WO2020220660A1 - 一种节能节水型内化成工艺 - Google Patents

一种节能节水型内化成工艺 Download PDF

Info

Publication number
WO2020220660A1
WO2020220660A1 PCT/CN2019/121408 CN2019121408W WO2020220660A1 WO 2020220660 A1 WO2020220660 A1 WO 2020220660A1 CN 2019121408 W CN2019121408 W CN 2019121408W WO 2020220660 A1 WO2020220660 A1 WO 2020220660A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charge
current
constant voltage
limit
Prior art date
Application number
PCT/CN2019/121408
Other languages
English (en)
French (fr)
Inventor
李春景
Original Assignee
浙江天能电池(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天能电池(江苏)有限公司 filed Critical 浙江天能电池(江苏)有限公司
Publication of WO2020220660A1 publication Critical patent/WO2020220660A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/121Valve regulated lead acid batteries [VRLA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of battery manufacturing, in particular to an energy-saving and water-saving internalization process.
  • the valve-regulated lead-acid battery for electric bicycles is composed of a positive plate, a negative plate, a separator, a sulfuric acid electrolyte, a battery tank, a battery cover, a terminal, and an exhaust valve.
  • the tank and the cover are sealed to prevent gas inside the battery. Exhaust from a place other than the exhaust valve.
  • This type of battery pack is formed by connecting a single battery, and most of the rated voltage of a single battery is 12V.
  • the internal formation process of the battery is a process different from the formation of the plate groove. After the electrode plates are cured and dried, they are sliced and directly assembled into a battery, filled with electrolyte, and charged to obtain a finished product.
  • the internal formation charging process effectively solves the problem of harmless formulations in battery production, and saves energy and water compared with the slot formation process.
  • the entire charging process is to convert the lead sulfate in the electrode plate into positive lead dioxide and negative electrode reduced lead, so that the electrode material has electrochemical activity, which requires a large amount of electrical energy.
  • a variety of gradient currents must be set during the process, and a short-time discharge is performed when necessary.
  • a capacity test is also performed, and the group is matched according to the capacity.
  • the charging voltage is usually not limited, and the battery temperature is high, which easily causes the electrode plate additives to decompose, resulting in a rapid decline in battery performance, poor low-temperature capacity performance, and a large amount of cooling water for cooling. Therefore, it is particularly important to solve the problems of high temperature and large water consumption of the battery in the internalized charging process.
  • the purpose of the present invention is to provide a battery internal formation process, through multiple charge and discharge, use different currents to charge the battery, set multiple maximum limit voltages, control the conversion of electrical energy into heat, and solve the problem of high battery temperature in the internal formation charging process And the problem of large water consumption.
  • the purpose of the present invention is to provide a battery internal formation process, through multiple charge and discharge, use different currents to charge the battery, set multiple maximum limit voltages, control the conversion of electrical energy into heat, and solve the problem of high battery temperature in the internal formation charging process And the problem of large water consumption.
  • the present invention provides a charging process for internal formation of a battery.
  • the process steps are as follows:
  • Step 1) Charge with constant voltage 16.8 ⁇ 17.8V/only and limit the highest current (0.3 ⁇ 0.4) I 2 A for 10h;
  • Step 2) Let stand for 0.15h
  • Step 3) Charge with constant voltage 16.8 ⁇ 17.8V/only and limit the highest current (0.3 ⁇ 0.4) I 2 A for 15h;
  • Step 4) Discharge with 0.8I2A current for 1h;
  • Step 5 Use a constant voltage of 16.5 ⁇ 17.5V/only and limit the highest current (0.4 ⁇ 0.45) I 2 A to charge for 13 hours;
  • Step 6) Let stand for 0.15h;
  • Step 7) Charge with constant voltage 16.5 ⁇ 17.5V/only and limit the highest current (0.3 ⁇ 0.4) I 2 A for 9h;
  • Step 8) Let stand for 0.5h;
  • Step 9) Discharge to 10.5V/piece with I 2 A current
  • Step 10) Charge with a constant voltage of 16 ⁇ 17V/only and limit the highest current (0.4 ⁇ 0.45) I 2 A for 8 hours;
  • Step 12 Use a constant voltage of 16 ⁇ 17V/only and limit the maximum current (0.3 ⁇ 0.4) I 2 A to charge for 3 hours;
  • I 2 is the 2-hour rate current (see GB/T 22199.1-2017 for details).
  • the step 1) vacuum-adding sulfuric acid solution to the lead storage battery before the start, vacuuming 3-5 times when adding sulfuric acid solution in vacuum, the degree of vacuum is 0.03-0.1Mpa.
