WO2020218060A1 - 硬化性組成物、硬化物層、光学積層体、及び画像表示装置 - Google Patents

硬化性組成物、硬化物層、光学積層体、及び画像表示装置 Download PDF

Info

Publication number
WO2020218060A1
WO2020218060A1 PCT/JP2020/016287 JP2020016287W WO2020218060A1 WO 2020218060 A1 WO2020218060 A1 WO 2020218060A1 JP 2020016287 W JP2020016287 W JP 2020016287W WO 2020218060 A1 WO2020218060 A1 WO 2020218060A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
cured product
optical
film
Prior art date
Application number
PCT/JP2020/016287
Other languages
English (en)
French (fr)
Inventor
亜依 小橋
悠司 淺津
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080030886.8A priority Critical patent/CN113728055B/zh
Publication of WO2020218060A1 publication Critical patent/WO2020218060A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a curable composition.
  • the present invention also relates to a cured product layer composed of a cured product of the curable composition, an optical laminate containing the cured product layer, and an image display device including the optical laminate.
  • liquid crystal display devices have been developed for mobile device applications such as smartphones and tablet terminals and in-vehicle device applications such as car navigation systems.
  • mobile device applications such as smartphones and tablet terminals
  • in-vehicle device applications such as car navigation systems.
  • the optical film incorporated in the liquid crystal display device or the like may be placed in a high temperature or high temperature and high humidity environment, or may be placed in an environment in which high temperature and low temperature are repeated. In these environments, However, it is required that the optical characteristics do not deteriorate.
  • optical film examples include a polarizing plate in which a protective film is attached to one side or both sides of a polarizing element using an adhesive (Patent Document 1 and the like).
  • An object of the present invention is to provide a curable composition containing a cured product layer composed of a cured product of the curable composition and capable of providing an optical laminate having good optical durability in a high temperature and high humidity environment.
  • Another object of the present invention is to provide an optical laminate containing a cured product layer composed of a cured product of a curable composition and having good optical durability in a high temperature and high humidity environment, and an image display device including the same. To do.
  • the present invention provides the curable composition, the cured product layer, the optical laminate, and the image display device shown below.
  • a curable composition containing at least an aqueous resin and a silane compound having a silanol group.
  • the silane compound further comprises a group consisting of an amino group, a carboxyl group, an epoxy group, an acetoacetyl group, a hydroxyalkyl group, a mercapto group, an oxyalkylene group, and an alkenyl group which may have a substituent.
  • the curable composition according to [1] which has one or more functional groups of choice.
  • a cured product layer obtained by curing the curable composition according to any one of [1] to [6].
  • [8] Includes an optical layer and a first cured product layer
  • the first cured product layer is an optical laminate which is the cured product layer according to [7].
  • it contains a first thermoplastic resin film, and contains The optical laminate according to [8], wherein the optical layer, the first cured product layer, and the first thermoplastic resin film are laminated in this order.
  • a second cured product layer and a second thermoplastic resin film are included.
  • curable composition containing a cured product layer composed of a cured product of the curable composition and capable of providing an optical laminate having good optical durability in a high temperature and high humidity environment. It is possible to provide an optical laminate containing a cured product layer composed of a cured product of a curable composition and having good optical durability in a high temperature and high humidity environment, and an image display device including the same.
  • the curable composition according to the present invention contains at least an aqueous resin and a silane compound having a silanol group.
  • curable composition (S) the curable composition according to the present invention is referred to as "curable composition (S)"
  • water-based resin water-based resin (A)
  • silane compound (B) the silane compound having a silanol group
  • the curable composition (S) can be used as a coating liquid for forming a coating film (coating layer) on the substrate.
  • a coating film can be formed by applying the curable composition (S) onto a base material and curing the coating layer.
  • the base material is preferably an optical layer.
  • the optical layer will be described later.
  • the optical laminate includes an optical layer and a first cured product layer composed of a cured product of the curable composition (S).
  • the curable composition (S) can also be used as an adhesive composition.
  • the curable composition (S) is an adhesive composition for adhering the optical layer and the first thermoplastic resin film.
  • the optical laminate includes an optical layer, a first cured product layer (adhesive layer) composed of a cured product of the curable composition (S), and a first thermoplastic resin film in this order.
  • the curable composition (S) is coated on at least one of the bonding surfaces of the optical layer and the first thermoplastic resin film, and the optical layer and the first thermoplastic are passed through the coating layer. It can be produced by laminating a resin film to obtain a laminated body and then curing the coating layer.
  • the curable composition (S) is an aqueous composition containing the aqueous resin (A).
  • the aqueous composition is a solution in which the compounding component is dissolved in a solvent containing water, or a dispersion (for example, an emulsion) in which the compounding component is dispersed in a solvent containing water.
  • the viscosity of the curable composition (S) at 25 ° C. is preferably 50 mPa ⁇ sec or less, more preferably 1 mPa ⁇ sec or more and 30 mPa ⁇ sec or less, and 2 mPa ⁇ sec or more and 20 mPa ⁇ sec or less. Is even more preferable. If the viscosity at 25 ° C. exceeds 50 mPa ⁇ sec, it becomes difficult to apply the coating uniformly, which may cause uneven coating, and may cause problems such as clogging of piping.
  • the viscosity of the curable composition (S) at 25 ° C. can be measured by an E-type viscometer.
  • Water-based resin (A) includes at least one of a water-soluble resin soluble in an aqueous solvent and an water-dispersible resin dispersible in an aqueous solvent.
  • the aqueous solvent means water or a solvent containing water as a main component
  • water as a main component means that 50% by mass or more of the total mass of the components forming the solvent is water.
  • the solvent other than water among the aqueous solvents is not particularly limited as long as it is a solvent that does not easily layer-separate in the coexistence with water, but is preferably a solvent that dissolves in water.
  • Alcohols such as n-propyl alcohol; ketones such as acetone and methyl ethyl ketone; glycols such as ethylene glycol and diethylene glycol; glycol ethers such as N-methylpyrrolidone (NMP), tetrahydrofuran and butyl cellosolve and the like.
  • NMP N-methylpyrrolidone
  • the water-soluble resin is not particularly limited as long as it is a resin that can be dissolved in an aqueous solvent.
  • the water-dispersible resin is not particularly limited as long as it is a resin that can be dispersed in an aqueous solvent.
  • Examples of the water-soluble resin or water-dispersible resin include (meth) acrylic resin; polyvinyl alcohol resin; polyvinyl acetal resin; ethylene-vinyl alcohol copolymer resin; polyvinylpyrrolidone resin; polyamide amine resin; epoxy.
  • Examples include melamine-based resin; urea-based resin; polyamide-based resin; polyester-based resin; polyurethane-based resin; cellulose-based resin such as methyl cellulose, hydroethyl cellulose, and carboxymethyl cellulose; and polysaccharides such as sodium alginate and starch.
  • (meth) acrylic resins; hydroxyl group-containing resins such as polyvinyl alcohol resins and polyvinyl acetal resins are preferable, and (meth) acrylic resins, polyvinyl alcohol resins, and polyvinyl acetal resins are more preferable.
  • the term "(meth) acrylic” refers to at least one selected from the group consisting of acrylic and methacrylic. The same applies to the notations such as "(meth) acryloyl" and "(meth) acrylate”.
  • the curable composition (S) may contain one or more of the above-mentioned aqueous resins (A).
  • the content of the aqueous resin is preferably 30% by mass or more and 95% by mass or less, more preferably 35% by mass or more and 90% by mass or less, and further, when the solid content concentration of the curable composition (S) is 100% by mass. It is preferably 40% by mass or more and 85% by mass or less. Keeping the content of the water-based resin within the above range improves the optical durability of the optical laminate in a high-temperature and high-humidity environment, and the adhesion between the optical layer and the first cured product layer in the optical laminate. It is preferable from the viewpoint of adhesion between the first cured product layer and the first thermoplastic resin film.
  • the solid content concentration refers to the total concentration of components other than the solvent contained in the curable composition (S).
  • the (meth) acrylic resin is a polymer obtained by using a compound having one or more (meth) acryloyl groups in the molecule as a main monomer. Or it is a copolymer.
  • the (meth) acrylic resin may be water-soluble or water-dispersible.
  • the (meth) acrylic resin has a structural unit derived from a compound having one or more (meth) acryloyl groups in the molecule, preferably 50% by mass or more, more preferably 50% by mass or more, based on 100% by mass of the total structural unit. Is a polymer or copolymer containing 70% by mass or more, more preferably 90% by mass or more.
  • Examples of the compound having one or more (meth) acryloyl groups in the molecule include (meth) acrylate having at least one (meth) acryloyloxy group in the molecule, (meth) acrylamide and the like.
  • examples of the compound having one or more (meth) acryloyl groups in the molecule include (meth) acrylate having at least one (meth) acryloyloxy group in the molecule, (meth) acrylamide and the like.
  • other monomers copolymerizable with the compound having one or more (meth) acryloyl groups in the molecule styrene, styrene sulfonic acid, vinyl acetate, vinyl propionate, N-vinyl-2-pyrrolidone
  • a compound having one or more ethylenically unsaturated bonds in the molecule can be mentioned.
  • the (meth) acrylic resin is preferably a (meth) acrylic resin having an oxazolyl group in the molecule (hereinafter, may be referred to as “oxazolyl group-containing (meth) acrylic resin”), and a side chain. It is more preferable that the (meth) acrylic resin has an oxazolyl group.
  • the oxazolyl group-containing (meth) acrylic resin may be water-soluble or water-dispersible, but from the viewpoint of the optical properties of the cured product layer composed of the cured product of the curable composition (S). , It is preferably a water-soluble polymer.
  • the oxazolyl group-containing (meth) acrylic resin may contain a structural unit having an oxazolyl group in the side chain (a structural unit derived from an oxazolyl group-containing monomer) and a structural unit having no oxazolyl group.
  • a preferred example of an oxazolyl group-containing (meth) acrylic resin is a structural unit (oxazolyl group-containing monomer) containing a skeleton structure consisting of a (meth) acrylic skeleton as the main component of the structural unit and having an oxazolyl group in the side chain as a copolymerization component. It can be mentioned that the constituent unit of origin) is introduced.
  • the oxazolyl group-containing (meth) acrylic resin may be one obtained by copolymerizing an oxazolyl group-containing monomer or one containing an oxazolyl group by modifying the side chain functional group of the polymer.
  • Examples of the oxazolyl group include a 2-oxazolyl group, a 3-oxazolyl group, a 4-oxazolyl group and the like.
  • the oxazolyl group is preferably a 2-oxazolyl group or the like.
  • Examples of the oxazoline group-containing monomer include 2-isopropenyl-2-oxazoline and vinyl-2-oxazoline.
  • the weight average molecular weight of the oxazolyl group-containing (meth) acrylic resin is preferably 5000 or more, and more preferably 10000 or more.
  • the fact that the weight average molecular weight is in the above range means that the optical durability of the optical laminate in a high temperature and high humidity environment is improved, the adhesion between the optical layer and the first cured product layer in the optical laminate, and the first cured product. It can be advantageous from the viewpoint of adhesion between the layer and the first thermoplastic resin film.
  • the weight average molecular weight of the oxazolyl group-containing (meth) acrylic resin is usually 1,000,000 or less.
  • the weight average molecular weight of the oxazolyl group-containing (meth) acrylic resin can be measured as a standard polystyrene-equivalent value by gel permeation chromatography (GPC).
  • the amount of oxazolyl groups (the number of moles of oxazolyl groups per 1 g of solid content of the oxazolyl group-containing (meth) acrylic resin) of the oxazolyl group-containing (meth) acrylic resin is preferably 0.4 mmol / g ⁇ solid or more. If the amount of oxazolyl groups is smaller than the above range, the optical durability of the optical laminate in a high temperature and high humidity environment may be disadvantageous.
  • the amount of oxazolyl groups in the oxazolyl group-containing polymer is more preferably 3 mmol / g ⁇ solid or more, still more preferably 5 mmol / g ⁇ solid or more and 9 mmol / g ⁇ solid or less.
  • the upper limit of the amount of oxazolyl group is not particularly limited, but is usually 50 mmol / g ⁇ solid or less.
  • oxazolyl group-containing (meth) acrylic resin A commercially available product may be used as the oxazolyl group-containing (meth) acrylic resin.
  • oxazolyl group-containing acrylic polymers such as Epocross WS-300, Epocross WS-500, and Epocross WS-700 (all trade names) manufactured by Nippon Shokubai Co., Ltd .; Epocross K-1000 series and Epocross manufactured by Nippon Shokubai Co., Ltd.
  • examples thereof include oxazolyl group-containing acrylic / styrene polymers such as K-2000 series and Epocross RPS series (both are trade names).
  • Two or more kinds of oxazolyl group-containing (meth) acrylic resins can be used in combination.
  • the oxazolyl group-containing (meth) acrylic resin is an oxazolyl group-containing acrylic polymer such as Epocross WS-300, Epocross WS-500, and Epocross WS-700. Is preferable.
  • polyvinyl alcohol-based resin By using the polyvinyl alcohol-based resin as the aqueous resin (A), the optical durability of the optical laminate in a high temperature and high humidity environment and the optical layer and the first cured product in the optical laminate can be obtained. It is easy to improve the adhesion between the layers and the adhesion between the first cured product layer and the first thermoplastic resin film.
  • the polyvinyl alcohol-based resin can be obtained by saponifying the polyvinyl acetate-based resin.
  • the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable therewith.
  • examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins, vinyl ethers, and acrylamides having an ammonium group.
  • the polyvinyl alcohol-based resin used in the curable composition (S) preferably has an appropriate degree of polymerization, and has a viscosity in the range of 4 to 50 mPa ⁇ sec, for example, when an aqueous solution having a concentration of 4% by weight is used. It is preferably in the range of 6 to 30 mPa ⁇ sec, and more preferably in the range of 6 to 30 mPa ⁇ sec.
  • the degree of saponification of the polyvinyl alcohol-based resin is not particularly limited, but is generally preferably 70 mol% or more, and more preferably 80 mol% or more.
  • the degree of saponification of the polyvinyl alcohol-based resin is low, the water resistance of the cured product layer composed of the cured product of the curable composition (S) and the adhesion between the optical layer and the first cured product layer in the optical laminate
  • the adhesion between the first cured product layer and the first thermoplastic resin film tends to be insufficient.
  • the polyvinyl alcohol-based resin used in the curable composition (S) is preferably a modified one.
  • modified polyvinyl alcohol-based resins include acetoacetyl group-modified polyvinyl alcohol-based resins, carboxylic acid-modified polyvinyl alcohol-based resins, carbonyl group-modified polyvinyl alcohol-based resins, and sulfonic acid-modified polyvinyl alcohol-based resins.
  • Resin hydrazide group-modified polyvinyl alcohol-based resin, thiol group-modified polyvinyl alcohol-based resin, alkyl group-modified polyvinyl alcohol-based resin, silyl group-modified polyvinyl alcohol-based resin, polyethylene glycol group-modified polyvinyl alcohol Examples thereof include a based resin, a polyvinyl alcohol based resin modified with an ethylene oxide group, a polyvinyl alcohol based resin modified with a group having a urethane bond, and a polyvinyl alcohol based resin modified with a phosphate ester group.
  • the water resistance of the cured product layer composed of the cured product of the curable composition (S), the optical layer and the first cured product layer in the optical laminate It is preferable because the adhesion between the first cured product layer and the first thermoplastic resin film is improved.
  • the polyvinyl alcohol-based resin modified with an acetoacetyl group has an acetoacetyl group (CH 3 COCH 2 CO-) in addition to the hydroxyl group constituting the polyvinyl alcohol skeleton, and has other groups such as an acetyl group. You may be doing it.
  • This acetoacetyl group typically exists in a state where the hydrogen atom of the hydroxyl group is substituted.
  • the acetoacetyl group-modified polyvinyl alcohol-based resin can be produced, for example, by reacting polyvinyl alcohol with diketene.
  • the polyvinyl alcohol-based resin modified with an acetoacetyl group has an acetoacetyl group which is a highly reactive functional group, the durability of the cured product layer composed of the cured product of the curable composition (S) is improved. It is preferable to make it.
  • the content of the acetoacetyl group in the polyvinyl alcohol-based resin modified with the acetoacetyl group is not particularly limited as long as it is 0.1 mol% or more.
  • the content of acetoacetyl group referred to here is a value expressed in% of the molar fraction of acetoacetyl group with respect to the total amount of hydroxyl group, acetoacetyl group, and other ester groups (acetyl group, etc.) in the polyvinyl alcohol-based resin. Therefore, it may be referred to as "acetoacetylation degree" below.
  • the degree of acetoacetylation in the polyvinyl alcohol-based resin is preferably about 0.1 to 40 mol%, more preferably 1 to 20 mol%, and particularly preferably 2 to 7 mol%.
  • the degree of acetoacetylation exceeds 40 mol%, the effect of improving water resistance becomes small.
  • polyvinyl alcohol-based resin modified with an acetoacetyl group a commercially available product may be used. Specific examples include the "Gosefimer Z" series sold by Nippon Synthetic Chemical Industry Co., Ltd.
  • the carboxylic acid-modified polyvinyl alcohol-based resin has a carboxy group (-COOH) in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • the carboxylic acid-modified polyvinyl alcohol-based resin can be produced by a method of copolymerizing an unsaturated monomer having a carboxy group with vinyl acetate and then saponifying the resin.
  • a commercially available product may be used as the carboxylic acid-modified polyvinyl alcohol-based resin. Specifically, "KL-318" and "KM-118" manufactured by Kuraray Co., Ltd. and “Gosenal” manufactured by Mitsubishi Chemical Co., Ltd. Examples thereof include “T-330" and "Gosenal T-215", and "A-polymer” series of Japan Vam & Poval Co., Ltd.
  • the polyvinyl alcohol-based resin modified with a carbonyl group has a group containing a carbonyl group in addition to the hydroxyl group constituting the polyvinyl alcohol skeleton.
