WO2020220548A1 - 透明导电材料及其制作方法及透明导电膜的制作方法 - Google Patents

透明导电材料及其制作方法及透明导电膜的制作方法 Download PDF

Info

Publication number
WO2020220548A1
WO2020220548A1 PCT/CN2019/104164 CN2019104164W WO2020220548A1 WO 2020220548 A1 WO2020220548 A1 WO 2020220548A1 CN 2019104164 W CN2019104164 W CN 2019104164W WO 2020220548 A1 WO2020220548 A1 WO 2020220548A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive material
solution
manufacturing
conductive film
Prior art date
Application number
PCT/CN2019/104164
Other languages
English (en)
French (fr)
Inventor
张霞
邵源
刘刚
陈孝贤
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020220548A1 publication Critical patent/WO2020220548A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2465/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to the field of display technology, in particular to a transparent conductive material and a manufacturing method thereof and a manufacturing method of a transparent conductive film.
  • LCD Liquid crystal display
  • PDA personal digital assistant
  • digital camera computer screen or Notebook computer screens, etc.
  • liquid crystal displays which include a liquid crystal panel and a backlight module.
  • the working principle of the liquid crystal panel is to inject liquid crystal molecules between the Thin Film Transistor Array Substrate (TFT Array Substrate) and the color filter substrate (Color Filter, CF), and apply driving voltage on the two substrates To control the rotation direction of the liquid crystal molecules to refract the light from the backlight module to produce images.
  • TFT Array Substrate Thin Film Transistor Array Substrate
  • Color Filter Color Filter
  • the transparent electrode currently mainly uses metal oxide materials, such as indium tin oxide (ITO), which is formed by physical vapor deposition (PVD).
  • ITO indium tin oxide
  • PVD physical vapor deposition
  • ITO indium tin oxide
  • the physical vapor deposition method uses more expensive equipment and higher maintenance costs; and, metal oxide materials need to be calcined at high temperatures to optimize the crystal shape to increase electrical conductivity.
  • metal oxide materials are mostly ceramic materials, which are brittle and easy to break. Not suitable for flexible displays with large curvature and multiple bends.
  • PEDOT poly(4-styrene sulfonic acid)
  • PSS poly(4-styrene sulfonic acid)
  • the ⁇ - ⁇ accumulation formed by PEDOT is less, and the conductivity is greatly affected; and for flexible applications, the conductive polymer formed by PEDOT: PSS is not stretchable. Can not meet the flexible display of large curvature and multiple bending.
  • the purpose of the present invention is to provide a transparent conductive material that can improve the water dispersibility of the transparent conductive material, improve the stretchability and conductivity of the transparent conductive film made of the transparent conductive material, and reduce the production cost of the transparent conductive film.
  • the object of the present invention is also to provide a method for producing a transparent conductive material, which can improve the water dispersibility of the transparent conductive material, improve the stretchability and conductivity of the transparent conductive film made of the transparent conductive material, and reduce the transparent conductive film The production cost. .
  • the object of the present invention is also to provide a method for manufacturing a transparent conductive film, which can improve the stretchability and conductivity of the transparent conductive film made of the transparent conductive material, and reduce the manufacturing cost of the transparent conductive film. .
  • the present invention provides a transparent conductive material having the following structure:
  • n is the degree of polymerization
  • m is a positive integer of 6-13.
  • n 8 or 9.
  • the present invention also provides a manufacturing method of transparent conductive material, including the following steps:
  • Step S1 Provide a thiophene raw material, and make the thiophene raw material react through catalysis to obtain a first material solution.
  • the thiophene raw material has the following structure:
  • n is a positive integer from 6 to 13, and X is a halogen element
  • the first material has the following structure:
  • n is the degree of polymerization
  • m is a positive integer from 6 to 13;
  • Step S2 Add the first material solution to the pyridine-3-carboxylic acid chloride solution, and react to obtain a second material solution.
  • the second material has the following structure:
  • Step S3 mixing the first material solution and the second material solution to obtain the transparent conductive material, and the transparent conductive material has the following structure:
  • the step S1 specifically includes: providing thiophene raw materials, using Schlenk technology, in a protective gas atmosphere, through the catalysis of palladium complexes, the thiophene raw materials are reacted to form polyhalogenated thiophenes, and then under the catalysis of alkali, the polyhalogenated thiophene is formed. The halogenated thiophene continues to react to obtain the first material solution.
  • the step S2 specifically includes: adding pyridine-3-carboxylic acid chloride to a mixed solvent of toluene and alcohols to obtain a pyridine-3-carboxylic acid chloride solution, heating the pyridine-3-carboxylic acid chloride solution, and then after heating Gradually drip the first material solution into the pyridine-3-carboxylic acid chloride solution, continue to stir until the solution is clear after dripping, and obtain the second material solution after separation and purification.
  • n 8 or 9.
  • the first material solution and the second material solution are mixed in a volume ratio of 10:1 to 1:10.
  • the present invention also provides a manufacturing method of the transparent conductive film, which includes the following steps:
  • Step S10 Provide a transparent conductive material having the following structure:
  • n is the degree of polymerization
  • m is a positive integer from 6 to 13;
  • Step S20 providing a substrate, and coating the transparent conductive material on the substrate;
