch of the pump group are respectively provided with second valves; the first differential pressure transmitter and the inlet of the pump The end and the outlet end are connected.
  • the second heat exchange unit includes two or more second heat exchange branches arranged in parallel, and each second heat exchange branch is connected with a second heat exchanger, a third valve group, and
  • the second pressure information component controls the opening and closing of the third valve group according to the second pressure information of the second pressure information component.
  • the second heat exchanger is arranged outside the motor;
  • the third valve group includes at least two third valves, and the inlet end and the outlet end of the second heat exchange branch are respectively provided with third valves ;
  • the second pressure information component includes at least two second pressure transmitters, the inlet and outlet ends of the second heat exchanger are respectively provided with second pressure transmitters, at least two second pressure transmitters output second Pressure information.
  • the heat exchange system further includes a controller, each first heat exchange branch is connected with a first flow transmitter, the first flow transmitter is connected with the controller, and the controller is The first flow information of a flow transmitter controls the opening of the first valve group; each second heat exchange branch is connected with a second flow transmitter, the second flow transmitter is connected with the controller, and the controller is based on The second flow information of the second flow transmitter controls the opening of the second valve group.
  • At least one of the pipeline assembly, the supply header, and the return header is connected with a third flow transmitter
  • the supply header is connected with the first temperature transmitter
  • the return header is connected with
  • There is a second temperature transmitter, a third flow transmitter, a first temperature transmitter, and a second temperature transmitter are connected to the controller, and the controller is connected to the controller according to the first flow information and the second
  • the second flow information of the flow transmitter, the third flow information of the third flow transmitter, the first temperature information of the first temperature transmitter, and the second temperature information of the second temperature transmitter are obtained from the heat exchange system. Total heat dissipation.
  • each first heat exchange branch is provided with a first fan connected with the first heat exchanger gas path
  • each second heat exchange branch is provided with a second heat exchanger.
  • the second fan connected with the air circuit, the first fan and the second fan are connected with the controller
  • the heat exchange system also includes a stator temperature transmitter connected with the stator of the motor, a rotor temperature transmitter connected with the rotor of the motor, and setting The ambient temperature transmitter and wind speed sensor outside the motor, the stator temperature transmitter, the rotor temperature transmitter, the ambient temperature transmitter and the wind speed sensor are connected to the controller, and the controller is based on the stator temperature information of the stator temperature transmitter ,
  • the rotor temperature information of the rotor temperature transmitter, the ambient temperature information of the ambient temperature transmitter, and the wind speed information of the wind speed sensor control the speed of the first fan, the second fan and the pump.
  • the controller includes a cumulative data processing module, and the cumulative data processing module continuously collects rotation speed combination information and corresponding power consumption information formed by the first fan, the second fan, and the pump under different rotation speed combinations, Establish a mapping model with different total heat dissipation.
  • the cumulative data processing module controls the first fan, second fan, and pump based on the combination of speed information corresponding to the lowest power consumption information among the total heat dissipation in the mapping model in real time. Rotating speed.
  • the pipeline assembly includes a first pipeline, a second pipeline, and a third pipeline.
  • the first pipeline connects the pump unit with the supply header
  • the second pipeline connects the return header with The second heat exchange unit is connected
  • the third pipeline connects the second heat exchange unit with the pump unit.
  • the heat exchange system further includes a controller, which is connected to each valve on the first pipeline, the second pipeline, and the third pipeline, and the first pipeline is connected with a safety relief
  • the safety relief device is connected with the controller
  • the third pipeline is connected with a quality detection device for detecting the quality of the heat exchange medium in the third pipeline, and the quality detection device is connected with the controller
  • the third pipeline is connected with an injection Discharge and filter device and the second pressure difference transmitter, the injection discharge and filter device are used for the injection and filtration of the heat exchange medium in the third pipeline, the second pressure difference transmitter and the inlet end of the injection and filter device It is connected to the outlet end, and the second differential pressure transmitter is connected to the controller.
  • each pump group branch is connected with a check valve, and the check valve is located downstream of the pump; each pump group branch is connected with a voltage stabilizing device, and the voltage stabilizing device is located upstream of the pump;
  • Each pump group branch is connected with a first exhaust device; each pump group branch is connected with a first leakage detection device, the heat exchange system further includes a controller, and the first leakage detection device is connected with the controller.
  • the heat exchange system further includes a controller, each first heat exchange branch is connected with a second liquid leakage detection device, and the second liquid leakage detection device is connected with the controller; A second exhaust device is connected to the heat exchange branch; each second heat exchanger is connected to a third liquid leakage detection device, and the third liquid leakage detection device is connected to the controller.
  • an embodiment of the present application provides a motor including the heat exchange system of any one of the above embodiments, wherein the first heat exchange unit of the heat exchange system is integrated in the area to be cooled of the generator.
  • the first heat exchange unit is placed in the area to be cooled of the motor to exchange heat
  • the first heat exchange unit includes a plurality of first heat exchange branches connected in parallel with each other, each The first heat exchange branch is connected with a first heat exchanger, a first valve group, and a first pressure information component.
  • the pressure information component can obtain the inlet and outlet pressure change information and piezoresistance change information of the first heat exchanger on the first heat exchange branch. Through pressure calculation, it can judge the blockage of the first heat exchanger on the first heat exchange branch.
  • the first valve group can quickly switch the corresponding first heat exchange branch into or out of the heat exchange system through opening and closing actions.
  • Each first heat exchange branch controls the opening and closing of the first valve group according to the first pressure information of the first pressure information component. For example, according to the first pressure information, it controls the first valve when the corresponding first heat exchanger has a blockage fault.
  • the group cuts the first heat exchange branch out of the system. Since the first heat exchange unit includes multiple first heat exchange branches connected in parallel with each other, other normal working first heat exchange branches can continue to complete the heating components of the motor Perform cooling work to improve the fault tolerance and reliability of the heat exchange system.
  • Fig. 1 is a structural block diagram of a heat exchange system according to an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a heat exchange system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first heat exchange unit in a heat exchange system according to an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of a pump unit in a heat exchange system according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a second heat exchange unit in a heat exchange system according to an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the connection between each device and the controller in the heat exchange system according to an embodiment of the present application.
  • 210-second heat exchange branch 211-second heat exchanger; 212-third valve; 213-second pressure transmitter; 214-second flow transmitter; 215-second fan; 216-th Second exhaust device; 217-third leakage detection device; 218-fourth temperature transmitter;
  • TS-stator temperature transmitter TR-rotor temperature transmitter
  • TA-ambient temperature transmitter
  • the present application provides a heat exchange system. In some embodiments, it is used to cool certain components, and in other embodiments, it is used to heat certain components. In the following embodiments, a heat exchange system for cooling the heat-generating components of the motor will be described as an example.
  • FIGS 1 and 2 are structural block diagrams and structural schematic diagrams showing a heat exchange system according to an embodiment of the present application.
  • the heat exchange system includes a first heat exchange unit 100 and a second heat exchange unit 200.
  • the first heat exchange unit 100 and the second heat exchange unit 200 are connected through a pipeline assembly 400 to form a closed loop heat exchange circuit.
  • the first heat exchange unit 100 is placed in the to-be-cooled area of the motor 900 to exchange heat, so as to cool the heat-generating components of the motor 900.
  • the second heat exchange unit 200 is arranged outside the motor 900.
  • each first heat exchange branch 130 is connected with a first heat exchanger 131, a first valve group, and a first pressure information component, and the opening of the first valve group is controlled according to the first pressure information of the first pressure information component. close.
  • the first pressure information component can obtain the inlet and outlet pressure change information and the piezoresistance change information of the first heat exchanger 131 on the first heat exchange branch 130. Through pressure calculation, it can determine the corresponding information on the first heat exchange branch 130. A blockage of the heat exchanger 131.
  • the first valve group can quickly cut the corresponding first heat exchange branch 130 into or out of the heat exchange system through opening and closing actions. Each first heat exchange branch 130 controls the opening and closing of the first valve group according to the first pressure information of the first pressure information component. For example, according to the first pressure information, when the corresponding first heat exchanger 131 has a clogging failure, it controls the A valve group cuts the first heat exchange branch 130 out of the system.
  • first heat exchange unit 100 includes a plurality of first heat exchange branches 130 connected in parallel with each other, other first heat exchange branches 130 that work normally can continue The work of cooling the heating components of the motor 900 is completed, and the fault tolerance and reliability of the heat exchange system are improved.
  • the first pressure information may be the detected pressure at the inlet and outlet of the first heat exchanger 131. When the difference between the two is greater than or equal to the preset value, the surface corresponds to the first heat exchange branch. The first heat exchanger 131 on 130 is blocked. In some other embodiments, the first pressure information may be other pressure information or piezoresistance information related to the corresponding first heat exchanger 131, so as to determine whether the corresponding first heat exchanger 131 is blocked in other ways.
  • the circulating first medium may continuously exchange heat with the heating component of the motor 900, and the first medium after the heat exchange with the heating component may exchange heat in the first
  • the device 131 exchanges heat with the second medium, and the cooled first medium continues to circulate and exchange heat with the heat generating component.
  • the first heat exchanger 131 may also be directly connected to the heating component, so that the heating component directly exchanges heat with the second medium.
  • the second medium After the above-mentioned second medium exchanges heat in the first heat exchange unit 100, it can be transported to the second heat exchange unit 200 through the pipeline assembly 400.
  • the second medium At the second heat exchange unit 200, the second medium may be re-cooled by, for example, exchanging heat between the second medium and the third medium.
  • the cooled second medium can be circulated and transported to the first heat exchange unit 100 through the pipeline assembly 400.
  • the heat exchange system further includes a pump unit 300, and the pump unit 300 is connected to a closed loop heat exchange circuit through a pipeline assembly 400.
  • the pump unit 300 can be used to drive the aforementioned second medium to circulate in the closed loop heat exchange circuit.
  • the heat exchange system further includes a controller 500, and the controller 500 can be connected to the first heat exchange unit 100, the second heat exchange unit 200, and the pump unit 300.
  • the controller 500 can be electrically and signally connected with several devices in the first heat exchange unit 100, several devices in the second heat exchange unit 200, and several devices in the pump unit 300.
  • the dotted lines The connection relationship between the controller 500 and the first heat exchange unit 100, the second heat exchange unit 200, and the pump unit 300 is shown.
  • the pipeline assembly 400 may also be provided with several devices, and the several devices may also be electrically and signal connected with the controller 500.
  • Fig. 3 is a schematic structural diagram of a first heat exchange unit in a heat exchange system according to an embodiment of the present application.
  • the first heat exchanger 131 is arranged in the area to be cooled. In some embodiments, the first heat exchanger 131 may be arranged in the support of the motor 900 or outside the motor 900.
