WO2020220703A1 - 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法 - Google Patents

一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法 Download PDF

Info

Publication number
WO2020220703A1
WO2020220703A1 PCT/CN2019/127912 CN2019127912W WO2020220703A1 WO 2020220703 A1 WO2020220703 A1 WO 2020220703A1 CN 2019127912 W CN2019127912 W CN 2019127912W WO 2020220703 A1 WO2020220703 A1 WO 2020220703A1
Authority
WO
WIPO (PCT)
Prior art keywords
saw blade
rock
cutting
box
assembly
Prior art date
Application number
PCT/CN2019/127912
Other languages
English (en)
French (fr)
Inventor
逯振国
曾庆良
万丽荣
王志文
李旭
高冠顺
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020220703A1 publication Critical patent/WO2020220703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests

Definitions

  • the invention relates to a diamond saw blade-picker combined rock breaking test device and a test method thereof, belonging to the technical field of roadheader cutting test benches.
  • Roadheader is the most common machine for tunneling in coal production, and it is the key equipment to ensure the rapid and stable production of coal mine tunnels.
  • the main method of increasing the cutting power is to improve the excavation performance and efficiency of the roadheader.
  • increasing the power of the roadheader increases the cost of the roadheader and increases the volume. It is difficult to be widely used in small underground wells, and the wear of picks increases sharply, which significantly increases the cost of rock tunnel excavation.
  • Diamond is the hardest substance naturally occurring in nature. Diamond saw blades can be used to cut rocks with greater compressive strength, so that the rocks have slits and form a rock mass with multiple free panels, which are then broken by picks to form a diamond Saw blade-picker combined rock breaking method.
  • the Chinese patent document provides a saw blade cutting type-crushing device compound roadheader, which is an actual mine application device.
  • the machine uses a saw blade and a breaking hammer to break the rock. It can Combination crushes hard rock that cannot be cut by traditional roadheaders.
  • the breaking hammer mechanism adopted by the roadheader requires a large expansion space, which is not conducive to the actual application in coal mines.
  • the breaking hammer has a large impact force, which is likely to cause disturbance to the roadway rock.
  • the device cannot be used to study the relationship between rock sawing size and impact hammer crushing.
  • the present invention provides a diamond saw blade-picker combined rock breaking test device.
  • the present invention relates to a diamond saw blade-pick combined rock breaking test device. With the help of this laboratory platform, the rock can be sawed first, and then the pick The rock mass with saw blade cut joints can be broken. It can be used to study the rock breaking performance of the diamond saw blade-pick unit, and observe the rock crushing effect and the cutting force change of the rock with the kerf.
  • the invention also provides a test method for the above-mentioned test device.
  • a diamond saw blade-picker combined rock breaking test device includes a fixed bottom plate on which a saw blade assembly and a box body assembly are arranged;
  • the saw blade assembly includes a saw blade assembly guide rail and a saw blade assembly advancing cylinder.
  • the saw blade assembly support frame slides on the saw blade assembly guide rail.
  • One end of the saw blade assembly support frame is connected with a saw blade assembly advancing cylinder.
  • the saw blade assembly advancing cylinder is used for Control the lateral displacement movement of the saw blade assembly support frame;
  • the saw blade assembly support frame is equipped with a saw blade group and a saw blade advancing cylinder.
  • the saw blade group is connected to the saw blade advancing cylinder through a sleeve group.
  • the saw blade advancing cylinder is used to control the saw.
  • the vertical displacement movement of the blade group One end of the sleeve group is connected with a motor.
  • the motor is used to control the rotation of the sleeve to drive the rotation of the saw blade.
  • the saw blade group advances downward under the action of the saw blade pushing cylinder, and the saw blade group passes The motor controls the rotation to cut the rock.
  • the expansion and contraction of the saw blade propelling cylinder determines the depth of the rock cut;
  • the box assembly includes a box guide rail, a rock fixing device, and a pick cutting assembly.
  • the rock fixing device is arranged on the box guide rail.
  • the rock fixing device is used to place and fix the experimental rock.
  • One end of the rock fixing device is equipped with a box propulsion cylinder .
  • the fixed bottom plates on both sides of the rock fixing device are equipped with box baffles, and between the box baffles are equipped with pick cutting components.
  • One end of the pick cutting assembly is equipped with a pick assembly propelling cylinder, and a pick cutting assembly Used for cutting broken rocks.
  • the box advancing cylinder drives the rock fixing device to move horizontally on the box guide rails. During the cutting of the rock, the saw blade set can be cut to form different saw gap lengths through the expansion and contraction of the box pushing cylinder.
  • the saw blade advancing cylinder shrinks and drives the saw blade group to move up to stop after leaving the rock.
  • the box advancing cylinder adjusts the rock fixing device to a proper position, and the pick assembly advances the cylinder to drive the pick cutting assembly to the rock fixing device. The rock is cut and broken.
  • the thickness of the slab rock mass formed by sawing according to the length of the sleeve can be further adjusted.
  • the thickness of the slab rock mass formed by the sleeve is fixed, and the cutting of the slab rock mass of any thickness can be realized through the movement of the saw blade assembly support frame and double adjustment.
  • the number of saw blade advancing cylinders is preferably two, one saw blade advancing cylinder is connected to the saw blade group through a sleeve group, and the other saw blade advancing cylinder is connected to the motor.
  • the two oil cylinders need to adopt the same specifications and give the same oil pressure to realize the synchronous advancement of the motor and the saw blade group.
  • the motor is connected to one end of the saw blade advancing cylinder through the motor fixing plate
  • the saw blade assembly support frame is provided with a fixing plate guide groove
  • the width of the fixing plate guide groove is the same as the thickness of the motor fixing plate.
  • the sleeve set includes a slotted end sleeve, a spacer sleeve, and a coupling sleeve.
  • the sleeve set is provided with a saw blade central shaft, and the saw blade central shaft is provided with splines, and the sleeve set
  • the inner wall is provided with a spline groove
  • the saw blade group includes at least two saw blades, the center of the saw blade is provided with a through hole, and the through hole is provided with a saw blade spline groove;
  • the saw blade is spaced apart from the end slotted sleeve, spacer sleeve, and coupling sleeve, and the coupling sleeve is connected with the motor output shaft.
  • the motor outputs rotational kinetic energy to drive the shaft sleeve to rotate.
  • the saw blade central shaft rotates, because the saw blade and the saw blade central shaft also cooperate through the spline , The torque is transmitted, so the saw blade is driven to rotate smoothly for cutting operations.
  • the distance between the saw blade and the sleeve group can be set, and the length and number of the spacer sleeve can be changed according to actual needs to control the distance between the diamond saw blades.
  • the central shaft of the saw blade includes a shaft head, a journal, and a shaft body.
  • the shaft body is provided with a spline, the sleeve set is in clearance fit with the shaft body, and the shaft head is connected with the saw blade advancing cylinder through an oil cylinder sleeve.
  • the shaft head rotates freely in the cylinder sleeve, the saw blade advances the cylinder to push the cylinder sleeve to move vertically, and the saw blade central shaft rotates in the cylinder sleeve at the same time.
  • the shaft head is arranged in the middle of the central shaft of the saw blade, and the shaft journal and the shaft body are sequentially arranged on both sides of the shaft head; the shaft head end cover is provided on the shaft journal, and the two shaft head end covers and the cylinder sleeve are threaded Hole bolt connection.
  • the cooperation of the two shaft head end caps can fix the position of the saw blade center shaft on the cylinder sleeve.
  • a threaded rod is provided at the shaft end of one end of the central shaft of the saw blade, and the threaded rod is threadedly connected with the central shaft end cover, and the outer diameter of the central shaft end cover is the same as the outer diameter of the end slotted sleeve.
  • the bottom bracket cover is used to axially fasten the sleeve and saw blade groups on the center shaft of the saw blade. Nuts can be added to the outside of the bottom bracket cover for further tightening.
  • the sleeve set further includes a positioning sleeve, the positioning sleeve is arranged between the spacing sleeve and the coupling sleeve, and the inner wall of the positioning sleeve is provided with a spline groove.
  • the positioning sleeve is used to supplement the gap between the coupling sleeve and the spacer sleeve, and an elastic gasket can be installed between the coupling sleeve and the positioning sleeve.
  • a supporting frame positioning device is preferably provided on the fixed bottom plate.
  • the supporting frame positioning device includes a main body frame.
  • the main body frame is provided with a through hole, and the main body frame is connected to the fixed bottom plate by bolts.
  • the bearing and the radial bearing are connected with the side of the main frame through a support rod, and the saw blade assembly is supported and erected above the radial bearing.