  • Step S30 baking and curing the transparent conductive material to obtain the transparent conductive film.
  • a spin coating process is used to coat the transparent conductive material on the substrate.
  • step 10 and step 20 it further includes the step of adjusting the viscosity and solid content of the transparent conductive material so that the viscosity and solid content of the transparent conductive material are consistent with the preset target viscosity and target solid content.
  • the present invention provides a transparent conductive material, which is a PEDOT material with a long alkyl side chain and a side chain with a hydroxyl group and a pyridine ring, which can increase the water content of the transparent conductive material. Dispersibility improves the stretchability and conductivity of the transparent conductive film made of the transparent conductive material, and reduces the production cost of the transparent conductive film.
  • the present invention also provides a method for manufacturing a transparent conductive material, which can improve the water dispersibility of the transparent conductive material and improve the stretchability and conductivity of the transparent conductive film made of the transparent conductive material.
  • the invention also provides a method for manufacturing the transparent conductive film, which can increase the stretch rate and conductivity of the transparent conductive film, and reduce the manufacturing cost of the transparent conductive film.
  • Figure 1 is a flow chart of the method for manufacturing a transparent conductive material of the present invention
  • Fig. 2 is a flow chart of the method for manufacturing the transparent conductive film of the present invention.
  • the present invention provides a transparent conductive material having the following structure:
  • n is the degree of polymerization
  • m is a positive integer of 6-13.
  • the present invention can improve the dispersibility of PEDOT by making the transparent conductive material have side chains with long alkyl chains. Compared with the prior art, there is no need to use PSS to help the dispersion and avoid the use of PSS to reduce the material.
  • the present invention connects the transparent conductive material with a hydroxyl group and a pyridine ring on the side chain through the electron withdrawing effect of the pyridine nitrogen atom on the hydroxyl group, so that the transparent conductive film made of the transparent conductive material has a stretchable Extensibility; again, the present invention uses the steric hindrance of the side chain to make the transparent conductive materials arranged in an orderly manner to form a large range of ⁇ - ⁇ stacking to ensure the high conductivity of the material; finally, the transparent conductive material of the present invention is used When the transparent conductive film is produced, the solution processing method can be used to complete the production. Compared with the traditional metal oxide material, the high temperature process is not required, which can reduce the cost of equipment and materials and improve the reliability of the product.
  • the chain length of the long alkyl chain will affect the dispersibility and conductivity of the transparent conductive material.
  • the shorter chain is not conducive to the dispersion of thiophene; the longer chain will cause the PEDOT to be too fluffy, the ⁇ - ⁇ accumulation will decrease, and the conductivity will decrease.
  • m is preferably 8 or 9, which can make the transparent conductive material have the best dispersibility and conductivity.
  • the present invention provides a method for manufacturing a transparent conductive material, including the following steps:
  • Step S1 Provide a thiophene raw material, react the thiophene raw material through a catalytic action to obtain a first material solution, and the thiophene raw material has the following structure:
  • n is a positive integer from 6 to 13, and X is a halogen element
  • the first material has the following structure:
  • n is the degree of polymerization
  • m is a positive integer from 6 to 13;
  • the step S1 specifically includes: providing thiophene raw materials, using Schlenk technology (double-row tube anhydrous and oxygen-free operation technology), in a protective gas atmosphere, through the catalysis of palladium (P) complexes to make thiophene
  • the raw material reaction that is, the C–H and C–X of the thiophene raw material are cross-coupled to form a polyhalogenated thiophene, and then under the catalysis of a base, the polyhalogenated thiophene continues to react, that is, the hydrolysis reaction of halogenated hydrocarbons, to obtain the first Material solution.
  • the protective gas is nitrogen or argon, and X is bromine (Br).
  • a typical preparation process of the first material solution includes: thiophene raw material (0.1g, 0.255mmol) and potassium carbonate (0.077g, 0.56mmol) are degassed in 3ml sulfoxide/toluene (1:1) After argon twice, Pd(dppf)(OAC) (10 mg) was added, and after stirring for 4 hours at 80 degrees Celsius under argon, the reaction mixture was poured into water (30 ml) and extracted with dichloromethane. Next, the organic layer was washed with water, and then dried to remove the solvent.
  • silica gel column chromatography is used to use a mixture of dichloromethane and petroleum ether (1:1) as the eluent composition to purify the product after removing the solvent to produce a polyhalogenated thiophene solid.
  • the above solid powder is added to an aqueous alkali solution (such as ethanol or sodium hydroxide), etc., heated at 40° C. for 5 minutes or allowed to stand for a long time, and then separated and purified to obtain the first material solution.
  • aqueous alkali solution such as ethanol or sodium hydroxide
  • Step S2 Add the first material solution to the pyridine-3-carboxylic acid chloride solution, and react to obtain a second material solution.
  • the second material has the following structure:
  • the step S2 specifically includes: adding pyridine-3-carboxylic acid chloride to a mixed solvent of toluene and alcohol to obtain a pyridine-3-carboxylic acid chloride solution, heating the pyridine-3-carboxylic acid chloride solution, and then Gradually drip the first material solution into the heated pyridine-3-carboxylic acid chloride solution, continue to stir until the solution is clear after dripping, and obtain the second material solution after separation and purification.
  • the typical production process of the second material solution is as follows: 0.2 mol of pyridine-3-carboxylic acid chloride is mixed with 100 ml of toluene and alcohol mixed solvent to obtain the first solution, and the first solution is first heated at 50°C, Then, the first material solution prepared in step S1 is slowly dropped in, and the time is controlled to finish dropping in one hour. After dropping, continue to stir until the solution is clear, and then separate and purify to obtain the second material solution.
  • the typical solvent of pyridine-3-carboxylic acid chloride is toluene, and PEDOT has good solubility in water, ethanol, glycerol, isopropanol, and sorbitol. Therefore, a mixed solvent of toluene and alcohol is used in the present invention.
  • the preparation of the first solution can ensure that the pyridine-3-carboxylic acid chloride in the second material solution is well mixed with the first material.
  • Step S3 mixing the first material solution and the second material solution to obtain the transparent conductive material, and the transparent conductive material has the following structure:
  • the first material solution and the second material solution are mixed in a volume ratio of 10:1 to 1:10, and stirred for 5 minutes to 240 minutes to obtain the transparent conductive material.
  • the present invention can improve the dispersibility of PEDOT by making the first material and the second material have side chains with long alkyl chains.
  • the present invention makes the side chain of the first material bear a hydroxyl group, and the side chain of the second material bears a pyridine ring, through the electron withdrawing of the pyridine nitrogen atom in the second material to the hydroxyl group on the first material
  • the functions are interconnected, so that the transparent conductive film made of the transparent conductive material has stretchability; again, the present invention uses the steric hindrance of the side chain to make the first material and the second material arranged in an orderly manner to form A wide range of ⁇ - ⁇ stacking ensures the high conductivity of the material; finally, when the transparent conductive material of the present invention is used to make a transparent conductive film, the solution processing method can be used
  • the chain length of the long alkyl chain will affect the dispersibility and conductivity of the transparent conductive material.
  • the shorter chain is not conducive to the dispersion of thiophene; the longer chain will cause the PEDOT to be too fluffy, the ⁇ - ⁇ accumulation will decrease, and the conductivity will decrease.
  • m is preferably 8 or 9, which can make the transparent conductive material have the best dispersibility and conductivity.
  • the present invention also provides a method for manufacturing a transparent conductive film, which includes the following steps:
  • Step S10 Provide a transparent conductive material having the following structure:
  • n is the degree of polymerization
  • m is a positive integer from 6 to 13;
  • Step S20 providing a substrate, and coating the transparent conductive material on the substrate;
  • Step S30 baking and curing the transparent conductive material to obtain the transparent conductive film.
  • a spin coating process is used to coat the transparent conductive material on the substrate.
  • step 10 and step 20 it further includes adjusting the viscosity and solid content of the transparent conductive material so that the viscosity and solid content of the transparent conductive material are consistent with the preset target viscosity and target solid content A step of. .
  • the present invention can improve the dispersibility of PEDOT by making the transparent conductive material have side chains with long alkyl chains. Compared with the prior art, there is no need to use PSS to help the dispersion and avoid the use of PSS to reduce the material.
  • the present invention connects the transparent conductive material with a hydroxyl group and a pyridine ring on the side chain through the electron withdrawing effect of the pyridine nitrogen atom on the hydroxyl group, so that the transparent conductive film made of the transparent conductive material has a stretchable Extensibility; again, the present invention uses the steric hindrance of the side chain to make the transparent conductive materials arranged in an orderly manner to form a large range of ⁇ - ⁇ stacking to ensure the high conductivity of the material; finally, the transparent conductive material of the present invention is used When the transparent conductive film is produced, the solution processing method can be used to complete the production. Compared with the traditional metal oxide material, the high temperature process is not required, which can reduce the cost of equipment and materials and improve the reliability of the product.
  • the present invention provides a transparent conductive material, which is a PEDOT material with a long alkyl side chain and a side chain with a hydroxyl group and a pyridine ring, which can improve the water dispersion of the transparent conductive material It can improve the stretchability and conductivity of the transparent conductive film made of the transparent conductive material, and reduce the production cost of the transparent conductive film.
  • the present invention also provides a method for manufacturing a transparent conductive material, which can improve the water dispersibility of the transparent conductive material and improve the stretchability and conductivity of the transparent conductive film made of the transparent conductive material.
  • the invention also provides a method for manufacturing the transparent conductive film, which can increase the stretch rate and conductivity of the transparent conductive film, and reduce the manufacturing cost of the transparent conductive film.