  • each first heat exchange branch 130 of the first heat exchanger 131 includes a first pressure information component and a first valve group.
  • the first valve group includes at least two first valves 132, and first valves 132 are respectively provided at the inlet end and the outlet end of the first heat exchange branch 130.
  • the first pressure information component includes at least two first pressure transmitters 133.
  • the inlet and outlet ends of the first heat exchanger 131 are respectively provided with first pressure transmitters 133, and at least two first pressure transmitters 133 Output the first pressure information.
  • the first pressure information component and the first valve group are connected to the controller 500.
  • the controller 500 controls the opening and closing of the first valve group according to the first pressure information of the first pressure information component, thereby automatically controlling the first valve group.
  • the first heat exchange unit 100 further includes a supply header 110 and a return header 120, and a plurality of first heat exchange branches 130 are respectively connected to the supply header 110 and the return header 120.
  • the main supply pipe 110 communicates with the pump unit 300 through the pipe assembly 400, and the return main pipe 120 communicates with the second heat exchange unit 200 through the pipe assembly 400.
  • the supply header 110 may be connected to the second heat exchange unit 200 through the pipeline assembly 400, and the return header 120 may be connected to the pump unit 300 through the pipeline assembly 400.
  • the supply header 110 and the return header 120 are both annular tube bodies, and a plurality of first heat exchange branches 130 are evenly distributed on the outer periphery of the supply header 110 and the return header 120.
  • the multiple first heat exchange branches 130 are arranged in the same way to ensure that the flow of the second medium passing through each first heat exchange branch 130 in parallel is consistent, and the flow uniformity of each first heat exchange branch 130 is realized, thereby improving the uniformity of heat dissipation Sex.
  • Fig. 4 is a schematic structural diagram of a pump unit in a heat exchange system according to an embodiment of the present application.
  • the pump unit 300 includes two or more pump group branches 310 arranged in parallel, and each pump group branch 310 is connected with a pump 311, a second valve group, and a first differential pressure transmitter 313, The opening and closing of the second valve group is controlled according to the first pressure difference information of the first pressure difference transmitter 313.
  • the pump group unit 300 includes, for example, two pump group branches 310 connected in parallel, and each pump group branch 310 is connected to a pump 311.
  • the operation mode of the pump unit 300 can be one-use and one-backup, that is, one of the pump group branches 310 is operating normally and the other pump group branch 310 cuts out of the heat exchange system as a backup.
  • the branch 310 fails, it cuts out of the system and the standby pump set branch 310 cuts into the system to continue the operation of the heat exchange system.
  • the pump unit 300 may also be operated in parallel at full load, thereby improving the fault-tolerant operation capability of the heat exchange system.
  • the first differential pressure transmitter 313 on each pump group branch 310 can monitor the operation and fault conditions of the corresponding pump 311, and the second valve group is convenient for the corresponding pump 311 to quickly switch into or out of the system, for example, when the corresponding pump 311 occurs Cut it out of the system quickly when it fails.
  • the second valve group may include at least two second valves 312, and the inlet end and the outlet end of the pump group branch 310 are respectively provided with second valves 312.
  • the first differential pressure transmitter 313 is connected to the inlet end and the outlet end of the pump 311.
  • the first differential pressure transmitter 313 and the second valve group are connected to the controller 500, and the controller 500 controls the opening of the second valve group according to the first pressure difference information of the first differential pressure transmitter 313. Closed, so as to automatically control the cut-in and cut-out of the pump branch 310 in the heat exchange system.
  • the operation mode of the pump unit 300 is one use and one backup.
  • the first differential pressure transmitter 313 connected to the inlet and outlet ends of the pump 311 is used to monitor the operation of the corresponding pump 311 Fault conditions.
  • the first pressure difference transmitter 313 feeds back the failure of the pump 311, and can also give an alarm.
  • the controller 500 switches the pump 311 of another pump group branch 310 into the system for operation, shuts down the faulty pump 311, and closes the second valve 312 on the pump group branch 310 where the faulty pump 311 is located, and the faulty pump 311 cuts out the system without affecting the normal operation of the system.
  • controller 500 to control the opening and closing of the second valve group according to the first pressure difference information of the first pressure difference transmitter 313.
  • other reasonable methods may also be used for pumping.
  • Group branch 310 cut-in and cut-out control.
  • Fig. 5 is a schematic structural diagram of a second heat exchange unit in a heat exchange system according to an embodiment of the present application.
  • the second heat exchange unit 200 includes two or more second heat exchange branches 210 arranged in parallel.
  • Each second heat exchange branch 210 is connected with a second heat exchanger 211, a third valve group, and a second pressure information component, and the third valve group is controlled to open and close according to the second pressure information of the second pressure information component.
  • the second pressure information component can obtain the inlet and outlet pressure change information and the piezoresistance change information of the second heat exchanger 211 corresponding to the second heat exchange branch 210. Through pressure calculation, it can determine the corresponding second heat exchange branch 210 2. Blockage of heat exchanger 211.
  • the third valve group can quickly cut the corresponding second heat exchange branch 210 into or out of the heat exchange system through opening and closing actions.
  • Each second heat exchange branch 210 controls the opening and closing of the third valve group according to the second pressure information of the second pressure information component. For example, according to the second pressure information, it controls the The three-valve group cuts the second heat exchange branch 210 out of the system. Since the second heat exchange unit 200 includes a plurality of second heat exchange branches 210 connected in parallel with each other, other normal working second heat exchange branches 210 can continue Complete the work of cooling the second medium and improve the fault tolerance and reliability of the heat exchange system.
  • the second heat exchanger 211 is provided outside the motor 900.
  • the third valve group includes at least two third valves 212, and the inlet end and the outlet end of the second heat exchange branch 210 are respectively provided with third valves 212.
  • the second pressure information component includes at least two second pressure transmitters 213, the inlet end and the outlet end of the second heat exchanger 211 are respectively provided with second pressure transmitters 213, at least two second pressure transmitters 213 Output the above-mentioned second pressure information.
  • the second pressure information component and the third valve group are connected to the controller 500, and the controller 500 controls the opening and closing of the third valve group according to the second pressure information of the second pressure information component, thereby automatically controlling the second pressure information component.
  • Fig. 6 is a schematic diagram of the connection between each device and the controller in the heat exchange system according to an embodiment of the present application.
  • the controller 500 is connected to four signal lines, namely: analog signal input line AI, digital signal input line DI, analog signal output line AO, digital signal output line DO.
  • analog signal input line AI digital signal input line
  • DI digital signal input line
  • AO analog signal output line
  • DO digital signal output line
  • each first heat exchange branch 130 is connected to a first flow transmitter 134, the first flow transmitter 134 is connected to the controller 500, and the controller 500 is The first flow information controls the opening of the first valve group.
  • each second heat exchange branch 210 is connected to a second flow transmitter 214, the second flow transmitter 214 is connected to the controller 500, and the controller 500 is based on the second flow transmitter 214
  • the second flow information controls the opening of the second valve group.
  • a third flow transmitter 401 is connected to at least one of the pipeline assembly 400, the supply header 110, and the return header 120, the supply header 110 is connected to the first temperature transmitter 111, and the return header A second temperature transmitter 121 is connected to 120.
  • the third flow transmitter 401, the first temperature transmitter 111, and the second temperature transmitter 121 are connected to the controller 500, and the controller 500 changes according to the first flow information and the second flow rate of the first flow transmitter 134.
  • the second flow information of the transmitter 214, the third flow information of the third flow transmitter 401, the first temperature information of the first temperature transmitter 111, and the second temperature information of the second temperature transmitter 121 obtain heat exchange. The total heat dissipation of the system.
  • the first flow transmitter 134, the second flow transmitter 214, and the third flow transmitter 401 feedback signals through the digital signal input line DI, and the controller 500 determines each first heat exchange branch 130,
  • the third flow transmitter 401 on the main pipe, the first temperature transmitter 111 on the supply main pipe 110, and the second temperature transmitter 121 on the return main pipe 120 are combined to realize the total heat dissipation statistics of the heat exchange system.
  • each first heat exchange branch 130 is connected with a third temperature transmitter 137
  • each second heat exchange branch 210 is connected with a fourth temperature transmitter 218, and the pipeline assembly 400
  • At least one fifth temperature transmitter 403 can be connected to it.
  • the third temperature transmitter 137, the fourth temperature transmitter 218, and the fifth temperature transmitter 403 are all connected to the controller 500, thereby providing more accurate heat dissipation statistics.
  • the first heat exchanger 131 may be a gas-liquid heat exchanger, that is, the first medium is a circulating gas medium, the second medium is a circulating liquid medium, and the second medium is, for example, a cooling liquid. It can be a liquid medium such as water.
  • the second heat exchanger 211 may also be a gas-liquid heat exchanger, that is, the third medium is a gas medium.
  • the first heat exchanger 131 and the second heat exchanger 211 may be plate-fin heat exchangers, tube-fin radiators, tube-and-tube heat exchangers, and the like.
  • each first heat exchange branch 130 is provided with a first fan 135 that is in air communication with the first heat exchanger 131. In the area to be cooled where the first heat exchanger 131 is located, the first The fan 135 can provide a driving force for the circulation of the first medium.
  • Each second heat exchange branch 210 is provided with a second fan 215 which is in air communication with the second heat exchanger 211, and the second fan 215 can improve the heat exchange efficiency of the second heat exchanger 211. In some other embodiments, when the heat dissipation capacity is satisfied, the second fan 215 may not be provided at the second heat exchanger 211, so as to cool the second medium in a passive heat dissipation manner.
  • the second fan 215 is used to enhance the heat dissipation corresponding to the part of the second heat exchanger 211, so that the second heat exchanger 211 performs heat exchange by combining active and passive heat dissipation.
  • the second fan 215 By increasing the proportion of passive heat dissipation applied at the second heat exchanger 211, the utilization of natural wind is improved and the self-consumption of the heat exchange system is reduced, thereby improving the energy efficiency ratio of the system and enhancing the energy-saving performance of the system.
  • the first fan 135 and the second fan 215 are respectively driven by motors such as a variable frequency motor and a multi-stage power frequency motor; the pump 311 is driven by motors such as a variable frequency motor and a multi-stage power frequency motor.
  • the first fan 135, the second fan 215, and the pump 311 are connected to the controller 500.
  • the motor 900 may include a stator and a rotor. As shown in Figure 6, the heat exchange system may also include a stator temperature transmitter TS connected to the stator of the motor 900, a rotor temperature transmitter TR connected to the rotor of the motor 900, and an ambient temperature transmitter TA provided outside the motor 900. And wind speed sensor VA.
  • the stator temperature transmitter TS, the rotor temperature transmitter TR, the ambient temperature transmitter TA and the wind speed sensor VA are connected to the controller 500, and the controller 500 is based on the stator temperature information and rotor temperature transmitter of the stator temperature transmitter TS
  • the rotor temperature information of the TR, the environmental temperature information of the environmental temperature transmitter TA, and the wind speed information of the wind speed sensor VA control the rotation speeds of the first fan 135, the second fan 215, and the pump 311.
  • the controller 500 is connected to the host computer 700 through the serial port server 600, and the controller combines the above-mentioned information obtained by total heat dissipation statistics, the wind speed information fed back by the wind speed sensor VA, and the ambient temperature information fed back by the ambient temperature transmitter TA And the system load counted by the host computer 700, fit the relationship curve of the heat exchange system's heat dissipation capacity (heat dissipation), the ambient temperature and the system load, and optimize the control logic of the controller 500 through data accumulation.