  • the air in the gap of the glass fiber separator can be expelled quickly, and the sulfuric acid solution can infiltrate the separator.
  • the sulfuric acid solution is first cooled to 5-10°C, and the battery is immediately placed in water at a temperature of ⁇ 20°C for 1 to 2 hours after the sulfuric acid solution is added.
  • the organic additives in the active material of the electrode from decomposing or dissolving into the sulfuric acid solution due to the high internal height of the battery.
  • a circulating water bath is used to cool the temperature during steps 1) to 13) during charging, discharging, and standing, and the temperature of the cooling water in the circulating water is controlled at 35-45°C. Maintaining a certain temperature during the internalization process can promote the speed of the redox reaction.
  • the internal formation charging process of the lead storage battery of the present invention has the following advantages:
  • the internalization process of the present invention includes 4 standing steps, 7 charging steps and 2 discharging steps. Steps 1) to 7) are the active material generation stage, steps 8) to 12) are the capacity test stage, and step 13) is the acid extraction stage. Compared with other chemical conversion processes, the process steps are reduced.
  • the internal chemical charge is calculated as The battery's rated capacity is 7-9 times, which saves electric energy, and the total time is about 68h, which improves production efficiency.
  • the present invention sets a constant voltage for the charging stage. When the voltage does not reach When the voltage is constant, ensure that the battery is charged with the highest current during formation. When the voltage reaches a constant current, reduce the current through the charger to keep the voltage constant at the set value. Setting a constant voltage can reduce the current in the later stage of the charging phase and reduce side reactions , Saving electricity while reducing the amount of cooling water. Since the internal resistance of the battery is larger at the initial stage of internalization, the constant voltage is set to a higher value, and the internal resistance of the battery becomes smaller in the later stage of the internalization, so the constant voltage can be set to a lower value.
  • the present invention sets a constant voltage for acid pumping, which can improve the consistency of the saturation of the sulfuric acid solution of the separator, ensure the consistency of the oxygen recombination reaction of the single cell after sealing, and extend the life of the battery pack.
  • Step 1) Charge with constant voltage of 17.5V/only and limit the maximum current of 3A for 10h;
  • Step 2) Let stand for 0.15h
  • Step 3) Use a constant voltage of 17.5V/only and limit the maximum current of 3A to charge for 15h;
  • Step 4) Discharge with a current of 8A for 1h;
  • Step 5) Charge with constant voltage 17V/only and limit maximum current 4A for 13h;
  • Step 6) Let stand for 0.15h;
  • Step 7) Charge with a constant voltage of 17V/only and limit the maximum current of 3A for 9h;
  • Step 8) Let stand for 0.5h;
  • Step 9) Discharge to 10.5V/piece with a current of 10A;
  • Step 10) Charge for 8h with a constant voltage of 16.5V/only and a maximum current of 4A;
  • Step 12 Charge with a constant voltage of 16.5V/only and a maximum current of 3A for 3 hours;
  • the battery is cooled by the flow rate of water entering the water bath, and the temperature is controlled at 40°C.
  • Detection method In an environment with a temperature of 25°C ⁇ 2°C, discharge the battery with I 2 (A) current to the battery terminal voltage of 10.5V/unit.
  • Step 1) Charge with constant voltage of 17.5V/only and limit the maximum current of 1.8A for 10h;
  • Step 2) Let stand for 0.15h
  • Step 3) Charge with constant voltage of 17.5V/only and limit the maximum current of 1.8A for 15h;
  • Step 4) Discharge with a current of 4.8A for 1h;
  • Step 5 Charge with a constant voltage of 17V/only and limit the maximum current of 2.4A for 13h;
  • Step 6) Let stand for 0.15h;
  • Step 7) Charge with a constant voltage of 17V/only and limit the maximum current of 1.8A for 9h;
  • Step 8) Let stand for 0.5h;
  • Step 9) Discharge to 10.5V/piece with a current of 6A;
  • Step 10) Charge with a constant voltage of 16.5V/only and limit the maximum current of 2.4A for 8 hours;
  • Step 12 Charge with a constant voltage of 16.5V/only and a maximum current of 1.8A for 3h;
  • the battery is cooled by the flow rate of water entering the water bath, and the temperature is controlled at 40°C.
  • Detection method In an environment with a temperature of 25°C ⁇ 2°C, discharge the battery with I 2 (A) current to the battery terminal voltage of 10.5V/unit.