  • the group containing a carbonyl group is not particularly limited as long as it is a group represented by -COR, and examples thereof include an amide group, an acyl group, and an aldehyde group.
  • the carbonyl group-modified modified polyvinyl alcohol-based resin is copolymerized with an unsaturated monomer having a group containing a carbonyl group (for example, an amide group, an acyl group, an aldehyde group, etc.) and vinyl acetate, and then saponified. It can be manufactured by the method described above.
  • polyvinyl alcohol-based resin modified with a carbonyl group examples include the "D polymer” series of Japan Vam & Poval Co., Ltd. Further, examples thereof include the resin described in JP-A-8-151412, the resin described in JP-A-9-324095, and the like.
  • the sulfonic acid-modified polyvinyl alcohol-based resin has a sulfo group ( ⁇ SO 2 OH) in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • the sulfonic acid-modified polyvinyl alcohol-based resin can be produced by a method of copolymerizing an unsaturated monomer having a sulfo group with vinyl acetate and then saponifying the resin.
  • a commercially available product may be used, and examples thereof include "L-3266" of Mitsubishi Chemical Corporation and "AS-polymer” series of Japan Vam & Poval Co., Ltd. ..
  • the polyvinyl alcohol-based resin modified with an alkyl group has an alkyl group in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • the alkyl alcohol-modified polyvinyl alcohol-based resin can be produced by a method of copolymerizing an unsaturated monomer having an alkyl group with vinyl acetate and then saponifying the resin.
  • a commercially available product may be used, and examples thereof include the "Z-polymer" series of Japan Vam & Poval Co., Ltd.
  • the polyvinyl alcohol-based resin modified with a silyl group has a silyl group in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • the silyl group-modified polyvinyl alcohol-based resin can be produced by a method of copolymerizing an unsaturated monomer having a silyl group with vinyl acetate and then saponifying the resin.
  • Examples of the silyl group-modified polyvinyl alcohol-based resin include the silyl group-modified polyvinyl alcohol-based resin described in International Publication No. 2014/11625.
  • commercially available products may be used, and examples thereof include "R-1130", "R-2105", and "R-2130” of Kuraray Co., Ltd.
  • the polyvinyl alcohol-based resin modified with a polyethylene glycol group has a polyethylene glycol group in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • the polyvinyl alcohol-based resin modified with a polyethylene glycol group can be produced by a method of copolymerizing an unsaturated monomer having a polyethylene glycol group with vinyl acetate and then saponifying the resin.
  • a commercially available product may be used, and examples thereof include the "E polymer" series of Japan Vam & Poval Co., Ltd.
  • the polyvinyl alcohol-based resin modified with an ethylene oxide group has an ethylene oxide group (that is, an epoxy group) in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • the polyvinyl alcohol-based resin modified with a polyethylene glycol group can be produced by a method of copolymerizing an unsaturated monomer having an ethylene oxide group with vinyl acetate and then saponifying the resin.
  • the polyvinyl alcohol-based resin modified with a hydrazide group has a hydrazide group (-CONR'NR'') in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • R'and R'' independently represent a hydrogen atom or a hydrocarbon group.
  • the hydrazide group-modified polyvinyl alcohol-based resin can be produced by a method of copolymerizing an unsaturated monomer having a hydrazide group with vinyl acetate and then saponifying the resin.
  • the polyvinyl alcohol-based resin modified with a phosphoric acid ester group has a phosphoric acid ester group (-O-PO- (OR) 2 ) in addition to the hydroxyl groups constituting the polyvinyl alcohol skeleton.
  • R independently represents a hydrogen atom or a hydrocarbon group.
  • the polyvinyl alcohol-based resin modified with a hyphosphate ester group can be produced by a method of copolymerizing an unsaturated monomer having a phosphoric acid ester group with vinyl acetate and then saponifying the resin.
  • the polyvinyl alcohol-based resin modified with a group having a urethane bond has a group having a urethane bond (a group represented by ⁇ CONHR) in addition to the hydroxyl group constituting the polyvinyl alcohol skeleton.
  • the polyvinyl alcohol-based resin may contain two or more of the above-mentioned modified polyvinyl alcohol-based resins, and may be an unmodified polyvinyl alcohol-based resin (specifically, a completely or partially saponified product of polyvinyl acetate). And may contain both the above-mentioned modified polyvinyl alcohol-based resin.
  • polyvinyl alcohol-based resin A commercially available product may be used as the polyvinyl alcohol-based resin.
  • polyvinyl alcohol having a high degree of saponification "PVA-117H” sold by Kuraray Co., Ltd., and "Gosenol NH” sold by Nippon Synthetic Chem Industry Co., Ltd. -20 ”, acetacetyl group-modified polyvinyl alcohol,“ Gosefimer Z ”series sold by Nippon Synthetic Chem Industry Co., Ltd., anion-modified polyvinyl alcohol, Kuraray Co., Ltd.
  • polyvinyl acetal resin By using the polyvinyl acetal resin as the aqueous resin (A), the optical durability of the optical laminate in a high temperature and high humidity environment and the optical layer and the first cured product in the optical laminate can be obtained. It is easy to improve the adhesion between the layers and the adhesion between the first cured product layer and the first thermoplastic resin film.
  • the polyvinyl acetal resin can be obtained by acetalizing the polyvinyl alcohol resin with at least one of an aldehyde and a ketone.
  • the polyvinyl acetal-based resin only one type may be used, or two or more types may be used in combination.
  • the degree of saponification of the polyvinyl alcohol-based resin used to obtain the polyvinyl acetal-based resin is not particularly limited, but is usually 70 mol% or more, preferably 75 mol% or more, and more preferably 80 mol% or more. Further, it is usually 99.9 mol% or less, and may be 99.8 mol% or less.
  • the aldehyde used to obtain the polyvinyl acetal-based resin is not particularly limited, and examples thereof include aldehydes having a chain aliphatic group having 1 to 10 carbon atoms, a cyclic aliphatic group, or an aromatic group.
  • aldehydes include formaldehyde, acetaldehyde, propionaldehyde, n-butylaldehyde, isobutylaldehyde, n-barrel aldehyde, n-hexylaldehyde, 2-ethylbutylaldehyde, 2-ethylhexylaldehyde, n-heptylaldehyde, n.
  • aldehydes such as octellaldehyde, n-nonylaldehyde, n-decylaldehyde, amylaldehyde; benzaldehyde, cinnamaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m- Examples thereof include aromatic aldehydes such as hydroxybenzaldehyde, phenylacetaldehyde, and ⁇ -phenylpropionaldehyde. These aldehydes can be used alone or in combination of two or more.
  • butyraldehyde, 2-ethylhexylaldehyde, and n-nonylaldehyde which are excellent in acetalization reactivity, are preferable, and butyraldehyde is more preferable.
  • the ketone used to obtain the polyvinyl acetal resin is not particularly limited, but is not particularly limited, but acetone, ethylmethyl ketone, diethyl ketone, t-butyl ketone, dipropyl ketone, allyl ethyl ketone, acetophenone, p-methylacetophenone, 4'-aminoacetophenone.
  • P-chloroacetophenone 4'-methoxyacetophenone, 2'-hydroxyacetophenone, 3'-nitroacetophenone, P- (1-piperidino) acetophenone, benzalacetophenone, propiophenone, benzophenone, 4-nitrobenzophenone, 2- Examples thereof include methylbenzophenone, p-bromobenzophenone, cyclohexyl (phenyl) methanone, 2-butyronaphthone, 1-acetophenone, 2-hydroxy-1-acetophenone, 8'-hydroxy-1'-benzonaphthone and the like.
  • the amount of aldehyde and ketone added can be appropriately set according to the degree of acetalization of the target polyvinyl acetal resin.
  • the total amount of the aldehyde and the ketone can be 60 to 95 mol%, preferably 70 to 90 mol% with respect to 100 mol% of the polyvinyl alcohol-based resin.
  • the amount of hydroxyl groups in the polyvinyl acetal resin is preferably 30 mol% or more, more preferably 40 mol% or more, 50 mol% or more, and 90 mol% or less. It is preferably 85 mol% or less, more preferably 85 mol% or less.
  • the amount of hydroxyl groups in the polyvinyl acetal-based resin is the ratio (mol%) of the amount of ethylene groups to which the hydroxyl groups are bonded to the total amount of ethylene groups in the main chain, and the amount of ethylene groups to which the hydroxyl groups are bonded is, for example, JIS. It can be calculated by a method based on K6728 "Polyvinyl butyral test method".
  • the amount of the acetyl group of the polyvinyl acetal resin is not particularly limited, but is preferably 0.0001 mol% or more, more preferably 0.001 mol% or more, and may be 0.01 mol% or more. Further, it is preferably 5 mol% or less, more preferably 3 mol% or less, and may be 2 mol% or less.
  • the acetyl group amount of the polyvinyl acetal-based resin is the amount of the ethylene group to which the acetal group is bonded and the amount of the ethylene group to which the hydroxyl group is bonded from the total ethylene group amount of the main chain with respect to the total ethylene group amount of the main chain.
  • the amount of ethylene group to which the acetal group is bonded can be calculated by, for example, a method based on JIS K6728 "Polyvinyl butyral test method".
  • Silane compound (B) having a silanol group is a compound having a silanol group (-SiOH).
  • the curable composition (S) may contain one or more silane compounds (B).
  • the silane compound (B) is not particularly limited as long as it has a silanol group. Further, even if silane compounds having silanol groups form a dimer, trimeric, or three-dimensional network structure by a condensation reaction, the silanes in the present specification are as long as the formed compounds contain silanol groups. Included in compound (B).
  • the silane compound (B) is composed of an amino group, a carboxyl group, an epoxy group, an acetoacetyl group, a hydroxyalkyl group, a mercapto group, an oxyalkylene group, and an alkenyl group which may have a substituent in addition to the silanol group. It is preferable to have one or more functional groups selected from the group. Of these, the silane compound (B) is more preferably having at least one functional group of an amino group and a carboxyl group which may have a substituent, and further preferably having a carboxyl group.
  • Amino groups that may have a substituent include an amino group that does not have a substituent (-NH 2 ), an alkylamino group in which one or two hydrogen atoms are substituted with an alkyl group, one or one.
  • a (hydroxyalkyl) amino group in which two hydrogen atoms are substituted with a hydroxyalkyl group for example, -N (CH 2 HC (OH) CH 2 OH 2 ) 2
  • an aminoalkyl amino group (-NHC 2 H 4 NH 2).
  • the functional groups include -NH 2 , -NHC 2 H 4 NH 2 , -COOH, -SH, -CH (OH) CH 2 OH, and -N (CH 2 HC (OH) CH 2 OH. 2 ) 2 , -CHCH 2, etc. can be mentioned.
  • the functional groups may be the same or different from each other. Since the silane compound (B) has the above functional groups, the optical durability of the optical laminate in a high temperature and high humidity environment, the adhesion between the optical layer and the first cured product layer in the optical laminate, and the first It is easy to improve the adhesion between the 1-cured product layer and the 1st thermoplastic resin film.
  • the silane compound (B) preferably contains a Si—O—Si bond in addition to the silanol group and the above-mentioned functional group.
  • the silanol group and the above-mentioned functional group may be present anywhere in the structure of the silane compound (B) containing a Si—O—Si bond, but the silane compound (B) containing a Si—O—Si bond). It is preferable to have the above-mentioned functional group at the end of.
  • the content of the silane compound (B) is usually 0.5 parts by mass or more with respect to 100 parts by mass of the aqueous resin (A) from the viewpoint of enhancing the optical durability of the optical laminate in a high temperature and high humidity environment. It is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and usually 200 parts by mass or less, preferably 180 parts by mass or less, and more preferably 150 parts by mass or less. preferable.
  • the curable composition (S) can contain other components other than the aqueous resin (A) and the silane compound (B).
  • Other components include curable components such as polyvalent aldehydes such as glioxal and glioxal derivatives, melamine compounds, aziridine compounds, water-soluble epoxy resins, zirconium compounds, zinc compounds, titanium compounds, and metal compounds such as aluminum compounds, and cross-linking.
  • Modified polyvinyl alcohol-based polymers other than carboxyl group-modified polyvinyl alcohol-based polymers Additives such as coupling agents, tackifiers, antioxidants, ultraviolet absorbers, heat stabilizers, hydrolysis inhibitors, etc.; Water-based solvents ; Examples include the compound (C) described later.
  • the curable composition (S) may contain one or more other components.
  • the curable composition (S) preferably contains an aqueous solvent for dissolving or dispersing the aqueous resin (A).
  • an aqueous solvent for dissolving or dispersing the aqueous resin (A).
  • the aqueous solvent those exemplified above can be used.
  • 80% by mass or more of the total mass of the aqueous solvent is preferably water, more preferably 90% by mass or more is water, further preferably 95% by mass or more is water, and water. It may contain only.
  • the solid content concentration of the curable composition (S) is usually 0.5% by mass or more and 20% by mass or less, preferably 1% by mass or more and 15% by mass or less.
  • the curable composition (S) may contain one kind of compound (C) or may contain two or more kinds of compounds (C).
  • the compound (C) may be blended in the curable composition (S) as a solution (for example, an aqueous solution) containing the compound (C).
  • a preferable example of the compound (C) is an acid compound.
  • the acid compound may be a compound that functions as a catalyst for the reaction between the oxazolyl group of the oxazolyl group-containing (meth) acrylic resin and the above-mentioned functional group of the silane compound (B).
  • the acid compound examples include inorganic acids such as sulfuric acid, hydrogen chloride, nitrate, phosphoric acid, phosphite and boric acid; p-toluene sulfonic acid, dodecylbenzene sulfonic acid, naphthalene sulfonic acid, methane sulfonic acid and benzene sulfonic acid.
  • inorganic acids such as sulfuric acid, hydrogen chloride, nitrate, phosphoric acid, phosphite and boric acid
  • p-toluene sulfonic acid examples include dodecylbenzene sulfonic acid, naphthalene sulfonic acid, methane sulfonic acid and benzene sulfonic acid.
  • organic acids such as phenylphosphoric acid, sulfanic acid, phenylphosphonic acid, acetic acid and propionic acid.
  • the acid compound is the optical durability of the optical laminate in a high temperature and high humidity environment, the adhesion between the optical layer and the first cured product layer in the optical laminate, and the first cured product layer and the first thermoplastic resin.
  • a relatively strong acid is preferable, and examples of such an acid compound include sulfuric acid, hydrogen chloride (hydrochloric acid), nitric acid, p-toluenesulfonic acid and the like.
  • the adhesion between the optical layer and the first cured product layer and the adhesion between the first cured product layer and the first thermoplastic resin film are particularly high in the optical laminate. It tends to improve the sex.
  • the content of the acid compound is preferably 5 parts by mass or more and 80 parts by mass or less, and more preferably 10 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the oxazolyl group-containing (meth) acrylic resin. More preferably, it is 15 parts by mass or more and 60 parts by mass or less.
  • the content of the acid compound is excessively low, at least one of the adhesion between the optical layer and the first cured product layer in the optical laminate and between the first cured product layer and the first thermoplastic resin film It is difficult to obtain the optics. Further, when the content of the acid compound is excessively large, the adhesion between the optical layer and the first cured product layer in the optical laminate and between the first cured product layer and the first thermoplastic resin film becomes poor. At least one tends to decline.
  • the optical laminate according to the present invention includes an optical layer and a first cured product layer (a cured product layer composed of a cured product of the curable composition (S)) laminated on at least one surface thereof.
  • a first cured product layer a cured product layer composed of a cured product of the curable composition (S)
  • the optical laminate since the cured product layer contained in the optical laminate is composed of the cured product of the curable composition (S), the optical laminate has good optical durability in a high temperature and high humidity environment. Can be.
  • FIGS. 1 to 5 show examples of layer configurations of the optical laminates.
  • the optical laminate shown in FIG. 1 includes an optical layer 30 and a first cured product layer 15 laminated on one surface of the optical layer 30.
  • the first cured product layer 15 can function as an overcoat layer that coats and protects the surface of the optical layer 30, an optical functional layer that additionally imparts an optical function to the optical layer 30, and the like. It is preferable that the optical layer 30 and the first cured product layer 15 are in direct contact with each other.
  • the optical laminate shown in FIG. 2 includes an optical layer 30 and a first thermoplastic resin film 10 laminated and bonded to one surface thereof via a first cured product layer 15.
  • the first cured product layer 15 can function as an adhesive layer for adhering the optical layer 30 and the first thermoplastic resin film 10. It is preferable that the first cured product layer 15 and the first thermoplastic resin film 10 are in direct contact with each other. It is preferable that the optical layer 30 and the first cured product layer 15 are in direct contact with each other.
  • the optical laminate shown in FIG. 3 includes an optical layer 30, a first thermoplastic resin film 10 laminated and bonded to one surface of the optical layer 30 via a first cured product layer 15, and the other surface of the optical layer 30.
  • a second thermoplastic resin film 20 that is laminated and bonded via a second cured product layer 25. That is, the optical laminate according to the present invention includes the second thermoplastic resin film 20, the second cured product layer 25, the optical layer 30, the first cured product layer 15, and the first thermoplastic resin film 10 in this order. It may be.
  • the first cured product layer 15 and the second cured product layer 25 each adhere an adhesive layer for adhering the optical layer 30 and the first thermoplastic resin film 10, and the optical layer 30 and the second thermoplastic resin film 20. It can function as an adhesive layer.
  • the second cured product layer 25 and the second thermoplastic resin film 20 are in direct contact with each other.
  • the optical layer 30 and the second cured product layer 25 are in direct contact with each other.
  • the optical laminate shown in FIG. 4 is laminated and laminated on the optical layer 30, the first cured product layer 15 laminated on one surface thereof, and the other surface of the optical layer 30 via the second cured product layer 25.
  • the first cured product layer 15 can function as an overcoat layer that coats and protects the surface of the optical layer 30, an optical functional layer that additionally imparts an optical function to the optical layer 30, and the like.