  • the controller 500 includes a cumulative data processing module 510, and the cumulative data processing module 510 continuously collects the rotation speed combination information formed by the first fan 135, the second fan 215, and the pump 311 under different rotation speed combinations and the corresponding power consumption. Information, and build a mapping model with different total heat dissipation.
  • the accumulated data processing module 510 controls the rotation speeds of the first fan 135, the second fan 215, and the pump 311 in real time according to the rotation speed combination information corresponding to the power consumption information of the lowest power consumption among the total heat dissipation in the mapping model.
  • the accumulated data processing module 510 in the controller 500 acts as a pre-control system. Through long-term data accumulation, three groups of rotating components (the first fan 135, the second fan 215 and the pump 311) are judged by themselves when the heat dissipation of the whole machine is satisfied. The combination of the lowest power consumption under different adjustment mechanisms to meet the heat dissipation requirements of the system in the form of the current lowest power consumption and improve the energy-saving performance of the heat exchange system.
  • the controller 500 can continuously learn and solidify the optimal control logic, that is, optimize the above-mentioned mapping model by continuously collecting information, thereby continuously improving its energy-saving performance and intelligence.
  • the controller 500 may include a memory, and the mapping model may be stored in the memory and executed by the accumulated data processing module 510.
  • the mapping model is directly stored in the controller 500 of another heat exchange system, so as to perform intelligent control of the other heat exchange system.
  • the first fan 135, the second fan 215, and the pump 311 feed back signals of the normal operation state and the fault state through the digital signal input line DI, and the controller 500 controls the first fan 135, the first fan 135, and the pump through the digital signal output line DO.
  • the controller 500 outputs the signal for controlling the speed through the analog signal output line A0; when the first fan 135, the second fan 215 and the pump 311 are connected to the multi-stage industrial In the case of a high frequency motor, the controller 500 outputs a signal for controlling the speed through the digital signal output line DO.
  • the host computer 700 issues a fault-tolerant operation instruction of the heat exchange system to the controller 500 through the serial server 600, thereby implementing a fault-tolerant operation mechanism for the first fan 135.
  • the controller 500 implements two-way communication through the serial port server 600.
  • the data can be effectively transmitted to the upper computer 700, and the upper computer 700 can realize the monitoring of various parameters of the heat exchange system.
  • the host computer 700 can issue control instructions to the controller 500 according to the priority control level to achieve priority control of the heat exchange system.
  • the host computer 700 can timely feedback the information through emails and text messages.
  • the signals collected by the controller 500 can be transmitted to the wireless communication module 800 through the serial port server 600.
  • the wireless communication module 800 timely feedbacks key parameters, alarms, faults and other signals to relevant personnel, and at the same time develops programs through the terminal and uses mobile devices Any set of heat exchange systems can be called at any time to obtain their corresponding operating status and parameters.
  • the pipeline assembly 400 includes a first pipeline 410, a second pipeline 420 and a third pipeline 430.
  • the first pipeline 410 connects the pump unit 300 with the supply manifold 110.
  • the second pipeline 420 connects the return manifold 120 with the second heat exchange unit 200.
  • the third pipeline 430 connects the second heat exchange unit 200 with the pump unit 300.
  • the first pipeline 410 may be provided with a valve; the second pipeline 420 may be provided with a valve; the third pipeline 430 may be provided with a valve, and the controller 500 may be connected to the first pipeline 410, the second pipeline 420, and the third pipeline.
  • the valves on the road 430 are connected.
  • a fourth valve 412 is connected to the first pipeline 410, and the fourth valve 412 is connected to the controller 500, so that the controller 500 can control the opening and closing and opening of the fourth valve 412.
  • a fifth valve 421 is connected to the second pipeline 420, and the fifth valve 421 is connected to the controller 500 so that the controller 500 can control the opening and closing and opening of the fifth valve 421.
  • a sixth valve 431 is connected to the third pipeline 430, and the sixth valve 431 is connected to the controller 500, so that the controller 500 can control the opening and closing and opening of the sixth valve 431.
  • the controller 500 can comprehensively control the opening and closing of the fourth valve 412, the fifth valve 421, and the sixth valve 431, thereby switching the first heat exchange unit 100, the second heat exchange unit 200, and the pump unit 300 out of or into the system. For example, when the controller 500 controls the fourth valve 412 and the fifth valve 421 to be closed at the same time, the first heat exchange unit 100 is cut out of the system, which facilitates the maintenance of the first heat exchange unit 100. By closing any two of the fourth valve 412, the fifth valve 421, and the sixth valve 431, the system units between the two closed valves can be effectively isolated, ensuring that the second medium is as little as possible during the maintenance process. Discharge, thereby reducing maintenance workload and reducing the waste of the second medium.
  • the controller 500 can comprehensively control the opening degrees of the fourth valve 412, the fifth valve 421, and the sixth valve 431, thereby controlling the flow rate of the second medium circulating in the heat exchange system.
  • a safety pressure relief device 411 is connected to the first pipeline 410, and the safety pressure relief device 411 is connected to the controller 500 to facilitate protection of the system and prevent excessive system pressure.
  • a pressure gauge 413 is connected to the first pipeline 410 to facilitate local observation of the system pressure.
  • a quality detection device 432 is connected to the third pipeline 430 to detect the quality of the heat exchange medium in the third pipeline 430.
  • the quality detection device 432 is connected to the controller 500, which is connected to the analog signal input line AI feedback signal, the controller 500 judges the quality of the second medium through the upper limit value and the lower limit value of the key index, and sets an alarm value when the second medium quality key index is close to the limit.
  • the controller 500 can feed back signals to the host computer 700 and the wireless communication module 800 through the serial port server 600, and can display key index values in real time.
  • the quality detection device 432 can effectively monitor the quality change of the second medium in the heat exchange system during the circulation process, and effectively determine whether the second medium has failed. When the second medium fails, a warning and replacement signal can be fed back, thereby reducing corrosion and damage to the parts of the heat exchange system, and improving the service life of each part of the heat exchange system.
  • the third pipeline 430 is connected with the injection and filtering device 433 and the second differential pressure transmitter 434.
  • the injecting and filtering device 433 is used to inject and filter the heat exchange medium in the third pipeline 430 to ensure the cleanliness of the second medium entering the pump unit 300 and the overall cleanliness in the heat exchange system, thereby protecting the pump 311 and prevent the first heat exchanger 131 and the second heat exchanger 211 from clogging.
  • the second differential pressure transmitter 434 is connected to the inlet and outlet ends of the injection and drainage and filtering device 433, the second differential pressure transmitter 434 is connected to the controller 500, and the second differential pressure transmitter 434 is used to determine the injection and drainage. And whether the filtering device 433 is invalid and whether there is a need for replacement.
  • a check valve 314 is connected to each pump branch 310.
  • the check valve 314 is located downstream of the pump 311.
  • the check valve 314 can prevent the second medium from flowing back to the pump. 311 caused damage.
  • a voltage stabilizing device 315 is connected to each pump group branch 310, and the voltage stabilizing device 315 is located upstream of the pump 311 to reduce pressure fluctuations of the heat exchange system.
  • each pump branch 310 is connected with a first exhaust device 316 to facilitate the effective exhaust of gas during the operation of the heat exchange system and reduce the failure rate of the pump 311.
  • each pump group branch 310 is connected with a first leakage detection device 317, and the first leakage detection device 317 can be connected to the controller 500, so as to facilitate determining whether the corresponding pump 311 has leakage. And in some embodiments, a prompt message can be issued when liquid leakage occurs.
  • the heat exchange system includes a third pressure information component.
  • the third pressure information component is connected to the inlet and outlet ends of the pump unit 300.
  • the third pressure information component can be connected to the controller 500 and output the third pressure information component.
  • the pressure information is sent to the controller 500.
  • the third pressure information component includes at least two third pressure transmitters 402, and the inlet end and the outlet end of the pump unit 300 are respectively provided with third pressure transmitters 402. At least two third pressure transmitters 402 may be connected to the controller 500 and output third pressure information.
  • each first heat exchange branch 130 is connected with a second liquid leakage detection device 136, and the second liquid leakage detection device 136 is connected to the controller 500 for positioning and The leakage of the corresponding first heat exchanger 131 is determined.
  • a third exhaust device 101 is provided at the top of the supply header 110 and the return header 120.
  • the third exhaust device 101 may be an automatic exhaust device to facilitate local system exhaust.
  • the supply header 110 and the return header 120 can be respectively provided with a seventh valve 102, and the third exhaust device 101 is respectively connected with the corresponding seventh valve 102 and the supply header 110 or the return header 120 to facilitate the replacement and replacement of the third exhaust device 101. maintain.
  • an eighth valve 103 is provided at the bottom of the supply header 110 and the return header 120 to facilitate the drainage of the liquid at the local lowest point of the system.
  • a second exhaust device 216 is connected to each second heat exchange branch 210, and the second exhaust device 216 can be connected to the second heat exchanger 211. For effective exhaust of the system.
  • each second heat exchanger 211 is connected with a third leakage detection device 217, and the third leakage detection device 217 is connected with the controller 500, so as to locate and determine the leakage corresponding to the second heat exchanger 211. Liquid condition.
  • the above-mentioned first liquid leakage detection device 317, second liquid leakage detection device 136, and third liquid leakage detection device 217 can all be connected to the controller 500. In some other embodiments, they can also be used in other key components and high-risk parts. Set up leakage detection devices and connect them to the controller 500. These leakage detection devices feed back signals to the controller 500 through digital signal input lines. The controller 500 intelligently locates faulty parts and risk points through the received signals, and connects them to the serial server 600.
  • the signal feedback value is the upper computer 700 and the wireless communication module 800.
  • the embodiment of the present application also provides a motor, which is, for example, a heat exchange system including any of the above embodiments, wherein the first heat exchange unit 100 of the heat exchange system is integrated in the to-be-cooled area of the generator.
  • the first pressure information component on each first heat exchange branch 130 can obtain the inlet and outlet pressure change information and piezoresistance change information of the first heat exchanger 131 corresponding to the first heat exchange branch 130 Information, through pressure calculation, can determine the blockage of the first heat exchanger 131 corresponding to the first heat exchange branch 130.
  • the first valve group on each first heat exchange branch 130 can quickly switch the corresponding first heat exchange branch 130 into or out of the heat exchange system through opening and closing actions.
  • Each first heat exchange branch 130 controls the opening and closing of the first valve group according to the first pressure information of the first pressure information component.
  • the corresponding first heat exchanger 131 when the corresponding first heat exchanger 131 has a clogging failure, it controls the A valve group cuts the first heat exchange branch 130 out of the system. Since the first heat exchange unit 100 includes a plurality of first heat exchange branches 130 connected in parallel with each other, other first heat exchange branches 130 that work normally can continue The work of cooling the heating components of the motor 900 is completed, and the fault tolerance and reliability of the heat exchange system are improved.
  • the electric machine may be an electric machine in a wind power generator.
  • the controller 500 is connected to various components in the heat exchange system, and can intelligently locate the components when the components fail, and determine the required spare parts and spare parts before maintenance. When it is an offshore wind turbine, it can avoid the second trip to sea caused by insufficient maintenance spare parts and spare parts.
  • the fault-tolerant operation performance of the heat exchange system can be improved, thereby helping to improve the reliability of the heat exchange system.
  • the motor and the heat exchange system can Realize non-stop operation.

