WO2020220450A1 - 适用于腐蚀大数据监测的高通量传感器及制造方法 - Google Patents

适用于腐蚀大数据监测的高通量传感器及制造方法 Download PDF

Info

Publication number
WO2020220450A1
WO2020220450A1 PCT/CN2019/092786 CN2019092786W WO2020220450A1 WO 2020220450 A1 WO2020220450 A1 WO 2020220450A1 CN 2019092786 W CN2019092786 W CN 2019092786W WO 2020220450 A1 WO2020220450 A1 WO 2020220450A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal sheet
metal
big data
data monitoring
throughput sensor
Prior art date
Application number
PCT/CN2019/092786
Other languages
English (en)
French (fr)
Inventor
程学群
李晓刚
董超芳
张达威
骆鸿
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to US16/649,279 priority Critical patent/US11555778B2/en
Publication of WO2020220450A1 publication Critical patent/WO2020220450A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes

Definitions

  • the present disclosure relates to the technical field of corrosion big data monitoring, and, in particular, to a high-throughput sensor and manufacturing method suitable for corrosion big data monitoring.
  • the current method for evaluating the corrosivity of the atmospheric environment is to obtain the corrosion rate of typical metals such as carbon steel through long-term on-site coupon corrosion tests, and to evaluate the corrosivity of the environment based on the corrosion rate.
  • This evaluation method can only obtain the average corrosion rate of the environment over a period of time, but cannot continuously monitor changes in environmental corrosion in real time.
  • the present disclosure provides a high-flux sensor suitable for corrosion big data monitoring and a manufacturing method.
  • the sensor is simple to manufacture, has high stability, good consistency and long service life.
  • a sensor including:
  • the first metal sheet A (2), the second metal sheet B (4), the first metal sheet A (2) and the second metal sheet B (4) are arranged in a layered manner;
  • the insulating layer C (3) is arranged between the first metal sheet and the second metal sheet, and a test strip group is formed from the first metal sheet A (2), the second metal sheet B (4) and the insulating layer C (3) ;with
  • the working hole (6) is formed in the test piece group.
  • the first metal sheet A and the second metal sheet B are standard electrodes, and the electrode potential difference between the first metal sheet A and the second metal sheet B is not less than 50 mV, preferably the standard electrode potential difference is more than 100 mV.
  • the first metal sheet A includes but is not limited to Zn, Al, Mg, carbon steel, etc.
  • the second metal sheet B includes but is not limited to Cu, Ni, Ti, stainless steel, and the like.
  • the thickness of the insulating sheet C is in the range of 0.1 mm-2 mm.
  • test piece group can also be fixed by rivets.
  • the working hole is a through hole, and the diameter and number of the through hole are not required. Generally, the working hole diameter is not less than 1mm in the corrosive area of the atmospheric environment.
  • the low-resistivity wire is a copper wire or a silver wire.
  • An aspect of the present disclosure provides a high-throughput sensor suitable for corrosion big data monitoring, including multiple sets of high-throughput sensors according to claim 1, wherein the first metal piece A (2) and the second metal piece B(4) is laminated alternately, and an insulating layer C(3) is arranged between each group of the first metal piece A(2) and the second metal piece B(4), and the test piece group is formed after being laminated.
  • a method of manufacturing the high-throughput sensor including:
  • the cross-section and upper and lower surfaces of the test strip group can be used bare, but for a further step, usually the cross-section and upper and lower surfaces of the test strip group are all sealed with a curable resin or glue, and the sensor of the present disclosure is obtained after the resin or glue is completely cured.
  • Figure 1 is a front view of the disclosed high-throughput sensor suitable for corrosion big data monitoring
  • FIG. 2 is a top view of the disclosed high-throughput sensor suitable for corrosion big data monitoring
  • FIG. 3 is a curve of the change over time of the current value characterizing the environmental corrosiveness of the embodiment of the disclosure.
  • 1- low resistivity wire 2- first metal sheet A; 3- insulation sheet C; 4- second metal sheet B; 5- screw; 6-working hole.