  • the radial bearing is in contact with the support frame of the saw blade assembly.
  • the rock fixing device preferably includes a box body, a rock fixing plate is arranged in the box body, a positioning groove is arranged on the rock fixing plate, a through hole is provided on the side wall of the box body, and the fastening rod penetrates the through hole and is embedded in the positioning groove
  • the fastening rod is provided with external threads, and the fastening rod is connected with the nut on the outside of the box body. After the rock is put in, the fastening rod penetrates the through hole to extend into the positioning groove of the rock fixing plate, push the rock fixing plate to the fastening rock, and then complete the fixing with the box body by the nut.
  • a nut groove is provided on the side wall of the box body outside the through hole, a nut is arranged in the nut groove, and an inner hexagonal hole is opened at the end of the fastening rod.
  • the through holes on the side wall of the box body are provided in at least two rows and at least two rows, the height of the rock fixing plate is smaller than the height of the box body, and the tops of both sides of the box body are horizontally provided with support plates.
  • the support plate can place the box body between the box baffles on both sides, so that the box body has no shaking space.
  • the side wall of the box body is equipped with multiple through holes and multiple nut slots, which can be adjusted according to the size of the rock to be fixed. The positions of the fixed rods, nuts, and rock fixing plates ensure that there is no shaking space for rocks inside the box.
  • the height of the rock fixing plate is less than the depth of the box body, which can ensure that the rock fixing plate has a certain range of up and down movement with the change of the rock position in the box body. At the same time, it can ensure that the rock fixing plate does not extend out of the box body and does not collide with the picks.
  • the pick cutting assembly includes a balance body, one end of the balance body is provided with a pick fixing plate, and the pick is connected to the pick fixing plate through a snap ring; the other end of the balance body is provided with a pressure sensor, the pressure sensor and the cutting
  • the tooth assembly is connected to the propulsion cylinder, and a signal acquisition interface is provided on the pressure sensor.
  • the pressure sensor can accurately measure the cutting force generated during the rock breaking process, and the external signal acquisition system can acquire the current signal generated by the pressure sensor through the signal acquisition interface.
  • the pick fixing plate is a folded plate, one end of the folded plate is connected with the balance body by bolts, the other end of the folded plate is connected with the picks, and the bent part of the folded plate also plays a role in positioning with the balance body.
  • One side of the pressure sensor is provided with a pulling pressure rod, which is hinged with the balance body.
  • two cutting assembly guide rails are also provided between the box baffles, balance bars are provided on both sides of the balance body, and centripetal bearings are arranged at the ends of the balance bars, and the radial bearings roll in the cutting assembly guide rails.
  • the cutting component guide rail is fixed to the box baffle by bolts. When the bolted cutting component guide rail bears the load of the pick cutting component, it can slightly rotate around the bolt, thereby buffering the cutting of the cutting component.
  • the impact load of the component guide rail can effectively resist the up and down fluctuations and vibrations of the pick cutting assembly during the cutting of rocks.
  • the cutting action of the pick cutting assembly is smoother to ensure smooth movement during the cutting and crushing of rocks. At the same time, it can effectively measure the cutting force in the direction of the pick movement, that is, the normal phase cutting force.
  • the rock fixing device and the box propulsion cylinder are hingedly connected. Under the action of the box propulsion cylinder, the rock fixing device drives the rock to move on the box guide rail.
  • the hinge connection can make the rock fixing device only bear the axial propulsion force generated by the box propulsion cylinder, and does not bear the lateral force, so as to smoothly advance .
  • the saw blade assembly pushing cylinder and the saw blade assembly support frame are hingedly connected.
  • the saw blade assembly advancing cylinder can push the saw blade assembly support frame to move on the saw blade assembly guide rail.
  • the saw blade assembly advancing cylinder and the saw blade assembly support frame adopt a hinged connection form to ensure that the cylinder does not produce a lateral direction when pushing the support frame force.
  • a test method using the above-mentioned diamond saw blade-pick combined rock breaking test device includes the following steps:
  • the box propulsion cylinder extends, and the propelling rock fixing device moves along the box guide rail toward the saw blade assembly support frame.
  • the box pushing cylinder stops working;
  • the saw blade advancing cylinder pushes the saw blade group downward, and at the same time, the motor is started to drive the saw blade group to rotate; as the saw blade advancing cylinder pushes, the saw blade group approaches and starts to cut the rock.
  • the motor By controlling the elongation of the saw blade advancing cylinder, Control the depth of the saw blade cutting the rock; the saw blade advancing cylinder drives the saw blade group to lift, and the motor stops rotating;
  • the box advancing cylinder can drive the rock fixing device to move on the box guide rail.
  • the cutting gap of the saw blade group for cutting rocks depends on the length of the spacer sleeve; disassemble the sleeve group, the bottom cover, and replace the spacer sleeve with a suitable length to change the distance between the saw blades in the saw blade group.
  • the required cutting seam distance can be obtained by adjusting the distance between the same set and the saw blade set to obtain the specified rock cutting thickness;
  • the relative position between the saw blade group and the rock can be changed by the saw blade assembly advancing the cylinder to move the saw blade assembly support frame: after the saw blade group cuts the rock to form a certain interval of slits, the saw blade advances the cylinder to drive the saw blade group up , Adjust the relative position of the saw blade assembly support frame and the saw blade group with the rock through the expansion of the saw blade assembly to advance the cylinder, and the saw blade advance cylinder drives the diamond saw blade group to descend, and perform another cutting, which can change the gap between the cuts; cutting is completed After that, the saw blade advances in the cylinder to drive the saw blade group to rise again, turning off the motor.
  • the rock cut by the saw blade group moves into the box baffle by the shrinking action of the box propelling cylinder.
  • the pick cutting assembly moves along the guide rail of the cutting assembly driven by the pick assembly pushing cylinder, and the pick impacts Crushing the rock with slits, the reaction force of the rock on the picks makes the pressure rod to compress the pressure sensor, and the deformation of the pressure sensor is output through the signal acquisition interface as a current signal to complete the test acquisition.
  • the present invention designs a diamond saw blade-picker combined rock crushing test device, which can complete the rock crushing test research.
  • the saw blade assembly of the test device of the present invention is composed of a plurality of saw blades, which can simultaneously perform multiple saw slits on the rock mass.
  • the test device of the present invention can advance the feed distance of the oil cylinder through sawing, and assist the saw blade assembly to saw the rock to form different sawing kerf depths.
  • the test device of the present invention can fix the feed distance of the oil cylinder through the rock, and assist the saw blade assembly to saw the rock to form different sawing slit lengths.
  • the test device of the present invention can assist the saw blade assembly to saw the rock through the action of the slotted sleeve, and by changing the width of the spacer sleeve, different saw cutting gaps can be formed to form rock slabs of different thicknesses. Shaped body.
  • the test device of the present invention can also drive the saw blade assembly support frame to move through the action of the saw blade assembly support frame to advance the cylinder, and assist the saw blade assembly to saw the rock, thereby forming different saw cutting gaps to form Rock slabs of different thicknesses.
  • the saw blade assembly support frame of the test device of the present invention adopts the support frame positioning device for positioning, which can ensure that the saw blade assembly support frame moves steadily and smoothly on the guide rail, and does not tip over.
  • the test device of the present invention has a rock clamping assembly, which can complete the fixing of rocks of different sizes, and can fix the rocks at different heights through the action of the backing plate.
  • the test device of the present invention can assist the pick cutting assembly to complete the cutting and crushing of slab rock masses with different cutting depths by fixing rocks of different heights.
  • the pick cutting assembly of the test device of the present invention has a bearing-type anti-bending moment structure.
  • the advantage of this structure is that it can offset the bending moment generated by the pick cutting force on the pick cutting assembly structure, and 2 can Make the picks move more smoothly in the process of pushing the pick propulsion cylinder.
  • the pick cutting assembly of the test device of the present invention is equipped with a pressure sensor, which can accurately measure the normal cutting force of the pick during rock crushing with the aid of the bearing-type anti-bending moment structure.