  • the second cured product layer 25 can function as an adhesive layer for adhering the optical layer 30 and the second thermoplastic resin film 20. It is preferable that the optical layer 30 and the first cured product layer 15 are in direct contact with each other. It is preferable that the second cured product layer 25 and the second thermoplastic resin film 20 are in direct contact with each other. It is preferable that the optical layer 30 and the second cured product layer 25 are in direct contact with each other.
  • the optical laminate shown in FIG. 5 includes an optical layer 30, a first cured product layer 15 laminated on one surface of the optical layer 30, and a second cured product layer 25 laminated on the other surface of the optical layer 30.
  • the first cured product layer 15 and the second cured product layer 25 function as an overcoat layer that coats and protects the surface of the optical layer 30, an optical functional layer that additionally imparts an optical function to the optical layer 30, and the like. Can be done.
  • the optical layer 30 and the first cured product layer 15 are in direct contact with each other.
  • the optical layer 30 and the second cured product layer 25 are in direct contact with each other.
  • the optical layer 30 may be various optical films (films having optical characteristics) that can be incorporated into an image display device such as a liquid crystal display device.
  • Examples of the optical layer 30 include a polarizer, a retardation film, a brightness improving film, an antiglare film, an antireflection film, a diffusion film, a light collecting film and the like.
  • the optical laminate can include layers (or films) other than the above.
  • the other layer include an adhesive laminated on the outer surface of the first thermoplastic resin film 10, the second thermoplastic resin film 20, the first cured product layer 15, the second cured product layer 25, and / or the optical layer 30.
  • Agent layer Separate film laminated on the outer surface of the pressure-sensitive adhesive layer (also referred to as "release film”); 1st thermoplastic resin film 10, 2nd thermoplastic resin film 20, 1st cured product layer 15, 2nd A protective film (also referred to as a "surface protective film”) laminated on the outer surface of the cured product layer 25 and / or the optical layer 30; the first thermoplastic resin film 10, the second thermoplastic resin film 20, and the first cured product layer.
  • Examples thereof include an optically functional film (or layer) laminated on the outer surface of the second cured product layer 25 and / or the optical layer 30 via an adhesive layer or an adhesive layer.
  • the polarized light is a layer or film having a function of selectively transmitting linearly polarized light in a certain direction from natural light.
  • the polarizer include a film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film.
  • the dichroic dye include iodine and a dichroic organic dye.
  • the polarizing element may be a coating type polarizing film in which a dichroic dye in a Riotrovic liquid crystal state is coated on a base film and oriented and immobilized.
  • the above-mentioned polarizer is called an absorption type polarizer because it selectively transmits linearly polarized light in one direction from natural light and absorbs linearly polarized light in the other direction.
  • the polarizer is not limited to the absorption type polarizer, but is a reflection type polarizer that selectively transmits linearly polarized light in one direction from natural light and reflects the linearly polarized light in the other direction, or a linearly polarized light in the other direction.
  • a scattering type polarizer may be used, but an absorption type polarizer is preferable from the viewpoint of excellent visibility.
  • a polyvinyl alcohol-based polarizing film composed of a polyvinyl alcohol-based resin film is more preferable, and a polyvinyl alcohol-based polarizing film in which a bicolor dye such as iodine or a bicolor dye is adsorbed and oriented on the polyvinyl alcohol-based resin film is preferable. More preferably, a polyvinyl alcohol-based polarizing film in which iodine is adsorbed and oriented on the polyvinyl alcohol-based resin film is particularly preferable.
  • polyvinyl alcohol-based resin a saponified polyvinyl acetate-based resin
  • examples of the polyvinyl acetate-based resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and a copolymer of vinyl acetate and another monomer copolymerizable with the vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth) acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol-based resin is usually 85 mol% or more and 100 mol% or less, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used.
  • the average degree of polymerization of the polyvinyl alcohol-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • the average degree of polymerization of the polyvinyl alcohol-based resin can be determined in accordance with JIS K 6726: 1994.
  • a film formed of such a polyvinyl alcohol-based resin is used as a raw film for a polarizing film composed of a polyvinyl alcohol-based resin film.
  • the method for forming a film of the polyvinyl alcohol-based resin is not particularly limited, and a known method is adopted.
  • the thickness of the polyvinyl alcohol-based raw film is, for example, 150 ⁇ m or less, preferably 100 ⁇ m or less (for example, 50 ⁇ m or less), and 5 ⁇ m or more.
  • a polarizing film composed of a polyvinyl alcohol-based resin film can be produced by a known method. Specifically, the step of uniaxially stretching the polyvinyl alcohol-based resin film; the step of adsorbing the dichroic dye by dyeing the polyvinyl alcohol-based resin film with the dichroic dye; the polyvinyl alcohol on which the dichroic dye is adsorbed. It can be produced by a method including a step of treating (cross-linking) the based resin film with an aqueous boric acid solution; and a step of washing with water after treatment with the aqueous boric acid solution.
  • the thickness of the polarizer can be 40 ⁇ m or less, preferably 30 ⁇ m or less (for example, 20 ⁇ m or less, further 15 ⁇ m or less, and further 10 ⁇ m or less or 8 ⁇ m or less).
  • a thin-film polarizer can be more easily produced, and the thickness of the polarizer can be increased to, for example, 20 ⁇ m or less, further 15 ⁇ m. Below, it becomes easier to make it 10 ⁇ m or less or 8 ⁇ m or less.
  • the thickness of the polarizer is usually 2 ⁇ m or more.
  • Reducing the thickness of the polarizer is advantageous for reducing the thickness of the optical laminate (polarizing plate) and the image display device including the optical laminate (polarizing plate).
  • the thinner the polarizer the lower the optical durability tends to be.
  • the curable composition of the present invention even such a thin-film polarizing plate can have good durability. ..
  • the retardation film is a stretched film obtained by uniaxially stretching or biaxially stretching a translucent thermoplastic resin; a film in which a liquid crystal compound such as a discotic liquid crystal or a nematic liquid crystal is oriented and fixed; Examples thereof include those in which the above-mentioned liquid crystal layer is formed on a material film. Further, in the present specification, the zero retardation film is also included in the retardation film.
  • the base film is usually a film made of a thermoplastic resin, and an example of the thermoplastic resin is a cellulosic ester-based resin such as triacetyl cellulose.
  • the translucent thermoplastic resin include resins constituting the first thermoplastic resin film 10 described later.
  • the zero retardation film refers to a film in which both the in-plane retardation value Re and the thickness direction retardation value Rth are -15 to 15 nm. This retardation film is suitably used for a liquid crystal display device in IPS mode.
  • the in-plane retardation value Re and the thickness direction retardation value Rth are preferably ⁇ 10 to 10 nm, and more preferably both ⁇ 5 to 5 nm.
  • the in-plane retardation value Re and the thickness direction retardation value Rth referred to here are values at a wavelength of 590 nm.
  • n x is a refractive index in a slow axis direction (x-axis direction) in the film plane
  • n y is the fast axis direction in the film plane of the (y-axis direction orthogonal to the x-axis in a plane)
  • nz is the refractive index in the film thickness direction (the z-axis direction perpendicular to the film surface)
  • d is the film thickness.
  • a resin film made of a polyolefin resin such as a cellulose resin, a chain polyolefin resin and a cyclic polyolefin resin, a polyethylene terephthalate resin or a (meth) acrylic resin can be used.
  • a cellulosic resin, a polyolefin resin, or a (meth) acrylic resin is preferably used.
  • First form a retardation film in which a rod-shaped liquid crystal compound is oriented horizontally with respect to a supporting substrate.
  • Second form a retardation film in which the rod-shaped liquid crystal compound is oriented perpendicular to the supporting substrate
  • Third form A retardation film in which the rod-shaped liquid crystal compound changes its orientation spirally in the plane.
  • Fourth form a retardation film in which a disk-shaped liquid crystal compound is inclined or oriented
  • Fifth form A biaxial retardation film in which a disk-shaped liquid crystal compound is oriented perpendicularly to a supporting substrate.
  • the first form, the second form, and the fifth form are preferably used. Alternatively, these may be laminated and used.
  • the retardation film When the retardation film is a layer made of a polymer in the oriented state of the polymerizable liquid crystal compound (hereinafter, may be referred to as an "opticallyotropic layer"), the retardation film may have anti-wavelength dispersibility. preferable.
  • the inverse wavelength dispersibility is an optical characteristic in which the liquid crystal alignment in-plane retardation value at a short wavelength is smaller than the liquid crystal alignment in-plane retardation value at a long wavelength, and the retardation film is preferably expressed by the following formula. (1) and equation (2) are satisfied.
  • Re ( ⁇ ) represents an in-plane retardation value with respect to light having a wavelength of ⁇ nm.
  • the retardation film is in the first form and has anti-wavelength dispersibility, it is preferable because the coloring at the time of black display on the display device is reduced, and 0.82 ⁇ Re (450) / Re (550) in the formula (1). ) ⁇ 0.93 is more preferable. Further, 120 ⁇ Re (550) ⁇ 150 is preferable.
  • the polymerizable liquid crystal compound is described in "3" of the Liquid Crystal Handbook (edited by the Liquid Crystal Handbook Editorial Committee, published on October 30, 2000 by Maruzen Co., Ltd.).
  • Examples of the method for producing a retardation film from a polymer in the oriented state of a polymerizable liquid crystal compound include the method described in JP-A-2010-31223.
  • the in-plane retardation value Re (550) may be adjusted in the range of 0 to 10 nm, preferably in the range of 0 to 5 nm, and the retardation value Rth in the thickness direction is ⁇ 10 to ⁇ . It may be adjusted in the range of 300 nm, preferably in the range of ⁇ 20 to ⁇ 200 nm.
  • the phase difference value Rth in the thickness direction which means the refractive index anisotropy in the thickness direction, is the phase difference value R50 and the in-plane phase difference value Re, which are measured by inclining 50 degrees with the in-plane phase advance axis as the inclination axis. Can be calculated from.
  • the retardation value Rth in the thickness direction is the in-plane retardation value Re
  • the thickness d of the retardation film is the retardation film.
  • Rth [(n x + n y ) / 2- nz ] x d (3)
  • Re (n x ⁇ n y ) ⁇ d (4)
  • n y ' n y x n z / [ ny 2 x sin 2 ( ⁇ ) + n z 2 x cos 2 ( ⁇ )] 1/2
  • the retardation film may be a multilayer film having two or more layers.
  • a protective film is laminated on one side or both sides of a retardation film, and two or more retardation films are laminated via an adhesive or an adhesive.
  • the first cured product layer 15 is a cured product layer composed of a cured product of the curable composition (S).
  • the curable composition (S) is as described above.
  • the curable composition (S) can be cured by heat, for example.
  • Thermoplastic Resin Film The first thermoplastic resin film 10 and the second thermoplastic resin film 20 are each a translucent (preferably optically transparent) thermoplastic resin, for example, a chain polyolefin resin.
  • Polypropylene-based resins such as (polypropylene-based resins, etc.), cyclic polyolefin-based resins (norbornen-based resins, etc.); Cellulosic ester-based resins such as triacetyl cellulose and diacetyl cellulose; polyester-based resins such as polyethylene terephthalate, polyethylene naphthalate, and thermoplastics.
  • a film made of a resin; a polycarbonate-based resin; a (meth) acrylic-based resin; a polystyrene-based resin; or a mixture thereof, a copolymer, or the like can be used.
  • the first thermoplastic resin film 10 and the second thermoplastic resin film 20 may be either an unstretched film or a uniaxially or biaxially stretched film, respectively.
  • the biaxial stretching may be a simultaneous biaxial stretching that simultaneously stretches in two stretching directions, or may be a sequential biaxial stretching that stretches in a second direction different from this after stretching in the first direction.
  • the first thermoplastic resin film 10 and / or the second thermoplastic resin film 20 may be a protective film that plays a role of protecting the optical layer 30, or is a protective film that also has an optical function such as a retardation film. You can also do it.
  • the retardation film the description in [4] above is cited.
  • chain polyolefin resin examples include homopolymers of chain olefins such as polyethylene resin and polypropylene resin, and copolymers composed of two or more kinds of chain olefins.
  • the cyclic polyolefin-based resin is a general term for resins containing norbornene, tetracyclododecene (also known as dimethanooctahydronaphthalene), or a cyclic olefin typified by a derivative thereof as a polymerization unit.
  • the cyclic polyolefin resin include a ring-opening (co) polymer of a cyclic olefin and a hydrogenated product thereof, an addition polymer of a cyclic olefin, a cyclic olefin and a chain olefin such as ethylene and propylene, or an aromatic compound having a vinyl group.
  • Examples thereof include copolymers of the above, and modified (co) copolymers obtained by modifying these with unsaturated carboxylic acids or derivatives thereof.
  • a norbornene-based resin using a norbornene-based monomer such as norbornene or a polycyclic norbornene-based monomer is preferably used as the cyclic olefin.
  • the cellulose ester-based resin is a resin in which at least a part of the hydroxyl groups in cellulose is acetic acid esterified, and a mixed ester in which a part is acetic acid esterified and a part is esterified with another acid. May be good.
  • the cellulosic ester resin is preferably an acetyl cellulosic resin. Examples of the acetyl cellulosic resin include triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, and cellulose acetate butyrate.
  • the polyester-based resin is a resin other than the above-mentioned cellulose ester-based resin having an ester bond, and is generally composed of a polyvalent carboxylic acid or a polycondensate of a derivative thereof and a polyhydric alcohol.
  • the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexanedimethylterephthalate, and polycyclohexanedimethylnaphthalate.
  • polyethylene terephthalate is preferably used from the viewpoints of mechanical properties, solvent resistance, scratch resistance, cost and the like.
  • Polyethylene terephthalate refers to a resin in which 80 mol% or more of the repeating unit is composed of ethylene terephthalate, and is a constituent unit derived from other copolymerization components (dicarboxylic acid component such as isophthalic acid; diol component such as propylene glycol). May include.
  • the polycarbonate resin is a polyester formed from carbonic acid and glycol or bisphenol.
  • aromatic polycarbonate having a diphenylalkane in the molecular chain is preferably used from the viewpoint of heat resistance, weather resistance and acid resistance.
  • examples of polycarbonate include 2,2-bis (4-hydroxyphenyl) propane (also known as bisphenol A), 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) cyclohexane, and 1, Examples thereof include polycarbonate derived from bisphenols such as 1-bis (4-hydroxyphenyl) isobutane and 1,1-bis (4-hydroxyphenyl) ethane.
  • the (meth) acrylic resin is a polymer containing a structural unit derived from the (meth) acrylic monomer, and examples of the (meth) acrylic monomer include methacrylic acid ester and acrylic acid ester.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-, i- or t-butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, and 2-hydroxyethyl methacrylate. And so on.
  • acrylic acid ester examples include ethyl acrylate, n-, i- or t-butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate and the like. ..
  • the (meth) acrylic resin may be a polymer consisting of only structural units derived from the (meth) acrylic monomer, or may contain other structural units.
  • the (meth) acrylic resin comprises methyl methacrylate as a copolymerization component, or comprises methyl methacrylate and methyl acrylate.
  • the (meth) acrylic resin can be a polymer containing a methacrylic acid ester as a main monomer (containing 50% by mass or more), and the methacrylic acid ester and other copolymerization components. Is preferably a copolymer in which is copolymerized.
  • the glass transition temperature of the (meth) acrylic resin is preferably 80 ° C. or higher and 160 ° C. or lower.
  • the glass transition temperature is the polymerization ratio of the methacrylic acid ester-based monomer and the acrylic acid ester-based monomer, the carbon chain length of each ester group, the type of functional group having them, and the polyfunctional monomer for the entire monomer. It can be controlled by adjusting the polymerization ratio of the monomer.
  • the ring structure is preferably a heterocyclic structure such as a cyclic acid anhydride structure, a cyclic imide structure and a lactone structure.
  • a cyclic acid anhydride structure such as a glutaric anhydride structure and a succinic anhydride structure
  • a cyclic imide structure such as a glutarimide structure and a succinic anhydride structure
  • a lactone ring structure such as butyrolactone and valerolactone.
  • the cyclic acid anhydride structure and the cyclic imide structure are introduced by copolymerizing a monomer having a cyclic structure such as maleic anhydride and maleimide; the cyclic acid anhydride structure is formed by a dehydration / demethanol condensation reaction after polymerization. Method of introduction; It can be introduced by a method of reacting an amino compound to introduce a cyclic imide structure or the like.
  • a resin (polymer) having a lactone ring structure After preparing a polymer having a hydroxyl group and an ester group in a polymer chain, the hydroxyl group and the ester group in the obtained polymer are required by heating. Therefore, it can be obtained by a method of forming a lactone ring structure by cyclization condensation in the presence of a catalyst such as an organic phosphorus compound.
  • the (meth) acrylic resin and the thermoplastic resin film formed from the (meth) acrylic resin may contain additives, if necessary.
  • the additive include a lubricant, an antiblocking agent, a heat stabilizer, an antioxidant, an antistatic agent, a lightproofing agent, an impact resistance improving agent, a surfactant and the like. These additives can also be used when a thermoplastic resin other than the (meth) acrylic resin is used as the thermoplastic resin constituting the thermoplastic resin film.
  • the (meth) acrylic resin may contain acrylic rubber particles which are impact improving agents from the viewpoint of film forming property on the film, impact resistance of the film, and the like.
  • Acrylic rubber particles are particles containing an elastic polymer mainly composed of an acrylic acid ester as an essential component, and have a single-layer structure substantially consisting of only this elastic polymer, or one elastic polymer. Examples thereof include a multi-layer structure having layers.
  • the elastic polymer examples include a crosslinked elastic copolymer containing alkyl acrylate as a main component and copolymerizing another copolymerizable vinyl-based monomer and a crosslinkable monomer.
  • alkyl acrylate examples include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like, which have an alkyl group having 1 or more and 8 or less carbon atoms.
  • An alkyl acrylate having an alkyl group having 4 or more carbon atoms is preferably used.