Abstract

本发明提供一种透明导电材料及其制作方法及透明导电膜的制作方法。所述透明导电材料为具有长烷基的侧链且侧链带有带羟基和带吡啶环的PEDOT材料,能够提升透明导电材料的水分散性,改善该透明导电材料的制得的透明导电膜的拉伸性和导电性,降低透明导电膜的制作成本。

Description

透明导电材料及其制作方法及透明导电膜的制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种透明导电材料及其制作方法及透明导电膜的制作方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等,在平板显示领域中占主导地位。
现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶面板及背光模组(backlight module)。液晶面板的工作原理是在薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)与彩色滤光片基板(Color Filter,CF)之间灌入液晶分子,并在两片基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
作为TFT-LCD重要组成的透明电极,目前主要采用金属氧化物材料,如氧化铟锡(Indium tin oxide,ITO),材料通过物理气相沉积法(Physical Vapor Deposition,PVD)而成。但因铟元素是一种稀有金属,价格较高,而且地球上的铟储量已远不能满足人们对透明电极日益增加的需求。其次,物理气相沉积法使用设备较昂贵、维护成本较高;并且,金属氧化物材料需要高温煅烧加工优化晶形提高电导率,最后,金属氧化物材料多为陶瓷材料,性质脆,易断裂,因此不适用于大曲率、多次弯曲的柔性显示。
为了解决上述问题,提出了采用聚(3,4‐乙撑二氧噻吩):聚(4‐苯乙烯磺酸)(PEDOT:PSS)材料来取代金属氧化物半导体制作透明电极的方案,现有PEDOT:PSS的制备时,一般是使中性的PEDOT氧化失电子,形成带正电荷的氧化型PEDOT,通过水溶性好但导电性不佳的PSS的掺杂,形成聚离子复合物,分散于水中。但因PSS的导电性不佳,而且结构较为致密,致使PEDOT形成的π-π堆积较少,电导率受到较大影响;而且对于柔性应用,PEDOT:PSS形成的导电聚合物可拉伸性并不能满足大曲率、多次弯曲的柔性显示。
发明内容
本发明的目的在于提供一种透明导电材料,能够提升透明导电材料的水分散性,改善该透明导电材料的制得的透明导电膜的拉伸性和导电性,降低透明导电膜的制作成本。
本发明的目的还在于提供一种透明导电材料的制作方法,能够提升透明导电材料的水分散性,改善该透明导电材料的制得的透明导电膜的拉伸性和导电性,降低透明导电膜的制作成本。。
本发明的目的还在于提供一种透明导电膜的制作方法,能够改善该透明导电材料的制得的透明导电膜的拉伸性和导电性,降低透明导电膜的制作成本。。
为实现上述目的,本发明提供一种透明导电材料,具有如下结构:
Figure PCTCN2019104164-appb-000001
其中,n为聚合度,m为6~13的正整数。
可选地,m为8或9。
本发明还提供一种透明导电材料的制作方法,包括如下步骤:
步骤S1、提供噻吩原料,通过催化作用使得噻吩原料反应,得到第一材料溶液,所述噻吩原料具有如下结构:
Figure PCTCN2019104164-appb-000002
其中,m为6~13的正整数,X为卤素元素;
所述第一材料具有如下结构:
Figure PCTCN2019104164-appb-000003
其中,n为聚合度,m为6~13的正整数;
步骤S2、在吡啶-3-羧酸酰氯溶液中加入第一材料溶液,反应得到得到第二材料溶液,所述第二材料具有如下结构:
Figure PCTCN2019104164-appb-000004
步骤S3、混合所述第一材料溶液和第二材料溶液,得到所述透明导电材料,所述透明导电材料具有如下结构:
Figure PCTCN2019104164-appb-000005
所述步骤S1具体包括:提供噻吩原料,使用Schlenk技术,在保护气体氛围中,通过钯配合物的催化作用,使得噻吩原料反应,形成聚卤代噻吩,接着在碱的催化作用下,使得聚卤代噻吩继续反应,得到第一材料溶液。