  • the structure of the present invention that is matched with the saw blade to break the rock is a pick, and the size of the cutting head used for the installation of the pick is easy to control. After the saw blade cuts the rock, the strength of the rock will be significantly reduced, and the slab-shaped rock mass can be broken even when the cutting head is small in size and power.
  • Figure 1 is a schematic diagram of the overall structure of the diamond saw blade-picker combined rock breaking test device of the present invention
  • Figure 2 is a schematic diagram of the motor assembly of the diamond saw blade-picker combined rock breaking test device of the present invention
  • Figure 3 is a schematic diagram of the guide rail structure of the cutting assembly
  • Figure 4 is a schematic diagram of the structure of the pick cutting assembly
  • Figure 5 is a schematic diagram of the central axis of the saw blade
  • Figure 6 is a schematic diagram of the structure of the bottom bracket end cover
  • Figure 7 is a schematic diagram of the saw blade structure
  • Figure 8 is a schematic diagram of the structure of the shaft end cover
  • Figure 9 is a schematic diagram of the structure of the cylinder sleeve
  • Figure 10 is a schematic diagram of the sleeve set structure
  • Figure 11 is a schematic diagram of the structure of the support frame positioning device
  • Figure 12 is a perspective view of the rock fixing device structure
  • Figure 13 is a schematic top view of the rock fixing device structure
  • Figure 14 is a schematic diagram of the side structure of the rock fixing device
  • 1-Fixed bottom plate 2- Saw blade assembly advancing cylinder; 3- Saw blade assembly guide; 4- Saw blade assembly support frame; 5- Saw blade central axis; 6-sleeve group; 7-diamond saw blade group; 8- Saw blade propulsion cylinder; 9-bolt; 10-motor; 11-support frame positioning device; 12- pick cutting assembly; 13-box baffle; 14-rock fixing device; 15-box propulsion cylinder; 16- Cutting component guide rail; 17-Pick component propulsion cylinder; 18-Box guide rail; 19-Motor fixing plate; 20-Fixing plate guide groove; 21-Shaft head end cover, 22-Blind shaft end cover;
  • 501-threaded rod 502-spline, 503-shaft body, 504-shaft journal, 505-shaft head, 506-shaft journal, 507-shaft body, 508-spline;
  • a diamond saw blade-picker combined rock breaking test device as shown in Fig. 1, includes a fixed bottom plate 1 on which a saw blade assembly and a box body assembly are provided.
  • the saw blade assembly includes a saw blade assembly guide rail 3 and a saw blade assembly advancing cylinder 2.
  • the saw blade assembly guide 3 slides on a saw blade assembly support frame 4, and one end of the saw blade assembly support frame 4 is connected with a saw blade assembly advancing cylinder 2.
  • the blade assembly advancing cylinder 2 is used to control the lateral displacement movement of the saw blade assembly support frame 4; the saw blade assembly support frame 4 is provided with a saw blade group 7 and a saw blade advancing cylinder 8.
  • the saw blade group 7 is connected to the saw through the sleeve group 6
  • the blade advancing cylinder 8 is connected, and the saw blade advancing cylinder 8 is used to control the vertical displacement movement of the saw blade group 7, and one end of the sleeve group 6 is connected with a motor 10, which is used to control the rotation of the sleeve to drive the rotation of the saw blade.
  • the blade group is pushed down under the action of the saw blade advancing cylinder.
  • the saw blade group is rotated by the motor to cut the rock.
  • the expansion and contraction of the saw blade advancing cylinder determines the depth of the rock cut.
  • the box assembly includes a box guide rail 18, a rock fixing device 14, and a pick cutting assembly 12.
  • the rock fixing device 14 is arranged on the box guide rail 18.
  • the rock fixing device 14 is used to place and fix the experimental rock, and the rock fixing device 14 One end is provided with a box propelling cylinder 15, the fixed bottom plate 1 on both sides of the rock fixing device 14 is provided with box baffles 13, and between the box baffles 13 are provided a pick cutting assembly 12, a pick cutting assembly 12 One end is provided with a pick assembly propelling cylinder 17, and the pick cutting assembly 12 is used for cutting broken rocks.
  • the box advancing cylinder drives the rock fixing device to move horizontally on the box guide rails.
  • the saw blade set can be cut to form different saw gap lengths through the expansion and contraction of the box pushing cylinder.
  • the box pushing cylinder adjusts the rock fixing device to a proper position, and the pick assembly pushing cylinder drives the pick cutting assembly to cut and break the rock in the rock fixing device.
  • the thickness of the slab rock mass formed by sawing according to the length of the sleeve can be further adjusted.
  • the thickness of the slab rock mass formed by the sleeve is fixed, and the cutting of the slab rock mass of any thickness can be realized through the movement of the saw blade assembly support frame and double adjustment.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 1. The difference is that the number of saw blade pushing cylinders 8 is two. As shown in Figure 1-2, one saw blade The propulsion cylinder is connected with the saw blade group through the sleeve group, and the other saw blade propulsion cylinder is connected with the motor. The two oil cylinders need to adopt the same specifications and give the same oil pressure to realize the synchronous advancement of the motor and the saw blade group.
  • a diamond saw blade-picker combined rock crushing test device Its structure is as described in embodiment 2, except that the motor 10 is fixed to the motor fixing plate 19 by bolts 9, and the motor fixing plate 19 and the saw blade advancing cylinder 8 As shown in FIG. 2, a fixing plate guide groove 20 is provided on the saw blade assembly support frame 4, and the width of the fixing plate guide groove 20 is the same as the thickness of the motor fixing plate 19. When the saw blade advances in the oil cylinder, the motor fixing plate moves vertically in the fixing plate guide groove, which can ensure the stability of the movement of the motor fixing plate.
  • a diamond saw blade-picker combined rock crushing test device Its structure is as described in Example 1, except that the sleeve set includes a slotted end sleeve 6002, a spacer sleeve 6003, and a coupling sleeve 6005 , As shown in Figure 10, the sleeve group is provided with a saw blade central shaft 5, the saw blade central shaft 5 is provided with splines, and the inner wall of the sleeve group is provided with a spline groove 6001.
  • the saw blade group includes eight saw blades. A through hole is provided in the center of the blade, and a saw blade spline groove 7001 is provided on the through hole, as shown in FIG. 7.
  • the saw blade is spaced apart from the end slotted sleeve, spacer sleeve, and coupling sleeve.
  • the coupling sleeve 6005 is connected to the output shaft of the motor 10.
  • the motor outputs rotational kinetic energy to drive the shaft sleeve to rotate.
  • the saw blade central shaft rotates, because the saw blade and the saw blade central shaft also cooperate through the spline , The torque is transmitted, so the saw blade is driven to rotate smoothly for cutting operations.
  • the distance between the saw blade and the sleeve group can be set, and the length and number of the spacer sleeve can be changed according to actual needs to control the distance between the diamond saw blades.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 4. The difference is that the saw blade central shaft 5 includes a shaft head 505, a journal 504, and a shaft body 503.
  • the spline 502, the sleeve set is in clearance fit with the shaft body, and the shaft head 505 is connected to the saw blade advancing cylinder 8 through the cylinder sleeve 801.
  • the shaft head rotates freely in the cylinder sleeve, the saw blade advances the cylinder to push the cylinder sleeve to move vertically, and the saw blade central shaft rotates in the cylinder sleeve at the same time.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 5. The difference is that the shaft head 505 is arranged in the middle of the saw blade central shaft 5, and both sides of the shaft head 505 are provided with shafts in turn.
  • the journal 504, the journal 506, the shaft 503, and the shaft 507 are shown in Figure 5; a shaft end cover 21 is provided on the shaft journal, and the shaft end cover 21 has an inner diameter of the end cover 2102, which is an excessive fit with the journal 504 ,
  • the two shaft head end covers and the cylinder sleeve 801 are bolted through respective threaded holes 2101 and threaded holes 802, as shown in Figs. 8 and 9.
  • the two shaft end covers can further fix the cylinder sleeve.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 6, except that the end of the shaft 503 at one end of the saw blade central shaft 5 is provided with a threaded rod 501, which is connected with the The bottom bracket end cover 22 is screwed, as shown in FIGS. 5 and 6, the outer diameter of the bottom bracket end cover 22 is the same as the outer diameter of the end slotted sleeve 6002.
  • the bottom bracket cover is used to axially fasten the sleeve and saw blade groups on the center shaft of the saw blade. Nuts can be added to the outside of the bottom bracket cover for further tightening.
  • a diamond saw blade-picker combined rock breaking test device the structure of which is as described in Example 4, the difference is that the sleeve set also includes a positioning sleeve 6004, the positioning sleeve 6004 is set in the spacing sleeve 6003 and Between the shaft sleeves 6005, the inner wall of the positioning sleeve is provided with a spline groove.