Abstract

本申请公开了一种换热系统及电机,换热系统用于对电机的发热部件进行冷却,其包括:第一换热单元,置于电机的待冷却区以换热,第一换热单元包括相互并联的多个第一换热支路;第二换热单元,设置于电机外,第二换热单元通过管路组件与第一换热单元连通为闭环换热回路,其中,每个第一换热支路上连接有第一换热器、第一阀组以及第一压力信息组件,根据第一压力信息组件的第一压力信息控制第一阀组的开闭。根据本申请实施例提供的换热系统及电机,能够提高换热系统及电机的容错运行能力和可靠性。

Description

换热系统及电机
相关申请的交叉引用
本申请要求了2019年4月30日提交的、申请号为201910364167.9、申请名称为“换热系统及电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉换热领域,具体涉及一种换热系统及电机。
背景技术
风力发电技术是可再生能源发展的重点技术。风力发电机组的电机在运行过程中,存在主要来源于电磁损耗的热损耗。热损耗主要包括绕组中由于欧姆阻抗产生的焦耳热、铁芯中的磁滞损耗和涡流损耗、以及不可避免的杂散损耗。
随着风能开发力度的不断加大,风力发电机组的单机装机容量正在不断上升。单机容量的增加,将直接带来风力发电机组热损耗的不断提高。冷却系统作为风力发电机组的重要的组成部分,能够一定程度带走风力发电机组所产生的热量,以便于风力发电机组平稳运行。
然而,现有的风力发电机组的冷却系统结构复杂,无法容错运行,可靠性不高。
发明内容
本申请提供了一种换热系统及电机,提高换热系统的可靠性。
一方面,本申请提供了一种换热系统,用于对电机的发热部件进行冷却,其包括:第一换热单元,置于电机的待冷却区以换热,第一换热单元包括相互并联的多个第一换热支路;第二换热单元,设置于电机外,第二 换热单元通过管路组件与第一换热单元连通为闭环换热回路,其中,每个第一换热支路上连接有第一换热器、第一阀组以及第一压力信息组件,根据第一压力信息组件的第一压力信息控制第一阀组的开闭。
根据本申请一方面的前述实施方式,第一换热器设置于待冷却区;第一阀组包括至少两个第一阀门,第一换热支路的进口端及出口端分别设有第一阀门;第一压力信息组件包括至少两个第一压力变送器,第一换热器的进口端及出口端分别设有第一压力变送器,至少两个第一压力变送器输出第一压力信息。
根据本申请一方面的前述实施方式,第一换热单元还包括供给总管以及回流总管,多个第一换热支路分别与供给总管、回流总管连通,其中,供给总管、回流总管均呈环状管体,多个第一换热支路均匀分布于供给总管、回流总管的外周;多个第一换热支路同程布置。
根据本申请一方面的前述实施方式,换热系统还包括:泵组单元,通过管路组件连通于闭环换热回路中,泵组单元包括并联设置的两个以上泵组支路,每个泵组支路上连接有泵、第二阀组以及第一压差变送器,根据第一压差变送器的第一压差信息控制第二阀组的开闭。
根据本申请一方面的前述实施方式,第二阀组包括至少两个第二阀门,泵组支路的进口端及出口端分别设有第二阀门;第一压差变送器与泵的进口端及出口端连接。
根据本申请一方面的前述实施方式,第二换热单元包括并联设置的两个以上第二换热支路,每个第二换热支路上连接有第二换热器、第三阀组以及第二压力信息组件,根据第二压力信息组件的第二压力信息控制第三阀组的开闭。
根据本申请一方面的前述实施方式,第二换热器设置于电机外部;第三阀组包括至少两个第三阀门,第二换热支路的进口端及出口端分别设有第三阀门;第二压力信息组件包括至少两个第二压力变送器,第二换热器的进口端及出口端分别设有第二压力变送器,至少两个第二压力变送器输出第二压力信息。
根据本申请一方面的前述实施方式,换热系统还包括控制器,每个第 一换热支路上连接有第一流量变送器,第一流量变送器与控制器连接,控制器根据第一流量变送器的第一流量信息控制第一阀组的开度;每个第二换热支路上连接有第二流量变送器,第二流量变送器与控制器连接,控制器根据第二流量变送器的第二流量信息控制第二阀组的开度。
根据本申请一方面的前述实施方式,管路组件、供给总管、回流总管中的至少之一上连接有第三流量变送器,供给总管上连接有第一温度变送器,回流总管上连接有第二温度变送器,第三流量变送器、第一温度变送器、第二温度变送器与控制器连接,控制器根据第一流量变送器的第一流量信息、第二流量变送器的第二流量信息、第三流量变送器的第三流量信息、第一温度变送器的第一温度信息以及第二温度变送器的第二温度信息得到换热系统的总散热量。
根据本申请一方面的前述实施方式,每个第一换热支路上设置有与第一换热器气路连通的第一风扇,每个第二换热支路上设置有与第二换热器气路连通的第二风扇,第一风扇、第二风扇与控制器连接,换热系统还包括与电机的定子连接的定子温度变送器、与电机的转子连接的转子温度变送器、设置在电机外的环境温度变送器以及风速传感器,定子温度变送器、转子温度变送器、环境温度变送器以及风速传感器与控制器连接,控制器根据定子温度变送器的定子温度信息、转子温度变送器的转子温度信息、环境温度变送器的环境温度信息以及风速传感器的风速信息控制第一风扇、第二风扇以及泵的转速。
根据本申请一方面的前述实施方式,控制器包括累积数据处理模块,累积数据处理模块持续收集第一风扇、第二风扇以及泵在不同转速组合下形成的转速组合信息以及对应的功耗信息,与不同的总散热量建立映射模型,累积数据处理模块实时根据映射模型内的各个总散热量中,以最低功耗的功耗信息对应的转速组合信息控制第一风扇、第二风扇以及泵的转速。
根据本申请一方面的前述实施方式,管路组件包括第一管路、第二管路以及第三管路,第一管路将泵组单元与供给总管连通,第二管路将回流总管与第二换热单元连通,第三管路将第二换热单元与泵组单元连通。
根据本申请一方面的前述实施方式,换热系统还包括控制器,控制器 与第一管路、第二管路以及第三管路上的各阀门连接,并且第一管路上连接有安全泄压装置,安全泄压装置与控制器连接;第三管路上连接有品质检测装置,用于检测第三管路内换热介质的品质,品质检测装置与控制器连接;第三管路上连接有注排及过滤装置以及第二压差变送器,注排及过滤装置用于第三管路内换热介质的注排及过滤,第二压差变送器与注排及过滤装置的进口端及出口端连接,第二压差变送器与控制器连接。
根据本申请一方面的前述实施方式,每个泵组支路上连接有止回阀,止回阀位于泵的下游;每个泵组支路上连接有稳压装置,稳压装置位于泵的上游;每个泵组支路上连接有第一排气装置;每个泵组支路上连接有第一漏液检测装置,换热系统还包括控制器,第一漏液检测装置与控制器连接。
根据本申请一方面的前述实施方式,换热系统还包括控制器,每个第一换热支路上连接有第二漏液检测装置,第二漏液检测装置与控制器连接;每个第二换热支路上连接有第二排气装置;每个第二换热器连接有第三漏液检测装置,第三漏液检测装置与控制器连接。
另一方面,本申请实施例提供一种电机,包括上述任一实施方式的换热系统,其中换热系统的第一换热单元集成于发电机的待冷却区。
根据本申请实施例提供的换热系统及电机,第一换热单元置于电机的待冷却区以换热,其中第一换热单元包括相互并联的多个第一换热支路,每个第一换热支路上连接有第一换热器、第一阀组以及第一压力信息组件。压力信息组件能够获取对应第一换热支路上第一换热器的进出口压力变化信息以及压阻变化信息,通过压力计算,能够判断对应第一换热支路上第一换热器的堵塞情况。第一阀组能够通过开闭动作快速将对应第一换热支路切入或切出换热系统。每个第一换热支路根据第一压力信息组件的第一压力信息控制第一阀组的开闭,例如根据第一压力信息得到对应第一换热器出现堵塞故障时,控制第一阀组将该第一换热支路切出系统,由于第一换热单元包括相互并联的多个第一换热支路,其它正常工作的第一换热支路能够继续完成对电机的发热部件进行冷却的工作,提高换热系统的容错能力和可靠性。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是根据本申请一实施方式提供的换热系统的结构框图;
图2是根据本申请一实施方式提供的换热系统的结构示意图;
图3是根据本申请一实施方式提供的换热系统中第一换热单元的结构示意图;
图4是根据本申请一实施方式提供的换热系统中泵组单元的结构示意图;
图5是根据本申请一实施方式提供的换热系统中第二换热单元的结构示意图;
图6是根据本申请一实施方式提供的换热系统中各器件与控制器的连接示意图。
图中:
100-第一换热单元;
110-供给总管;111-第一温度变送器;
120-回流总管;121-第二温度变送器;
130-第一换热支路;131-第一换热器;132-第一阀门;133-第一压力变送器;134-第一流量变送器;135-第一风扇;136-第二漏液检测装置;137-第三温度变送器;
101-第三排气装置;102-第七阀门;103-第八阀门;
200-第二换热单元;
210-第二换热支路;211-第二换热器;212-第三阀门;213-第二压力变送器;214-第二流量变送器;215-第二风扇;216-第二排气装置;217-第三漏液检测装置;218-第四温度变送器;
300-泵组单元;
310-泵组支路;311-泵;312-第二阀门;313-第一压差变送器;314-止 回阀;315-稳压装置;316-第一排气装置;317-第一漏液检测装置;
400-管路组件;
410-第一管路;411-安全泄压装置;412-第四阀门;413-压力表;
420-第二管路;421-第五阀门;
430-第三管路;431-第六阀门;432-品质检测装置;433-注排及过滤装置;434-第二压差变送器;
401-第三流量变送器;402-第三压力变送器;403-第五温度变送器;
500-控制器;510-累积数据处理模块;
600-串口服务器;
700-上位机;
800-无线通信模块;
900-电机;
TS-定子温度变送器;TR-转子温度变送器;TA-环境温度变送器;
VA-风速传感器。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还 存在另外的相同要素。
本申请提供一种换热系统,在一些实施方式中,其用于对某些部件进行冷却,在其它一些实施方式中,其用于对某些部件进行加热。以下的实施方式中,以换热系统,用于对电机的发热部件进行冷却为例进行说明。
图1、图2是示出根据本申请一实施方式提供的换热系统的结构框图、结构示意图,该换热系统包括第一换热单元100和第二换热单元200,第一换热单元100和第二换热单元200通过管路组件400连通为闭环换热回路。
第一换热单元100置于电机900的待冷却区以换热,从而实现对电机900的发热部件进行冷却。第二换热单元200设置于电机900外。其中,每个第一换热支路130上连接有第一换热器131、第一阀组以及第一压力信息组件,根据第一压力信息组件的第一压力信息控制第一阀组的开闭。
第一压力信息组件能够获取对应第一换热支路130上第一换热器131的进出口压力变化信息以及压阻变化信息,通过压力计算,能够判断对应第一换热支路130上第一换热器131的堵塞情况。第一阀组能够通过开闭动作快速将对应第一换热支路130切入或切出换热系统。每个第一换热支路130根据第一压力信息组件的第一压力信息控制第一阀组的开闭,例如根据第一压力信息得到对应第一换热器131出现堵塞故障时,控制第一阀组将该第一换热支路130切出系统,由于第一换热单元100包括相互并联的多个第一换热支路130,其它正常工作的第一换热支路130能够继续完成对电机900的发热部件进行冷却的工作,提高换热系统的容错能力和可靠性。