  • the present disclosure provides a high-throughput sensor suitable for corrosion big data monitoring and a manufacturing method.
  • the high-flux sensor may include a first metal sheet 2, a second metal sheet 4, the first metal sheet 2 and the second metal sheet 4 are stacked; an insulating layer 3 is provided Between the first metal sheet 2 and the second metal sheet 4, the first metal sheet 2, the second metal sheet 4 and the insulating layer 3 form a test strip group; and a working hole 6 is formed in the test strip group.
  • the insulating layer 3 may be a solid insulating layer, which may be formed by curing an organic material. For example, a viscous organic insulating material bonds the first metal sheet 2 and the second metal sheet 4, and the organic insulating material is cured to form the insulating layer 3.
  • the insulating layer is an insulating sheet, which is directly arranged between the first metal sheet 2 and the second metal sheet 4.
  • the cross-section and upper and lower surfaces of the test piece group are all sealed with resin or glue, except that the working hole and the side walls in the working hole are exposed, that is, the side walls of the first metal sheet 2 and the second metal sheet 4 in the working hole are exposed to facilitate Contact with ambient gas or fluid.
  • only the first metal sheet and the second metal sheet can be used to evaluate the environmental corrosivity, and the manufacturing process is simple, the measurement accuracy is high, and the process is completely unaffected.
  • the first metal sheet 2 and the second metal sheet 4 are electrodes, and the electrode potential difference between the first metal sheet 2 and the second metal sheet 4 is not less than 50 mV.
  • the first metal sheet 2 and the second metal sheet 4 are standard electrodes, so that the cost of the sensor can be reduced.
  • the standard electrode potentials of the first metal sheet 2 and the second metal sheet 4 differ by more than 100 mV.
  • the first metal sheet 2 includes but is not limited to Zn, Al, Mg, and carbon steel; the second metal sheet 4 includes but is not limited to Cu, Ni, Ti, and stainless steel.
  • the thickness of the first metal sheet 2 and the second metal sheet 4 may be in the range of 1-10 mm.
  • the thickness of the insulating sheet C (3) is in the range of 0.1 mm-2 mm.
  • the material of the insulating sheet C can be PVC or other polymers, and the thickness of the insulating sheet C is 0.1mm-2mm.
  • the thickness of less than 0.1mm increases the difficulty of processing and increases the risk of short circuit of the first metal sheet A and B.
  • the shape and area of the metal sheet There are no special requirements for the shape and area of the metal sheet. Taking into account the convenience of sensor installation, the total area generally does not exceed 100 square centimeters; the thickness of the first metal sheet A and the second metal sheet B is 1-10mm, and the thickness less than 1mm increases the difficulty of processing. And because of the machining accuracy error, the error of the test result will be increased; the thickness of more than 10mm will increase the weight of the sensor, and it will hardly affect the test result.
  • the area of the first metal sheet A and the second metal sheet B may be the same, and may also be different considering the ease of installation.
  • the senor includes a test strip group consisting of a first metal sheet 2, a second metal sheet 4 and an insulating sheet 3, which are fixed by rivets or screws 5.
  • the rivet or screw 5 may be a universal element.
  • the first metal sheet 2 and the second metal sheet 4 are staggered, holes are punched in the area of the first metal sheet 2 where the second metal sheet 4 is not stacked, and the screw 5 passes through the hole to fix the first metal sheet 2 and Insulating sheet 3; holes are punched in the area of the second metal sheet 4 where the first metal sheet 2 is not stacked, and screws 5 pass through the holes to fix the second metal sheet 4 and the insulating sheet 3.
  • This configuration can prevent the screw from electrically connecting the first metal sheet 2 and the second metal sheet 4 during the screw fixing process, which would cause a short circuit.
  • first metal sheet 2, the second metal sheet 4 and the insulating sheet 3 of the test strip group are fixed by an adhesive.