  • the positioning sleeve is used to supplement the gap between the coupling sleeve and the spacer sleeve, and an elastic gasket can be installed between the coupling sleeve and the positioning sleeve.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 1. The difference is that the fixed base plate 1 is also provided with a support frame positioning device 11, as shown in Figure 11, the support frame positioning The device 11 includes a main frame 1101, the main frame 1101 is provided with a through hole 1102, and the main frame 1101 is connected to the fixed bottom plate 1 by bolts; the main frame 1101 is provided with a radial bearing 1104 on the side, and the radial bearing 1104 is connected to the main frame via a support rod 1103 1101 is connected on the side, and the saw blade assembly support frame 4 is arranged above the radial bearing 1104.
  • the radial bearing is in contact with the support frame of the saw blade assembly. When the support frame of the saw blade assembly moves on the guide rail of the saw blade assembly, the centripetal bearing can ensure that the support frame of the saw blade assembly does not fall over, and can ensure that it can bear more resistance during the movement. Little friction.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 1. The difference is that the rock fixing device 14 includes a box 1401, as shown in Figure 12-14.
  • a rock fixing plate 1402 is provided, a positioning groove 1403 is provided on the rock fixing plate 1402, a through hole is provided on the side wall of the box 1401, a fastening rod 1404 penetrates the through hole and is embedded in the positioning groove 1403, and the fastening rod 1404 is provided with an external thread ,
  • the fastening rod 1404 is connected with the nut 1408 on the outside of the box 1401. After the rock is put in, the fastening rod penetrates the through hole to extend into the positioning groove of the rock fixing plate, push the rock fixing plate to the fastening rock, and then complete the fixing with the box body by the nut.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 10. The difference is that a nut groove 1409 is provided on the side wall of the box 1401 outside the through hole, and a nut is provided in the nut groove 1409 1408, the end of the fastening rod 1404 is provided with an inner hexagon hole 1407, as shown in FIG. To place the nut in the nut slot, you only need to use an Allen wrench to turn the tightening rod to push the rock fixing plate.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in Example 10. The difference is that there are three rows and three rows of nine through holes on the side wall of the box 1401, as shown in Figure 14. As shown, the height of the rock fixing plate 1402 is smaller than the height of the box 1401, and the tops of both sides of the box are horizontally provided with support plates 1406. The support plate can place the box body between the box baffles on both sides, so that the box body has no shaking space.
  • the side wall of the box body is equipped with multiple through holes and multiple nut slots, which can be adjusted according to the size of the rock to be fixed. The positions of the fixed rods, nuts, and rock fixing plates ensure that there is no shaking space for rocks inside the box.
  • the height of the rock fixed plate is less than the depth of the box body, which can ensure that the rock fixed plate has a certain range of up and down movement with the change of the rock position in the box body. At the same time, it can ensure that the rock fixed plate does not extend out of the box body or collide with the picks.
  • a diamond saw blade-picker combined rock breaking test device its structure is as described in embodiment 10, the difference is that the pick cutting assembly 12 includes a balance body 1205, as shown in Figure 4, the balance body 1205 is provided at one end There is a pick fixing plate 1204, the pick 1201 is connected to the pick fixing plate 1204 through a snap ring 1202; the other end of the balance body 1205 is provided with a pressure sensor 1212, the pressure sensor 1212 and the pick assembly propulsion cylinder 17 are bolted through a threaded hole 1213, A signal collection interface 1214 is provided on the pressure sensor 1212.
  • the pressure sensor can accurately measure the cutting force generated during the rock breaking process, and the external signal acquisition system can acquire the current signal generated by the pressure sensor through the signal acquisition interface.
  • a diamond saw blade-picker combined rock crushing test device Its structure is as described in Example 13. The difference is that the pick fixed plate 1204 is a folded plate, and one end of the folded plate is connected with the balance body 1205 by a bolt 1203 , The other end of the folded plate is connected with the pick 1201, and the bending part of the folded plate also plays a role in positioning with the balance body; a tension pressure rod is arranged on one side of the pressure sensor, and the tension pressure rod is hinged with the balance body.
  • a diamond saw blade-picker combined rock breaking test device Its structure is as described in embodiment 14, except that two cutting assembly guide rails 16 are also provided between the box baffle 13, as shown in Figure 3. As shown, the cutting component guide rail is fixed on the box baffle 13 through the through hole 1601, the cutting component guide rail is provided with guide grooves 1602, the balance body 1205 is provided with balance rods 1206 on both sides, and the end of the balance rod 1206 is provided with radial bearings 1207, the radial bearing 1207 rolls in the guide groove 1602 of the guide rail 16 of the cutting assembly.
  • the length L of the guide groove is the distance between the box baffles, the width B of the guide groove is greater than the thickness of the radial bearing 1207, and the height H of the guide groove is the same as the major diameter of the radial bearing 1207.
  • the cutting component guide rail is fixed to the box baffle by bolts. When the bolted cutting component guide rail bears the load of the pick cutting component, it can slightly rotate around the bolt, thereby buffering the cutting of the cutting component. The impact load of the component guide rail can effectively resist the up and down fluctuations and vibrations of the pick cutting assembly during the cutting of rocks. The cutting action of the pick cutting assembly is smoother to ensure smooth movement during the cutting and crushing of rocks. At the same time, it can effectively measure the cutting force in the direction of pick motion, that is, the normal phase cutting force.
  • a diamond saw blade-picker combined rock breaking test device whose structure is as described in Example 1, except that the rock fixing device and the box propulsion cylinder are hingedly connected by a hinge pair 1405. Under the action of the box propulsion cylinder, the rock fixing device drives the rock to move on the box guide rail.
  • the hinge connection can make the rock fixing device only bear the axial propulsion force generated by the box propulsion cylinder, and does not bear the lateral force, so as to smoothly advance .
  • a diamond saw blade-picker combined rock breaking test device whose structure is as described in Example 1, except that the saw blade assembly pushing cylinder and the saw blade assembly support frame are hingedly connected.
  • the saw blade assembly advancing cylinder can push the saw blade assembly support frame to move on the saw blade assembly guide rail.
  • the saw blade assembly advancing cylinder and the saw blade assembly support frame adopt a hinged connection form to ensure that the cylinder does not produce sideways when pushing the support frame force.
  • a test method of a diamond saw blade-picker combined rock breaking test device including the following steps:
  • the box propulsion cylinder extends, and the propelling rock fixing device moves along the box guide rail toward the saw blade assembly support frame.
  • the box pushing cylinder stops working;
  • the saw blade advancing cylinder pushes the saw blade group downward, and at the same time, the motor is started to drive the saw blade group to rotate; as the saw blade advancing cylinder pushes, the saw blade group approaches and starts to cut the rock.
  • the motor By controlling the elongation of the saw blade advancing cylinder, Control the depth of the saw blade cutting the rock; the saw blade advancing cylinder drives the saw blade group to lift, and the motor stops rotating;
  • the box advancing cylinder can drive the rock fixing device to move on the box guide rail.
  • the cutting gap of the saw blade group for cutting rocks depends on the length of the spacer sleeve; disassemble the sleeve group, the bottom cover, and replace the spacer sleeve with a suitable length to change the distance between the saw blades in the saw blade group.
  • the required cutting seam distance can be obtained by adjusting the distance between the same set and the saw blade set to obtain the specified rock cutting thickness;
  • the rock cut by the saw blade group moves into the box baffle by the shrinking action of the box propelling cylinder.
  • the pick cutting assembly moves along the guide rail of the cutting assembly driven by the pick assembly pushing cylinder, and the pick impacts Crushing the rock with slits, the reaction force of the rock on the picks makes the pressure rod to compress the pressure sensor, and the deformation of the pressure sensor is output through the signal acquisition interface as a current signal to complete the test acquisition.
  • a test method of a diamond saw blade-pick combined rock breaking test device The steps are as described in Example 18. The difference is that in the rock saw blade cutting gap control, the gap between the saw blade group and the rock The relative position can be changed by moving the saw blade assembly to advance the cylinder to move the saw blade assembly support frame: after the saw blade group cuts the rock to form a certain interval of kerf, the saw blade advancing cylinder drives the saw blade group to rise, and the saw blade assembly advances the cylinder Telescopic, adjust the saw blade assembly support frame and the relative position of the saw blade group with the rock, the saw blade advancing cylinder drives the diamond saw blade group to descend, and perform another cutting, which can change the gap between cuts; after the cutting is completed, the saw blade advances the cylinder to drive the saw The film pack rises again, turning off the motor.