在一些实施方式中,第一压力信息可以是检测到的对应第一换热器131进口端压力、出口端压力,当两者差值大于等于预设值时,表面对应第一换热支路130上第一换热器131发生堵塞现象。在其它一些实施方式中,第一压力信息可以是其它与对应第一换热器131相关的压力信息或压阻信息,从而以其它方式判断对应第一换热器131是否堵塞。
在一些实施方式中,在第一换热单元100处,可以是设有循环流动的第一介质与电机900的发热部件持续换热,与发热部件换热后的第一介质 在第一换热器131与第二介质换热,得到冷却的第一介质继续循环与发热部件换热。在一些实施方式中,在第一换热单元100处,也可以是第一换热器131直接与发热部件连接,使得发热部件直接与第二介质换热。
上述的第二介质在第一换热单元100内换热后,能够通过管路组件400输送至第二换热单元200。在第二换热单元200处,可以通过例如将第二介质与第三介质进行换热的方式使得第二介质重新冷却。冷却后的第二介质可以通过管路组件400循环输送至第一换热单元100内。
如图1,在一些实施方式中,换热系统还包括泵组单元300,泵组单元300通过管路组件400连通于闭环换热回路中。泵组单元300可以用于驱动上述的第二介质在闭环换热回路中循环流动。
如图1,在一些实施方式中,换热系统还包括控制器500,控制器500可以与第一换热单元100、第二换热单元200、泵组单元300连接。具体地,控制器500可以与第一换热单元100中的若干器件、第二换热单元200中的若干器件、泵组单元300中的若干器件电连接及信号连接,图1中,以虚线示出控制器500与第一换热单元100、第二换热单元200、泵组单元300的连接关系。在一些实施方式中,管路组件400上也可以设有若干器件,并且该若干器件也可以与控制器500电连接及信号连接。
图3是根据本申请一实施方式提供的换热系统中第一换热单元的结构示意图。第一换热器131设置于待冷却区,在一些实施方式中,第一换热器131可以设置于电机900的支架内或者电机900的外侧。如前所述,第一换热器131的每个第一换热支路130包括第一压力信息组件、第一阀组。其中,第一阀组包括至少两个第一阀门132,第一换热支路130的进口端及出口端分别设有第一阀门132。第一压力信息组件包括至少两个第一压力变送器133,第一换热器131的进口端及出口端分别设有第一压力变送器133,至少两个第一压力变送器133输出第一压力信息。
在一些实施方式中,第一压力信息组件、第一阀组与控制器500连接,控制器500根据第一压力信息组件的第一压力信息控制第一阀组的开闭,从而自动控制第一换热支路130在换热系统中的切入和切出。
在一些实施方式中,第一换热单元100还包括供给总管110以及回流 总管120,多个第一换热支路130分别与供给总管110、回流总管120连通。供给总管110通过管路组件400与泵组单元300连通,回流总管120通过管路组件400与第二换热单元200连通。在其它一些实施方式中,也可以是供给总管110通过管路组件400与第二换热单元200连通,回流总管120通过管路组件400与泵组单元300连通。
如图2和图3,在一些实施方式中,供给总管110、回流总管120均呈环状管体,多个第一换热支路130均匀分布于供给总管110、回流总管120的外周。多个第一换热支路130同程布置,保证经过并联的各个第一换热支路130的第二介质的流程一致,实现各个第一换热支路130流量均匀性,从而提高散热均匀性。
图4是根据本申请一实施方式提供的换热系统中泵组单元的结构示意图。在一些实施方式中,泵组单元300包括并联设置的两个以上泵组支路310,每个泵组支路310上连接有泵311、第二阀组以及第一压差变送器313,根据第一压差变送器313的第一压差信息控制第二阀组的开闭。
泵组单元300例如是包括并联的两个泵组支路310,每个泵组支路310均连接有泵311。泵组单元300的运行方式可以是一用一备,即工况下其中一个泵组支路310在正常运行而另一个泵组支路310切出换热系统作为备用,当正常运行的泵组支路310出现故障时其切出系统同时备用泵组支路310切入系统继续换热系统的运行。在一些实施方式中,泵组单元300也可以是并联全负荷运行,从而提高换热系统的容错运行能力。每个泵组支路310上的第一压差变送器313可监测对应泵311的运行情况及故障情况,第二阀组便于对应泵311快速切入或切出系统,例如在对应泵311发生故障时将其快速切出系统。
如图2和图4,第二阀组可以包括至少两个第二阀门312,泵组支路310的进口端及出口端分别设有第二阀门312。第一压差变送器313与泵311的进口端及出口端连接。
在一些实施方式中,第一压差变送器313、第二阀组与控制器500连接,控制器500根据第一压差变送器313的第一压差信息控制第二阀组的开闭,从而自动控制泵组支路310在换热系统中的切入和切出。
在一些实施例中,泵组单元300的运行方式为一用一备,在正常工况下,连接于泵311进口端及出口端的第一压差变送器313用于监测对应泵311的运行故障情况。当泵311进口端及出口端的压差低于预设值时,第一压差变送器313反馈泵311故障,此外可以进行报警提示。同时,控制器500将另一泵组支路310的泵311切入系统进行运行,关闭故障的泵311,并关闭故障的泵311所在泵组支路310上的第二阀门312,将故障的泵311切出系统,不影响系统正常运行。
以上仅为控制器500根据第一压差变送器313的第一压差信息控制第二阀组的开闭的一种示例,在其他一些实施例中,也可以采用其它合理的方式进行泵组支路310的切入切出控制。
图5是根据本申请一实施方式提供的换热系统中第二换热单元的结构示意图。在一些实施方式中,第二换热单元200包括并联设置的两个以上第二换热支路210。每个第二换热支路210上连接有第二换热器211、第三阀组以及第二压力信息组件,根据第二压力信息组件的第二压力信息控制第三阀组的开闭。
第二压力信息组件能够获取对应第二换热支路210上第二换热器211的进出口压力变化信息以及压阻变化信息,通过压力计算,能够判断对应第二换热支路210上第二换热器211的堵塞情况。第三阀组能够通过开闭动作快速将对应第二换热支路210切入或切出换热系统。每个第二换热支路210根据第二压力信息组件的第二压力信息控制第三阀组的开闭,例如根据第二压力信息得到对应第二换热器211出现堵塞故障时,控制第三阀组将该第二换热支路210切出系统,由于第二换热单元200包括相互并联的多个第二换热支路210,其它正常工作的第二换热支路210能够继续完成对第二介质冷却的工作,提高换热系统的容错能力和可靠性。
如图2和图5,在一些实施例中,第二换热器211设置于电机900外部。第三阀组包括至少两个第三阀门212,第二换热支路210的进口端及出口端分别设有第三阀门212。第二压力信息组件包括至少两个第二压力变送器213,第二换热器211的进口端及出口端分别设有第二压力变送器213,至少两个第二压力变送器213输出上述的第二压力信息。
在一些实施方式中,第二压力信息组件、第三阀组与控制器500连接,控制器500根据第二压力信息组件的第二压力信息控制第三阀组的开闭,从而自动控制第二换热支路210在换热系统中的切入和切出。
图6是根据本申请一实施方式提供的换热系统中各器件与控制器的连接示意图。其中控制器500连接有四种信号线,分别为:模拟信号输入线AI、数字信号输入线DI、模拟信号输出线AO、数字信号输出线DO,在图6中,换热系统中的各器件连接至各自对应的信号线,从而与控制器500电连接或信号连接。
在一些实施例中,每个第一换热支路130上连接有第一流量变送器134,第一流量变送器134与控制器500连接,控制器500根据第一流量变送器134的第一流量信息控制第一阀组的开度。
在一些实施例中,每个第二换热支路210上连接有第二流量变送器214,第二流量变送器214与控制器500连接,控制器500根据第二流量变送器214的第二流量信息控制第二阀组的开度。
在一些实施例中,管路组件400、供给总管110、回流总管120中的至少之一上连接有第三流量变送器401,供给总管110上连接有第一温度变送器111,回流总管120上连接有第二温度变送器121。
第三流量变送器401、第一温度变送器111、第二温度变送器121与控制器500连接,控制器500根据第一流量变送器134的第一流量信息、第二流量变送器214的第二流量信息、第三流量变送器401的第三流量信息、第一温度变送器111的第一温度信息以及第二温度变送器121的第二温度信息得到换热系统的总散热量。
第一流量变送器134、第二流量变送器214、第三流量变送器401通过数字信号输入线DI反馈信号,控制器500根据反馈信号值,判定各个第一换热支路130、第二换热支路210的均匀性,并结合第一阀组、第二阀组的开度调节,确保各个支路流量均匀,从而确保换热系统散热均匀性。此外,结合总管上的第三流量变送器401、供给总管110上的第一温度变送器111、回流总管120上的第二温度变送器121,实现换热系统总散热量统计。
在一些实施例中,每个第一换热支路130上连接有第三温度变送器137,每个第二换热支路210上连接有第四温度变送器218,管路组件400上可以连接有至少一个第五温度变送器403。第三温度变送器137、第四温度变送器218、第五温度变送器403均与控制器500连接,从而提供更加精准的散热量统计。
在一些实施例中,第一换热器131可以是气液换热器,即第一介质是循环流动的气体介质,第二介质是循环流动的液体介质,第二介质例如是冷却液,也可以是水等液体介质。第二换热器211也可以是气液换热器,即第三介质是气体介质。第一换热器131、第二换热器211可为板-翅式换热器,也可为管-翅式散热器、列管式换热器等形式。
在一些实施例中,每个第一换热支路130上设置有与第一换热器131气路连通的第一风扇135,在第一换热器131所处的待冷却区,第一风扇135能够提供第一介质循环流动的驱动力。每个第二换热支路210上设置有与第二换热器211气路连通的第二风扇215,第二风扇215能够提高第二换热器211的换热效率。在其它一些实施方式中,在满足散热量的情况下,第二换热器211处也可以不设置第二风扇215,以被动散热的方式对第二介质进行冷却。或者在其它一些实施方式中,对应于第二换热器211的局部采用第二风扇215进行加强散热,实现第二换热器211主被动散热结合的方式进行换热。通过提高被动散热在第二换热器211处应用的比例,提高自然风的利用以及降低换热系统的自耗电,从而提高系统能效比,增强系统的节能性能。
在一些实施方式中,第一风扇135、第二风扇215分别通过变频电机、多级工频电机等电机进行驱动;泵311通过变频电机、多级工频电机等电机进行驱动。在一些实施方式中,第一风扇135、第二风扇215以及泵311与控制器500连接。