  • the cross-sections and upper and lower surfaces of the first metal sheet 2, the second metal sheet 4, and the insulating sheet 3 of the test strip group are all sealed by a curable resin or glue, except for the working hole. This configuration is beneficial to improve the stability of the sensor and test accuracy.
  • the high-flux sensor may also include a low-resistivity wire 1, such as a copper wire or a silver wire.
  • a low-resistivity wire 1 such as a copper wire or a silver wire.
  • the wire 1 may not be regarded as a component of the sensor.
  • the first metal sheet 2 and the second metal sheet 4 are respectively connected to two low-resistivity wires 1.
  • the high-throughput sensor may further include a working hole 6.
  • the first metal sheet 2 and the second metal sheet 4 are stacked, and an insulating sheet 3 is arranged between the two metal sheets.
  • the first metal sheet 2, the second metal sheet 4 and the insulating sheet 3 form a test strip group.
  • a working hole 6 is drilled in the test strip group, and the working hole 6 can penetrate the first metal sheet 2, the second metal sheet 4 and the insulating sheet 3.
  • the diameter of the working hole 6 is not less than 1 mm.
  • the sides of the working hole 6 are the surfaces of the first metal sheet 2 and the second metal sheet 4, which are exposed to the air or liquid environment, so that the corrosivity of the air or liquid environment can be measured or evaluated.
  • a high-throughput sensor suitable for corrosion big data monitoring includes multiple test strip groups, and each test strip group includes a first metal sheet 2 (A), an insulating sheet 3 (C), and a Two metal sheets 4 (B) form a laminated structure of ACB.
  • the first metal sheet 2 (A) and the second metal sheet 4 (B) are alternately laminated, and an insulating layer 3 (C) is provided between each group of the first metal sheet A (2) and the second metal sheet 4 (B) , After stacking, the test piece group is formed.
  • the multiple groups of sensors include, for example, the structure of ACBCA or the structure of ACBCACB, or the structure of ACBCACBCA.
  • a Zn wafer with a thickness of 4mm and a diameter of 38mm is selected, and an acrylic double-sided tape of equal size and a thickness of 0.2mm is placed on the upper and lower surfaces of the Zn wafer and compacted; the Cu wafer with a thickness of 2mm and a diameter of 50mm and The Zn with acrylic double-sided tape is stacked and compacted in the Cu-Zn-Cu method; three 3mm threaded holes are drilled in the non-coincident area of the Cu and Zn sheets and the three metal sheets are fixed with M3 insulating nylon screws. Drill 5 through-holes with a diameter of 6mm as the working surface in the overlapping area of the Zn slices.
  • a Zn wafer with a thickness of 4mm and a diameter of 38mm is selected, and double-sided acrylic transparent adhesives of equal size and thickness of 0.2mm are placed on the upper and lower surfaces of the Zn wafer and compacted; the Cu wafer with a thickness of 2mm and a diameter of 50mm Stack and compact the Zn with acrylic double-sided transparent adhesive in the Cu-Zn-Cu method; drill three 3mm threaded holes in the non-coincidence area of the Cu and Zn sheets and fix the three metal sheets with M3 insulating nylon screws.
  • Drill 5 through holes with a diameter of 6mm as the working surface in the overlapping area of the Cu and Zn slices, polish the working surface of the device to remove oil; connect the Cu and Zn slices to the wires respectively, and then fill the free part between the Cu slices with epoxy resin After the epoxy resin is completely cured, a sensor is obtained, and 4 identical sensors are made.
  • FIG. 3 is a curve of the current value changing with time for characterizing environmental corrosiveness of an embodiment of the disclosure. Calculate the average value of the sensor current within half an hour of the experiment to check the consistency of the sensor (the sensor current difference is considered good within 3%). The test results are shown in Table 1. The results show that the current difference between the sensors is within 1%, and the sensors have good consistency. Randomly select one of the sensors for a long-term weekly immersion experiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种适用于腐蚀大数据监测的高通量传感器及制造方法。该传感器包括第一和第二金属片以及两者之间的绝缘片,两个金属片层叠,金属片和绝缘片形成试片组,试片组上钻贯穿孔。