  • Examples of the other vinyl-based monomer copolymerizable with the alkyl acrylate include a compound having one polymerizable carbon-carbon double bond in the molecule, and more specifically, methyl methacrylate.
  • Methacrylic acid esters such as, aromatic vinyl compounds such as styrene; vinyl cyan compounds such as acrylonitrile, and the like.
  • crosslinkable monomer examples include a crosslinkable compound having at least two polymerizable carbon-carbon double bonds in the molecule, and more specifically, ethylene glycol di (meth) acrylate and butane.
  • examples thereof include (meth) acrylates of polyhydric alcohols such as diol di (meth) acrylate; alkenyl esters of (meth) acrylic acid such as allyl (meth) acrylate; and divinylbenzene.
  • a laminate of a film made of a (meth) acrylic resin containing no rubber particles and a film made of a (meth) acrylic resin containing rubber particles is used as a thermoplastic resin film to be bonded to the optical layer 30.
  • a (meth) acrylic resin layer is formed on one side or both sides of a retardation-developing layer made of a resin different from the (meth) acrylic resin, and the one in which the retardation is expressed is bonded to the optical layer 30. It can also be a thermoplastic resin film.
  • the first thermoplastic resin film 10 and the second thermoplastic resin film 20 are each one or more thermoplastics selected from the group consisting of a cellulose ester resin, a polyester resin, a (meth) acrylic resin, and a cyclic polyolefin resin.
  • a film containing a resin is preferable, and a cellulose ester-based resin film, a polyester-based resin film, a (meth) acrylic-based resin film, or a cyclic polyolefin-based resin film is more preferable.
  • the first thermoplastic resin film 10 and / or the second thermoplastic resin film 20 contains an ultraviolet absorber, an infrared absorber, an organic dye, a pigment, an inorganic dye, an antioxidant, an antistatic agent, a surfactant, a lubricant, and the like. It may contain a dispersant, a heat stabilizer and the like.
  • a thermoplastic resin film containing an ultraviolet absorber is placed on the visual side of an image display element (for example, a liquid crystal cell or an organic EL display element) to display the image. Deterioration due to ultraviolet rays can be suppressed.
  • the ultraviolet absorber include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, nickel complex salt compounds and the like.
  • the first thermoplastic resin film 10 and the second thermoplastic resin film 20 may be films made of the same thermoplastic resin, or may be films made of different thermoplastic resins.
  • the first thermoplastic resin film 10 and the second thermoplastic resin film 20 may be the same or different in terms of thickness, presence / absence of additives, their types, retardation characteristics, and the like.
  • the first thermoplastic resin film 10 and / or the second thermoplastic resin film 20 has a hard coat layer, an antiglare layer, an antireflection layer, a light diffusion layer, and an antistatic layer on its outer surface (the surface opposite to the optical layer 30).
  • a surface treatment layer (coating layer) such as an antifouling layer, an antifouling layer, and a conductive layer may be provided.
  • the thickness of the first thermoplastic resin film 10 and the second thermoplastic resin film 20 is usually 5 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 120 ⁇ m or less, more preferably 10 ⁇ m or more and 85 ⁇ m or less, and further preferably 15 ⁇ m or more and 65 ⁇ m or less. Is.
  • the thickness of the first thermoplastic resin film 10 and the second thermoplastic resin film 20 may be 50 ⁇ m or less, or 40 ⁇ m or less, respectively. Reducing the thickness of the first thermoplastic resin film 10 and the second thermoplastic resin film 20 is advantageous for reducing the thickness of the optical laminate (polarizing plate) and the image display device including the optical laminate (polarizing plate).
  • thermoplastic resin film 10 and the second thermoplastic resin film 20 On the surface to which the curable composition of the first thermoplastic resin film 10 and the second thermoplastic resin film 20 is applied, from the viewpoint of improving adhesion, surfaces such as saponification treatment, plasma treatment, corona treatment, and primer treatment are performed.
  • the modification treatment may be performed, or the surface modification treatment may not be performed from the viewpoint of simplifying the process.
  • the surface modification treatment may be performed on the bonding surface of the optical layer 30 instead of the bonding surface of the thermoplastic resin film or together with the bonding surface.
  • the saponification treatment include a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
  • the curable composition forming the second cured layer 25 may be the above-mentioned curable composition (S), or may be another curable composition different from this. There may be.
  • the second cured product layer 25 is preferably a cured product layer of the curable composition (S) from the viewpoint of optical durability of the optical laminate in a high temperature and high humidity environment.
  • these curable compositions may have the same composition or different compositions. You may.
  • curable compositions include known water-based compositions (including water-based adhesives) in which a curable resin component is dissolved or dispersed in water, and known active energy rays containing an active energy ray-curable compound. Examples thereof include a curable composition (including an active energy ray-curable adhesive) and the like.
  • the resin component contained in the aqueous composition examples include polyvinyl alcohol-based resin and urethane resin.
  • the aqueous composition containing a polyvinyl alcohol-based resin is a curable component such as a polyhydric aldehyde, a melamine-based compound, a zirconia compound, a zinc compound, glyoxal, a glyoxal derivative, and a water-soluble epoxy resin in order to improve adhesion and adhesiveness.
  • a cross-linking agent can be further contained.
  • the aqueous composition containing the urethane resin include an aqueous composition containing a polyester ionomer type urethane resin and a compound having a glycidyloxy group.
  • the polyester-based ionomer type urethane resin is a urethane resin having a polyester skeleton, in which a small amount of an ionic component (hydrophilic component) is introduced.
  • the active energy ray-curable composition is a composition that is cured by irradiation with active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • active energy rays such as ultraviolet rays, visible light, electron beams, and X-rays.
  • the second cured product layer 25 is a cured product layer of the composition.
  • the active energy ray-curable composition can be a composition containing an epoxy compound that is cured by cationic polymerization as a curable component, and preferably an ultraviolet curable composition containing such an epoxy compound as a curable component. It is a thing.
  • the epoxy-based compound means a compound having an average of 1 or more, preferably 2 or more epoxy groups in the molecule. Only one type of epoxy compound may be used, or two or more types may be used in combination.
  • a hydride epoxy compound (having an alicyclic ring) obtained by reacting epichlorohydrin with an alicyclic polyol obtained by hydrogenating the aromatic ring of an aromatic polyol.
  • Polyglycidyl ether of polyol an aliphatic epoxy compound such as an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof; an epoxy compound having one or more epoxy groups bonded to an alicyclic ring in the molecule. Examples thereof include certain alicyclic epoxy compounds.
  • the active energy ray-curable composition can contain, as a curable component, a (meth) acrylic compound which is radically polymerizable in place of or together with the epoxy compound.
  • the (meth) acrylic compound is a (meth) acrylate monomer having one or more (meth) acryloyloxy groups in the molecule; obtained by reacting two or more kinds of functional group-containing compounds, and at least two in the molecule. Examples thereof include (meth) acryloyloxy group-containing compounds such as (meth) acrylate oligomers having a (meth) acryloyloxy group.
  • the active energy ray-curable composition contains an epoxy-based compound that is cured by cationic polymerization as a curable component, it preferably contains a photocationic polymerization initiator.
  • the photocationic polymerization initiator include aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts; and iron-allene complexes.
  • the active energy ray-curable composition contains a radically polymerizable component such as a (meth) acrylic compound, it preferably contains a photoradical polymerization initiator.
  • photoradical polymerization initiator examples include an acetophenone-based initiator, a benzophenone-based initiator, a benzoin ether-based initiator, a thioxanthone-based initiator, xanthone, fluorenone, camphorquinone, benzaldehyde, anthraquinone and the like.
  • the optical laminate may include an adhesive layer instead of the second cured product layer 25. That is, the second thermoplastic resin film 20 may be attached to the optical layer 30 via the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer the description of the pressure-sensitive adhesive layer described later is cited.
  • the optical laminate having the configuration shown in FIG. 2 is obtained by laminating and adhering the first thermoplastic resin film 10 to one surface of the optical layer 30 via the first cured product layer 15. It can be obtained, and by further laminating and adhering the second thermoplastic resin film 20 to the other surface of the optical layer 30 via the second cured product layer 25, an optical laminate having the configuration shown in FIG. 3 can be obtained. Can be done. When producing an optical laminate having both the first thermoplastic resin film 10 and the second thermoplastic resin film 20, these films may be laminated and bonded one side at a time step by step, or the films on both sides may be laminated and bonded at the same time. It may be laminated and bonded.
  • the curable composition (S) As a method of adhering the optical layer 30 and the first thermoplastic resin film 10 to one or both of the bonding surfaces of the optical layer 30 and the first thermoplastic resin film 10, the curable composition (S) is applied. Examples thereof include a method of coating, laminating the other laminating surface on the laminating surface, and pressing from above and below using a laminating roll or the like for laminating.
  • various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used. Further, even in a method in which the optical layer 30 and the first thermoplastic resin film 10 are continuously supplied so that the bonding surfaces of both are on the inside, and the curable composition (S) is cast between them. Good.
  • a heat treatment is performed on the laminate containing the optical layer 30, the first cured product layer 15, and the first thermoplastic resin film 10.
  • the temperature of the heat treatment is, for example, 40 ° C. or higher and 100 ° C. or lower, preferably 50 ° C. or higher and 90 ° C. or lower.
  • the solvent contained in the curable composition layer can be removed by heat treatment.
  • the heat treatment can allow the curing / crosslinking reaction of the curable composition to proceed.
  • the above bonding method can also be applied to bonding the optical layer 30 and the second thermoplastic resin film 20.
  • the curable composition layer is dried as necessary and then irradiated with active energy rays to form the curable composition. Harden the material layer.
  • the light source used for irradiating the active energy beam may be any light source capable of generating ultraviolet rays, electron beams, X-rays and the like.
  • low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, metal halide lamps, and the like having an emission distribution having a wavelength of 400 nm or less are preferably used.
  • an optical laminate having no first thermoplastic resin film on the first cured product layer 15 was obtained by coating the surface of the optical layer 30 with the curable composition (S).
  • the laminate can be produced, for example, by subjecting the laminate to heat treatment at 80 ° C. for 300 seconds with a hot air dryer. Further, the optical laminate shown in FIG. 1 is also produced by producing a laminate composed of a separate film / curable composition (S) / optical layer 30, peeling off the separate film, and then performing heat treatment. be able to.
  • the thickness of the first cured product layer 15 and the second cured product layer 25 formed from the curable composition (S) is, for example, 1 nm or more and 20 ⁇ m or less, preferably 5 nm or more and 10 ⁇ m or less, and more preferably 10 nm or more. It is 5 ⁇ m or less, more preferably 20 nm or more and 1 ⁇ m or less.
  • the cured product layer formed from the above-mentioned known aqueous composition can also have the same thickness.
  • the thickness of the cured product layer formed from the active energy ray-curable composition is, for example, 10 nm or more and 20 ⁇ m or less, preferably 100 nm or more and 10 ⁇ m or less, and more preferably 500 nm or more and 5 ⁇ m or less.
  • the first cured product layer 15 and the second cured product layer 25 may have the same thickness or may be different in thickness.
  • optical laminate has optical functionality other than the optical layer 30 (for example, a polarizer) for imparting a desired optical function.
  • a film can be provided, a preferred example thereof being a retardation film.
  • the first thermoplastic resin film 10 and / or the second thermoplastic resin film 20 can also serve as a retardation film, but a retardation film can also be laminated separately from these films.
  • the retardation film is the first thermoplastic resin film 10, the second thermoplastic resin film 20, the first cured product layer 15 and / or the second cured product layer 25 via the adhesive layer and the adhesive layer.
  • the retardation film is the description in [4] above is cited.
  • optical functional films optical members
  • optical laminate such as a polarizing plate
  • examples of other optical functional films (optical members) that can be included in an optical laminate such as a polarizing plate include a condenser plate, a brightness improving film, a reflective layer (reflective film), a semi-transmissive reflective layer (semi-transmissive reflective film), A light diffusing layer (light diffusing film) or the like.
  • the condensing plate is used for the purpose of controlling the optical path, and can be a prism array sheet, a lens array sheet, a sheet with dots, or the like.
  • the brightness improving film is used for the purpose of improving the brightness in an image display device to which an optical laminate such as a polarizing plate is applied.
  • a reflective polarizing separation sheet designed to generate anisotropy in reflectance by laminating a plurality of thin films having different refractive index anisotropy, an alignment film of cholesteric liquid crystal polymer, and its orientation. Examples thereof include a circularly polarized light separation sheet in which a liquid crystal layer is supported on a base film.
  • the reflective layer, the semi-transmissive reflective layer, and the light diffusing layer are provided to make the polarizing plate a reflective, semi-transmissive, and diffuse optical member, respectively.
  • the reflective polarizing plate is used in a liquid crystal display device of a type that reflects and displays incident light from the viewing side, and since a light source such as a backlight can be omitted, the liquid crystal display device can be easily made thinner.
  • the transflective polarizing plate is used in a liquid crystal display device of a type that displays light from a backlight in a dark place as a reflective type in a bright place.
  • the diffusion type polarizing plate is used for a liquid crystal display device that imparts light diffusivity and suppresses display defects such as moire.
  • the reflective layer, the transflective reflective layer and the light diffusing layer can be formed by a known method.
  • the optical laminate can include an adhesive layer.
  • the pressure-sensitive adhesive layer include a pressure-sensitive adhesive layer for bonding an optical laminate to an image display element such as a liquid crystal cell or an organic EL display element, or another optical member.
  • the pressure-sensitive adhesive layer is the outer surface of the optical layer 30 in the optical laminate having the configuration shown in FIGS. 1 and 2, and the first thermoplastic resin film 10 or the second thermoplastic in the optical laminate having the configuration shown in FIG.
  • FIG. 6 shows an example in which the pressure-sensitive adhesive layer 40 is laminated on the outer surface of the second thermoplastic resin film 20 of the optical laminate having the configuration shown in FIG.
  • a (meth) acrylic resin, a silicone-based resin, a polyester-based resin, a polyurethane-based resin, a polyether-based resin, or the like as a base polymer can be used.
  • a (meth) acrylic pressure-sensitive adhesive is preferable from the viewpoints of transparency, adhesive strength, reliability, weather resistance, heat resistance, reworkability and the like.
  • the (meth) acrylic pressure-sensitive adhesive includes a (meth) acrylic acid alkyl ester having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group, an n-, i- or t-butyl group, and (meth).
  • a (meth) acrylic resin having a value of 100,000 or more is useful as a base polymer.
  • the pressure-sensitive adhesive composition is dissolved or dispersed in an organic solvent such as toluene or ethyl acetate to prepare a pressure-sensitive adhesive liquid, which is directly applied to the target surface of the optical laminate.
  • an organic solvent such as toluene or ethyl acetate
  • a method of forming an adhesive layer by coating, a method of forming an adhesive layer in a sheet shape on a separate film that has been subjected to a mold release treatment, and a method of transferring it to a target surface of an optical laminate, etc. Can be done by
  • the thickness of the pressure-sensitive adhesive layer is determined according to the adhesive strength and the like, but a range of 1 ⁇ m or more and 50 ⁇ m or less is appropriate, and preferably 2 ⁇ m or more and 40 ⁇ m or less.
  • the optical laminate may include the above separate film.
  • the separate film can be a film made of a polyethylene resin such as polyethylene, a polypropylene resin such as polypropylene, a polyester resin such as polyethylene terephthalate, or the like. Of these, a polyethylene terephthalate stretched film is preferable.
  • the pressure-sensitive adhesive layer contains, if necessary, a filler made of glass fiber, glass beads, resin beads, metal powder or other inorganic powder, a pigment, a colorant, an antioxidant, an ultraviolet absorber, an antistatic agent and the like. be able to.
  • Protect film The surface of the optical laminate (typically, the first thermoplastic resin film 10, the second thermoplastic resin film 20, the first cured product layer 15 and / or the second cured product layer) A protective film for protecting the surface of 25) can be included. After the optical laminate is attached to, for example, an image display element or another optical member, the protective film is peeled off and removed together with the adhesive layer contained therein.
  • the protective film is composed of, for example, a base film and an adhesive layer laminated on the base film.
  • the above description is cited for the pressure-sensitive adhesive layer.
  • the resin constituting the base film is, for example, a polyethylene resin such as polyethylene, a polypropylene resin such as polypropylene, a polyester resin such as polyethylene terephthalate or polyethylene naphthalate, or a thermoplastic resin such as a polycarbonate resin. be able to.
  • a polyester resin such as polyethylene terephthalate is preferable.
  • the optical laminate according to the present invention can be applied to an image display device such as a liquid crystal display device or an organic electroluminescence (EL) display device.
  • the image display device includes an optical laminate and an image display element.
  • the image display element include a liquid crystal cell and an organic EL display element.
  • these image display elements conventionally known ones can be used.
  • the optical laminate which is a polarizing plate When the optical laminate which is a polarizing plate is applied to a liquid crystal display device, the optical laminate may be arranged on the backlight side (back side) of the liquid crystal cell, or may be arranged on the visual side. It may be placed in both of them.
  • the optical laminate, which is a polarizing plate is applied to an organic EL display device, the optical laminate is usually arranged on the visual side of the organic EL display element.
  • a polarizer having a thickness of 23 ⁇ m in which iodine was adsorbed and oriented on a polyvinyl alcohol film.
  • the stretching was mainly carried out in the steps of iodine staining and boric acid treatment, and the total stretching ratio was 5.5 times.
  • curable composition (adhesive aqueous solution) was prepared by mixing the components shown in Table 1 with pure water as an aqueous solvent in the blending amount shown in Table 1.
  • the unit of the blending amount of each component shown in Table 1 is a mass part, and the blending amount of each component is the amount in terms of solid content.
  • the concentration of the aqueous resin (A) in the obtained curable composition was 5.0% by mass.
  • a triacetyl cellulose (TAC) film [trade name "KC4UAW” manufactured by Konica Minolta Opto Co., Ltd., thickness: 40 ⁇ m] is saponified on one side and then on the saponified surface.