电机900可以包括定子和转子。如图6,换热系统还可以包括与电机900的定子连接的定子温度变送器TS、与电机900的转子连接的转子温度变送器TR、设置在电机900外的环境温度变送器TA以及风速传感器VA。定子温度变送器TS、转子温度变送器TR、环境温度变送器TA以及风速 传感器VA与控制器500连接,控制器500根据定子温度变送器TS的定子温度信息、转子温度变送器TR的转子温度信息、环境温度变送器TA的环境温度信息以及风速传感器VA的风速信息控制第一风扇135、第二风扇215以及泵311的转速。
在一些实施方式中,控制器500通过串口服务器600与上位机700连接,控制器结合上述的总散热量统计得到的信息、风速传感器VA反馈的风速信息、环境温度变送器TA反馈环境温度信息及上位机700统计的系统负荷,拟合换热系统散热能力(散热量)与环境温度及系统负荷量关系曲线,并通过数据积累,优化控制器500的控制逻辑。
在一些实施方式中,控制器500包括累积数据处理模块510,累积数据处理模块510持续收集第一风扇135、第二风扇215以及泵311在不同转速组合下形成的转速组合信息以及对应的功耗信息,与不同的总散热量建立映射模型。累积数据处理模块510实时根据映射模型内的各个总散热量中,以最低功耗的功耗信息对应的转速组合信息控制第一风扇135、第二风扇215以及泵311的转速。
控制器500内的累积数据处理模块510作为先控系统,通过长期数据积累,在满足整机散热量的情况下,自行判断三组旋转部件(第一风扇135、第二风扇215以及泵311)不同调节机制下最低功耗的组合,从而以当前最低功耗的形式满足系统的散热需求,提高换热系统的节能性能。
另外,通过长期数据积累及分析,控制器500可以不断进行最优控制逻辑的学习与固化,即通过持续收集信息优化上述的映射模型,从而不断提高其节能性能和智能化。控制器500内可以包括存储器,该映射模型可以存至存储器,并被累积数据处理模块510执行。在一些实施方式中,映射模型直接存入另一换热系统的控制器500,从而执行对其他换热系统的智能控制。
在一些实施方式中,第一风扇135、第二风扇215以及泵311通过数字信号输入线DI反馈正常运行状态、故障状态的信号,控制器500通过数字信号输出线DO输出控制第一风扇135、第二风扇215以及泵311的启停状态的信号。当第一风扇135、第二风扇215以及泵311连接变频电机时,控 制器500通过模拟信号输出线A0输出控制转速的信号;当第一风扇135、第二风扇215以及泵311连接多级工频电机时,控制器500通过数字信号输出线DO输出控制转速的信号。根据整机容错运行策略,上位机700通过串口服务器600对控制器500进行换热系统容错运行指令的下达,从而实现对第一风扇135的容错运行机制。
在一些实施方式中,控制器500通过串口服务器600实现双向通讯,一方面可将数据有效传递给上位机700,通过上位机700实现对换热系统各个参数实现监测。同时上位机700根据优先的控制级别,可对控制器500下达控制指令,实现对换热系统的优先控制,当系统出现报警及故障信号后,上位机700可以通过邮件及短信形式将信息及时反馈给相关人员。另一方面,通过串口服务器600可将控制器500采集信号传输给无线通信模块800,无线通信模块800将关键参数、报警、故障等信号及时反馈给相关人员,同时通过终端开发程序,采用移动设备可随时调取任何一组换热系统,获取其相应的运行状态与参数。
如图2,在一些实施方式中,管路组件400包括第一管路410、第二管路420以及第三管路430。第一管路410将泵组单元300与供给总管110连通。第二管路420将回流总管120与第二换热单元200连通。第三管路430将第二换热单元200与泵组单元300连通。第一管路410可以设置有阀门;第二管路420可以设置有阀门;第三管路430可以设置有阀门,控制器500可以与第一管路410、第二管路420以及第三管路430上的各阀门连接。
在一些实施方式中,第一管路410上连接有第四阀门412,第四阀门412与控制器500连接,使得控制器500能够控制第四阀门412的开闭及开度。
在一些实施方式中,第二管路420上连接有第五阀门421,第五阀门421与控制器500连接,使得控制器500能够控制第五阀门421的开闭及开度。
在一些实施方式中,第三管路430上连接有第六阀门431,第六阀门431与控制器500连接,使得控制器500能够控制第六阀门431的开闭及开度。
控制器500能够综合控制第四阀门412、第五阀门421、第六阀门431的开闭,从而将第一换热单元100、第二换热单元200、泵组单元300切出或切入系统。例如,控制器500控制第四阀门412、第五阀门421同时关闭时,将第一换热单元100切出系统,便于对第一换热单元100的维护。通过将第四阀门412、第五阀门421、第六阀门431中的任意两个进行关闭,能够将关闭的两个阀门之间的系统单元有效隔离,确保维护过程中第二介质尽可能少的排注,从而减小维护工作量及减少第二介质的浪费。
控制器500能够综合控制第四阀门412、第五阀门421、第六阀门431的开度,从而控制换热系统内循环流动的第二介质的流量。
在一些实施方式中,第一管路410上连接有安全泄压装置411,安全泄压装置411与控制器500连接,便于保护系统,防止系统压力过高。
在一些实施方式中,第一管路410上连接有压力表413,便于本地观察系统压力。
在一些实施方式中,第三管路430上连接有品质检测装置432,用于检测第三管路430内换热介质的品质,品质检测装置432与控制器500连接,其通过模拟信号输入线AI反馈信号,控制器500通过关键指标上限值及下限值判定第二介质的品质,当第二介质品质关键指标接近限制时设置报警值。控制器500可以通过串口服务器600将信号反馈给上位机700及无线通信模块800,并能够实时显示关键指标值。在上述实施方式中,品质检测装置432能够有效监测换热系统内第二介质循环过程中品质的变化,有效判断第二介质是否失效。在第二介质失效时可以反馈警告及更换信号,从而减小对换热系统的零部件造成腐蚀与损坏的现象,提高换热系统各个零部件的使用寿命。
在一些实施方式中,第三管路430上连接有注排及过滤装置433以及第二压差变送器434。注排及过滤装置433用于第三管路430内换热介质的注排及过滤,用于确保进入泵组单元300的第二介质的洁净度及换热系统内整体洁净度,从而保护泵311及防止第一换热器131、第二换热器211出现堵塞现象。第二压差变送器434与注排及过滤装置433的进口端及出口端连接,第二压差变送器434与控制器500连接,第二压差变送器434用 于判断注排及过滤装置433是否失效以及是否有更换需求。
如图2和图4,在一些实施方式中,每个泵组支路310上连接有止回阀314,止回阀314位于泵311的下游,止回阀314能够防止第二介质回流对泵311造成损坏。
在一些实施方式中,每个泵组支路310上连接有稳压装置315,稳压装置315位于泵311的上游,以减小换热系统压力波动。
在一些实施方式中,每个泵组支路310上连接有第一排气装置316,便于换热系统运行过程中气体能够有效排出,减小泵311的故障率。
在一些实施方式中,每个泵组支路310上连接有第一漏液检测装置317,第一漏液检测装置317可以与控制器500连接,从而便于判断对应泵311是否出现漏液现象,并在一些实施方式中可以在发生漏液时发出提示信息。
在一些实施方式中,换热系统包括第三压力信息组件,第三压力信息组件与泵组单元300的进口端及出口端连接,第三压力信息组件可以与控制器500连接,并且输出第三压力信息发送至控制器500。在一些实施方式中,第三压力信息组件包括至少两个第三压力变送器402,泵组单元300的进口端及出口端分别设有第三压力变送器402。至少两个第三压力变送器402可以与控制器500连接,并且输出第三压力信息。通过在泵组单元300的进口端及出口端设置第三压力信息组件,能够用于判定系统整体阻力变化及判定系统运行的安全性。
如图2和图3,在一些实施方式中,每个第一换热支路130上连接有第二漏液检测装置136,第二漏液检测装置136与控制器500连接,用于定位与判定对应第一换热器131的漏液情况。
在一些实施方式中,供给总管110、回流总管120的最顶部设置第三排气装置101,该第三排气装置101可以是自动排气装置,便于局部系统排气。供给总管110、回流总管120上可以分别设置第七阀门102,第三排气装置101分别同对应的第七阀门102与供给总管110或者回流总管120连通,便于第三排气装置101的更换与维护。
在一些实施方式中,供给总管110、回流总管120的最底部分别设置第八阀门103,便于系统局部最低点排液。
如图2和图5,在一些实施方式中,每个第二换热支路210上连接有第二排气装置216,第二排气装置216可以连接在第二换热器211上,用于系统的有效排气。
在一些实施方式中,每个第二换热器211连接有第三漏液检测装置217,第三漏液检测装置217与控制器500连接,从而定位与判定对应第二换热器211的漏液情况。
上述第一漏液检测装置317、第二漏液检测装置136、第三漏液检测装置217都可以与控制器500连接,在其它一些实施例中,还可以在其它关键零部件及高风险部位设置漏液检测装置并与控制器500连接,这些漏液检测装置通过数字信号输入线向控制器500反馈信号,控制器500通过接收信号智能定位故障零部件及风险点,并通过串口服务器600将信号反馈值上位机700及无线通信模块800。
本申请实施方式还提供一种电机,其例如是包括上述任一实施方式的换热系统,其中换热系统的第一换热单元100集成于发电机的待冷却区。
根据本申请实施方式的电机,各第一换热支路130上的第一压力信息组件能够获取对应第一换热支路130上第一换热器131的进出口压力变化信息以及压阻变化信息,通过压力计算,能够判断对应第一换热支路130上第一换热器131的堵塞情况。各第一换热支路130上的第一阀组能够通过开闭动作快速将对应第一换热支路130切入或切出换热系统。每个第一换热支路130根据第一压力信息组件的第一压力信息控制第一阀组的开闭,例如根据第一压力信息得到对应第一换热器131出现堵塞故障时,控制第一阀组将该第一换热支路130切出系统,由于第一换热单元100包括相互并联的多个第一换热支路130,其它正常工作的第一换热支路130能够继续完成对电机900的发热部件进行冷却的工作,提高换热系统的容错能力和可靠性。
在一些实施方式中,电机可以是风力发电机组中的电机。根据本申请实施方式的电机,控制器500与换热系统中的多种部件相连,可在零部件故障时对零部件进行智能定位,在维护前即确定所需备品、备件,当风力发电机组为海上风力发电机组时,可以避免维护备品、备件不足造成的二 次出海。
根据本申请实施方式的电机及其包括的换热系统,可提高换热系统的容错运行性能,从而有利于提高换热系统的可靠性,在局部关键部件故障情况下,电机及换热系统可以实现不停机运行。
依照本申请如上文所述的实施例,这些实施例并没有详尽叙述所有的细节,也不限制该申请仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本申请的原理和实际应用,从而使所属技术领域技术人员能很好地利用本申请以及在本申请基础上的修改使用。本申请仅受权利要求书及其全部范围和等效物的限制。