所述步骤S2具体包括:将吡啶-3-羧酸酰氯添加到甲苯和醇类混合溶剂中得到吡啶-3-羧酸酰氯溶液,加热所述吡啶-3-羧酸酰氯溶液,接着在加热后的吡啶-3-羧酸酰氯溶液中逐渐滴入第一材料溶液,滴完后继续搅拌至溶液澄清,分离提纯后得到第二材料溶液。
可选地,m为8或9。
所述步骤S3中,所述第一材料溶液及第二材料溶液按照10:1~1:10的体积比混合。
本发明还提供一种透明导电膜的制作方法,包括如下步骤:
步骤S10、提供一种透明导电材料,具有如下结构:
Figure PCTCN2019104164-appb-000006
其中,n为聚合度,m为6~13的正整数;
步骤S20、提供一基板,在所述基板上涂布所述透明导电材料;
步骤S30、对所述透明导电材料进行烘烤固化,得到所述透明导电膜。
所述步骤20中采用旋涂工艺在所述基板上涂布所述透明导电材料。
所述步骤10和步骤20之间,还包括对所述透明导电材料的黏度和固含量进行调节使得所述透明导电材料的黏度和固含量与预设的目标黏度和目标固含量一致的步骤。
本发明的有益效果:本发明提供一种透明导电材料,所述透明导电材料为具有长烷基的侧链且侧链带有带羟基和带吡啶环的PEDOT材料,能够提升透明导电材料的水分散性,改善该透明导电材料的制得的透明导电膜的拉伸性和导电性,降低透明导电膜的制作成本。本发明还提供一种透明导电材料的制作方法,能够提升透明导电材料的水分散性,改善该透明导电材料的制得的透明导电膜的拉伸性和导电性。本发明还透明导电膜的制作方法,能够提升透明导电膜的拉伸率及导电率,降低透明导电膜的制作成本。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的透明导电材料的制作方法的流程图;
图2为本发明的透明导电膜的制作方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明提供一种透明导电材料,具有如下结构:
Figure PCTCN2019104164-appb-000007
其中,n为聚合度,m为6~13的正整数。
需要说明的是,首先,本发明通过使得透明导电材料具有带长烷基链的侧链,能够提高PEDOT分散性,相比于现有技术无需在使用PSS帮助分散,避免因使用PSS降低材料的导电性;其次,本发明通过使得透明导电材料的侧链带羟基和吡啶环,通过吡啶上氮原子对羟基的吸电子作用相互连接,使得采用该透明导电材料制得的透明导电膜具有可拉伸性;再次,本发明通过侧链的空间位阻作用,使得透明导电材料有序排列,形成大范围的π-π堆积,保证了材料的高导电性;最后,采用本发明的透明导电材料制作透明导电膜时,可利用溶液加工法完成制作,相比于传统的金属氧化物材料,无需高温制程,能够减少设备和材料成本,提高产品信赖性。
其中,长烷基链的链长会影响透明导电材料的分散性和导电性,链较短,不利于噻吩的分散;链较长则会导致PEDOT过于蓬松,π-π堆积减少,电导率下降,本发明中优选m为8或9,能够使得透明导电材料具有最佳的分散性和导电性。
请参阅图1,本发明提供一种透明导电材料的制作方法,包括如下步骤:
步骤S1、提供噻吩原料,通过催化作用使得噻吩原料反应,得到第一材料溶液,所述噻吩原料具有如下结构:
Figure PCTCN2019104164-appb-000008
其中,m为6~13的正整数,X为卤素元素;
所述第一材料具有如下结构:
Figure PCTCN2019104164-appb-000009
其中,n为聚合度,m为6~13的正整数;
具体地,所述步骤S1具体包括:提供噻吩原料,使用Schlenk技术(双排管的无水无氧的操作技术),在保护气体氛围中,通过钯(P)配合物的催化作用,使得噻吩原料反应,即噻吩原料的C–H与C–X交叉耦合,形成聚卤代噻吩,接着在碱的催化作用下,使得聚卤代噻吩继续反应,即卤代烃的水解反应,得到第一材料溶液。
优选地,所述保护气体为氮气或氩气,X为溴(Br)。
举例来说,一个典型的第一材料溶液的制作过程包括:噻吩原料(0.1g,0.255mmol)和碳酸钾(0.077g,0.56mmol)在3毫升亚砜/甲苯(1:1)被脱气两次氩后添加Pd(dppf)(OAC)(10mg),在氩气下80摄氏度搅拌4小时后,将反应混合物倒入水中(30ml),用二氯甲烷萃取。接着,将有机层用水冲洗,然后干燥除去溶剂。而后用硅胶柱层析法,利用二氯甲烷和石油醚(1:1)的混合物作为淋洗剂组成纯化除去溶剂后的产品,产生聚卤代噻吩固体。将上述固体粉末,加入碱的水溶液中(例如乙醇或氢氧化钠等)等,40℃加热5min或长时间静置,而后分离提纯,得到第一材料溶液。