Abstract

一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法,属于掘进机截割试验台技术领域,装置包括固定底板(1),固定底板(1)上设有锯片组件和箱体组件;锯片组件中的锯片组件支撑架(4)可带动锯片水平移动,锯片组(7)可沿锯片组件支撑架(4)竖向移动,由马达(10)带动锯片转动进行切割;箱体组件中的箱体推进油缸(15)控制岩石固定装置(14)的水平移动,带动其内的岩石移动至锯片下方,切割后再由截齿截割组件(12)进行截割破碎并采集截割力。首先完成对岩石的锯切,再利用截齿对具有锯片切缝的岩体实现破碎,可用于锯片-截齿联合破岩性能研究,观测岩石破碎效果和截齿破岩含有切缝岩石的截割力变化,运动平稳,容易控制,实验效果优异。

Description

一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法 技术领域
本发明涉及一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法,属于掘进机截割试验台技术领域。
背景技术
掘进机是煤炭生产中巷道掘进最为常见的机械,是保证煤矿巷道的快速、稳产掘进的关键设备。在岩巷掘进过程中,主要采用增大截割功率的方式,来提高掘进机掘进性能和效率,但是由于截割刀具的加工工艺没有改变,增大掘进机功率是掘进机成本提升,使体积增大,难以在小型井下得到广泛应用,同时截齿磨损急剧增加,显著增大了岩巷掘进的成本。
为克服岩巷掘进过程中效率低、成本高的问题,需要新型的破碎岩石方式来提高岩石破碎效率,降低生产成本。金刚石是自然界天然存在的最坚硬物质,金刚石锯片可用于切削抗压强度较大的岩石,使岩石具备切缝进而形成具有多自由面板状岩体,再利用截齿进行破碎,形成一种金刚石锯片-截齿联合破岩方法。
中国专利文件(申请号201420476934.8)提供了一种锯片切割式-破碎装置复合式掘进机,是一种实际矿井应用装置,该机械采用的是锯片与破碎锤组合破岩的方式,其可以组合破碎传统掘进机不能截割的硬岩。但是该掘进机采用的破碎锤机构由于需要较大的伸缩空间,不利于煤矿井下的实际应用,同时破碎锤冲击力较大,容易对巷道岩石造成扰动。在实际作业中该装置也不能用于研究岩石锯切尺寸与冲击锤破碎之间的关系。
直接采用生产金刚石锯片-截齿联合破岩掘进机的方式对金刚石锯片与截齿联合破岩方法的性能进行研究,成本高,耗费大量人力、物力。借助金刚石锯片-截齿联合破岩试验装置对破岩性能进行研究,相对于实际作用装置,能有效提高研究效率,降低成本。但现有技术中,还没有一种可以用于金刚石锯片-截齿联合破岩方式性能研究的试验装置。
发明内容
针对现有技术的不足,本发明提供一种金刚石锯片-截齿联合破碎岩石试验装置。为了降低时间成本、人工成本,提升产品的可靠性,本发明涉及一种金刚石锯片-截齿联合破岩试验装置,借助本实验室台,可首先完成对岩石的锯切,再利用截齿对具有锯片切缝的岩体实现破碎。可用于金刚石锯片-截齿联合破岩性能研究,观测岩石破碎效果和截齿破岩含有切缝岩 石的截割力变化。
本发明还提供上述试验装置的试验方法。
本发明的技术方案如下:
一种金刚石锯片-截齿联合破碎岩石试验装置,包括固定底板,固定底板上设有锯片组件和箱体组件;
锯片组件包括锯片组件导轨和锯片组件推进油缸,锯片组件导轨上滑动设有锯片组件支撑架,锯片组件支撑架一端连接有锯片组件推进油缸,锯片组件推进油缸用于控制锯片组件支撑架的横向位移运动;锯片组件支撑架上设有锯片组和锯片推进油缸,锯片组通过套筒组与锯片推进油缸相连,锯片推进油缸用于控制锯片组的竖向位移运动,套筒组一端连接有马达,马达用于控制套筒的转动从而带动锯片的旋转,锯片组在锯片推进油缸的作用下向下推进,锯片组通过马达控制旋转,对岩石产生切削,锯片推进油缸的伸缩量决定了岩石切缝的深度;
箱体组件包括箱体导轨、岩石固定装置、截齿截割组件,岩石固定装置设于箱体导轨之上,岩石固定装置用于放置并固定实验岩石,岩石固定装置一端设有箱体推进油缸,岩石固定装置两侧的固定底板上设有箱体挡板,箱体挡板之间设有截齿截割组件,截齿截割组件一端设有截齿组件推进油缸,截齿截割组件用于截割破碎岩石。由箱体推进油缸带动岩石固定装置在箱体导轨上水平移动,锯片组在切削岩石的过程中,通过箱体推进油缸的伸缩,可切削形成不同的锯缝长度;锯片组切割完成后,锯片推进油缸收缩,带动锯片组上移至离开岩石后停止,箱体推进油缸将岩石固定装置调到合适位置,由截齿组件推进油缸带动截齿截割组件对岩石固定装置内的岩石进行截割破碎。
依据锯片组件支撑架带动锯片组的移动,可实现对依据套筒的长度锯切形成的板状岩体厚度进一步调整。依据套筒形成的板状岩体厚度是固定的,通过锯片组件支撑架的移动,双重调节,可实现任意厚度板状岩体的切削。
根据本发明优选的,锯片推进油缸的数量为两个,一个锯片推进油缸通过套筒组与锯片组相连,另一个锯片推进油缸与马达相连。两个油缸需采用相同的规格,给予同样的油压,实现马达和锯片组的同步推进。
进一步优选的,马达通过马达固定板与锯片推进油缸的一端连接,锯片组件支撑架上设置有固定板导向槽,固定板导向槽的宽度与马达固定板的厚度相同。锯片推进油缸推进时,马达固定板在固定板导向槽内竖向移动,可保证马达固定板运动的稳定性。
根据本发明优选的,套筒组包括端部带槽套筒、间隔套筒、连轴套筒,套筒组内设有锯 片中轴,锯片中轴上设有花键,套筒组内壁设有花键槽,锯片组包括至少两个锯片,锯片中心设有通孔,通孔上设有锯片花键槽;
锯片与端部带槽套筒、间隔套筒、连轴套筒间隔设置,连轴套筒与马达输出轴相连。马达输出旋转动能,带动连轴套筒转动,通过套筒组的花键槽和锯片中轴的花键的配合,使锯片中轴转动,由于锯片与锯片中轴也通过花键配合,传递转矩,因此带动锯片平稳转动,进行切割作业。锯片与套筒组间隔设置,可根据实际需要对间隔套筒的长度和数量进行更改,控制金刚石锯片之间的距离。
进一步优选的,锯片中轴包括轴头、轴颈、轴身,轴身上设有花键,套筒组与轴身间隙配合,轴头通过油缸套筒与锯片推进油缸相连。轴头在油缸套筒内自由转动,锯片推进油缸推动油缸套筒竖向移动,锯片中轴同时在油缸套筒内转动。
进一步优选的,轴头设在锯片中轴的中间,轴头两侧依次设有轴颈、轴身;轴颈上设有轴头端盖,两个轴头端盖与油缸套筒通过螺纹孔螺栓连接。两个轴头端盖的配合作用可固定锯片中轴在油缸套筒的位置。
进一步优选的,锯片中轴一端的轴身端部设有螺纹杆,螺纹杆与中轴端盖螺纹连接,中轴端盖的外径与端部带槽套筒的外径相同。中轴端盖用于轴向紧固锯片中轴上的套筒组和锯片组,中轴端盖外侧可加设螺母进一步紧固。
进一步优选的,套筒组还包括定位套筒,定位套筒设于间隔套筒与连轴套筒之间,定位套筒内壁设有花键槽。定位套筒用于补充联轴套筒和间隔套筒之间的间隙,联轴套筒和定位套筒之间还可安装弹性垫片。
根据本发明优选的,固定底板上还设有支撑架定位装置,支撑架定位装置包括主体架,主体架上设有通孔,主体架通过螺栓与固定底板上相连;主体架侧面设有向心轴承,向心轴承通过支撑杆与主体架侧面相连,锯片组件支撑架设于向心轴承上方。向心轴承与锯片组件支撑架相接触,锯片组件支撑架在锯片组件导轨上移动时,向心轴承在稳固锯片组件支撑架不倾倒的同时,能够确保其在移动过程中承受较小的摩擦力。
根据本发明优选的,岩石固定装置包括箱体,箱体内设有岩石固定板,岩石固定板上设有定位槽,箱体侧壁上设有通孔,紧固杆贯穿通孔嵌入定位槽中,紧固杆设有外螺纹,紧固杆在箱体外侧与螺母连接。岩石放入后,紧固杆贯穿通孔伸入至岩石固定板的定位槽中,将岩石固定板推至紧固岩石,再通过螺母完成与箱体的固定。
进一步优选的,通孔外侧的箱体侧壁上设有螺母槽,螺母槽内设置螺母,紧固杆端头开设有内六角孔。将螺母放置在螺母槽中,只需要使用内六角扳手转动紧固杆推动岩石固定板 即可。
进一步优选的,箱体侧壁上的通孔设置至少两列、至少两排,岩石固定板的高度小于箱体的高度,箱体两侧顶部水平设有支撑板。支撑板可将箱体置于两侧的箱体挡板之间、使箱体本身无晃动空间,箱体侧壁配备多个通孔、多个螺母槽,可根据需要固定的岩石大小调整紧固杆、螺母、岩石固定板的位置,确保在箱体内部岩石没有晃动的空间。岩石固定板的高度小于箱体的深度,可保证岩石固定板随箱体中岩石位置的变化,具有一定的上下活动范围,同时保证岩石固定板不伸出箱体,不与截齿发生碰撞。
根据本发明优选的,截齿截割组件包括平衡体,平衡体一端设有截齿固定板,截齿通过卡环与截齿固定板连接;平衡体另一端设有压力传感器,压力传感器与截齿组件推进油缸相连,压力传感器上设有信号采集接口。压力传感器可以准确测量破岩过程中产生的截割力,外接信号采集系统能够通过信号采集接口获取压力传感器产生的电流信号。
进一步优选的,截齿固定板为折板,折板一端与平衡体之间螺栓连接,折板另一端与截齿连接,折板的弯折处也起到与平衡体之间一定的定位作用;压力传感器一侧设有拉压力杆,拉压力杆与平衡体铰接。
进一步优选的,箱体挡板之间还设有两个截割组件导轨,平衡体两侧设有平衡杆,平衡杆端部设有向心轴承,向心轴承在截割组件导轨内滚动。截割组件导轨通过螺栓固定于箱体挡板上,经螺栓固定的截割组件导轨在承受截齿截割组件的载荷时,可围绕螺栓产生微弱转动,从而缓冲截齿截割组件对截割组件导轨的冲击载荷,可有效抵制截齿截割组件在截割岩石过程中的上下波动和振动,截齿截割组件的截割动作更为平滑,保证截割破碎岩石过程中运动平稳。同时可有效测量截齿运动方向的截割力,也即法相截割力。
优选的,岩石固定装置与箱体推进油缸之间铰接连接。在箱体推进油缸的作用下岩石固定装置带动岩石在箱体导轨上移动,铰接连接能够使岩石固定装置仅承受箱体推进油缸所产生的轴向推进力,不承受侧向力,从而平稳推进。