Claims (16)

  1. 一种换热系统,用于对电机(900)的发热部件进行冷却,所述换热系统包括:
    第一换热单元(100),置于所述电机(900)的待冷却区以换热,所述第一换热单元(100)包括相互并联的多个第一换热支路(130);
    第二换热单元(200),设置于所述电机(900)外,所述第二换热单元(200)通过管路组件(400)与所述第一换热单元(100)连通为闭环换热回路,
    其中,每个所述第一换热支路(130)上连接有第一换热器(131)、第一阀组以及第一压力信息组件,根据所述第一压力信息组件的第一压力信息控制所述第一阀组的开闭。
  2. 根据权利要求1所述的换热系统,其中,所述第一换热器(131)设置于所述待冷却区;所述第一阀组包括至少两个第一阀门(132),所述第一换热支路(130)的进口端及出口端分别设有所述第一阀门(132);所述第一压力信息组件包括至少两个第一压力变送器(133),所述第一换热器(131)的进口端及出口端分别设有所述第一压力变送器(133),至少两个所述第一压力变送器(133)输出所述第一压力信息。
  3. 根据权利要求1所述的换热系统,其中,所述第一换热单元(100)还包括供给总管(110)以及回流总管(120),多个所述第一换热支路(130)分别与所述供给总管(110)、所述回流总管(120)连通,
    其中,所述供给总管(110)、所述回流总管(120)均呈环状管体,多个所述第一换热支路(130)均匀分布于所述供给总管(110)、所述回流总管(120)的外周;多个所述第一换热支路(130)同程布置。
  4. 根据权利要求1所述的换热系统,还包括:
    泵组单元(300),通过所述管路组件(400)连通于所述闭环换热回路中,所述泵组单元(300)包括并联设置的两个以上泵组支路(310),每个所述泵组支路(310)上连接有泵(311)、第二阀组以及第一压差变送器(313),根据所述第一压差变送器(313)的第一压差信息控制所述 第二阀组的开闭。
  5. 根据权利要求4所述的换热系统,其中,所述第二阀组包括至少两个第二阀门(312),所述泵组支路(310)的进口端及出口端分别设有所述第二阀门(312);所述第一压差变送器(313)与所述泵(311)的进口端及出口端连接。
  6. 根据权利要求3所述的换热系统,其中,所述第二换热单元(200)包括并联设置的两个以上第二换热支路(210),每个所述第二换热支路(210)上连接有第二换热器(211)、第三阀组以及第二压力信息组件,根据所述第二压力信息组件的第二压力信息控制所述第三阀组的开闭。
  7. 根据权利要求6所述的换热系统,其中,所述第二换热器(211)设置于所述电机(900)外部;所述第三阀组包括至少两个第三阀门(212),所述第二换热支路(210)的进口端及出口端分别设有所述第三阀门(212);所述第二压力信息组件包括至少两个第二压力变送器(213),所述第二换热器(211)的进口端及出口端分别设有所述第二压力变送器(213),至少两个所述第二压力变送器(213)输出所述第二压力信息。
  8. 根据权利要求6所述的换热系统,所述换热系统还包括控制器(500),
    每个所述第一换热支路(130)上连接有第一流量变送器(134),所述第一流量变送器(134)与所述控制器(500)连接,所述控制器(500)根据所述第一流量变送器(134)的第一流量信息控制所述第一阀组的开度;
    每个所述第二换热支路(210)上连接有第二流量变送器(214),所述第二流量变送器(214)与所述控制器(500)连接,所述控制器(500)根据所述第二流量变送器(214)的第二流量信息控制所述第二阀组的开度。
  9. 根据权利要求8所述的换热系统,其中,所述管路组件(400)、所述供给总管(110)、所述回流总管(120)中的至少之一上连接有第三流量变送器(401),所述供给总管(110)上连接有第一温度变送器 (111),所述回流总管(120)上连接有第二温度变送器(121),
    所述第三流量变送器(401)、所述第一温度变送器(111)、所述第二温度变送器(121)与所述控制器(500)连接,所述控制器(500)根据所述第一流量变送器(134)的第一流量信息、所述第二流量变送器(214)的第二流量信息、所述第三流量变送器(401)的第三流量信息、所述第一温度变送器(111)的第一温度信息以及所述第二温度变送器(121)的第二温度信息得到所述换热系统的总散热量。
  10. 根据权利要求9所述的换热系统,其中,每个所述第一换热支路(130)上设置有与所述第一换热器(131)气路连通的第一风扇(135),每个所述第二换热支路(210)上设置有与所述第二换热器(211)气路连通的第二风扇(215),所述第一风扇(135)、所述第二风扇(215)与所述控制器(500)连接,
    所述换热系统还包括与所述电机(900)的定子连接的定子温度变送器(TS)、与所述电机(900)的转子连接的转子温度变送器(TR)、设置在所述电机(900)外的环境温度变送器(TA)以及风速传感器(VA),所述定子温度变送器(TS)、所述转子温度变送器(TR)、所述环境温度变送器(TA)以及所述风速传感器(VA)与所述控制器(500)连接,所述控制器(500)根据所述定子温度变送器(TS)的定子温度信息、所述转子温度变送器(TR)的转子温度信息、所述环境温度变送器(TA)的环境温度信息以及所述风速传感器(VA)的风速信息控制所述第一风扇(135)、所述第二风扇(215)以及所述泵(311)的转速。
  11. 根据权利要求10所述的换热系统,其中,所述控制器(500)包括累积数据处理模块(510),所述累积数据处理模块(510)持续收集所述第一风扇(135)、所述第二风扇(215)以及所述泵(311)在不同转速组合下形成的转速组合信息以及对应的功耗信息,与不同的所述总散热量建立映射模型,
    所述累积数据处理模块(510)实时根据所述映射模型内的各个所述总散热量中,以最低功耗的所述功耗信息对应的所述转速组合信息控制所述第一风扇(135)、所述第二风扇(215)以及所述泵(311)的转速。
  12. 根据权利要求4所述的换热系统,其中,所述管路组件(400)包括第一管路(410)、第二管路(420)以及第三管路(430),所述第一管路(410)将所述泵组单元(300)与所述供给总管(110)连通,所述第二管路(420)将所述回流总管(120)与所述第二换热单元(200)连通,所述第三管路(430)将所述第二换热单元(200)与所述泵组单元(300)连通。
  13. 根据权利要求12所述的换热系统,所述换热系统还包括控制器(500),所述控制器(500)与所述第一管路(410)、所述第二管路(420)以及所述第三管路(430)上的各阀门连接,并且所述第一管路(410)上连接有安全泄压装置(411),所述安全泄压装置(411)与所述控制器(500)连接;
    所述第三管路(430)上连接有品质检测装置(432),所述品质检测装置(432)与所述控制器(500)连接;
    所述第三管路(430)上连接有注排及过滤装置(433)以及第二压差变送器(434),所述注排及过滤装置(433)用于所述第三管路(430)内换热介质的注排及过滤,所述第二压差变送器(434)与所述注排及过滤装置(433)的进口端及出口端连接,所述第二压差变送器(434)与所述控制器(500)连接。
  14. 根据权利要求4所述的换热系统,其中,每个所述泵组支路(310)上连接有止回阀(314),所述止回阀(314)位于所述泵(311)的下游;
    每个所述泵组支路(310)上连接有稳压装置(315),所述稳压装置(315)位于所述泵(311)的上游;
    每个所述泵组支路(310)上连接有第一排气装置(316);
    每个所述泵组支路(310)上连接有第一漏液检测装置(317),所述换热系统还包括控制器(500),所述第一漏液检测装置(317)与所述控制器(500)连接。
  15. 根据权利要求6所述的换热系统,所述换热系统还包括控制器(500),
    每个所述第一换热支路(130)上连接有第二漏液检测装置(136), 所述第二漏液检测装置(136)与所述控制器(500)连接;
    每个所述第二换热支路(210)上连接有第二排气装置(216);
    每个所述第二换热器(211)连接有第三漏液检测装置(217),所述第三漏液检测装置(217)与所述控制器(500)连接。
  16. 一种电机,包括根据权利要求1至15任一项所述的换热系统,其中所述换热系统的第一换热单元(100)集成于所述发电机的所述待冷却区。
PCT/CN2020/074544 2019-04-30 2020-02-07 换热系统及电机 WO2020220786A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20798309.9A EP3965269A4 (en) 2019-04-30 2020-02-07 HEAT EXCHANGE SYSTEM AND ENGINE
AU2020266630A AU2020266630B2 (en) 2019-04-30 2020-02-07 Heat exchange system and motor
US17/607,336 US11770050B2 (en) 2019-04-30 2020-02-07 Heat exchange system and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364167.9A CN111864994B (zh) 2019-04-30 2019-04-30 换热系统及电机
CN201910364167.9 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220786A1 true WO2020220786A1 (zh) 2020-11-05