Description

适用于腐蚀大数据监测的高通量传感器及制造方法 技术领域
本公开涉及腐蚀大数据监测技术领域,并且,特别是涉及一种适用于腐蚀大数据监测的高通量传感器及制造方法。
背景技术
评价环境的腐蚀性对材料的腐蚀研究和防护具有重要意义。目前对大气环境腐蚀性评价方法是通过长期现场挂片腐蚀试验,获取碳钢等典型金属的腐蚀速率,基于腐蚀速率评价环境的腐蚀性。这种评价方法只能得到环境一段时间内的平均腐蚀速率,而不能做到实时连续的监测环境腐蚀性的变化。
另外一种监测大气腐蚀的常用方法是利用大气腐蚀传感器监测,传感器的制造难度较大导致加工过程中的误差较大,传感器的一致性也很难保证,这样就无法保证在实际环境里监测得到的数据的准确性和可靠性。传统的传感器寿命不超过2年。在许多安装不便、需要优异耐用性和稳定性的的环境下(如大桥、沙漠、海洋、岛礁等环境)并不适用。
公开内容
本公开提供一种适用于腐蚀大数据监测的高通量传感器及制造方法,该传感器制造简便、稳定性高、一致性好、使用寿命长。
本公开的一方面,提供一种传感器,包括:
第一金属片A(2)、第二金属片B(4),第一金属片A(2)和第二金属片B(4)层叠布置;
绝缘层C(3),设置在第一金属片和第二金属片之间,从第一金属片A(2)、第二金属片B(4)和绝缘层C(3)形成试片组;和
工作孔(6),形成在所述试片组中。
在一个实施例中,第一金属片A和第二金属片B为标准电极,第一金属片A和第二金属片B电极电位相差不少于50mV,优选标准电极电位相差100mV以上。
在一个实施例中,第一金属片A包括但不限于Zn、Al、Mg、碳钢等;第二金属片B包括但不限于Cu、Ni、Ti、不锈钢等。
在一个实施例中,绝缘片C厚度在0.1mm-2mm范围内。
试片组还可以通过铆钉固定。
工作孔为贯穿孔,贯穿孔的直径和数量没有要求,一般在大气环境腐蚀性较强的区域工作孔直径不小于1mm。
在一个实施例中,低电阻率导线为铜导线或银导线。
本公开的一方面,提供一种适用于腐蚀大数据监测的高通量传感器,包括多组根据权利要求1所述的高通量传感器,其中第一金属片A(2)和第二金属片B(4)交替层叠,并且在每组第一金属片A(2)和第二金属片B(4)之间设置绝缘层C(3),层叠之后构成试片组。
本公开的一方面,提供一种制造该高通量传感器的方法,包括:
将第一金属片A(2)和第二金属片B(4)层叠;
在第一金属片A(2)和第二金属片B(4)之间放入绝缘层C(3),形成ACB的层叠方式,或者交替地层叠多组第一金属片A(2)和第二金属片B(4),并且在每组第一金属片A(2)和第二金属片B(4)之间设置绝缘层C(3)构成试片组;
在试片组上钻贯穿孔;
将试片组中所有的第一金属片A(2)并联电连接至一根低电阻率导线(1),将试片组中所有的第二金属片B(4)并联电连接至另一根低电阻率导线(1)。
试片组的截面和上下表面可以裸露使用,但为进一步,通常试片组的截面和上下表面用能够固化的树脂或胶全部密封,待树脂或胶完全固化后即得到本公开的传感器。
附图说明
图1为本公开的适用于腐蚀大数据监测的高通量传感器主视图;
图2为本公开的适用于腐蚀大数据监测的高通量传感器俯视图;
图3为本公开实施例表征环境腐蚀性的电流值随时间的变化曲线。
其中:1-低电阻率导线;2-第一金属片A;3-绝缘片C;4-第二金属片B; 5-螺钉;6-工作孔。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开提供一种适用于腐蚀大数据监测的高通量传感器及制造方法。