Abstract

本发明公开了一种节能节水型内化成工艺,涉及蓄电池化成领域,解决现有技术中化成时间长、化成步骤多,通常充电不限电压,电池温度高,容易造成极板添加剂分解,造成电池性能下降快,低温容量性能不佳的问题。本发明通过多次充电放电,使用不同的电流对电池进行充电,设置多个最高限制电压,控制电能转化为热能,解决了内化成充电工艺电池温度高和耗水量大的问题。

Description

一种节能节水型内化成工艺 技术领域
本发明涉及蓄电池制造领域,尤其涉及一种节能节水型内化成工艺。
背景技术
电动助力车用阀控式铅酸蓄电池由正极板、负极板、隔板、硫酸电解质、电池槽、电池盖、端子和排气阀等组成,槽与盖之间是密封状态,使电池内部气体不得从排气阀以外的地方排出。该种蓄电池组由单只蓄电池连接形成,单只蓄电池绝大部分额定电压是12V。蓄电池的内化成工艺是区别与极板槽化成的一种工艺。极板固化干燥后,经切片直接组装成电池,灌注电解液,进行充电后得到成品。内化成充电工艺有效解决了蓄电池生产中无害化配方的难题,较槽化成工艺节能省水。整个充电过程是将极板中的硫酸铅转换为正极二氧化铅和负极还原铅,使极板物质具备电化学活性,这需要消耗大量的电能。为了减少极化现象,过程中还要设置多种梯度的电流,必要时进行短时间的放电。充电过程还要进行一次容量检测,并且按照容量进行配组。目前的内化成充电工艺中,通常充电不限电压,电池温度高,容易造成极板添加剂分解,造成电池性能下降快,低温容量性能不佳,需要消耗大量冷却水进行降温。因此,解决内化成充电工艺电池温度高和耗水量大的问题就显得尤为重要了。
实用新型内容
本发明的目的是提供一种蓄电池内化成工艺,通过多次充电放电,使用不同的电流对电池进行充电,设置多个最高限制电压,控制电能转化为热能,解决了内化成充电工艺电池温度高和耗水量大的问题。
为实现上述目的,本发明采取的技术方案为:
本发明的目的是提供一种蓄电池内化成工艺,通过多次充电放电,使用不同的电流对电池进行充电,设置多个最高限制电压,控制电能转化为热能,解决了内化成充电工艺电池温度高和耗水量大的问题。
本发明提供一种蓄电池内化成充电工艺,所述工艺步骤如下:
步骤1):用恒电压16.8~17.8V/只和限制最高电流(0.3~0.4)I 2A充电10h;
步骤2):静置0.15h;
步骤3):用恒电压16.8~17.8V/只和限制最高电流(0.3~0.4)I 2A充电15h;
步骤4):用0.8I2A的电流放电1h;
步骤5):用恒电压16.5~17.5V/只和限制最高电流(0.4~0.45)I 2A充电13h;
步骤6):静置0.15h;
步骤7):用恒电压16.5~17.5V/只和限制最高电流(0.3~0.4)I 2A充电9h;
步骤8):静置0.5h;
步骤9):用I 2A的电流放电至10.5V/只;
步骤10):用恒电压16~17V/只和限制最高电流(0.4~0.45)I 2A充电8h;
步骤11):静置0.15h;
步骤12):用恒电压16~17V/只和限制最高电流(0.3~0.4)I 2A充电3h;
步骤13):用恒电压15.5~16.5V/只和限制最高电流(0.02~0.08)I 2A充电5h对电池进行抽酸处理。
I 2为2小时率电流(详见GB/T 22199.1-2017)。
优选地,所述步骤1)开始前对铅蓄电池进行真空加硫酸溶液,真空加硫酸溶液时抽真空次数3-5次,真空度真空度为0.03-0.1Mpa。通过多次抽真空,可以加快玻璃纤维隔板空隙中的空气排出,让硫酸溶液浸润隔板。
优选地,真空加硫酸溶液前,先将硫酸溶液降温至5-10℃,加硫酸溶液后电池立即放置于温度为≤20℃的水中的水中静置1~2h。防止因电池内部过高,极板活性物质中的有机添加剂分解或溶解到硫酸溶液中。
优选地,步骤1)至步骤13)充电、放电、静置过程中使用循环水浴降温,循环水中冷却水的温度控制在温度控制在35-45℃。内化成过程中保持一定的温度,可以促进氧化还原反应的速度。
本发明铅蓄电池内化成充电工艺与现有技术相比,具有以下优点:
一、本发明的内化成工艺包括4个静置步骤,7个充电步骤和2个放电步骤。步骤1)至7)是活性物质生成阶段,步骤8)至12)是容量测试阶段,步骤13)是抽酸阶段,相较与其它化成工艺,工艺步骤得到减少,通过计算内化成充电量为电池额定容量的7-9倍,节约了电能,总时间约为68h,提高了生产效率。
二、由于充电时,当电压超过14.4V/只时,就会发生电解水的副反应,电流越大电解水的量越大,本发明通过对充电阶段进行了恒电压设置,当电压未到达恒电压时,确保化成时电池以最高电流充电,当电压到达恒电流时,通过充电机调低电流,来保持电压恒定在设置值,设置恒电压,可以降低充电阶段后期的电流,减少副反应,节约用电量的同时减少了冷却水的用量。由于内化成初期电池内阻较大,恒电压设置为较高值,内化成后期电池内阻 变小,因此可以恒电压设置为较低值。