Family

ID=72966167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074544 WO2020220786A1 (zh) 2019-04-30 2020-02-07 换热系统及电机

Country Status (5)

Country Link
US (1) US11770050B2 (zh)
EP (1) EP3965269A4 (zh)
CN (1) CN111864994B (zh)
AU (1) AU2020266630B2 (zh)
WO (1) WO2020220786A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115367125A (zh) * 2022-09-08 2022-11-22 北京微焓科技有限公司 混合热管理系统及飞机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530312A2 (en) * 2011-06-03 2012-12-05 Gamesa Innovation & Technology, S.L. Cooling and climate control system and method for an offshore wind turbine
CN106939877A (zh) * 2017-03-16 2017-07-11 新疆金风科技股份有限公司 风力发电机组的冷却系统及风力发电机组
CN107196461A (zh) * 2017-07-24 2017-09-22 北京金风科创风电设备有限公司 复合冷却系统
CN108541188A (zh) * 2018-04-02 2018-09-14 郑州云海信息技术有限公司 一种换热单元及数据中心液冷系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657290A (en) * 1984-10-03 1987-04-14 Linden Craig L Co-generation plant module system
US4736111A (en) * 1984-10-03 1988-04-05 Linden Craig L Cogeneration system
DE9100340U1 (zh) * 1991-01-12 1992-02-13 Immler, Volker
WO1999040310A1 (en) * 1998-02-09 1999-08-12 Whisper Tech Limited Improvements in co-generation systems
US7067933B2 (en) * 2002-11-12 2006-06-27 Terry Edgar Bassett Waste oil electrical generation system
US7040544B2 (en) * 2003-11-07 2006-05-09 Climate Energy, Llc System and method for warm air space heating with electrical power generation
US7279800B2 (en) * 2003-11-10 2007-10-09 Bassett Terry E Waste oil electrical generation systems
KR101001004B1 (ko) * 2003-12-19 2010-12-14 두산인프라코어 주식회사 공작기계의 주축 내장형 스핀들 모터의 냉각장치
KR100702039B1 (ko) * 2004-12-10 2007-03-30 엘지전자 주식회사 열병합 발전 시스템
JP2008255923A (ja) * 2007-04-06 2008-10-23 Sanden Corp 内燃機関の廃熱利用装置
US8344528B2 (en) * 2009-07-01 2013-01-01 Terry Edgar Bassett Waste oil electrical generation systems
IT1398060B1 (it) 2010-02-04 2013-02-07 Wilic Sarl Impianto e metodo di raffreddamento di un generatore elettrico di un aerogeneratore, e aerogeneratore comprendente tale impianto di raffreddamento
JP5681516B2 (ja) * 2011-02-15 2015-03-11 ヤンマー株式会社 パッケージ収納型エンジン作業機
EP2584195B1 (en) * 2011-08-10 2016-09-28 Mitsubishi Heavy Industries, Ltd. Wind power generation apparatus
CN102859188A (zh) * 2011-08-10 2013-01-02 三菱重工业株式会社 再生能型发电装置
US10075115B2 (en) * 2012-06-14 2018-09-11 Pac, Llc Cogeneration system configured to be installed into an existing boiler plant/emergency generator installation and process for cogeneration
US9404417B2 (en) * 2012-11-30 2016-08-02 Cummins Power Generation, Inc. Noise attenuation compartment with heat exchanger arrangements for engines driving a load
KR101427694B1 (ko) * 2012-12-12 2014-08-07 주식회사 경동나비엔 온수 중심의 온수 난방 겸용 보일러
CN104009588B (zh) * 2014-06-18 2016-07-13 东方电气集团东方电机有限公司 立轴电机蒸发冷却系统
KR101601264B1 (ko) * 2014-06-27 2016-03-09 주식회사 경동나비엔 소형 열병합발전기의 열매체 순환구조 및 온수온도 제어방법
US9803584B2 (en) * 2015-04-01 2017-10-31 Briggs & Stratton Corporation Combined heat and power system
US10955168B2 (en) * 2017-06-13 2021-03-23 Enginuity Power Systems, Inc. Methods systems and devices for controlling temperature and humidity using excess energy from a combined heat and power system
CN109441740B (zh) * 2018-12-29 2020-06-26 北京金风科创风电设备有限公司 冷却系统、风力发电机组以及冷却系统的控制方法
US11352930B2 (en) * 2019-02-21 2022-06-07 Enginuity Power Systems, Inc. Muffler and catalytic converters for combined heating and power systems
US20230150353A1 (en) * 2020-05-20 2023-05-18 Deere & Company Lightweight high-efficiency, high temperature electric drive system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530312A2 (en) * 2011-06-03 2012-12-05 Gamesa Innovation & Technology, S.L. Cooling and climate control system and method for an offshore wind turbine
CN106939877A (zh) * 2017-03-16 2017-07-11 新疆金风科技股份有限公司 风力发电机组的冷却系统及风力发电机组
CN107196461A (zh) * 2017-07-24 2017-09-22 北京金风科创风电设备有限公司 复合冷却系统
CN108541188A (zh) * 2018-04-02 2018-09-14 郑州云海信息技术有限公司 一种换热单元及数据中心液冷系统

Also Published As

Publication number Publication date
AU2020266630B2 (en) 2023-08-31
EP3965269A4 (en) 2022-06-22
CN111864994B (zh) 2023-01-24
AU2020266630A1 (en) 2021-12-02
EP3965269A1 (en) 2022-03-09
US11770050B2 (en) 2023-09-26
CN111864994A (zh) 2020-10-30
US20220243705A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
CN101749195B (zh) 用于风力涡轮机构件的改进的冷却系统及方法
CN104501648B (zh) 一种数据机房机柜冷却系统
CN207297838U (zh) 一种用于齿轮箱的润滑油冷却系统
WO2020220786A1 (zh) 换热系统及电机
CN106468190A (zh) 间接空冷高背压机组电网调峰能力与供热需求的协调控制系统
CN108561220A (zh) 工程车辆的冷却装置、冷却装置的控制方法及工程车辆
CN215121663U (zh) 一种工作稳定可靠的大型服务器液冷系统
CN104613703A (zh) 冷却水循环系统及控制方法
CN103104453B (zh) 冷却系统的控制方法及装置
CN113626291A (zh) 一种液冷监测方法和装置
JP2008224155A (ja) 氷蓄熱式熱源機装置及びその制御方法
CN116428221A (zh) 一种空压机冷却系统
CN206488666U (zh) 能量回收系统
CN204388457U (zh) 冷却水循环系统
CN106288883A (zh) 能量回收系统
CN107044391B (zh) 一种风电机组冷却系统
CN109579316A (zh) 能自动调节系统过热及闭式换热系统补液稳压的控制系统
CN206294020U (zh) 一种永磁调速装置的冷却水循环系统
CN206205943U (zh) 间接空冷高背压机组电网调峰能力与供热需求的协调控制系统
CN205489983U (zh) 应用于bopp生产线的电机冷却装置
CN216450687U (zh) 一种新型燃料电池温控系统
CN111413116A (zh) 电机控制器冷却故障检测系统及其方法
CN220152019U (zh) 一种冷热源工艺水系统的止回阀故障自诊断系统
CN214537463U (zh) 一种冗余冷却系统
CN219492696U (zh) 一种空压机冷却系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020266630

Country of ref document: AU

Date of ref document: 20200207

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020798309

Country of ref document: EP

Effective date: 20211130