具体反应过程如下:
Figure PCTCN2019104164-appb-000010
步骤S2、在吡啶-3-羧酸酰氯溶液中加入第一材料溶液,反应得到得到第二材料溶液,所述第二材料具有如下结构:
Figure PCTCN2019104164-appb-000011
具体地,所述步骤S2具体包括:将吡啶-3-羧酸酰氯添加到甲苯和醇类混合溶剂中得到吡啶-3-羧酸酰氯溶液,加热所述吡啶-3-羧酸酰氯溶液,接着在加热后的吡啶-3-羧酸酰氯溶液中逐渐滴入第一材料溶液,滴完后继续搅拌至溶液澄清,分离提纯后得到第二材料溶液。
举例来说,第二材料溶液的典型制作过程如下:将0.2mol吡啶-3-羧酸酰氯与100ml的甲苯、醇类混合溶剂混合得到第一溶液,将第一溶液先在50℃下加热,而后将步骤S1中制得的第一材料溶液缓慢滴入,时间控制在一小时滴完,滴完后继续搅拌至溶液澄清,而后分离提纯,得到第二材料溶液。
需要说明的吡啶-3-羧酸酰氯典型溶剂为:甲苯,而PEDOT在水、乙醇、丙三醇、异丙醇、山梨醇中有较好溶解性,因此本发明选用甲苯、醇类混合溶剂制作第一溶液,能够确保第二材料溶液中的吡啶-3-羧酸酰氯与第一材料较好混合。
步骤S3、混合所述第一材料溶液和第二材料溶液,得到所述透明导电材料,所述透明导电材料具有如下结构:
Figure PCTCN2019104164-appb-000012
具体地,所述步骤S3中第一材料溶液和第二材料溶液以体积比10:1~1:10的比例混合,并搅拌5min~240min,得到所述透明导电材料。
需要说明的是,首先,本发明通过使得第一材料和第二材料具有带长烷基链的侧链,能够提高PEDOT分散性,相比于现有技术无需在使用PSS帮助分散,避免因使用PSS降低材料的导电性;其次,本发明通过使得第一材料的侧链带羟基,第二材料的侧链带吡啶环,通过第二材料中吡啶上氮原子对第一材料上羟基的吸电子作用相互连接,使得采用该透明导电材料制得的透明导电膜具有可拉伸性;再次,本发明通过侧链的空间位阻作用,使得第一材料和第二材料之间有序排列,形成大范围的π-π堆积,保证了材料的高导电性;最后,采用本发明的透明导电材料制作透明导电膜时,可利用溶液加工法完成制作,相比于传统的金属氧化物材料,无需高温制程,能够减少设备和材料成本,提高产品信赖性。
其中,长烷基链的链长会影响透明导电材料的分散性和导电性,链较短,不利于噻吩的分散;链较长则会导致PEDOT过于蓬松,π-π堆积减少,电导率下降,本发明中优选m为8或9,能够使得透明导电材料具有最佳的分散性和导电性。
请参阅图2,本发明还提供一种透明导电膜的制作方法,包括如下步骤:
步骤S10、提供一种透明导电材料,具有如下结构:
Figure PCTCN2019104164-appb-000013
其中,n为聚合度,m为6~13的正整数;
步骤S20、提供一基板,在所述基板上涂布所述透明导电材料;
步骤S30、对所述透明导电材料进行烘烤固化,得到所述透明导电膜。
具体地,所述步骤20中采用旋涂工艺在所述基板上涂布所述透明导电材料。
具体地,所述步骤10和步骤20之间,还包括对所述透明导电材料的黏度和固含量进行调节使得所述透明导电材料的黏度和固含量与预设的目标黏度和目标固含量一致的步骤。。
具体地,本发明的透明导电膜的典型制作过程如下:将所述透明导电材料。在30~100℃恒温水浴条件下密封搅拌3-120min,直至均匀,继续添加溶剂以达到所需黏度及固含量,旋涂仪设定转速400~2500r/min,时间T1=2~10s,T2=2~10s,将所得固含量适宜的透明导电材料滴在基板上,旋涂制得湿膜,在40~120℃条件下进行预烤及后烤固化,即得透明导电膜,进一步地,在此基础上可继续对该透明导电膜进行图案化制程。
需要说明的是,首先,本发明通过使得透明导电材料具有带长烷基链的侧链,能够提高PEDOT分散性,相比于现有技术无需在使用PSS帮助分散,避免因使用PSS降低材料的导电性;其次,本发明通过使得透明导电材料的侧链带羟基和吡啶环,通过吡啶上氮原子对羟基的吸电子作用相互连接,使得采用该透明导电材料制得的透明导电膜具有可拉伸性;再次,本发明通过侧链的空间位阻作用,使得透明导电材料有序排列,形成大范围的π-π堆积,保证了材料的高导电性;最后,采用本发明的透明导电材料制作透明导电膜时,可利用溶液加工法完成制作,相比于传统的金属氧化 物材料,无需高温制程,能够减少设备和材料成本,提高产品信赖性。