三、本发明设置恒电压进行抽酸,可以提高隔板含硫酸溶液的饱和度的一致性,保证单体电池在密封后氧复合反应的一致性,延长蓄电池组的寿命。
具体实施方式
实施例1
以6-DZF-20电池为例,先进行真空加硫酸溶液,先将硫酸溶液降温至8℃,经管道输送至灌酸机,设置抽真空次数4次,真空度为0.08Mpa.每次抽真空时间持续10s,间歇时间6s。加酸后,电池立即放置于温度为15℃的水中,静置1h,开始内化成充电过程,本实施例中I 2为20/2A(额定容量/2),化成步骤如下:
步骤1):用恒电压17.5V/只和限制最高电流3A充电10h;
步骤2):静置0.15h;
步骤3):用恒电压17.5V/只和限制最高电流3A充电15h;
步骤4):用8A的电流放电1h;
步骤5):用恒电压17V/只和限制最高电流4A充电13h;
步骤6):静置0.15h;
步骤7):用恒电压17V/只和限制最高电流3A充电9h;
步骤8):静置0.5h;
步骤9):用10A的电流放电至10.5V/只;
步骤10):用恒电压16.5V/只和限制最高电流4A充电8h;
步骤11):静置0.15h;
步骤12):用恒电压16.5V/只和限制最高电流3A充电3h;
步骤13):用恒电压16.3V/只和限制最高电流0.5A充电5h对电池进行抽酸处理。
充放电过程中通过水浴槽进水的流速对蓄电池进行降温,温度控制在40℃。
通过计算内化成充电量为电池额定容量的8倍(电流×时间=容量),内化成时间为68h。
蓄电池性能检测
将上述型号为6-DZF-20的蓄电池,参照试验标准GB/T 22199.1-2017。
1、容量
检测方法:在温度为25℃±2℃的环境中以I 2(A)电流放电至蓄电池端电压10.5V/只时终止。
2、低温-18℃容量
在-18℃±1℃环境中保持12h,然后以I 2(A)电流放电到蓄电池端电压10.5V/只时终止。
3、大电流放电特性
在25℃±2℃的环境中静置1h-4h后,以3.6 I 2(A)电流放电至蓄电池端电压10.5V/只时终止。
4、循环寿命
在25℃±5℃的环境中,以I 2(A)电流放电1.6h,然后以恒定电压16V/只[限流0.4 I2]充电6.4h;以上为一个循环寿命次数。当放电1.6h蓄电池端电压连续三次低于10.5V/只时,认为蓄电池循环寿命终止。
序号 检测项目 标准 实施例1
1 容量 ≥20Ah 21.6
2 低温-18℃容量 ≥14Ah 16
3 大电流放电特性 ≥25min 28
4 循环寿命 ≥350次 400
实施例2
以6-DZF-12电池为例,先进行真空加硫酸溶液,先将硫酸溶液降温至8℃,经管道输送至灌酸机,设置抽真空次数3次,真空度为0.08Mpa.每次抽真空时间持续10s,间歇时间6s。加酸后,电池立即放置于温度为15℃的水中,静置1h,开始内化成充电过程,本实施例中I 2为12/2A(额定容量/2),化成步骤如下:
步骤1):用恒电压17.5V/只和限制最高电流1.8A充电10h;
步骤2):静置0.15h;
步骤3):用恒电压17.5V/只和限制最高电流1.8A充电15h;
步骤4):用4.8A的电流放电1h;
步骤5):用恒电压17V/只和限制最高电流2.4A充电13h;
步骤6):静置0.15h;
步骤7):用恒电压17V/只和限制最高电流1.8A充电9h;
步骤8):静置0.5h;
步骤9):用6A的电流放电至10.5V/只;
步骤10):用恒电压16.5V/只和限制最高电流2.4A充电8h;
步骤11):静置0.15h;
步骤12):用恒电压16.5V/只和限制最高电流1.8A充电3h;
步骤13):用恒电压16.3V/只和限制最高电流0.3A充电5h对电池进行抽酸处理。
充放电过程中通过水浴槽进水的流速对蓄电池进行降温,温度控制在40℃。
通过计算内化成充电量为电池额定容量的8倍(电流×时间=容量),内化成时间为68h。
蓄电池性能检测
将上述型号为6-DZF-12的蓄电池,参照试验标准GB/T 22199.1-2017。
1、容量
检测方法:在温度为25℃±2℃的环境中以I 2(A)电流放电至蓄电池端电压10.5V/只时终止。
2、低温-18℃容量
在-18℃±1℃环境中保持12h,然后以I 2(A)电流放电到蓄电池端电压10.5V/只时终止。
3、大电流放电特性
在25℃±2℃的环境中静置1h-4h后,以3.6 I 2(A)电流放电至蓄电池端电压10.5V/只时终止。
4、循环寿命
在25℃±5℃的环境中,以I 2(A)电流放电1.6h,然后以恒定电压16V/只[限流0.4 I2]充电6.4h;以上为一个循环寿命次数。当放电1.6h蓄电池端电压连续三次低于10.5V/只时,认为蓄电池循环寿命终止。
序号 检测项目 标准 实施例2
1 容量 ≥12Ah 12.9
2 低温-18℃容量 ≥8.4Ah 9.72
3 大电流放电特性 ≥25min 28
4 循环寿命 ≥350次 421
由以上数据可知,采用新内化成工艺的蓄电池,容量、低温容量和循环寿命得到了改善。