优选的,锯片组件推进油缸与锯片组件支撑架之间铰接连接。锯片组件推进油缸可推进锯片组件支撑架在锯片组件导轨上移动,锯片组件推进油缸与锯片组件支撑架之间采用铰接的连接形式,确保油缸在推进支撑架时不产生侧向力。
一种利用上述金刚石锯片-截齿联合破碎岩石试验装置的试验方法,包括步骤如下:
一、岩石固定过程:
箱体推进油缸伸长,推进岩石固定装置沿箱体导轨向锯片组件支撑架方向运动,当岩石固定装置处于箱体挡板与锯片组件支撑架中间时,箱体推进油缸停止工作;
在箱体中放入岩石,利用内六角扳手旋转紧固杆,使紧固杆往箱体内部方向运动,推动岩石固定板向箱体内部方向运动,两侧岩石固定板夹紧岩石;
二、岩石锯片切削深度控制:
通过箱体推进油缸的伸长或缩短,调整岩石固定装置的位置,使岩石在锯片组的正下方;
锯片推进油缸推动锯片组向下运动,同时启动马达,带动锯片组旋转;随锯片推进油缸的推动,锯片组贴近并开始切削岩石,通过控制锯片推进油缸的伸长量,控制锯片切削岩石的深度;锯片推进油缸带动锯片组抬起,马达停止转动;
三、岩石锯片切削锯缝长度控制:
锯片组切削岩石过程中,箱体推进油缸可带动岩石固定装置在箱体导轨上运动,获得所需的岩石切缝长度后,箱体推进油缸停止动作,锯片推进油缸带动锯片组抬起,马达停止转动;
四、岩石锯片切削切缝间距控制:
锯片组切削岩石的切缝间距取决于间隔套筒的长度;拆卸套筒组、中轴端盖,更换合适长度的间隔套筒可改变锯片组中各锯片之间的间距,切削得到所需的切缝间距,通过调整套同组与锯片组的间隔距离获得指定的岩石切削厚度;
或,
锯片组与岩石之间的相对位置,可通过锯片组件推进油缸移动锯片组件支撑架改变:锯片组锯切岩石形成一定间距的切缝后,锯片推进油缸带动锯片组升起,通过锯片组件推进油缸的伸缩,调整锯片组件支撑架和锯片组与岩石的相对位置,锯片推进油缸带动金刚石锯片组下降,进行再一次切削,可改变切缝间距;切削完成后,锯片推进油缸带动锯片组再次升起,关闭马达。
五、截割力的获取:
被锯片组切削完成的岩石,通过箱体推进油缸的收缩作用移动到箱体挡板内,截齿截割组件在截齿组件推进油缸的带动下沿截割组件导轨方向运动,截齿冲击破碎带有切缝的岩石,岩石对截齿的反作用力使拉压力杆压缩压力传感器,压力传感器的变形以电流信号通过信号采集接口输出,完成试验采集。
本发明的有益效果在于:
1.本发明设计了一种金刚石锯片-截齿联合破碎岩石试验装置,该试验装置能够完成对岩石的破碎试验研究。
2.本发明的试验装置锯片组件由多个锯片组成,能够同时对岩石体进行多条锯缝的锯切。
3.本发明的试验装置能够通过锯切推进油缸的进给距离,辅助锯片组件对岩石进行锯切,形成不同的锯切切缝深度。
4.本发明的试验装置能够通过岩石固定油缸的进给距离,辅助锯片组件对岩石进行锯切,形成不同的锯切切缝长度。
5.本发明的试验装置可以通过带槽套筒的作用,辅助锯片组件对岩石进行锯切,通过改变间隔套筒的宽度,可以形成不同的锯切切缝间距,以形成不同厚度的岩石板状体。
6.本发明的试验装置也可以通过锯片组件支撑架推进油缸的作用,带动锯片组件支撑架进行移动,辅助锯片组件对岩石进行锯切,进而形成不同的锯切切缝间距,以形成不同厚度的岩石板状体。
7.本发明的试验装置的锯片组件支撑架采用支撑架定位装置进行定位,可保证锯片组件支撑架在导轨上平稳、平滑移动,不会发生倾倒等现象。
8.本发明的试验装置具有岩石装夹组件,该组件能够完成对不同尺寸岩石的固定,并可以通过垫板的作用在不同高度上对岩石进行固定。
9.本发明的试验装置通过对不同高度岩石的固定,可以辅助截齿截割组件完成不同截割深度板状岩体的截割破碎。
10.本发明的试验装置的截齿截割组件具备有轴承式抗弯矩结构,该结构的优势在于,①能够抵消截齿截割力对截齿截割组件结构产生的弯矩,②能使截齿在截齿推进油缸推进过程中直线移动更加平稳。
11.本发明的试验装置的截齿截割组件具备有压力传感器,能够在轴承式抗弯矩结构的辅助下准确测量截齿破碎岩石过程中的法向截割力。
12.本发明所涉及的与锯片搭配破碎岩石的结构是截齿,用于截齿安装的截割头的大小容易控制。锯片切割岩石后,岩石的强度会显著降低,截割头体积、功率较小的情况下也可以完成对板状岩体的破碎。
附图说明
图1为本发明金刚石锯片-截齿联合破碎岩石试验装置整体结构示意图;
图2为本发明金刚石锯片-截齿联合破碎岩石试验装置马达装配示意图;
图3为截割组件导轨结构示意图;
图4为截齿截割组件结构示意图;
图5为锯片中轴结构示意图;
图6为中轴端盖结构示意图;
图7为锯片结构示意图;
图8为轴头端盖结构示意图;
图9为油缸套筒结构示意图;
图10为套筒组结构示意图;
图11为支撑架定位装置结构示意图;
图12为岩石固定装置结构立体图;
图13为岩石固定装置结构俯视示意图;
图14为岩石固定装置侧面结构示意图;
其中:
1-固定底板;2-锯片组件推进油缸;3-锯片组件导轨;4-锯片组件支撑架;5-锯片中轴;6-套筒组;7-金刚石锯片组;8-锯片推进油缸;9-螺栓;10-马达;11-支撑架定位装置;12-截齿截割组件;13-箱体挡板;14-岩石固定装置;15-箱体推进油缸;16-截割组件导轨;17-截齿组件推进油缸;18-箱体导轨;19-马达固定板;20-固定板导向槽;21-轴头端盖,22-中轴端盖;
501-螺纹杆,502-花键,503-轴身,504-轴颈,505-轴头,506-轴颈,507-轴身,508-花键;
6001-花键槽,6002-端部带槽套筒,6003-间隔套筒,6004-定位套筒,6005-连轴套筒;
7001-锯片花键槽;
801-油缸套筒,802-螺纹孔,803-孔;
1101-主体架,1102-通孔,1103-支撑杆,1104-向心轴承;
1201-截齿,1202-卡环,1203-螺栓,1204-截齿固定板,1205-平衡体,1206-平衡杆,1207-向心轴承,1208-铰接副,1209-螺母,1210-螺母,1211-拉压力杆,1212-压力传感器,1213-螺纹孔,1214-信号采集接口;
1401-箱体,1402-岩石紧固板,1403-定位槽,1404-紧固杆,1405-铰接副,1406-支撑板,1407-内六角孔,1408-螺母,1409-螺母槽,
1601-通孔,1602-导槽;
2101-螺纹孔,2102-端盖内径。
具体实施方式
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
如图1-14所示。
实施例1:
一种金刚石锯片-截齿联合破碎岩石试验装置,如图1所示,包括固定底板1,固定底板1上设有锯片组件和箱体组件。
锯片组件包括锯片组件导轨3和锯片组件推进油缸2,锯片组件导轨3上滑动设有锯片组件支撑架4,锯片组件支撑架4一端连接有锯片组件推进油缸2,锯片组件推进油缸2用于控制锯片组件支撑架4的横向位移运动;锯片组件支撑架4上设有锯片组7和锯片推进油缸8,锯片组7通过套筒组6与锯片推进油缸8相连,锯片推进油缸8用于控制锯片组7的竖向位移运动,套筒组6一端连接有马达10,马达用于控制套筒的转动从而带动锯片的旋转,锯片组在锯片推进油缸的作用下向下推进,锯片组通过马达控制旋转,对岩石产生切削,锯片推进油缸的伸缩量决定了岩石切缝的深度。
箱体组件包括箱体导轨18、岩石固定装置14、截齿截割组件12,岩石固定装置14设于箱体导轨18之上,岩石固定装置14用于放置并固定实验岩石,岩石固定装置14一端设有箱体推进油缸15,岩石固定装置14两侧的固定底板1上设有箱体挡板13,箱体挡板13之间设有截齿截割组件12,截齿截割组件12一端设有截齿组件推进油缸17,截齿截割组件12用于截割破碎岩石。由箱体推进油缸带动岩石固定装置在箱体导轨上水平移动,锯片组在切削岩石的过程中,通过箱体推进油缸的伸缩,可切削形成不同的锯缝长度;锯片组切割完成后,箱体推进油缸将岩石固定装置调到合适位置,由截齿组件推进油缸带动截齿截割组件对岩石固定装置内的岩石进行截割破碎。
依据锯片组件支撑架带动锯片组的移动,可实现对依据套筒的长度锯切形成的板状岩体厚度进一步调整。依据套筒形成的板状岩体厚度是固定的,通过锯片组件支撑架的移动,双重调节,可实现任意厚度板状岩体的切削。
实施例2:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例1所述,所不同的是,锯片推进油缸8的数量为两个,如图1-2所示,一个锯片推进油缸通过套筒组与锯片组相连,另一个锯片推进油缸与马达相连。两个油缸需采用相同的规格,给予同样的油压,实现马达和锯片组的同步推进。
实施例3:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例2所述,所不同的是,马达10通过螺栓9固定于马达固定板19,马达固定板19与锯片推进油缸8的一端连接,如图2所示,锯片组件支撑架4上设置有固定板导向槽20,固定板导向槽20的宽度与马达固定板 19的厚度相同。锯片推进油缸推进时,马达固定板在固定板导向槽内竖向移动,可保证马达固定板运动的稳定性。
实施例4:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例1所述,所不同的是,套筒组包括端部带槽套筒6002、间隔套筒6003、连轴套筒6005,如图10所示,套筒组内设有锯片中轴5,锯片中轴5上设有花键,套筒组内壁设有花键槽6001,锯片组包括八个锯片,锯片中心设有通孔,通孔上设有锯片花键槽7001,如图7所示。