综上所述,本发明提供一种透明导电材料,所述透明导电材料为具有长烷基的侧链且侧链带有带羟基和带吡啶环的PEDOT材料,能够提升透明导电材料的水分散性,改善该透明导电材料的制得的透明导电膜的拉伸性和导电性,降低透明导电膜的制作成本。本发明还提供一种透明导电材料的制作方法,能够提升透明导电材料的水分散性,改善该透明导电材料的制得的透明导电膜的拉伸性和导电性。本发明还透明导电膜的制作方法,能够提升透明导电膜的拉伸率及导电率,降低透明导电膜的制作成本。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种透明导电材料,具有如下结构:
    Figure PCTCN2019104164-appb-100001
    其中,n为聚合度,m为6~13的正整数。
  2. 如权利要求1所述的透明导电材料,其中,m为8或9。
  3. 一种透明导电材料的制作方法,包括如下步骤:
    步骤S1、提供噻吩原料,通过催化作用使得噻吩原料反应,得到第一材料溶液,所述噻吩原料具有如下结构:
    Figure PCTCN2019104164-appb-100002
    其中,m为6~13的正整数,X为卤素元素;
    所述第一材料具有如下结构:
    Figure PCTCN2019104164-appb-100003
    其中,n为聚合度,m为6~13的正整数;
    步骤S2、在吡啶-3-羧酸酰氯溶液中加入第一材料溶液,反应得到得到第二材料溶液,所述第二材料具有如下结构:
    Figure PCTCN2019104164-appb-100004
    步骤S3、混合所述第一材料溶液和第二材料溶液,得到所述透明导电材料,所述透明导电材料具有如下结构:
    Figure PCTCN2019104164-appb-100005
  4. 如权利要求3所述的透明导电材料的制作方法,其中,所述步骤S1具体包括:提供噻吩原料,使用Schlenk技术,在保护气体氛围中,通过钯配合物的催化作用,使得噻吩原料反应,形成聚卤代噻吩,接着在碱的催化作用下,使得聚卤代噻吩继续反应,得到第一材料溶液。
  5. 如权利要求3所述的透明导电材料的制作方法,其中,所述步骤S2具体包括:将吡啶-3-羧酸酰氯添加到甲苯和醇类混合溶剂中得到吡啶-3-羧酸酰氯溶液,加热所述吡啶-3-羧酸酰氯溶液,接着在加热后的吡啶-3-羧酸酰氯溶液中逐渐滴入第一材料溶液,滴完后继续搅拌至溶液澄清,分离提纯后得到第二材料溶液。
  6. 如权利要求3所述的透明导电材料的制作方法,其中,m为8或9。
  7. 如权利要求3所述的透明导电材料的制作方法,其中,所述步骤S3中,所述第一材料溶液及第二材料溶液按照10:1~1:10的体积比混合。
  8. 一种透明导电膜的制作方法,包括如下步骤:
    步骤S10、提供一种透明导电材料,具有如下结构:
    Figure PCTCN2019104164-appb-100006
    其中,n为聚合度,m为6~13的正整数;
    步骤S20、提供一基板,在所述基板上涂布所述透明导电材料;
    步骤S30、对所述透明导电材料进行烘烤固化,得到所述透明导电膜。
  9. 如权利要求8所述的透明导电膜的制作方法,其中,所述步骤20中采用旋涂工艺在所述基板上涂布所述透明导电材料。
  10. 如权利要求8所述的透明导电膜的制作方法,所述步骤10和步骤20之间,还包括对所述透明导电材料的黏度和固含量进行调节使得所述透明导电材料的黏度和固含量与预设的目标黏度和目标固含量一致的步骤。
PCT/CN2019/104164 2019-04-30 2019-09-03 透明导电材料及其制作方法及透明导电膜的制作方法 WO2020220548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910365448.6A CN110079057B (zh) 2019-04-30 2019-04-30 透明导电材料及其制作方法及透明导电膜的制作方法
CN201910365448.6 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220548A1 true WO2020220548A1 (zh) 2020-11-05