Claims (4)

  1. 一种节能节水型内化成工艺,其特征在于,包括以下步骤:
    步骤1):用恒电压16.8~17.8V/只和限制最高电流(0.3~0.4)I 2A充电10h;
    步骤2):静置0.15h;
    步骤3):用恒电压16.8~17.8V/只和限制最高电流(0.3~0.4)I 2A充电15h;
    步骤4):用0.8I 2A的电流放电1h;
    步骤5):用恒电压16.5~17.5V/只和限制最高电流(0.4~0.45)I 2A充电13h;
    步骤6):静置0.15h;
    步骤7):用恒电压16.5~17.5V/只和限制最高电流(0.3~0.4)I 2A充电9h;
    步骤8):静置0.5h;
    步骤9):用I 2A的电流放电至10.5V/只;
    步骤10):用恒电压16~17V/只和限制最高电流(0.4~0.45)I 2A充电8h;
    步骤11):静置0.15h;
    步骤12):用恒电压16~17V/只和限制最高电流(0.3~0.4)I 2A充电3h;
    步骤13):用恒电压15.5~16.5V/只和限制最高电流(0.02~0.08)I 2A充电5h对电池进行抽酸处理。
  2. 根据权利要求1所述的一种节能节水型内化成工艺,其特征在于,所述步骤1)开始前对铅蓄电池进行真空加硫酸溶液,真空加硫酸溶液时抽真空次数3-5次,真空度真空度为0.03-0.1Mpa。
  3. 根据权利要求2所述的一种节能节水型内化成工艺,其特征在于,真空加硫酸溶液前,先将硫酸溶液降温至5-10℃,加硫酸溶液后电池立即放置于温度为≤20℃的水中的水中静置1~2h。
  4. 根据权利要求1所述的一种节能节水型内化成工艺,其特征在于,步骤1)至步骤13)充电、放电过程中使用循环水浴降温,循环水中冷却水的温度控制在温度控制在35-45℃。
PCT/CN2019/121408 2019-04-30 2019-11-28 一种节能节水型内化成工艺 WO2020220660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910362929.1A CN110071335B (zh) 2019-04-30 2019-04-30 一种节能节水型内化成工艺
CN201910362929.1 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220660A1 true WO2020220660A1 (zh) 2020-11-05