锯片与端部带槽套筒、间隔套筒、连轴套筒间隔设置,连轴套筒6005与马达10的输出轴相连。马达输出旋转动能,带动连轴套筒转动,通过套筒组的花键槽和锯片中轴的花键的配合,使锯片中轴转动,由于锯片与锯片中轴也通过花键配合,传递转矩,因此带动锯片平稳转动,进行切割作业。锯片与套筒组间隔设置,可根据实际需要对间隔套筒的长度和数量进行更改,控制金刚石锯片之间的距离。
实施例5:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例4所述,所不同的是,锯片中轴5包括轴头505、轴颈504、轴身503,轴身上设有花键502,套筒组与轴身间隙配合,轴头505通过油缸套筒801与锯片推进油缸8相连。轴头在油缸套筒内自由转动,锯片推进油缸推动油缸套筒竖向移动,锯片中轴同时在油缸套筒内转动。
实施例6:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例5所述,所不同的是,轴头505设在锯片中轴5的中间,轴头505两侧依次设有轴颈504、轴颈506、轴身503、轴身507,如图5所示;轴颈上设有轴头端盖21,轴头端盖21具有端盖内径2102,与轴颈504为过度配合,两个轴头端盖与油缸套筒801通过各自的螺纹孔2101、螺纹孔802螺栓连接,如图8、图9所示。两个轴头端盖可进一步固定油缸套筒。
实施例7:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例6所述,所不同的是,锯片中轴5一端的轴身503端部设有螺纹杆501,螺纹杆501与中轴端盖22螺纹连接,如图5、图6所示,中轴端盖22的外径与端部带槽套筒6002的外径相同。中轴端盖用于轴向紧固锯片中轴上的套筒组和锯片组,中轴端盖外侧可加设螺母进一步紧固。
实施例8:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例4所述,所不同的是,套 筒组还包括定位套筒6004,定位套筒6004设于间隔套筒6003与连轴套筒6005之间,定位套筒内壁设有花键槽。定位套筒用于补充联轴套筒和间隔套筒之间的间隙,联轴套筒和定位套筒之间还可安装弹性垫片。
实施例9:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例1所述,所不同的是,固定底板1上还设有支撑架定位装置11,如图11所示,支撑架定位装置11包括主体架1101,主体架1101上设有通孔1102,主体架1101通过螺栓与固定底板1相连;主体架1101侧面设有向心轴承1104,向心轴承1104通过支撑杆1103与主体架1101侧面相连,锯片组件支撑架4设于向心轴承1104上方。向心轴承与锯片组件支撑架相接触,锯片组件支撑架在锯片组件导轨上移动时,向心轴承在稳固锯片组件支撑架不倾倒的同时,能够确保其在移动过程中承受较小的摩擦力。
实施例10:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例1所述,所不同的是,岩石固定装置14包括箱体1401,如图12-图14所示,箱体1401内设有岩石固定板1402,岩石固定板1402上设有定位槽1403,箱体1401侧壁上设有通孔,紧固杆1404贯穿通孔嵌入定位槽1403中,紧固杆1404设有外螺纹,紧固杆1404在箱体1401外侧与螺母1408连接。岩石放入后,紧固杆贯穿通孔伸入至岩石固定板的定位槽中,将岩石固定板推至紧固岩石,再通过螺母完成与箱体的固定。
实施例11:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例10所述,所不同的是,通孔外侧的箱体1401侧壁上设有螺母槽1409,螺母槽1409内设置螺母1408,紧固杆1404端头开设有内六角孔1407,如图14所示。将螺母放置在螺母槽中,只需要使用内六角扳手转动紧固杆推动岩石固定板即可。
实施例12:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例10所述,所不同的是,箱体1401侧壁上的通孔设置三列、三排共九个,如图14所示,岩石固定板1402的高度小于箱体1401的高度,箱体两侧顶部水平设有支撑板1406。支撑板可将箱体置于两侧的箱体挡板之间、使箱体本身无晃动空间,箱体侧壁配备多个通孔、多个螺母槽,可根据需要固定的岩石大小调整紧固杆、螺母、岩石固定板的位置,确保在箱体内部岩石没有晃动的空间。岩石固定板的高度小于箱体的深度,可保证岩石固定板随箱体中岩石位置的变化,具有一定的 上下活动范围,同时保证岩石固定板不伸出箱体,不与截齿发生碰撞。
实施例13:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例10所述,所不同的是,截齿截割组件12包括平衡体1205,如图4所示,平衡体1205一端设有截齿固定板1204,截齿1201通过卡环1202与截齿固定板1204连接;平衡体1205另一端设有压力传感器1212,压力传感器1212与截齿组件推进油缸17通过螺纹孔1213螺栓连接,压力传感器1212上设有信号采集接口1214。压力传感器可以准确测量破岩过程中产生的截割力,外接信号采集系统能够通过信号采集接口获取压力传感器产生的电流信号。
实施例14:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例13所述,所不同的是,截齿固定板1204为折板,折板一端与平衡体1205之间通过螺栓1203连接,折板另一端与截齿1201连接,折板的弯折处也起到与平衡体之间一定的定位作用;压力传感器一侧设有拉压力杆,拉压力杆与平衡体铰接。
实施例15:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例14所述,所不同的是,箱体挡板13之间还设有两个截割组件导轨16,如图3所示,截割组件导轨通过通孔1601固定在箱体挡板13上,截割组件导轨设有导槽1602,平衡体1205两侧设有平衡杆1206,平衡杆1206端部设有向心轴承1207,向心轴承1207在截割组件导轨16的导槽1602内滚动。导槽的长度L为箱体挡板之间的间距,导槽的宽度B大于向心轴承1207的厚度,导槽的高度H与向心轴承1207的大径相同。截割组件导轨通过螺栓固定于箱体挡板上,经螺栓固定的截割组件导轨在承受截齿截割组件的载荷时,可围绕螺栓产生微弱转动,从而缓冲截齿截割组件对截割组件导轨的冲击载荷,可有效抵制截齿截割组件在截割岩石过程中的上下波动和振动,截齿截割组件的截割动作更为平滑,保证截割破碎岩石过程中运动平稳。同时可有效测量截齿运动方向的截割力,也即法相截割力。
实施例16:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例1所述,所不同的是,岩石固定装置与箱体推进油缸之间通过铰接副1405铰接连接。在箱体推进油缸的作用下岩石固定装置带动岩石在箱体导轨上移动,铰接连接能够使岩石固定装置仅承受箱体推进油缸所产生的轴向推进力,不承受侧向力,从而平稳推进。
实施例17:
一种金刚石锯片-截齿联合破碎岩石试验装置,其结构如实施例1所述,所不同的是,锯片组件推进油缸与锯片组件支撑架之间铰接连接。锯片组件推进油缸可推进锯片组件支撑架在锯片组件导轨上移动,锯片组件推进油缸与锯片组件支撑架之间采用铰接的连接形式,确保油缸在推进支撑架时不产生侧向力。
实施例18:
一种金刚石锯片-截齿联合破碎岩石试验装置的试验方法,其结构如实施例15所述,包括步骤如下:
一、岩石固定过程:
箱体推进油缸伸长,推进岩石固定装置沿箱体导轨向锯片组件支撑架方向运动,当岩石固定装置处于箱体挡板与锯片组件支撑架中间时,箱体推进油缸停止工作;
在箱体中放入岩石,利用内六角扳手旋转紧固杆,使紧固杆往箱体内部方向运动,推动岩石固定板向箱体内部方向运动,两侧岩石固定板夹紧岩石;
二、岩石锯片切削深度控制:
通过箱体推进油缸的伸长或缩短,调整岩石固定装置的位置,使岩石在锯片组的正下方;
锯片推进油缸推动锯片组向下运动,同时启动马达,带动锯片组旋转;随锯片推进油缸的推动,锯片组贴近并开始切削岩石,通过控制锯片推进油缸的伸长量,控制锯片切削岩石的深度;锯片推进油缸带动锯片组抬起,马达停止转动;
三、岩石锯片切削锯缝长度控制:
锯片组切削岩石过程中,箱体推进油缸可带动岩石固定装置在箱体导轨上运动,获得所需的岩石切缝长度后,箱体推进油缸停止动作,锯片推进油缸带动锯片组抬起,马达停止转动;
四、岩石锯片切削切缝间距控制:
锯片组切削岩石的切缝间距取决于间隔套筒的长度;拆卸套筒组、中轴端盖,更换合适长度的间隔套筒可改变锯片组中各锯片之间的间距,切削得到所需的切缝间距,通过调整套同组与锯片组的间隔距离获得指定的岩石切削厚度;
五、截割力的获取:
被锯片组切削完成的岩石,通过箱体推进油缸的收缩作用移动到箱体挡板内,截齿截割组件在截齿组件推进油缸的带动下沿截割组件导轨方向运动,截齿冲击破碎带有切缝的岩石,岩石对截齿的反作用力使拉压力杆压缩压力传感器,压力传感器的变形以电流信号通过信号采集接口输出,完成试验采集。
实施例19:
一种金刚石锯片-截齿联合破碎岩石试验装置的试验方法,其步骤如实施例18所述,所不同的是,在岩石锯片切削切缝间距控制中,锯片组与岩石之间的相对位置,可通过锯片组件推进油缸移动锯片组件支撑架改变:锯片组锯切岩石形成一定间距的切缝后,锯片推进油缸带动锯片组升起,通过锯片组件推进油缸的伸缩,调整锯片组件支撑架和锯片组与岩石的相对位置,锯片推进油缸带动金刚石锯片组下降,进行再一次切削,可改变切缝间距;切削完成后,锯片推进油缸带动锯片组再次升起,关闭马达。