在一个实施例中,如图1和图2所示,高通量传感器可以包括第一金属片2、第二金属片4第一金属片2和第二金属片4层叠;绝缘层3,设置在第一金属片2和第二金属片4之间,第一金属片2、第二金属片4和绝缘层3形成试片组;和工作孔6,形成在所述试片组中。绝缘层3可以是固体绝缘层,可以由有机材料固化形成,例如具有粘性的有机绝缘材料将第一金属片2和第二金属片4粘合,有机绝缘材料固化后形成绝缘层3。在一个实施例中,绝缘层是绝缘片,直接设置在第一金属片2和第二金属片4之间。试片组的截面和上下表面用树脂或胶全部密封,除了工作孔及工作孔内的侧壁裸露,即工作孔内第一金属片2和第二金属片4的孔的侧壁裸露,以便接触环境气体或流体。
在本实施例中,仅使用第一金属片和第二金属片就可以实现对环境腐蚀性的评价,并且制作过程简单,测量精度高,完全不受工艺的影响。
在一个实施例中,所述第一金属片2和第二金属片4为电极,第一金属片2和第二金属片4的电极电位相差不少于50mV。例如,所述第一金属片2和第二金属片4为标准电极,从而可以降低传感器的成本。在一个实施例中,所述第一金属片2和第二金属片4的标准电极电位相差100mV以上。所述第一金属片2包括但不限于Zn、Al、Mg、碳钢;第二金属片4包括但不限于Cu、Ni、Ti、不锈钢。所述第一金属片2和第二金属片4厚度可以在1-10mm范围。
在一个实施例中,所述绝缘片C(3)厚度在0.1mm-2mm范围。绝缘片C材料可以是PVC或其它高分子,绝缘片C厚度为0.1mm-2mm。厚度小于0.1mm增加加工难度,且增加了第一金属片A和B短路的风险,绝缘片的面积没有特殊要求,考虑到实用性和安装便利性,绝缘片一般和金属片等大。
金属片的形状和面积没有特殊要求,考虑到传感器安装便利性,总面积一般不超过100平方厘米;第一金属片A和第二金属片B厚度为1-10mm,厚度 小于1mm增加加工难度,且由于加工精度误差大会增加测试结果误差;厚度超过10mm会增加传感器重量,且对测试结果几乎没有影响。第一金属片A和第二金属片B的面积可以一样,考虑到安装便利性也可以不一样。
在一个实施例中,传感器包括第一金属片2、第二金属片4和绝缘片3构成的试片组,它们通过铆钉或螺钉5固定。铆钉或螺钉5可以是通用元件。在本实施例中,第一金属片2和第二金属片4错开,在第一金属片2的不堆叠第二金属片4的区域打孔,螺钉5穿过孔固定第一金属片2和绝缘片3;在第二金属片4的不堆叠第一金属片2的区域打孔,螺钉5穿过孔固定第二金属片4和绝缘片3。这样的配置方式可以避免螺钉固定过程中造成螺钉电连接第一金属片2和第二金属片4,造成短路。
在另一个实施例中,所述试片组的第一金属片2、第二金属片4和绝缘片3通过粘合剂固定。
在一个实施例中,所述试片组的第一金属片2、第二金属片4和绝缘片3的截面和上下表面通过能够固化的树脂或胶全部密封,除了工作孔。这样的配置方式有利于提高传感器稳定性和测试精度。
在一个实施例中,高通量传感器还可以包括低电阻率导线1,例如铜导线或银导线。然而,应该理解,导线1可以不看作为传感器的部件。第一金属片2和第二金属片4分别连接两根低电阻率导线1。
在一个实施例中,高通量传感器还可以包括工作孔6。在本实施例中,第一金属片2和第二金属片4层叠,两个金属片之间布置绝缘片3,第一金属片2、第二金属片4和绝缘片3形成一个试片组。试片组上钻工作孔6,工作孔6可以贯穿第一金属片2、第二金属片4和绝缘片3。根据本公开的一个实施例,工作孔6直径不小于1mm。工作孔6的侧面是第一金属片2和第二金属片4的表面,这些表面裸露至空气或液体环境,从而可以测量或评价空气或液体环境的腐蚀性。