  • the curable composition prepared in (1) above is coated with a bar coater, and a zero retardation film made of a cyclic polyolefin resin [trade name "ZEONOR” manufactured by Nippon Zeon Co., Ltd., thickness: 23 ⁇ m] is used.
  • One surface was corona-treated, and the curable composition prepared in (1) above was coated on the corona-treated surface using a bar coater.
  • a saponified TAC film is laminated on one surface of the polarizer and a corona-treated zero retardation film is laminated on the other surface so that the curable composition layer is on the polarizer side, so that the zero retardation is achieved.
  • a laminate having a layer structure of a film / curable composition layer / polarizer / curable composition layer / TAC film was obtained.
  • a polarizing plate having a layer structure of zero retardation film / cured product layer / polarizer / cured product layer / TAC film can be obtained.
  • the thickness of the cured product layer in the produced polarizing plate was 20 to 60 nm per layer.
  • the layer structure of the measurement sample is a glass substrate / (meth) acrylic pressure-sensitive adhesive layer / zero retardation film / cured product layer / polarizer / cured product layer / TAC film.
  • a non-alkali glass substrate [trade name "Eagle XG" manufactured by Corning Inc.] was used as the glass substrate.
  • the obtained measurement sample was measured for MD transmittance and TD transmittance in the wavelength range of 380 to 780 nm using a spectrophotometer with an integrating sphere [product name "V7100" manufactured by JASCO Corporation], and each wavelength was measured.
  • the degree of polarization in was calculated.
  • the calculated degree of polarization is corrected for luminosity factor by the 2 degree field (C light source) of JIS Z 8701: 1999 "Color display method-XYZ color system and X10Y10Z10 color system”, and the luminosity factor is corrected before the durability test.
  • the degree of polarization Py was determined.
  • the measurement sample was set in a spectrophotometer with an integrating sphere so that the TAC film side of the polarizing plate was the detector side and the light entered from the glass substrate side.
  • Tp ( ⁇ ) is the transmittance (%) of the measurement sample measured in relation to the linearly polarized light of the incident wavelength ⁇ (nm) and the parallel Nicol.
  • Tc ( ⁇ ) is the transmittance (%) of the measurement sample measured in relation to the linearly polarized light of the incident wavelength ⁇ (nm) and the cross Nicol.
  • this measurement sample was placed in a high temperature and high humidity environment with a temperature of 85 ° C. and a relative humidity of 85% RH for 500 hours, and then subjected to a durability test in which the measurement sample was placed in an environment with a temperature of 23 ° C. and a relative humidity of 50% RH for 24 hours. ..
  • the luminosity factor correction polarization degree Py was determined by the same method as before the durability test.
  • ) of the difference between the luminosity factor correction polarization Py after the durability test and the luminosity factor correction polarization Py before the durability test was calculated.
  • are shown in Table 1.
  • the obtained polarizing plate was bonded to a glass substrate on the zero retardation film side via a (meth) acrylic pressure-sensitive adhesive to prepare a polarizing plate with a pressure-sensitive adhesive layer.
  • a test piece having a width of 25 mm and a length of about 200 mm was cut from the obtained polarizing plate with an adhesive layer, and the pressure-sensitive adhesive layer surface was bonded to soda glass.
  • a cutter blade is inserted between the polarizer and the TAC film, and the peeled portion is peeled 30 mm from the end in the length direction, and the peeled portion is peeled off by a universal tensile tester [“AG-1” manufactured by Shimadzu Corporation]. I grabbed it with the grip.
  • test piece in this state is subjected to JIS K 6854-2: 1999 "Adhesive-Peeling Adhesive Strength Test Method-Part 2: 180 ° Peeling" in an atmosphere at a temperature of 23 ° C. and a relative humidity of 55%.
  • a 180-degree peeling test was performed at a gripping movement speed of 300 mm / min, and adhesion over a length of 170 mm excluding 30 mm of the gripped portion was determined. The results are shown in Table 1.
  • thermoplastic resin film 10 1st thermoplastic resin film, 15 1st cured product layer, 20 2nd thermoplastic resin film, 25 2nd cured product layer, 30 optical layer, 40 adhesive layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、硬化性組成物の硬化物から構成される硬化物層を含み、高温高湿環境下における光学耐久性が良好な光学積層体を与えることができる硬化性組成物を提供する。 本発明の硬化性組成物は、水系樹脂とシラノール基を有するシラン化合物とを少なくとも含む。本発明の光学積層体は、光学層と硬化性組成物の硬化物から構成される第1硬化物層とを含む。

Description

硬化性組成物、硬化物層、光学積層体、及び画像表示装置
 本発明は、硬化性組成物に関する。また、本発明は、この硬化性組成物の硬化物から構成される硬化物層、該硬化物層を含む光学積層体、及び、該光学積層体を含む画像表示装置に関する。
 近年、液晶表示装置は、スマートフォンやタブレット型端末に代表されるモバイル機器用途やカーナビゲーションシステムに代表される車載用機器用途に展開されている。このような用途においては、従来の屋内用TV用途に比べて苛酷な環境にさらされる可能性があることから、装置の耐久性向上が課題となっている。
 液晶表示装置等を構成する光学フィルムにおいても同様に耐久性が求められている。すなわち、液晶表示装置等に組み込まれた光学フィルムは、高温又は高温高湿環境下に置かれたり、高温と低温とが繰り返される環境下に置かれたりすることがあるが、これらの環境下においても、光学特性が劣化しないことが求められる。
 光学フィルムとしては、偏光子の片面又は両面に、接着剤を用いて保護フィルムを貼合した偏光板が挙げられる(特許文献1等)。
特開2017-82026号公報
 本発明の目的は、硬化性組成物の硬化物から構成される硬化物層を含み、高温高湿環境下における光学耐久性が良好な光学積層体を与えることができる硬化性組成物を提供することにある。
 本発明の他の目的は、硬化性組成物の硬化物から構成される硬化物層を含み、高温高湿環境下における光学耐久性が良好な光学積層体、及びこれを含む画像表示装置を提供することにある。
 本発明は、以下に示す硬化性組成物、硬化物層、光学積層体、及び画像表示装置を提供する。
 〔1〕 水系樹脂とシラノール基を有するシラン化合物とを少なくとも含む、硬化性組成物。
 〔2〕 前記シラン化合物は、さらに、置換基を有していてもよいアミノ基、カルボキシル基、エポキシ基、アセトアセチル基、ヒドロキシアルキル基、メルカプト基、オキシアルキレン基、及びアルケニル基からなる群より選択される1以上の官能基を有する、〔1〕に記載の硬化性組成物。
 〔3〕 前記シラン化合物は、さらに、置換基を有していてもよいアミノ基及びカルボキシル基のうちの少なくとも一方の官能基を有する、〔1〕又は〔2〕に記載の硬化性組成物。
 〔4〕 前記シラン化合物は、さらにSi-O-Si結合を含み、
 前記シラン化合物の構造中に前記官能基を有する、〔2〕又は〔3〕に記載の硬化性組成物。
 〔5〕 前記水系樹脂は、水酸基含有樹脂及び(メタ)アクリル系樹脂のうちの少なくとも一方を含む、〔1〕~〔4〕のいずれかに記載の硬化性組成物。
 〔6〕 前記水酸基含有樹脂は、ポリビニルアルコール系樹脂及びポリビニルアセタール系樹脂のうちの少なくとも一方を含む、〔5〕に記載の硬化性組成物。
 〔7〕 〔1〕~〔6〕のいずれかに記載の硬化性組成物を硬化させてなる、硬化物層。
 〔8〕 光学層及び第1硬化物層を含み、
 前記第1硬化物層は、〔7〕に記載の硬化物層である、光学積層体。
 〔9〕 さらに、第1熱可塑性樹脂フィルムを含み、
 前記光学層、前記第1硬化物層、及び前記第1熱可塑性樹脂フィルムがこの順に積層されている、〔8〕に記載の光学積層体。
 〔10〕 さらに、第2硬化物層及び第2熱可塑性樹脂フィルムを含み、
 前記光学層の前記第1硬化物層側とは反対側に、前記第2硬化物層及び前記第2熱可塑性樹脂フィルムがこの順に積層されている、〔8〕又は〔9〕に記載の光学積層体。
 〔11〕 前記第2硬化物層は、〔7〕に記載の硬化物層である、〔10〕に記載の光学積層体。
 〔12〕 前記光学層は、偏光子である、〔8〕~〔11〕のいずれかに記載の光学積層体。
 〔13〕 〔8〕~〔12〕のいずれかに記載の光学積層体、及び、画像表示素子を含む、画像表示装置。
 硬化性組成物の硬化物から構成される硬化物層を含み、高温高湿環境下における光学耐久性が良好な光学積層体を与えることができる硬化性組成物を提供することができる。
 硬化性組成物の硬化物から構成される硬化物層を含み、高温高湿環境下における光学耐久性が良好な光学積層体、及びこれを含む画像表示装置を提供することができる。
本発明に係る光学積層体の一例を示す概略断面図である。 本発明に係る光学積層体の層構成の他の一例を示す概略断面図である。 本発明に係る光学積層体の層構成の他の一例を示す概略断面図である。 本発明に係る光学積層体の層構成の他の一例を示す概略断面図である。 本発明に係る光学積層体の層構成の他の一例を示す概略断面図である。 本発明に係る光学積層体の層構成の他の一例を示す概略断面図である。
 <硬化性組成物>
 本発明に係る硬化性組成物は、水系樹脂と、シラノール基を有するシラン化合物とを少なくとも含む。以下、本発明に係る硬化性組成物を「硬化性組成物(S)」、上記の水系樹脂を「水系樹脂(A)」、シラノール基を有するシラン化合物を「シラン化合物(B)」ということがある。
 硬化性組成物(S)は、基材上に塗膜(コーティング層)を形成するための塗工液として用いることができる。例えば、硬化性組成物(S)を基材上に塗工し、塗工層を硬化させることによって塗膜を形成することができる。基材は、好ましくは光学層である。光学層については後述する。この場合、光学積層体は、光学層と、硬化性組成物(S)の硬化物から構成される第1硬化物層とを含む。
 硬化性組成物(S)は、接着剤組成物として用いることもできる。1つの実施形態において硬化性組成物(S)は、光学層と第1熱可塑性樹脂フィルムとを貼合するための接着剤組成物である。この場合、光学積層体は、光学層と、硬化性組成物(S)の硬化物から構成される第1硬化物層(接着剤層)と、第1熱可塑性樹脂フィルムとをこの順に含む。
この光学積層体は、光学層及び第1熱可塑性樹脂フィルムの少なくともいずれか一方の貼合面に硬化性組成物(S)を塗工し、塗工層を介して光学層と第1熱可塑性樹脂フィルムとを積層させて積層体を得た後、塗工層を硬化させることによって作製することができる。
 硬化性組成物(S)は、水系樹脂(A)を含む水系組成物である。水系組成物とは、水を含む溶媒に配合成分を溶解させた溶液であるか、水を含む溶媒に配合成分を分散させた分散体(例えばエマルション)である。
 硬化性組成物(S)の25℃における粘度は、50mPa・sec以下であることが好ましく、1mPa・sec以上30mPa・sec以下であることがより好ましく、2mPa・sec以上20mPa・sec以下であることがさらに好ましい。25℃における粘度が50mPa・secを超えると、均一に塗工することが難しくなって塗工ムラを生じる可能性があり、また、配管の目詰まり等の不具合が発生する可能性がある。
 硬化性組成物(S)の25℃における粘度は、E型粘度計によって測定することができる。
 〔1〕水系樹脂(A)
 水系樹脂(A)は、水系溶媒に溶解可能な水溶性樹脂、及び、水系溶媒に分散可能な水分散性樹脂のうちの少なくとも一方を含む。本明細書において、水系溶媒とは、水又は水を主成分とする溶媒をいい、水を主成分とするとは、溶媒をなす成分の合計質量の50質量%以上が水であることをいう。水系溶媒のうち水以外の溶媒としては、水との共存下で容易に層分離しない溶媒であれば特に限定されないが、水に溶解する溶媒であることが好ましく、例えば、メタノールやエタノール、イソプロピルアルコール、n-プロピルアルコール等のアルコール類;アセトンやメチルエチルケトン等のケトン類;エチレングリコール、ジエチレングリコール等のグリコール類;N-メチルピロリドン(NMP)、テトラヒドロフラン、ブチルセロソルブ等のグリコールエーテル類等が挙げられる。
 水溶性樹脂としては、水系溶媒に溶解可能な樹脂であれば特に限定されない。また、水分散性樹脂としては、水系溶媒に分散可能な樹脂であれば特に限定されない。水溶性樹脂又は水分散性樹脂としては、例えば、(メタ)アクリル系樹脂;ポリビニルアルコール系樹脂;ポリビニルアセタール系樹脂;エチレン-ビニルアルコール共重合体系樹脂;ポリビニルピロリドン系樹脂;ポリアミドアミン系樹脂;エポキシ系樹脂;メラミン系樹脂;ユリア系樹脂;ポリアミド系樹脂;ポリエステル系樹脂;ポリウレタン系樹脂;メチルセルロース、ヒドロエチルセルロース、カルボキシメチルセルロース等のセルロース系樹脂;アルギン酸ナトリウム、デンプン等の多糖類等が挙げられる。これらのうち、(メタ)アクリル系樹脂;ポリビニルアルコール系樹脂やポリビニルアセタール系樹脂等の水酸基含有樹脂が好ましく、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール系樹脂がより好ましい。本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルからなる群より選択される少なくとも1種を表す。「(メタ)アクリロイル」及び「(メタ)アクリレート」等の表記についても同様である。
 硬化性組成物(S)は、上記した水系樹脂(A)のうち1種又は2種以上を含んでいてもよい。
 水系樹脂の含有量は、硬化性組成物(S)の固形分濃度を100質量%とするとき、好ましくは30質量%以上95質量%以下、より好ましくは35質量%以上90質量%以下、さらに好ましくは40質量%以上85質量%以下である。水系樹脂の含有量を上記の範囲内にすることは、光学積層体の高温高湿環境下における光学耐久性の向上、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性の観点から好ましい。
 固形分濃度とは、硬化性組成物(S)に含まれる溶剤以外の成分の合計濃度をいう。
 〔1-1〕(メタ)アクリル系樹脂
 (メタ)アクリル系樹脂は、分子内に1個以上の(メタ)アクリロイル基を有する化合物を主な単量体とし、これを用いて得られる重合体又は共重合体である。(メタ)アクリル系樹脂は、水溶性であっても水分散性であってもよい。(メタ)アクリル系樹脂は、その全構造単位100質量%に対して、分子内に1個以上の(メタ)アクリロイル基を有する化合物に由来する構造単位を、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上含む重合体又は共重合体である。
 分子内に1個以上の(メタ)アクリロイル基を有する化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレート、(メタ)アクリルアミド等を挙げることができる。
 また、分子内に1個以上の(メタ)アクリロイル基を有する化合物と共重合可能な他の単量体としては、スチレン、スチレンスルホン酸、酢酸ビニル、プロピオン酸ビニル、N-ビニル-2-ピロリドン等のビニル化合物を代表例とする、分子内にエチレン性不飽和結合を1個以上有する化合物を挙げることができる。