Family

ID=67418416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104164 WO2020220548A1 (zh) 2019-04-30 2019-09-03 透明导电材料及其制作方法及透明导电膜的制作方法

Country Status (2)

Country Link
CN (1) CN110079057B (zh)
WO (1) WO2020220548A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110079057B (zh) * 2019-04-30 2020-01-21 深圳市华星光电技术有限公司 透明导电材料及其制作方法及透明导电膜的制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053474A1 (ja) * 2010-10-20 2012-04-26 三洋化成工業株式会社 導電性組成物及び導電性被膜の製造方法
CN102604334A (zh) * 2012-02-07 2012-07-25 中国科学院苏州纳米技术与纳米仿生研究所 自支撑透明高导电pedot薄膜及其制备方法
CN110079057A (zh) * 2019-04-30 2019-08-02 深圳市华星光电技术有限公司 透明导电材料及其制作方法及透明导电膜的制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2430679A (en) * 2005-09-28 2007-04-04 Riso Nat Lab Photovoltaic polymer
CN104592499B (zh) * 2014-11-23 2017-11-14 北京航空航天大学 三并噻吩类共轭聚合物材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053474A1 (ja) * 2010-10-20 2012-04-26 三洋化成工業株式会社 導電性組成物及び導電性被膜の製造方法
CN102604334A (zh) * 2012-02-07 2012-07-25 中国科学院苏州纳米技术与纳米仿生研究所 自支撑透明高导电pedot薄膜及其制备方法
CN110079057A (zh) * 2019-04-30 2019-08-02 深圳市华星光电技术有限公司 透明导电材料及其制作方法及透明导电膜的制作方法

Also Published As

Publication number Publication date
CN110079057A (zh) 2019-08-02
CN110079057B (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
Lin et al. Roll‐to‐Roll production of transparent silver‐nanofiber‐network electrodes for flexible electrochromic smart windows
WO2020248655A1 (zh) 一种图案化AgNWs/PEDOT:PSS复合导电网格薄膜的制备方法
KR20160009544A (ko) 투명 탄소나노튜브 폴리머 복합 전도성 잉크 및 그 제조방법
CN104934146A (zh) 石墨烯/pedot:pss混合溶液的制备方法及基板的制备方法
WO2017173709A1 (zh) 液晶材料、液晶显示面板及液晶显示面板的制作方法
WO2019184182A1 (zh) 一种电致变色膜材料及其制备的电致变色膜器件
CN105085937A (zh) 富勒烯/pedot:pss混合溶液的制备方法及具有富勒烯/pedot:pss复合透明导电膜的基板的制备方法
Hu et al. Pyrazine-EDOT DAD type hybrid polymer for patterned flexible electrochromic devices
WO2020220548A1 (zh) 透明导电材料及其制作方法及透明导电膜的制作方法
CN112430314B (zh) 含引达省并二噻吩结构的电致变色聚合物及制备方法、聚合物薄膜与应用
WO2014201727A1 (zh) 用于液晶显示器边框的高分子液晶材料、边框和制造方法
CN104810114A (zh) 高透光率柔性聚酰亚胺基底ito导电薄膜及其制备方法与应用
CN108089366B (zh) 一种彩膜基板及其制备方法
CN103107285A (zh) 一种立体显示电极及其制造方法
CN101487953A (zh) 薄膜晶体管液晶显示器及其制造方法
CN112500556B (zh) 供体受体型电致变色聚合物及制备方法、电致变色薄膜与应用
CN107632438A (zh) 一种显示面板的制备方法、显示面板及显示装置
US7345141B2 (en) Polymer material having carrier transport property, and organic thin film element, electronic device, and conductor line which use same
CN108594501A (zh) 一种液晶显示面板及其制作方法
CN112430313B (zh) 含苯并二噻吩结构的电致变色聚合物及制备方法、电致变色薄膜与应用
TWI629544B (zh) 液晶配向劑、液晶配向膜、液晶顯示元件以及液晶配向劑的製備方法
CN102399416A (zh) 聚醚型聚(3,4-乙烯二氧噻吩)水分散体及制备方法
WO2017118139A1 (zh) 电致变色聚合物及其制备方法和包含其的组件
JP2007041579A (ja) 調光体
WO2018201511A1 (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926872

Country of ref document: EP

Kind code of ref document: A1