在一个实施例中,一种适用于腐蚀大数据监测的高通量传感器,包括多组试片组,每组试片组包括第一金属片2(A)、绝缘片3(C)和第二金属片4(B),形成ACB的层叠结构。第一金属片2(A)和第二金属片4(B)交替层叠,并且在每组第一金属片A(2)和第二金属片4(B)之间设置绝缘层3(C),层 叠之后构成试片组。在本实施例中,多组传感器包括例如ACBCA的结构或ACBCACB的结构、ACBCACBCA的结构。
在一个实施例中,选取厚度4mm、直径38mm的Zn圆片,在Zn片上下表面各放置等大、厚度0.2mm的亚克力双面胶并压实;将厚度2mm、直径50mm的Cu圆片和粘有亚克力双面胶的Zn按照Cu-Zn-Cu方式堆叠并压实;在Cu、Zn片非重合区域钻3个3mm螺纹孔并用M3的绝缘尼龙螺丝将三个金属片固定,在Cu、Zn片重合区域钻5个直径6mm的贯穿孔作为工作面,将装置的工作面打磨,除油;将Cu、Zn片分别与导线连接,然后用环氧树脂填充Cu片间的空余部分,待环氧树脂完全固化后得到一种传感器。将传感器与高精度电流测试仪相连后暴露在北京大气环境中得到时间-电流曲线如图2,通过电流反映环境腐蚀性的变化,实现了实时连续的监测大气腐蚀性的变化。
在一个实施例中,选取厚度4mm、直径38mm的Zn圆片,在Zn片上下表面各放置等大、厚度0.2mm的亚克力双面透明胶并压实;将厚度2mm、直径50mm的Cu圆片和粘有亚克力双面透明胶的Zn按照Cu-Zn-Cu方式堆叠并压实;在Cu、Zn片非重合区域钻3个3mm螺纹孔并用M3的绝缘尼龙螺丝将三个金属片固定,在Cu、Zn片重合区域钻5个直径6mm的贯穿孔作为工作面,将装置的工作面打磨,除油;将Cu、Zn片分别与导线连接,然后用环氧树脂填充Cu片间的空余部分,待环氧树脂完全固化后得到一种传感器,制作相同的传感器4个。
传感器完成后,将4个传感器在模拟海洋环境大气腐蚀的3.5%NaCl溶液中进行周浸加速实验(加速比1∶42),用高精度电流测试仪测量传感器的电流。图3为本公开的一个实施例表征环境腐蚀性的电流值随时间的变化曲线。计算实验半小时内传感器电流的平均值,检验传感器的一致性(传感器电流差值在3%以内认定为良好),试验结果如表1所示。结果显示传感器之间的电流差值在1%以内,传感器一致性良好。随机选取其中一个传感器进行长时间周浸实验。计算随时间变化传感器电流较初始电流的变化率,检验传感器稳定性及使用寿命(电流较初始电流变化15%即认定失效)。实验结果如表2所示。结果显示传感器使用寿命超过5年。
表1 传感器平均电流值
传感器编号 1# 2# 3# 4#
平均电流值(nA) 57842.6 57792.0 58004.9 57801.3
表2 传感器电流随时间变化情况
试验时间(d) 9 18 27 36 45
电流变化(%) 5.1 4.9 7.1 10.6 14.5
将传感器和高精度电流测试仪相连,通过高精度电流测试仪连续监测传感器的电流值,通过电流值的变化反映环境腐蚀性的变化从而实现了对环境腐蚀性的连续监测;传感器制造材料易得,加工难度和复杂程度很低,加工过程中的误差较小,传感器的一致性得到了保证;调节绝缘片C的厚度、贯穿孔的直径以及贯穿孔的数量可以控制传感器测试精度,以适应不同的环境监控的需求,提高传感器的适用性,同时提高了传感器的稳定性,延长了传感器的使用寿命。
以上所述是本公开的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (13)