 (メタ)アクリル系樹脂としては、分子内にオキサゾリル基を有する(メタ)アクリル系樹脂(以下、「オキサゾリル基含有(メタ)アクリル系樹脂」ということがある。)であることが好ましく、側鎖にオキサゾリル基を有する(メタ)アクリル系樹脂であることがより好ましい。
 水系樹脂(A)としてオキサゾリル基含有(メタ)アクリル系樹脂を用いることにより、光学積層体の高温高湿環境下における光学耐久性や、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性を向上させやすい。
 オキサゾリル基含有(メタ)アクリル系樹脂は、水溶性であっても水分散性であってもよいが、硬化性組成物(S)の硬化物から構成される硬化物層の光学特性の観点から、水溶性の重合体であることが好ましい。
 オキサゾリル基含有(メタ)アクリル系樹脂は、側鎖にオキサゾリル基を有する構成単位(オキサゾリル基含有モノマー由来の構成単位)と、オキサゾリル基を有しない構成単位とを含むものであってもよい。
 オキサゾリル基含有(メタ)アクリル系樹脂の好ましい一例は、構成単位の主成分として(メタ)アクリル骨格からなる骨格構造を含み、共重合成分として側鎖にオキサゾリル基を有する構成単位(オキサゾリル基含有モノマー由来の構成単位)を導入したものを挙げることができる。
 オキサゾリル基含有(メタ)アクリル系樹脂は、オキサゾリル基含有モノマーを共重合したもののほか、重合体の側鎖官能基を変性することでオキサゾリル基を含有させたものであってもよい。
 オキサゾリル基としては、例えば、2-オキサゾリル基、3-オキサゾリル基、4-オキサゾリル基等が挙げられる。オキサゾリル基は、好ましくは2-オキサゾリル基等である。
 上記オキサゾリル基含有モノマーとしては、2-イソプロぺニル-2-オキサゾリン、ビニル-2-オキサゾリン等が挙げられる。
 オキサゾリル基含有(メタ)アクリル系樹脂の重量平均分子量は、好ましくは5000以上であり、より好ましくは10000以上である。重量平均分子量が上記範囲であることは、光学積層体の高温高湿環境下における光学耐久性の向上、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性の観点から有利となり得る。
 オキサゾリル基含有(メタ)アクリル系樹脂の重量平均分子量は、通常1000000以下である。
 オキサゾリル基含有(メタ)アクリル系樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)による標準ポリスチレン換算値として測定することができる。
 オキサゾリル基含有(メタ)アクリル系樹脂のオキサゾリル基量(オキサゾリル基含有(メタ)アクリル系樹脂の固形分1gあたりのオキサゾリル基のモル数)は、好ましくは0.4mmol/g・solid以上である。オキサゾリル基量が上記の範囲より小さいと、光学積層体の高温高湿環境下における光学耐久性に不利となり得る。該観点から、オキサゾリル基含有重合体のオキサゾリル基量は、より好ましくは3mmol/g・solid以上、さらに好ましくは5mmol/g・solid以上9mmol/g・solid以下である。
 オキサゾリル基量の上限は特に制限されないが、通常は50mmol/g・solid以下である。
 オキサゾリル基含有(メタ)アクリル系樹脂として市販品を用いてもよい。具体的には、株式会社日本触媒製 エポクロスWS-300、エポクロスWS-500、エポクロスWS-700(いずれも商品名)等のオキサゾリル基含有アクリルポリマー;株式会社日本触媒製 エポクロスK-1000シリーズ、エポクロスK-2000シリーズ、エポクロスRPSシリーズ(いずれも商品名)等のオキサゾリル基含有アクリル/スチレンポリマーが挙げられる。
 オキサゾリル基含有(メタ)アクリル系樹脂は、2種以上を併用して使用することができる。
 光学積層体の高温高湿環境下における光学耐久性や光学特性、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性、並びに第1硬化物層の耐水性の観点から、オキサゾリル基含有(メタ)アクリル系樹脂は、エポクロスWS-300、エポクロスWS-500、エポクロスWS-700等のオキサゾリル基含有アクリルポリマーであることが好ましい。
 〔1-2〕ポリビニルアルコール系樹脂
 ポリビニルアルコール系樹脂を水系樹脂(A)として用いることにより、光学積層体の高温高湿環境下における光学耐久性や、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性を向上させやすい。
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得ることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体等が例示される。酢酸ビニルに共重合される他の単量体としては、例えば、不飽和カルボン酸類、不飽和スルホン酸類、オレフィン類、ビニルエーテル類、アンモニウム基を有するアクリルアミド類等が挙げられる。
 硬化性組成物(S)に用いるポリビニルアルコール系樹脂は、適度の重合度を有していることが好ましく、例えば、4重量%濃度の水溶液としたときに、粘度が4~50mPa・secの範囲内にあることが好ましく、さらには6~30mPa・secの範囲内にあることがより好ましい。
 ポリビニルアルコール系樹脂のケン化度は、特に制限されないが、一般には70モル%以上であることが好ましく、さらには80モル%以上であることがより好ましい。ポリビニルアルコール系樹脂のケン化度が低いと、硬化性組成物(S)の硬化物から構成される硬化物層の耐水性、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性が不十分になりやすい傾向にある。
 硬化性組成物(S)に用いるポリビニルアルコール系樹脂は、変性されたものであることが好ましい。このような変性ポリビニルアルコール系樹脂としては、アセトアセチル基変性されたポリビニルアルコール系樹脂、カルボン酸変性されたポリビニルアルコール系樹脂、カルボニル基変性されたポリビニルアルコール系樹脂、スルホン酸変性されたポリビニルアルコール系樹脂、ヒドラジド基変性されたポリビニルアルコール系樹脂、チオール基変性されたポリビニルアルコール系樹脂、アルキル基変性されたポリビニルアルコール系樹脂、シリル基変性されたポリビニルアルコール系樹脂、ポリエチレングリコール基変性されたポリビニルアルコール系樹脂、エチレンオキシド基変性されたポリビニルアルコール系樹脂、ウレタン結合を有する基で変性されたポリビニルアルコール系樹脂、リン酸エステル基変性されたポリビニルアルコール系樹脂が挙げられる。このような変性されたポリビニルアルコール系樹脂を用いた場合には、硬化性組成物(S)の硬化物から構成される硬化物層の耐水性、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性が向上するため好ましい。
 アセトアセチル基変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、アセトアセチル基(CHCOCHCO-)を有するものであり、その他の基、例えばアセチル基等を有していてもよい。このアセトアセチル基は、典型的には水酸基の水素原子が置換された状態で存在する。アセトアセチル基変性されたポリビニルアルコール系樹脂は、例えば、ポリビニルアルコールをジケテンと反応させる方法により、製造することができる。アセトアセチル基変性されたポリビニルアルコール系樹脂は、反応性の高い官能基であるアセトアセチル基を有することから、硬化性組成物(S)の硬化物から構成される硬化物層の耐久性を向上させるうえで好ましい。
 アセトアセチル基変性されたポリビニルアルコール系樹脂におけるアセトアセチル基の含有量は、0.1モル%以上であれば特に制限はない。ここでいうアセトアセチル基の含有量とは、ポリビニルアルコール系樹脂における水酸基、アセトアセチル基、及びその他のエステル基(アセチル基等)の合計量に対するアセトアセチル基のモル分率を%で表示した値であり、以下「アセトアセチル化度」と呼ぶことがある。ポリビニルアルコール系樹脂におけるアセトアセチル化度が 0.1モル%を下回ると、硬化性組成物(S)の硬化物から構成される硬化物層の耐水性を向上させる効果が必ずしも十分でなくなる。ポリビニルアルコール系樹脂におけるアセトアセチル化度は、 0.1~40モル%程度、さらには1~20モル%、とりわけ2~7モル%であることが好ましい。アセトアセチル化度が40モル%を超えると、耐水性の向上効果が小さくなる。
 アセトアセチル基変性されたポリビニルアルコール系樹脂としては、市販品を用いてもよい。具体的には、日本合成化学工業(株)から販売されている“ゴーセファイマーZ”シリーズ等が挙げられる。
 カルボン酸変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、カルボキシ基(-COOH)を有するものである。カルボン酸変性されたポリビニルアルコール系樹脂は、カルボキシ基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 カルボン酸変性されたポリビニルアルコール系樹脂は、市販品を用いてもよく、具体的には、(株)クラレ製の“KL-318”、“KM-118”、三菱ケミカル(株)の“ゴーセナール T-330”及び“ゴーセナール T-215”、日本酢ビ・ポバール(株)の“A-ポリマー”シリーズ等が挙げられる。
 カルボニル基変性されたポリビニルアルコール系樹脂とは、ポリビニルアルコール骨格を構成する水酸基のほかに、カルボニル基を含む基を有するものである。カルボニル基を含む基としては、-CORで表される基であれば特に限定されず、例えばアミド基、アシル基、アルデヒド基等が挙げられる。カルボニル基変性された変性されたポリビニルアルコール系樹脂は、カルボニル基を含む基(例えば、アミド基、アシル基、アルデヒド基等)を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 カルボニル基を変性されたポリビニルアルコール系樹脂としては、具体的には、日本酢ビ・ポバール(株)の“Dポリマー”シリーズ等が挙げられる。また、特開平8-151412号公報に記載の樹脂、特開平9-324095号公報に記載の樹脂等が挙げられる。
 スルホン酸変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、スルホ基(-SOOH)を有するものである。スルホン酸変性されたポリビニルアルコール系樹脂は、スルホ基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 スルホン酸変性されたポリビニルアルコール系樹脂は、市販品を用いてもよく、三菱ケミカル(株)の“L-3266”、日本酢ビ・ポバール(株)の“AS-ポリマー”シリーズ等が挙げられる。
 アルキル基変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、アルキル基を有するものである。アルキル基変性されたポリビニルアルコール系樹脂は、アルキル基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 アルキル基変性されたポリビニルアルコール系樹脂は、市販品を用いてもよく、日本酢ビ・ポバール(株)の“Z-ポリマー”シリーズ等が挙げられる。
 シリル基変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、シリル基を有するものである。シリル基変性されたポリビニルアルコール系樹脂は、シリル基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 シリル基変性されたポリビニルアルコール系樹脂は、例えば、国際公開第2014/112625号記載のシリル基変性されたポリビニルアルコール系樹脂が挙げられる。また、市販品を用いてもよく、(株)クラレの“R-1130”、“R-2105”、“R-2130”等が挙げられる。
 ポリエチレングリコール基変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、ポリエチレングリコール基を有するものである。
ポリエチレングリコール基変性されたポリビニルアルコール系樹脂は、ポリエチレングリコール基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 ポリエチレングリコール基変性されたポリビニルアルコール系樹脂は、市販品を用いてもよく、日本酢ビ・ポバール(株)の“Eポリマー”シリーズ等が挙げられる。
 エチレンオキシド基変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、エチレンオキシド基(つまりはエポキシ基)を有するものである。ポリエチレングリコール基変性されたポリビニルアルコール系樹脂は、エチレンオキシド基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 ヒドラジド基変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、ヒドラジド基(-CONR’NR’’)を有するものである。
ここで、R’及びR’’は、それぞれ独立して、水素原子又は炭化水素基を表す。ヒドラジド基変性されたポリビニルアルコール系樹脂は、ヒドラジド基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 リン酸エステル基変性されたポリビニルアルコール系樹脂は、ポリビニルアルコール骨格を構成する水酸基のほかに、リン酸エステル基(-O-PO-(OR))を有するものである。ここで、Rは、それぞれ独立して、水素原子又は炭化水素基を表す。ヒリン酸エステル基変性されたポリビニルアルコール系樹脂は、リン酸エステル基を有する不飽和単量体と酢酸ビニルに共重合させ、次いでケン化する方法により製造することができる。
 ウレタン結合を有する基で変性されたポリビニルアルコール系樹脂とは、ポリビニルアルコール骨格を構成する水酸基のほかに、ウレタン結合を有する基(-CONHRで表される基)を有するものである。
 ポリビニルアルコール系樹脂は、上述した変性ポリビニルアルコール系樹脂を2種以上含むものであってもよく、また、未変性のポリビニルアルコール系樹脂(具体的には、ポリ酢酸ビニルの完全又は部分ケン化物)及び上述した変性ポリビニルアルコール系樹脂の両方を含むものであってもよい。
 ポリビニルアルコール系樹脂として市販品を用いてもよい。具体的には、例えば、高いケン化度を有するポリビニルアルコールであって、(株)クラレから販売されている“PVA-117H”や、日本合成化学工業(株)から販売されている“ゴーセノール NH-20”、アセトアセチル基変性されたポリビニルアルコールであって、日本合成化学工業(株)から販売されている“ゴーセファイマーZ”シリーズ、アニオン変性されたポリビニルアルコールであって、(株)クラレから販売されている“KL-318”及び“KM-118”や、日本合成化学工業(株)から販売されている“ゴーセナール T-330”、カチオン変性されたポリビニルアルコールであって、(株)クラレから販売されている“CM-318”や、日本合成化学工業(株)から販売されている“ゴーセファイマー K-210”等を挙げることができる。
 〔1-3〕ポリビニルアセタール系樹脂
 ポリビニルアセタール系樹脂を水系樹脂(A)として用いることにより、光学積層体の高温高湿環境下における光学耐久性や、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性を向上させやすい。
 ポリビニルアセタール系樹脂は、ポリビニルアルコール系樹脂を、アルデヒド及びケトンのうちの少なくとも一方によりアセタール化することによって得ることができる。ポリビニルアセタール系樹脂は、1種のみを用いてもよく、2種以上を併用して用いてもよい。
 ポリビニルアセタール系樹脂を得るために用いるポリビニルアルコール系樹脂のケン化度は特に限定されないが、通常70モル%以上であり、好ましくは75モル%以上であり、より好ましくは80モル%以上であり、また、通常99.9モル%以下であり、99.8モル%以下であってもよい。
 ポリビニルアセタール系樹脂を得るために用いるアルデヒドは、特に限定されないが、炭素数1~10の鎖状脂肪族基、環状脂肪族基又は芳香族基を有するアルデヒドが挙げられる。これらのアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、n-ヘキシルアルデヒド、2-エチルブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ヘプチルアルデヒド、n-オクテルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド、アミルアルデヒド等の脂肪族アルデヒド;ベンズアルデヒド、シンナムアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等の芳香族アルデヒド等が挙げられる。これらのアルデヒドは、1種又は2種以上を組み合わせて用いることができる。これらアルデヒドのうち、アセタール化反応性に優れるブチルアルデヒド、2-エチルヘキシルアルデヒド、n-ノニルアルデヒドが好ましく、ブチルアルデヒドがより好ましい。
 ポリビニルアセタール系樹脂を得るために用いるケトンは、特に限定されないが、アセトン、エチルメチルケトン、ジエチルケトン、t-ブチルケトン、ジプロピルケトン、アリルエチルケトン、アセトフェノン、p-メチルアセトフェノン、4’-アミノアセトフェノン、p-クロロアセトフェノン、4’-メトキシアセトフェノン、2’-ヒドロキシアセトフェノン、3’-ニトロアセトフェノン、P-(1-ピペリジノ)アセトフェノン、ベンザルアセトフェノン、プロピオフェノン、ベンゾフェノン、4-ニトロベンゾフェノン、2-メチルベンゾフェノン、p-ブロモベンゾフェノン、シクロヘキシル(フェニル)メタノン、2-ブチロナフトン、1-アセトナフトン、2-ヒドロキシ-1-アセトナフトン、8’-ヒドロキシ-1’-ベンゾナフトン等が挙げられる。
 アルデヒド及びケトンの添加量としては、目的とするポリビニルアセタール系樹脂のアセタール化度に応じて適宜設定することができる。例えば、ポリビニルアルコール系樹脂100モル%に対して、アルデヒド及びケトンの合計量が60~95モル%、好ましくは70~90モル%とすることができる。
 ポリビニルアセタール系樹脂の水酸基量は、30モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であってもよく、また、90モル%以下であることが好ましく、85モル%以下であることがより好ましい。ポリビニルアセタール系樹脂の水酸基量は、主鎖の全エチレン基量に対する、水酸基が結合しているエチレン基量の割合(モル%)であり、水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法によって算出することができる。
 ポリビニルアセタール系樹脂のアセチル基量は特に限定されないが、0.0001モル%以上であることが好ましく、0.001モル%以上であることがより好ましく、0.01モル%以上であってもよく、また、5モル%以下であることが好ましく、3モル%以下であることがより好ましく、2モル%以下であってもよい。ポリビニルアセタール系樹脂のアセチル基量は、主鎖の全エチレン基量に対する、主鎖の全エチレン基量から、アセタール基が結合しているエチレン基量と水酸基が結合しているエチレン基量との合計エチレン基量を差し引いたエチレン基量の割合(モル%)である。アセタール基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法によって算出することができる。
 〔2〕シラノール基を有するシラン化合物(B)
 シラン化合物(B)は、シラノール基(-SiOH)を有する化合物である。硬化性組成物(S)は、シラン化合物(B)を1種又は2種以上を含んでいてもよい。硬化性組成物(S)にシラン化合物(B)を添加することにより、光学積層体の高温高湿環境下における光学耐久性を向上することができる。
 シラン化合物(B)は、シラノール基を有するものであれば特に限定されない。また、シラノール基を有するシラン化合物同士が、縮合反応により2量体、3量体、3次元ネットワーク構造を形成したとしても、該形成体はシラノール基を含むものであれば、本明細書におけるシラン化合物(B)に含まれる。
 シラン化合物(B)は、シラノール基に加えて、置換基を有していてもよいアミノ基、カルボキシル基、エポキシ基、アセトアセチル基、ヒドロキシアルキル基、メルカプト基、オキシアルキレン基、及びアルケニル基からなる群より選択される1以上の官能基を有することが好ましい。このうち、シラン化合物(B)は、置換基を有していてもよいアミノ基及びカルボキシル基のうちの少なくとも一方の官能基を有することがより好ましく、カルボキシル基を有することがさらに好ましい。
 置換基を有していてもよいアミノ基としては、置換基を有していないアミノ基(-NH)、1つ又は2つの水素原子がアルキル基で置換されたアルキルアミノ基、1つ又は2つの水素原子がヒドロキシアルキル基で置換された(ヒドロキシアルキル)アミノ基(例えば、-N(CHHC(OH)CHOH)、アミノアルキルアミノ基(-NHCNH)等を挙げることができる。