Family

ID=67370094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121408 WO2020220660A1 (zh) 2019-04-30 2019-11-28 一种节能节水型内化成工艺

Country Status (2)

Country Link
CN (1) CN110071335B (zh)
WO (1) WO2020220660A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071335B (zh) * 2019-04-30 2020-08-25 浙江天能电池(江苏)有限公司 一种节能节水型内化成工艺
CN110783654B (zh) * 2019-11-05 2020-12-04 超威电源集团有限公司 一种蓄电池真空式化成系统及化成工艺
CN110911629B (zh) * 2019-12-09 2022-04-05 巨江电源科技有限公司 Agm蓄电池内化成工艺及agm起停蓄电池
CN113725401A (zh) * 2021-08-04 2021-11-30 超威电源集团有限公司 一种长寿命的铅酸蓄电池正极板化成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193097A (ja) * 2002-10-17 2004-07-08 Furukawa Battery Co Ltd:The 鉛蓄電池の化成方法
CN102593533A (zh) * 2012-03-15 2012-07-18 超威电源有限公司 阀控式铅酸蓄电池内化成方法
CN103633388A (zh) * 2013-11-08 2014-03-12 超威电源有限公司 一种内化成铅酸蓄电池的化成制式
CN103647114A (zh) * 2013-12-10 2014-03-19 天能电池(芜湖)有限公司 一种五充三放蓄电池内化成方法
CN110071335A (zh) * 2019-04-30 2019-07-30 浙江天能电池(江苏)有限公司 一种节能节水型内化成工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193097A (ja) * 2002-10-17 2004-07-08 Furukawa Battery Co Ltd:The 鉛蓄電池の化成方法
CN102593533A (zh) * 2012-03-15 2012-07-18 超威电源有限公司 阀控式铅酸蓄电池内化成方法
CN103633388A (zh) * 2013-11-08 2014-03-12 超威电源有限公司 一种内化成铅酸蓄电池的化成制式
CN103647114A (zh) * 2013-12-10 2014-03-19 天能电池(芜湖)有限公司 一种五充三放蓄电池内化成方法
CN110071335A (zh) * 2019-04-30 2019-07-30 浙江天能电池(江苏)有限公司 一种节能节水型内化成工艺

Also Published As

Publication number Publication date
CN110071335B (zh) 2020-08-25
CN110071335A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2020220660A1 (zh) 一种节能节水型内化成工艺
CN106785052B (zh) 一种钛酸锂电池的化成方法
CN109216811B (zh) 一种铅蓄电池的内化成工艺
CN103943893B (zh) 一种铅酸蓄电池内化成工艺
CN106972214B (zh) 一种铅酸电池的内化成工艺
CN106450502B (zh) 一种铅蓄电池内化成充电工艺
CN103956528B (zh) 一种超级电池内化成工艺
CN103633389B (zh) 一种铅酸蓄电池内化成工艺
CN108598609B (zh) 一种胶体动力铅酸蓄电池内化成工艺
CN101800336A (zh) 阀控密封铅酸蓄电池快速内化成方法
CN105811032A (zh) 一种铝壳锂离子电池化成方法
CN105870508A (zh) 一种锂离子电池的化成方法
CN103594747B (zh) 一种贫液式铅酸蓄电池内化成工艺
CN107331902A (zh) 一种铅酸蓄电池脉冲内化成工艺
CN107403908A (zh) 一种抑制钛酸锂电池胀气的方法
CN106935912A (zh) 一种锂离子电池化成方法
CN104124484B (zh) 无镉内化成蓄电池真空负压式快速充电方法
CN103956523B (zh) 一种动力车用超级蓄电池内化成方法
CN107492682B (zh) 铅酸蓄电池无循环冷却水内化成工艺
CN104300179A (zh) 一种阀控式铅蓄电池内化成工艺
WO2021142853A1 (zh) 一种铅酸蓄电池的制造方法
CN105845991A (zh) 汽车起停用铅碳卷绕蓄电池
CN110858671B (zh) 一种钛酸锂电池的化成方法
CN105070881A (zh) 一种锂离子电池用高容量V2O5·nH2O薄膜电极材料
CN112242575A (zh) 锂金属电池的化成方法及锂金属电池的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927522

Country of ref document: EP

Kind code of ref document: A1