Claims (10)

  1. 一种金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,包括固定底板,固定底板上设有锯片组件和箱体组件;
    锯片组件包括锯片组件导轨和锯片组件推进油缸,锯片组件导轨上滑动设有锯片组件支撑架,锯片组件支撑架一端连接有锯片组件推进油缸,锯片组件推进油缸用于控制锯片组件支撑架的横向位移运动;锯片组件支撑架上设有锯片组和锯片推进油缸,锯片组通过套筒组与锯片推进油缸相连,锯片推进油缸用于控制锯片组的竖向位移运动,套筒组一端连接有马达;
    箱体组件包括箱体导轨、岩石固定装置、截齿截割组件,岩石固定装置设于箱体导轨之上,岩石固定装置用于放置并固定实验岩石,岩石固定装置一端设有箱体推进油缸,岩石固定装置两侧的固定底板上设有箱体挡板,箱体挡板之间设有截齿截割组件,截齿截割组件一端设有截齿组件推进油缸,截齿截割组件用于截割破碎岩石。
  2. 根据权利要求1所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,锯片推进油缸的数量为两个,一个锯片推进油缸通过套筒组与锯片组相连,另一个锯片推进油缸与马达相连;
    优选的,马达通过马达固定板与锯片推进油缸的一端连接,锯片组件支撑架上设置有固定板导向槽,固定板导向槽的宽度与马达固定板的厚度相同。
  3. 根据权利要求1所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,套筒组包括端部带槽套筒、间隔套筒、连轴套筒,套筒组内设有锯片中轴,锯片中轴上设有花键,套筒组内壁设有花键槽,锯片组包括至少两个锯片,锯片中心设有通孔,通孔上设有锯片花键槽;
    锯片与端部带槽套筒、间隔套筒、连轴套筒间隔设置,连轴套筒与马达输出轴相连;
    优选的,锯片中轴包括轴头、轴颈、轴身,轴身上设有花键,套筒组与轴身间隙配合,轴头通过油缸套筒与锯片推进油缸相连。
  4. 根据权利要求3所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,轴头设在锯片中轴的中间,轴头两侧依次设有轴颈、轴身;轴颈上设有轴头端盖,两个轴头端盖与油缸套筒通过螺纹孔螺栓连接;
    优选的,锯片中轴一端的轴身端部设有螺纹杆,螺纹杆与中轴端盖螺纹连接,中轴端盖的外径与端部带槽套筒的外径相同;
    进一步优选的,套筒组还包括定位套筒,定位套筒设于间隔套筒与连轴套筒之间,定位套筒内壁设有花键槽。
  5. 根据权利要求1所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,固定底板上还设有支撑架定位装置,支撑架定位装置包括主体架,主体架上设有通孔,主体架通过螺栓与固定底板上相连;主体架侧面设有向心轴承,向心轴承通过支撑杆与主体架侧面相连,锯片组件支撑架设于向心轴承上方。
  6. 根据权利要求1所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,岩石固定装置包括箱体,箱体内设有岩石固定板,岩石固定板上设有定位槽,箱体侧壁上设有通孔,紧固杆贯穿通孔嵌入定位槽中,紧固杆设有外螺纹,紧固杆在箱体外侧与螺母连接;
    优选的,通孔外侧的箱体侧壁上设有螺母槽,螺母槽内设置螺母,紧固杆端头开设有内六角孔;
    进一步优选的,箱体侧壁上的通孔设置至少两列、至少两排,岩石固定板的高度小于箱体的高度,箱体两侧顶部水平设有支撑板。
  7. 根据权利要求6所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,截齿截割组件包括平衡体,平衡体一端设有截齿固定板,截齿通过卡环与截齿固定板连接;平衡体另一端设有压力传感器,压力传感器与截齿组件推进油缸相连,压力传感器上设有信号采集接口;
    优选的,截齿固定板为折板,折板一端与平衡体之间螺栓连接,折板另一端与截齿连接;压力传感器一侧设有拉压力杆,拉压力杆与平衡体铰接。
  8. 根据权利要求7所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,箱体挡板之间还设有两个截割组件导轨,平衡体两侧设有平衡杆,平衡杆端部设有向心轴承,向心轴承在截割组件导轨内滚动。
  9. 根据权利要求1所述的金刚石锯片-截齿联合破碎岩石试验装置,其特征在于,岩石固定装置与箱体推进油缸之间铰接连接;锯片组件推进油缸与锯片组件支撑架之间铰接连接。
  10. 一种利用权利要求8所述金刚石锯片-截齿联合破碎岩石试验装置的试验方法,包括步骤如下:
    一、岩石固定过程:
    箱体推进油缸伸长,推进岩石固定装置沿箱体导轨向锯片组件支撑架方向运动,当岩石固定装置处于箱体挡板与锯片组件支撑架中间时,箱体推进油缸停止工作;
    在箱体中放入岩石,利用内六角扳手旋转紧固杆,使紧固杆往箱体内部方向运动,推动 岩石固定板向箱体内部方向运动,两侧岩石固定板夹紧岩石;
    二、岩石锯片切削深度控制:
    通过箱体推进油缸的伸长或缩短,调整岩石固定装置的位置,使岩石在锯片组的正下方;
    锯片推进油缸推动锯片组向下运动,同时启动马达,带动锯片组旋转;随锯片推进油缸的推动,锯片组贴近并开始切削岩石,通过控制锯片推进油缸的伸长量,控制锯片切削岩石的深度;锯片推进油缸带动锯片组抬起,马达停止转动;
    三、岩石锯片切削锯缝长度控制:
    锯片组切削岩石过程中,箱体推进油缸可带动岩石固定装置在箱体导轨上运动,获得所需的岩石切缝长度后,箱体推进油缸停止动作,锯片推进油缸带动锯片组抬起,马达停止转动;
    四、岩石锯片切削切缝间距控制:
    通过调整套同组与锯片组的间隔距离获得指定的岩石切削厚度;
    或,
    锯片组锯切岩石形成一定间距的切缝后,锯片推进油缸带动锯片组升起,通过锯片组件推进油缸的伸缩,调整锯片组件支撑架和锯片组与岩石的相对位置,锯片推进油缸带动金刚石锯片组下降,进行再一次切削,改变切缝间距;切削完成后,锯片推进油缸带动锯片组再次升起,关闭马达;
    五、截割力的获取:
    被锯片组切削完成的岩石,通过箱体推进油缸的收缩作用移动到箱体挡板内,截齿截割组件在截齿组件推进油缸的带动下沿截割组件导轨方向运动,截齿冲击破碎带有切缝的岩石,岩石对截齿的反作用力使拉压力杆压缩压力传感器,压力传感器的变形以电流信号通过信号采集接口输出,完成试验采集。
PCT/CN2019/127912 2019-04-28 2019-12-24 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法 WO2020220703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910351078.0 2019-04-28
CN201910351078.0A CN109975056B (zh) 2019-04-28 2019-04-28 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法

Publications (1)

Publication Number Publication Date
WO2020220703A1 true WO2020220703A1 (zh) 2020-11-05

Family

ID=67086806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127912 WO2020220703A1 (zh) 2019-04-28 2019-12-24 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法

Country Status (2)

Country Link
CN (1) CN109975056B (zh)
WO (1) WO2020220703A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975056B (zh) * 2019-04-28 2024-02-23 山东科技大学 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法
GB201918542D0 (en) * 2019-12-16 2020-01-29 Diona Construction Ltd Method and apparatus for forming a trench for cable installation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2555143Y (zh) * 2001-11-08 2003-06-11 冯希涛 龙门式锯石机
KR20150142342A (ko) * 2014-06-11 2015-12-22 제일연마공업주식회사 자동 절단시험장치
CN205403842U (zh) * 2016-02-29 2016-07-27 山东科技大学 一种采煤机截割模拟试验台
CN109296379A (zh) * 2018-12-10 2019-02-01 山东科技大学 一种掘进机截割部及其应用
CN109612716A (zh) * 2019-01-26 2019-04-12 湘潭大学 一种tbm滚刀动静加载线切割试验台
CN109975056A (zh) * 2019-04-28 2019-07-05 山东科技大学 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法
CN209525109U (zh) * 2019-04-28 2019-10-22 山东科技大学 一种金刚石锯片-截齿联合破碎岩石试验装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2886548Y (zh) * 2006-03-09 2007-04-04 辽宁工程技术大学 煤的截割过程测试装置
CN103424326B (zh) * 2013-08-07 2015-05-06 中国矿业大学 煤岩截割试验装置及截割刀具试验方法
CN103940690B (zh) * 2014-04-16 2016-01-13 中国矿业大学 一种多功能煤岩单齿截割试验装置及方法
CN104564064A (zh) * 2015-01-20 2015-04-29 山东科技大学 一种截齿及齿座的配合结构
CN105773850B (zh) * 2016-04-12 2017-11-14 安徽理工大学 制备含不同倾角结构面岩石试样的切割装置及操作方法
CN105675199B (zh) * 2016-04-13 2017-04-05 山东科技大学 一种刀具旋转破岩能耗检测试验台
CN105954136A (zh) * 2016-04-29 2016-09-21 成都惠锋金刚石工具有限公司 金刚石锯片切割性能的测试方法
CN107991113B (zh) * 2017-11-13 2019-06-11 中国矿业大学 一种钻孔、涨裂、截割一体化实验台及测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2555143Y (zh) * 2001-11-08 2003-06-11 冯希涛 龙门式锯石机
KR20150142342A (ko) * 2014-06-11 2015-12-22 제일연마공업주식회사 자동 절단시험장치
CN205403842U (zh) * 2016-02-29 2016-07-27 山东科技大学 一种采煤机截割模拟试验台
CN109296379A (zh) * 2018-12-10 2019-02-01 山东科技大学 一种掘进机截割部及其应用
CN109612716A (zh) * 2019-01-26 2019-04-12 湘潭大学 一种tbm滚刀动静加载线切割试验台
CN109975056A (zh) * 2019-04-28 2019-07-05 山东科技大学 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法
CN209525109U (zh) * 2019-04-28 2019-10-22 山东科技大学 一种金刚石锯片-截齿联合破碎岩石试验装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG MENGQI;ZHANG QIANQIAN;ZHANG JIANGUANG: "Development and application of coal-rock cutting rig", COLLIERY MECHANICAL & ELECTRICAL TECHNOLOGY, 12 October 2014 (2014-10-12), pages 1 - 4+9, XP055750922, ISSN: 1001-0874, DOI: 10.16545/j.cnki.cmet.2014.05.002 *

Also Published As

Publication number Publication date
CN109975056A (zh) 2019-07-05
CN109975056B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2020220703A1 (zh) 一种金刚石锯片-截齿联合破碎岩石试验装置及其试验方法
CN202510121U (zh) 一种硬岩掘进机
CN201443396U (zh) 掘锚护一体机
CN201771421U (zh) 一种架柱式液压钻机
CN109162744A (zh) 一种隧道施工用隧道拱门支撑装置
CN209011836U (zh) 一种隧道掘进机及其超前探测与锚杆支护复合转换机构
CN111091747B (zh) 一种tbm滚刀多功能试验台
CN211370299U (zh) 一种高效率石油开采钻头
CN206522105U (zh) 一种高效破岩的镶齿滚刀钻头
CN100575656C (zh) 全液压瓦斯抽排放多功能钻机
CN203626843U (zh) 一种适合有导井钻进竖井的掘进机
CN104343383B (zh) 一种用于土遗址的钻孔装置
CN107035320B (zh) 抗冲击钻孔扩孔装置
CN209525109U (zh) 一种金刚石锯片-截齿联合破碎岩石试验装置
CN110486014A (zh) 多功能劈裂机
CN112796813A (zh) 一种轻型放顶煤液压支架
CN114673459B (zh) 一种有缓冲机构的岩石钻进装置
CN214328754U (zh) 一种渠道混凝土衬砌机
CN109209221A (zh) 一种潜孔锤设备及其冲击导向系统
CN104389597A (zh) 截割机构
CN211598647U (zh) 一种矿山应急救援用破拆工具
RU2282009C1 (ru) Станок буровой
CN208777997U (zh) 一种迈步式掘支锚联合机组
CN213711071U (zh) 一种斜坡开采煤用稳定支架
CN216588458U (zh) 一种架柱式钻机整机移动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927032

Country of ref document: EP

Kind code of ref document: A1