  1. 一种适用于腐蚀大数据监测的高通量传感器,其中,高通量传感器包括:
    第一金属片A(2)、第二金属片B(4),第一金属片A(2)和第二金属片B(4)层叠布置;
    绝缘层C(3),设置在第一金属片和第二金属片之间,从第一金属片A(2)、第二金属片B(4)和绝缘层C(3)形成试片组;和
    工作孔(6),形成在所述试片组中。
  2. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中,所述第一金属片A(2)和第二金属片B(4)为电极,第一金属片A(2)和第二金属片B(4)电极电位相差不少于50mV。
  3. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中,所述第一金属片A(2)包括Zn、A1、Mg、碳钢;第二金属片B(4)包括Cu、Ni、Ti、不锈钢。
  4. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中,所述第一金属片A(2)和第二金属片B(4)厚度在1-10mm范围。
  5. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中,所述绝缘层C(3)厚度在0.1mm-2mm范围。
  6. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中,所述试片组的第一金属片A(2)、第二金属片B(4)和绝缘层C(3)通过铆钉或螺钉(5)固定。
  7. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中,所述试片组的第一金属片A(2)、第二金属片B(4)和绝缘层C(3)通过粘结剂固定。
  8. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中,所述工作孔(6)为贯穿第一金属片(A)、第二金属片(B)以及绝缘层(C)的贯穿孔,工作孔(6)直径不小于1mm。
  9. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,还包括导线,分别连接第一金属片A(2)和第二金属片B(4),所述导线(1)为 铜导线或银导线。
  10. 根据权利要求1所述的适用于腐蚀大数据监测的高通量传感器,其中所述试片组的截面和上下表面用树脂或胶全部密封,除了工作孔及工作孔内的侧壁裸露。
  11. 一种适用于腐蚀大数据监测的高通量传感器,包括多组根据权利要求1所述的高通量传感器,其中第一金属片A(2)和第二金属片B(4)交替层叠,并且在每组第一金属片A(2)和第二金属片B(4)之间设置绝缘层C(3),层叠之后构成试片组。
  12. 一种制造根据权利要求1或10所述的适用于腐蚀大数据监测的高通量传感器的方法,其中所述方法包括:
    将第一金属片A(2)和第二金属片B(4)层叠;
    在第一金属片A(2)和第二金属片B(4)之间放入绝缘层C(3),形成ACB的层叠方式,或者交替地层叠多组第一金属片A(2)和第二金属片B(4),并且在每组第一金属片A(2)和第二金属片B(4)之间设置绝缘层C(3)构成试片组;
    在试片组上钻贯穿孔;
    将试片组中所有的第一金属片A(2)并联电连接至一根低电阻率导线(1),将试片组中所有的第二金属片B(4)并联电连接至另一根低电阻率导线(1)。
  13. 根据权利要求10所述的适用于腐蚀大数据监测的高通量传感器的制造方法,其中,所述试片组的截面和上下表面用能够固化的树脂或胶全部密封,除了工作孔及工作孔内的侧壁。
PCT/CN2019/092786 2019-04-29 2019-06-25 适用于腐蚀大数据监测的高通量传感器及制造方法 WO2020220450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/649,279 US11555778B2 (en) 2019-04-29 2019-06-25 High-flux sensor suitable for corrosion big data monitoring and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910352916.6A CN110018113A (zh) 2019-04-29 2019-04-29 一种适用于腐蚀大数据监测的高通量传感器及制造方法
CN201910352916.6 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020220450A1 true WO2020220450A1 (zh) 2020-11-05