 上記官能基としては、具体的には、-NH、-NHCNH、-COOH、-SH、-CH(OH)CHOH、-N(CHHC(OH)CHOH、-CHCH等を挙げることができる。
 シラン化合物(B)が上記官能基を2以上有する場合、官能基は互いに同じであってもよく、互いに異なっていてもよい。
 シラン化合物(B)が上記の官能基を有することにより、光学積層体の高温高湿環境下における光学耐久性や、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性を向上させやすい。
 シラン化合物(B)は、シラノール基及び上記した官能基に加えて、Si-O-Si結合を含むことが好ましい。シラノール基及び上記した官能基は、Si-O-Si結合を含むシラン化合物(B)の構造中であればどこに有していてもよいが、Si-O-Si結合を含むシラン化合物(B)の末端に、上記した官能基を有することが好ましい。
 シラン化合物(B)の含有量は、光学積層体の高温高湿環境下における光学耐久性を高める観点から、水系樹脂(A)100質量部に対して、通常0.5質量部以上であり、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、また、通常200質量部以下であり、180質量部以下であることが好ましく、150質量部以下であることがより好ましい。
 硬化性組成物(S)におけるシラン化合物(B)の含有量を上記の範囲とすることにより、高温高湿環境下における光学積層体の光学耐久性を向上させつつ、光学積層体における光学層と第1硬化物層との間、及び、第1硬化物層と第1熱可塑性樹脂フィルムとの間で、良好な密着性を得ることができる。
 ただし、シラン化合物(B)の含有量が過度に少ないと、高温高湿環境下における光学積層体の光学耐久性が得られにくい。また、シラン化合物(B)の含有量が過度に多いと、高温高湿環境下における光学積層体の光学耐久性が低下しやすい傾向にある。
 〔3〕その他の成分
 硬化性組成物(S)は、水系樹脂(A)及びシラン化合物(B)以外のその他の成分を含むことができる。
 その他の成分としては、グリオキザール、グリオキザール誘導体等の多価アルデヒド、メラミン系化合物、アジリジン化合物、水溶性エポキシ樹脂、ジルコニウム化合物、亜鉛化合物、チタン化合物、アルミニウム化合物等の金属化合物等の硬化性成分や架橋剤;カルボキシル基変性ポリビニルアルコール系重合体以外の変性ポリビニルアルコール系重合体;カップリング剤、粘着付与剤、酸化防止剤、紫外線吸収剤、熱安定剤、加水分解防止剤等の添加剤;水系溶媒;後述する化合物(C)等が挙げられる。
 硬化性組成物(S)は、その他の成分を1種又は2種以上含むことができる。
 〔3-1〕水系溶媒
 硬化性組成物(S)は、水系樹脂(A)を溶解又は分散させるための水系溶媒を含むことが好ましい。水系溶媒については、上記で例示したものを用いることができる。水系溶媒としては、水系溶媒の合計質量の80質量%以上が水であるものが好ましく、90質量%以上が水であるものがより好ましく、95質量%以上が水であるものがさらに好ましく、水のみを含むものであってもよい。
 硬化性組成物(S)の固形分濃度は、通常0.5質量%以上20質量%以下であり、好ましくは1質量%以上15質量%以下である。
 〔3-2〕化合物(C)
 水系樹脂(A)がオキサゾリル基含有(メタ)アクリル系樹脂を含み、シラン化合物(B)が上記した官能基を有する場合、オキサゾリル基含有(メタ)アクリル系樹脂のオキサゾリル基と、シラン化合物(B)の上記した官能基との反応を促進させる化合物(以下、「化合物(C)」ということがある。)を含むことが好ましい。ここでいう促進には、該反応を開始させる場合も含まれる。
 硬化性組成物(S)は、1種の化合物(C)を含んでいてもよいし、2種以上の化合物(C)を含んでいてもよい。
 化合物(C)は、化合物(C)を含む溶液(例えば水溶液)として硬化性組成物(S)に配合されてもよい。
 化合物(C)の好適な例としては、酸化合物が挙げられる。酸化合物は、オキサゾリル基含有(メタ)アクリル系樹脂のオキサゾリル基と、シラン化合物(B)の上記した官能基との反応の触媒として機能する化合物であってもよい。
 上記酸化合物としては、硫酸、塩化水素、硝酸、リン酸、亜リン酸、ホウ酸等の無機酸;p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、メタンスルホン酸、ベンゼンスルホン酸、フェニルリン酸、スルファニル酸、フェニルホスホン酸、酢酸、プロピオン酸等の有機酸が挙げられる。
 中でも、酸化合物は、光学積層体の高温高湿環境下における光学耐久性、光学積層体における光学層と第1硬化物層との間の密着性、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性を高める観点から、比較的強い酸であることが好ましく、このような酸化合物として、硫酸、塩化水素(塩酸)、硝酸、p-トルエンスルホン酸等が挙げられる。
 酸化合物として上記のような強酸を用いると、とりわけ光学積層体における光学層と第1硬化物層との間の密着性や、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性を向上させやすい傾向にある。
 酸化合物の含有量は、オキサゾリル基含有(メタ)アクリル系樹脂100質量部に対して、好ましくは5質量部以上80質量部以下であり、より好ましくは10質量部以上70質量部以下であり、さらに好ましくは15質量部以上60質量部以下である。
 酸化合物の含有量が過度に少ないと、光学積層体における光学層と第1硬化物層との間、及び、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性の少なくともいずれかが得られにくい。また、酸化合物の含有量が過度に多いと、光学積層体における光学層と第1硬化物層との間、及び、第1硬化物層と第1熱可塑性樹脂フィルムとの間の密着性の少なくともいずれかが低下しやすい傾向にある。
 <光学積層体>
 本発明に係る光学積層体は、光学層と、その少なくとも一方の面に積層される第1硬化物層(硬化性組成物(S)の硬化物から構成される硬化物層)とを含む。
 本発明によれば、光学積層体に含まれる硬化物層が硬化性組成物(S)の硬化物から構成されているので、光学積層体の高温高湿環境下における光学耐久性を良好なものとすることができる。
 〔1〕光学積層体の構成
 光学積層体の層構成の例を図1~図5に示す。
 図1に示される光学積層体は、光学層30と、その一方の面に積層される第1硬化物層15とを含む。第1硬化物層15は、光学層30の表面を被覆して保護するオーバーコート層、光学層30に追加的に光学機能を付与する光学機能層等として機能することができる。
 光学層30と第1硬化物層15とは直接接していることが好ましい。
 図2に示される光学積層体は、光学層30と、その一方の面に第1硬化物層15を介して積層貼合される第1熱可塑性樹脂フィルム10とを含む。第1硬化物層15は、光学層30と第1熱可塑性樹脂フィルム10とを接着する接着剤層として機能することができる。
 第1硬化物層15と第1熱可塑性樹脂フィルム10とは直接接していることが好ましい。
 光学層30と第1硬化物層15とは直接接していることが好ましい。
 図3に示される光学積層体は、光学層30と、その一方の面に第1硬化物層15を介して積層貼合される第1熱可塑性樹脂フィルム10と、光学層30の他方の面に第2硬化物層25を介して積層貼合される第2熱可塑性樹脂フィルム20とを含む。すなわち、本発明に係る光学積層体は、第2熱可塑性樹脂フィルム20と第2硬化物層25と光学層30と第1硬化物層15と第1熱可塑性樹脂フィルム10とをこの順に含むものであってもよい。第1硬化物層15及び第2硬化物層25はそれぞれ、光学層30と第1熱可塑性樹脂フィルム10とを接着する接着剤層、光学層30と第2熱可塑性樹脂フィルム20とを接着する接着剤層として機能することができる。
 第2硬化物層25と第2熱可塑性樹脂フィルム20とは直接接していることが好ましい。
 光学層30と第2硬化物層25とは直接接していることが好ましい。
 図4に示される光学積層体は、光学層30と、その一方の面に積層される第1硬化物層15と、光学層30の他方の面に第2硬化物層25を介して積層貼合される第2熱可塑性樹脂フィルム20とを含む。第1硬化物層15は、光学層30の表面を被覆して保護するオーバーコート層、光学層30に追加的に光学機能を付与する光学機能層等として機能することができる。第2硬化物層25は、光学層30と第2熱可塑性樹脂フィルム20とを接着する接着剤層として機能することができる。
 光学層30と第1硬化物層15とは直接接していることが好ましい。
 第2硬化物層25と第2熱可塑性樹脂フィルム20とは直接接していることが好ましい。
 光学層30と第2硬化物層25とは直接接していることが好ましい。
 図5に示される光学積層体は、光学層30と、その一方の面に積層される第1硬化物層15と、光学層30の他方の面に積層される第2硬化物層25とを含む。第1硬化物層15及び第2硬化物層25は、光学層30の表面を被覆して保護するオーバーコート層、光学層30に追加的に光学機能を付与する光学機能層等として機能することができる。
 光学層30と第1硬化物層15とは直接接していることが好ましい。
 光学層30と第2硬化物層25とは直接接していることが好ましい。
 光学層30は、液晶表示装置等の画像表示装置に組み込まれ得る各種の光学フィルム(光学特性を有するフィルム)であってよい。光学層30としては、例えば、偏光子、位相差フィルム、輝度向上フィルム、防眩フィルム、反射防止フィルム、拡散フィルム、集光フィルム等が挙げられる。
 光学積層体は、上記以外の他の層(又はフィルム)を含むことができる。他の層としては、例えば、第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20、第1硬化物層15、第2硬化物層25及び/又は光学層30の外面に積層される粘着剤層;該粘着剤層の外面に積層されるセパレートフィルム(「剥離フィルム」とも呼ばれる。);第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20、第1硬化物層15、第2硬化物層25及び/又は光学層30の外面に積層されるプロテクトフィルム(「表面保護フィルム」とも呼ばれる。);第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20、第1硬化物層15、第2硬化物層25及び/又は光学層30の外面に接着剤層や粘着剤層を介して積層される光学機能性フィルム(又は層)等が挙げられる。
 〔2〕偏光子
 偏光子は、自然光からある一方向の直線偏光を選択的に透過する機能を有する層又はフィルムである。
 偏光子としては、例えば、ポリビニルアルコール系樹脂フィルムに二色性色素を吸着・配向させたフィルムが挙げられる。二色性色素としては、ヨウ素、二色性有機染料等が挙げられる。
 また、偏光子は、リオトロビック液晶状態の二色性染料を基材フィルムにコーティングし、配向・固定化した塗布型偏光フィルムであってもよい。
 以上の偏光子は、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収するため吸収型偏光子と呼ばれている。
 偏光子は、吸収型偏光子に限定されず、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を反射する反射型偏光子、又はもう一方向の直線偏光を散乱する散乱型偏光子でも構わないが、視認性に優れる点から吸収型偏光子が好ましい。中でも、ポリビニルアルコール系樹脂フィルムで構成されるポリビニルアルコール系偏光フィルムがより好ましく、ポリビニルアルコール系樹脂フィルムにヨウ素や二色性染料等の二色性色素を吸着・配向させたポリビニルアルコール系偏光フィルムがさらに好ましく、ポリビニルアルコール系樹脂フィルムにヨウ素を吸着・配向させたポリビニルアルコール系偏光フィルムが特に好ましい。
 ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルに共重合可能な他の単量体としては、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、及びアンモニウム基を有する(メタ)アクリルアミド類等が挙げられる。
 ポリビニルアルコール系樹脂のケン化度は通常、85モル%以上100モル%以下であり、98モル%以上が好ましい。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール又はポリビニルアセタール等を用いることもできる。ポリビニルアルコール系樹脂の平均重合度は、通常1000以上10000以下であり、1500以上5000以下が好ましい。
 ポリビニルアルコール系樹脂の平均重合度は、JIS K 6726:1994に準拠して求めることができる。
 このようなポリビニルアルコール系樹脂を製膜したものが、ポリビニルアルコール系樹脂フィルムで構成された偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法が採用される。ポリビニルアルコール系原反フィルムの厚みは、例えば150μm以下であり、好ましくは100μm以下(例えば50μm以下)であり、5μm以上である。
 ポリビニルアルコール系樹脂フィルムで構成された偏光フィルムは、公知の方法によって製造できる。具体的には、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程;ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程;二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理(架橋処理)する工程;及び、ホウ酸水溶液による処理後に水洗する工程を含む方法によって製造できる。
 偏光子の厚みは、40μm以下とすることができ、好ましくは30μm以下(例えば20μm以下、さらには15μm以下、なおさらには10μm以下又は8μm以下)である。特開2000-338329号公報や特開2012-159778号公報に記載の方法によれば、薄膜の偏光子をより容易に製造することができ、偏光子の厚みを、例えば20μm以下、さらには15μm以下、なおさらには10μm以下又は8μm以下とすることがより容易になる。偏光子の厚みは、通常2μm以上である。偏光子の厚みを小さくすることは、光学積層体(偏光板)、及びこれを含む画像表示装置の薄型化に有利である。一般に、偏光子の厚みが薄いほど光学耐久性が劣る傾向にあるが、本発明の硬化性組成物を用いることで、そのような薄膜偏光板であっても良好な耐久性を有することができる。
 〔3〕位相差フィルム
 位相差フィルムとしては、透光性を有する熱可塑性樹脂を一軸延伸又は二軸延伸した延伸フィルム;ディスコティック液晶又はネマチック液晶等の液晶性化合物が配向固定されたフィルム;基材フィルム上に上記の液晶層が形成されたもの等が挙げられる。また、本明細書においては、ゼロレタデーションフィルムも位相差フィルムに含まれる。
 基材フィルムは通常、熱可塑性樹脂からなるフィルムであり、熱可塑性樹脂の一例は、トリアセチルセルロース等のセルロースエステル系樹脂である。
 透光性を有する熱可塑性樹脂としては、後述する第1熱可塑性樹脂フィルム10を構成する樹脂等が挙げられる。
 ゼロレタデーションフィルムとは、面内位相差値Re及び厚み方向位相差値Rthがともに-15~15nmであるフィルムをいう。この位相差フィルムは、IPSモードの液晶表示装置に好適に用いられる。面内位相差値Re及び厚み方向位相差値Rthは、好ましくはともに-10~10nmであり、より好ましくはともに-5~5nmである。ここでいう面内位相差値Re及び厚み方向位相差値Rthは、波長590nmにおける値である。
 面内位相差値Re及び厚み方向位相差値Rthは、それぞれ下記式:
 Re=(n-n)×d
 Rth=〔(n+n)/2-n〕×d
で定義される。式中、nはフィルム面内の遅相軸方向(x軸方向)の屈折率であり、nはフィルム面内の進相軸方向(面内でx軸に直交するy軸方向)の屈折率であり、nはフィルム厚み方向(フィルム面に垂直なz軸方向)の屈折率であり、dはフィルムの厚みである。
 ゼロレタデーションフィルムには、例えば、セルロース系樹脂、鎖状ポリオレフィン系樹脂及び環状ポリオレフィン系樹脂等のポリオレフィン系樹脂、ポリエチレンテレフタレート系樹脂又は(メタ)アクリル系樹脂からなる樹脂フィルムを用いることができる。特に、位相差値の制御が容易で、入手も容易であることから、セルロース系樹脂、ポリオレフィン系樹脂又は(メタ)アクリル系樹脂が好ましく用いられる。
 液晶性化合物の塗布・配向によって光学異方性を発現させたフィルムとしては、
第一の形態:棒状液晶化合物が支持基材に対して水平方向に配向した位相差フィルム、
第二の形態:棒状液晶化合物が支持基材に対して垂直方向に配向した位相差フィルム、
第三の形態:棒状液晶化合物が面内で螺旋状に配向の方向が変化している位相差フィルム、
第四の形態:円盤状液晶化合物が傾斜配向している位相差フィルム、
第五の形態:円盤状液晶化合物が支持基材に対して垂直方向に配向した二軸性の位相差フィルムが挙げられる。
 例えば、有機エレクトロルミネッセンスディスプレイに用いられる光学層としては、第一の形態、第二の形態、第五の形態が好適に用いられる。又は、これらを積層させて用いてもよい。
 位相差フィルムが、重合性液晶化合物の配向状態における重合体からなる層(以下、「光学異方性層」と称する場合がある)である場合、位相差フィルムは逆波長分散性を有することが好ましい。逆波長分散性とは、短波長での液晶配向面内位相差値の方が長波長での液晶配向面内位相差値よりも小さくなる光学特性であり、好ましくは、位相差フィルムが下記式(1)及び式(2)を満たすことである。なお、Re(λ)は波長λnmの光に対する面内位相差値を表す。
 Re(450)/Re(550)≦1   (1)
 1≦Re(630)/Re(550)   (2)
 位相差フィルムが第一の形態でかつ逆波長分散性を有する場合、表示装置での黒表示時の着色が低減するため好ましく、式(1)において0.82≦Re(450)/Re(550)≦0.93であればより好ましい。さらに120≦Re(550)≦150が好ましい。
 位相差フィルムが、光学異方性層を有するフィルムである場合の重合性液晶化合物としては、液晶便覧(液晶便覧編集委員会編、丸善(株)平成12年10月30日発行)の「3.8.6 ネットワーク(完全架橋型)」、「6.5.1 液晶材料 b.重合性ネマチック液晶材料」に記載された化合物の中で重合性基を有する化合物、並びに、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報、特開2011-207765号公報、特開2016-81035号公報、国際公開第2017/043438号に記載の重合性液晶化合物が挙げられる。
 重合性液晶化合物の配向状態における重合体から位相差フィルムを製造する方法は、例えば、特開2010-31223号公報に記載の方法が挙げられる。
 第2の形態の場合、面内位相差値Re(550)は0~10nmの範囲に、好ましくは0~5nmの範囲に調整すればよく、厚み方向の位相差値Rthは、-10~-300nmの範囲に、好ましくは-20~-200nmの範囲に調整すればよい。
 厚み方向の屈折率異方性を意味する厚み方向の位相差値Rthは、面内の進相軸を傾斜軸として50度傾斜させて測定される位相差値R50と面内位相差値Reとから算出できる。すなわち、厚み方向の位相差値Rthは、面内の位相差値Re、進相軸を傾斜軸として50度傾斜させて測定した位相差値R50、位相差フィルムの厚みd、及び位相差フィルムの平均屈折率nから、以下の式(4)~(6)によりnx、ny及びnzを求め、これらを式(3)に代入して、算出することができる。
  Rth=[(n+n)/2-n]×d   (3)
  Re =(n-n)×d         (4)
  R50=(n-n')×d/cos(φ)   (5)
  (n+n+n)/3=n        (6)
ここで、
  φ=sin-1〔sin(40°)/n
  n'=n×n/〔n ×sin(φ)+n ×cos(φ)〕1/2
 位相差フィルムは、二以上の層を有する多層フィルムであってもよい。例えば、位相差フィルムの片面又は両面に保護フィルムが積層されたものや、二以上の位相差フィルムが粘着剤又は接着剤を介して積層されたものが挙げられる。
 〔4〕第1硬化物層
 第1硬化物層15は、硬化性組成物(S)の硬化物から構成される硬化物層である。硬化性組成物(S)については上述のとおりである。硬化性組成物(S)は、例えば、熱によって硬化させることができる。
 〔5〕熱可塑性樹脂フィルム
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20はそれぞれ、透光性を有する(好ましくは光学的に透明な)熱可塑性樹脂、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)等のポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂;ポリスチレン系樹脂;又はこれらの混合物、共重合物等からなるフィルムであることができる。