Family

ID=67192835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092786 WO2020220450A1 (zh) 2019-04-29 2019-06-25 适用于腐蚀大数据监测的高通量传感器及制造方法

Country Status (3)

Country Link
US (1) US11555778B2 (zh)
CN (1) CN110018113A (zh)
WO (1) WO2020220450A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110717559B (zh) * 2019-09-16 2021-12-03 北京科技大学 一种基于rfid技术监测金属材料失效的电子标签
CN114002139A (zh) * 2021-10-22 2022-02-01 广州天韵达新材料科技有限公司 一种可连续测试金属材料腐蚀减薄量的测试装置和测试方法
CN114295458B (zh) * 2021-12-31 2024-03-19 西安稀有金属材料研究院有限公司 一种原子尺度研究金属材料原位腐蚀行为的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203025146U (zh) * 2012-12-07 2013-06-26 国家电网公司 电偶型腐蚀传感器
JP2016038339A (ja) * 2014-08-08 2016-03-22 国立大学法人九州大学 腐食センサ
CN109612918A (zh) * 2018-12-07 2019-04-12 国网山东省电力公司电力科学研究院 大气腐蚀传感器及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936737A (en) * 1975-04-10 1976-02-03 C.M.S. Inc. Corrosion monitoring system
CN103808648B (zh) * 2013-10-17 2017-05-17 中国石油化工股份有限公司 高含硫天然气净化厂大气环境腐蚀测试装置
CN207163882U (zh) * 2017-09-12 2018-03-30 南方电网科学研究院有限责任公司 一种大气腐蚀监测探头
CN208459241U (zh) * 2018-06-21 2019-02-01 浙江钱浪智能信息科技有限公司 一种适用于大数据监测环境腐蚀性的柔性传感器
CN109001104A (zh) * 2018-06-21 2018-12-14 浙江钱浪智能信息科技有限公司 一种基于高通量积分电量的局部环境腐蚀性评价方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203025146U (zh) * 2012-12-07 2013-06-26 国家电网公司 电偶型腐蚀传感器
JP2016038339A (ja) * 2014-08-08 2016-03-22 国立大学法人九州大学 腐食センサ
CN109612918A (zh) * 2018-12-07 2019-04-12 国网山东省电力公司电力科学研究院 大气腐蚀传感器及其制作方法

Also Published As

Publication number Publication date
US11555778B2 (en) 2023-01-17
CN110018113A (zh) 2019-07-16
US20220065771A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
WO2020220450A1 (zh) 适用于腐蚀大数据监测的高通量传感器及制造方法
US5310470A (en) Corrosivity sensor
EP2223081B1 (en) Electrochemical cell for eis
US20080179198A1 (en) System and method of use for electrochemical measurement of corrosion
US20120132541A1 (en) Sub-coating coated metal corrosion measurement
EP3570006A3 (en) Humidity sensor and corrosion test method using the same
CN109612918B (zh) 大气腐蚀传感器及其制作方法
JP2014238291A (ja) Acmセンサの使用方法
CN109612920B (zh) 一种金属构件大气腐蚀监测方法
CN111812019A (zh) 金属大气腐蚀监测传感器
CN201392147Y (zh) 改进型具有自我恢复力的报靶靶标
JP6455454B2 (ja) 金属皮膜の成膜方法
CN102607972A (zh) 用于压电陶瓷力电耦合条件下的动态疲劳性能测试方法
CN214503304U (zh) 一种腐蚀性检测传感器
JP2008026284A (ja) メッキ鋼板の端面耐食性評価用試料、端面耐食性評価装置及び端面耐食性評価方法
CN113497177B (zh) 一种基于pvdf薄膜的柔性振动传感器及其制备方法
CN210401309U (zh) 基于Fick扩散定律的微型氯离子传感器
CN101149406A (zh) 一种用于测量导电复合材料电阻的装置
JP6230206B1 (ja) 環境モニタリング方法
JP2005207813A (ja) 腐食度センサー、その製造方法、及び測定システム
CN201607195U (zh) 铅酸蓄电池涂板工序极板厚度的测量装置
CN110346273B (zh) 一种基于快速采集腐蚀数据的耐候钢研发方法
CN212540083U (zh) 金属大气腐蚀监测传感器
CN2430686Y (zh) 孔蚀深度监测探头
CN114002139A (zh) 一种可连续测试金属材料腐蚀减薄量的测试装置和测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927096

Country of ref document: EP

Kind code of ref document: A1