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20はそれぞれ、延伸されていないフィルム、又は一軸若しくは二軸延伸されたフィルムのいずれであってもよい。二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、第1方向に延伸した後でこれとは異なる第2方向に延伸する逐次二軸延伸であってもよい。
 第1熱可塑性樹脂フィルム10及び/又は第2熱可塑性樹脂フィルム20は、光学層30を保護する役割を担う保護フィルムであってもよいし、位相差フィルム等の光学機能を併せ持つ保護フィルムであることもできる。
 位相差フィルムについては、上記〔4〕の記載が引用される。
 鎖状ポリオレフィン系樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂等の鎖状オレフィンの単独重合体のほか、2種以上の鎖状オレフィンからなる共重合体を挙げることができる。
 環状ポリオレフィン系樹脂は、ノルボルネンやテトラシクロドデセン(別名:ジメタノオクタヒドロナフタレン)又はそれらの誘導体を代表例とする環状オレフィンを重合単位として含む樹脂の総称である。環状ポリオレフィン系樹脂としては、環状オレフィンの開環(共)重合体及びその水素添加物、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等の鎖状オレフィン又はビニル基を有する芳香族化合物との共重合体、並びにこれらを不飽和カルボン酸やその誘導体で変性した変性(共)重合体等が挙げられる。
 中でも、環状オレフィンとしてノルボルネンや多環ノルボルネン系単量体等のノルボルネン系単量体を用いたノルボルネン系樹脂が好ましく用いられる。
 セルロースエステル系樹脂は、セルロースにおけるヒドロキシル基の少なくとも一部が酢酸エステル化されている樹脂であり、一部が酢酸エステル化され、一部が他の酸でエステル化されている混合エステルであってもよい。セルロースエステル系樹脂は、好ましくはアセチルセルロース系樹脂である。
 アセチルセルロース系樹脂としては、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート等が挙げられる。
 ポリエステル系樹脂は、エステル結合を有する、上記セルロースエステル系樹脂以外の樹脂であり、多価カルボン酸又はその誘導体と多価アルコールとの重縮合体からなるものが一般的である。
 ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリシクロへキサンジメチルテレフタレート、ポリシクロヘキサンジメチルナフタレート等が挙げられる。
 中でも、機械的性質、耐溶剤性、耐スクラッチ性、コスト等の観点からポリエチレンテレフタレートが好ましく用いられる。ポリエチレンテレフタレートとは、繰返し単位の80モル%以上がエチレンテレフタレートで構成される樹脂をいい、他の共重合成分(イソフタル酸等のジカルボン酸成分;プロピレングリコール等のジオール成分等)に由来する構成単位を含んでいてもよい。
 ポリカーボネート系樹脂は、炭酸とグリコール又はビスフェノールとから形成されるポリエステルである。中でも、分子鎖にジフェニルアルカンを有する芳香族ポリカーボネートは、耐熱性、耐候性及び耐酸性の観点から好ましく使用される。
 ポリカーボネートとしては、2,2-ビス(4-ヒドロキシフェニル)プロパン(別名ビスフェノールA)、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)イソブタン、1,1-ビス(4-ヒドロキシフェニル)エタン等のビスフェノールから誘導されるポリカーボネートが挙げられる。
 (メタ)アクリル系樹脂は、(メタ)アクリル系単量体由来の構成単位を含む重合体であり、(メタ)アクリル系単量体としては、メタクリル酸エステル及びアクリル酸エステルが挙げられる。
 メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-、i-又はt-ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル等が挙げられる。
 アクリル酸エステルとしては、アクリル酸エチル、アクリル酸n-、i-又はt-ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル等が挙げられる。
 (メタ)アクリル系樹脂は、(メタ)アクリルモノマー由来の構成単位のみからなる重合体であってもよいし、その他の構成単位を含んでいてもよい。
 1つの好ましい実施形態において(メタ)アクリル系樹脂は、共重合成分としてメタクリル酸メチルを含むか、又はメタクリル酸メチルとアクリル酸メチルとを含む。
 1つの好ましい実施形態において(メタ)アクリル系樹脂は、メタクリル酸エステルを主たる単量体とする(50質量%以上含有する)重合体であることができ、メタクリル酸エステルと他の共重合成分とが共重合されている共重合体であることが好ましい。
 (メタ)アクリル系樹脂のガラス転移温度は、好ましくは80℃以上160℃以下である。ガラス転移温度は、メタクリル酸エステル系単量体とアクリル酸エステル系単量体との重合比、それぞれのエステル基の炭素鎖長及びそれら有する官能基の種類、並びに単量体全体に対する多官能単量体の重合比の調整によって制御可能である。
 (メタ)アクリル系樹脂のガラス転移温度を高めるための手段として、高分子の主鎖に環構造を導入することも有効である。環構造は、環状酸無水物構造、環状イミド構造及びラクトン構造等の複素環構造であることが好ましい。具体的には、無水グルタル酸構造、無水コハク酸構造等の環状酸無水物構造;グルタルイミド構造、コハクイミド構造等の環状イミド構造;ブチロラクトン、バレロラクトン等のラクトン環構造が挙げられる。
 主鎖中の環構造の含有量を大きくするほど(メタ)アクリル系樹脂のガラス転移温度を高くすることができる傾向にある。
 環状酸無水物構造、環状イミド構造は、無水マレイン酸、マレイミド等の環状構造を有する単量体を共重合させることによって導入する方法;重合後脱水・脱メタノール縮合反応により環状酸無水物構造を導入する方法;アミノ化合物を反応させて環状イミド構造を導入する方法等によって導入することができる。
 ラクトン環構造を有する樹脂(重合体)は、高分子鎖にヒドロキシル基とエステル基とを有する重合体を調製した後、得られた重合体におけるヒドロキシル基とエステル基とを、加熱により、必要に応じて有機リン化合物等の触媒の存在下に環化縮合させてラクトン環構造を形成する方法によって得ることができる。
 (メタ)アクリル系樹脂及びそれから形成される熱可塑性樹脂フィルムは、必要に応じて添加剤を含有していてもよい。添加剤としては、例えば、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤、界面活性剤等を挙げることができる。
 これらの添加剤は、熱可塑性樹脂フィルムを構成する熱可塑性樹脂として、(メタ)アクリル系樹脂以外の他の熱可塑性樹脂を用いる場合にも使用することができる。
 (メタ)アクリル系樹脂は、フィルムへの製膜性やフィルムの耐衝撃性等の観点から、衝撃性改良剤であるアクリル系ゴム粒子を含有していてもよい。アクリル系ゴム粒子とは、アクリル酸エステルを主体とする弾性重合体を必須成分とする粒子であり、実質的にこの弾性重合体のみからなる単層構造のものや、この弾性重合体を1つの層とする多層構造のものが挙げられる。
 上記弾性重合体の例として、アクリル酸アルキルを主成分とし、これに共重合可能な他のビニル系単量体及び架橋性単量体を共重合させた架橋弾性共重合体が挙げられる。
 弾性重合体の主成分となるアクリル酸アルキルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルへキシル等、アルキル基の炭素数が1以上8以下程度のものが挙げられ、炭素数4以上のアルキル基を有するアクリル酸アルキルが好ましく用いられる。
 上記アクリル酸アルキルに共重合可能な他のビニル系単量体としては、分子内に重合性炭素-炭素二重結合を1個有する化合物を挙げることができ、より具体的には、メタクリル酸メチル等のメタクリル酸エステル;スチレン等の芳香族ビニル化合物;アクリロニトリル等のビニルシアン化合物等が挙げられる。
 上記架橋性単量体としては、分子内に重合性炭素-炭素二重結合を少なくとも2個有する架橋性の化合物を挙げることができ、より具体的には、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等の多価アルコールの(メタ)アクリレート類;アリル(メタ)アクリレート等の(メタ)アクリル酸のアルケニルエステル;ジビニルベンゼン等が挙げられる。
 ゴム粒子を含まない(メタ)アクリル系樹脂からなるフィルムと、ゴム粒子を含む(メタ)アクリル系樹脂からなるフィルムとの積層体を、光学層30に貼合される熱可塑性樹脂フィルムとすることもできる。また、(メタ)アクリル樹脂とは異なる樹脂からなる位相差発現層の片面又は両面に、(メタ)アクリル系樹脂層が形成され、位相差が発現されたものを、光学層30に貼合される熱可塑性樹脂フィルムとすることもできる。
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20はそれぞれ、セルロースエステル系樹脂、ポリエステル系樹脂、(メタ)アクリル系樹脂及び環状ポリオレフィン系樹脂からなる群より選択される1以上の熱可塑性樹脂を含むフィルムであることが好ましく、セルロースエステル系樹脂フィルム、ポリエステル系樹脂フィルム、(メタ)アクリル系樹脂フィルム、又は環状ポリオレフィン系樹脂フィルムであることがより好ましい。
 第1熱可塑性樹脂フィルム10及び/又は第2熱可塑性樹脂フィルム20は、紫外線吸収剤、赤外線吸収剤、有機系染料、顔料、無機色素、酸化防止剤、帯電防止剤、界面活性剤、滑剤、分散剤、熱安定化剤等を含有していてもよい。光学積層体を画像表示装置に適用する場合、紫外線吸収剤を含有する熱可塑性樹脂フィルムを画像表示素子(例えば液晶セルや有機EL表示素子等)の視認側に配置することで、画像表示素子の紫外線による劣化を抑制することができる。
 紫外線吸収剤としては、サリチル酸エステル系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられる。
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20は、同じ熱可塑性樹脂で構成されるフィルムであってもよいし、互いに異なる熱可塑性樹脂で構成されるフィルムであってもよい。第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20は、厚み、添加剤の有無やその種類、位相差特性等において同じであってもよいし、異なっていてもよい。
 第1熱可塑性樹脂フィルム10及び/又は第2熱可塑性樹脂フィルム20は、その外面(光学層30とは反対側の表面)にハードコート層、防眩層、反射防止層、光拡散層、帯電防止層、防汚層、導電層等の表面処理層(コーティング層)を備えていてもよい。
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20の厚みはそれぞれ、通常5μm以上200μm以下であり、好ましくは10μm以上120μm以下、より好ましくは10μm以上85μm以下、さらに好ましくは15μm以上65μm以下である。第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20の厚みはそれぞれ、50μm以下であってもよく、40μm以下であってもよい。第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20の厚みを小さくすることは、光学積層体(偏光板)、及びこれを含む画像表示装置の薄型化に有利である。
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20の硬化性組成物が塗布される面においては、密着性向上の観点より、ケン化処理、プラズマ処理、コロナ処理、プライマー処理等の表面改質処理を行ってもよいし、工程の簡素化の観点より、表面改質処理を実施しなくてもよい。表面改質処理は、熱可塑性樹脂フィルムの貼合面の代わりに、あるいは該貼合面とともに、光学層30の貼合面に行ってもよい。
 第1熱可塑性樹脂フィルム10又は第2熱可塑性樹脂フィルム20がセルロースエステル系樹脂フィルムである場合は、密着性向上の観点から、ケン化処理を行うことが好ましい。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が挙げられる。
 〔6〕第2硬化物層
 第2硬化物層25を形成する硬化性組成物は、上述の硬化性組成物(S)であってもよいし、これとは異なる他の硬化性組成物であってもよい。第2硬化物層25は、光学積層体の高温高湿環境下における光学耐久性等の観点から、硬化性組成物(S)の硬化物層であることが好ましい。
 第1硬化物層15及び第2硬化物層25が硬化性組成物(S)から形成される場合において、これらの硬化性組成物は、同一の組成であってもよいし、異なる組成であってもよい。
 他の硬化性組成物としては、硬化性の樹脂成分を水に溶解又は分散させた公知の水系組成物(水系接着剤を含む。)及び活性エネルギー線硬化性化合物を含有する公知の活性エネルギー線硬化性組成物(活性エネルギー線硬化性接着剤を含む。)等が挙げられる。
 水系組成物に含有される樹脂成分としては、ポリビニルアルコール系樹脂やウレタン樹脂等が挙げられる。
 ポリビニルアルコール系樹脂を含む水系組成物は、密着性や接着性を向上させるために、多価アルデヒド、メラミン系化合物、ジルコニア化合物、亜鉛化合物、グリオキザール、グリオキザール誘導体、水溶性エポキシ樹脂等の硬化性成分や架橋剤をさらに含有することができる。
 ウレタン樹脂を含む水系組成物としては、ポリエステル系アイオノマー型ウレタン樹脂とグリシジルオキシ基を有する化合物とを含む水系組成物が挙げられる。ポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入されたものである。
 活性エネルギー線硬化性組成物は、紫外線、可視光、電子線、X線等の活性エネルギー線の照射によって硬化する組成物である。活性エネルギー線硬化性組成物を用いる場合、第2硬化物層25は、当該組成物の硬化物層である。
 活性エネルギー線硬化性組成物は、カチオン重合によって硬化するエポキシ系化合物を硬化性成分として含有する組成物であることができ、好ましくは、かかるエポキシ系化合物を硬化性成分として含有する紫外線硬化性組成物である。エポキシ系化合物とは、分子内に平均1個以上、好ましくは2個以上のエポキシ基を有する化合物を意味する。エポキシ系化合物は、1種のみを使用してもよいし、2種以上を併用してもよい。
 エポキシ系化合物としては、芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールに、エピクロロヒドリンを反応させることにより得られる水素化エポキシ系化合物(脂環式環を有するポリオールのグリシジルエーテル);脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテル等の脂肪族エポキシ系化合物;脂環式環に結合したエポキシ基を分子内に1個以上有するエポキシ系化合物である脂環式エポキシ系化合物等が挙げられる。
 活性エネルギー線硬化性組成物は、硬化性成分として、上記エポキシ系化合物の代わりに、又はこれとともにラジカル重合性である(メタ)アクリル系化合物を含有することができる。(メタ)アクリル系化合物としては、分子内に1個以上の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー;官能基含有化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー等の(メタ)アクリロイルオキシ基含有化合物を挙げることができる。
 活性エネルギー線硬化性組成物は、カチオン重合によって硬化するエポキシ系化合物を硬化性成分として含む場合、光カチオン重合開始剤を含有することが好ましい。光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩等のオニウム塩;鉄-アレン錯体等を挙げることができる。
 活性エネルギー線硬化性組成物は、(メタ)アクリル系化合物等のラジカル重合性成分を含む場合、光ラジカル重合開始剤を含有することが好ましい。光ラジカル重合開始剤としては、例えば、アセトフェノン系開始剤、ベンゾフェノン系開始剤、ベンゾインエーテル系開始剤、チオキサントン系開始剤、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノン等を挙げることができる。
 光学積層体は、第2硬化物層25の代わりに粘着剤層を含むものであってもよい。すなわち、第2熱可塑性樹脂フィルム20を粘着剤層を介して光学層30に貼合してもよい。
該粘着剤層については、後述する粘着剤層についての記載が引用される。
 〔7〕光学積層体の製造
 光学層30の一方の面に第1硬化物層15を介して第1熱可塑性樹脂フィルム10を積層接着することにより、図2に示される構成の光学積層体を得ることができ、光学層30の他方の面に第2硬化物層25を介して第2熱可塑性樹脂フィルム20をさらに積層接着することにより、図3に示される構成の光学積層体を得ることができる。
 第1熱可塑性樹脂フィルム10及び第2熱可塑性樹脂フィルム20の双方を有する光学積層体を製造する場合、これらのフィルムは、段階的に片面ずつ積層接着してもよいし、両面のフィルムを同時に積層接着してもよい。
 光学層30と第1熱可塑性樹脂フィルム10とを接着させる方法としては、硬化性組成物(S)を光学層30及び第1熱可塑性樹脂フィルム10の貼合面のいずれか一方又はその両方に塗工し、これにもう一方の貼合面を積層し、例えば貼合ロール等を用いて上下から押圧して貼合する方法が挙げられる。
 硬化性組成物(S)の塗工には、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等、種々の塗工方式が利用できる。また、光学層30及び第1熱可塑性樹脂フィルム10を両者の貼合面が内側となるように連続的に供給しながら、その間に硬化性組成物(S)を流延させる方式であってもよい。
 光学層30と第1熱可塑性樹脂フィルム10とを貼合した後、光学層30と第1硬化物層15と第1熱可塑性樹脂フィルム10とを含む積層体に対して、加熱処理を施すことが好ましい。加熱処理の温度は、例えば40℃以上100℃以下であり、好ましくは50℃以上90℃以下である。加熱処理によって硬化性組成物層に含まれる溶剤を除去することができる。また、該加熱処理によって硬化性組成物の硬化・架橋反応を進行させることができる。
 以上の接着方法は、光学層30と第2熱可塑性樹脂フィルム20との接着にも適用することができる。
 第2硬化物層を構成する硬化性組成物として活性エネルギー線硬化性組成物を用いる場合、必要に応じて硬化性組成物層の乾燥を行った後、活性エネルギー線を照射して硬化性組成物層を硬化させる。
 活性エネルギー線を照射するために用いる光源は、紫外線、電子線、X線等を発生できるものであればよい。特に波長400nm以下に発光分布を有する、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等が好適に用いられる。
 図1に示すような、第1硬化物層15上に第1熱可塑性樹脂フィルムを有しない光学積層体は、光学層30の表面に硬化性組成物(S)を塗工し、得られた積層体に対して、例えば熱風乾燥機で80℃、300秒間の加熱処理を施すことによって製造することができる。また、セパレートフィルム/硬化性組成物(S)/光学層30からなる積層体を製造した後、セパレートフィルムを剥離し、その後、加熱処理を施すことによっても図1に示す光学積層体を製造することができる。
 硬化性組成物(S)から形成される第1硬化物層15や第2硬化物層25の厚みは、例えば1nm以上20μm以下であり、好ましくは5nm以上10μm以下であり、より好ましくは10nm以上5μm以下であり、さらに好ましくは20nm以上1μm以下である。上述の公知の水系組成物から形成される硬化物層もこれと同程度の厚みを有することができる。
 活性エネルギー線硬化性組成物から形成される硬化物層の厚みは、例えば10nm以上20μm以下、好ましくは100nm以上10μm以下、より好ましくは500nm以上5μm以下である。
 第1硬化物層15と第2硬化物層25とは、厚みが同じであってもよいし、異なっていてもよい。
 〔8〕光学積層体のその他の構成要素
 〔8-1〕光学機能性フィルム
 光学積層体は、所望の光学機能を付与するための、光学層30(例えば偏光子)以外の他の光学機能性フィルムを備えることができ、その好適な一例は位相差フィルムである。
 上述のように、第1熱可塑性樹脂フィルム10及び/又は第2熱可塑性樹脂フィルム20が位相差フィルムを兼ねることもできるが、これらのフィルムとは別途に位相差フィルムを積層することもできる。後者の場合、位相差フィルムは、粘着剤層や接着剤層を介して第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20、第1硬化物層15及び/又は第2硬化物層25の外面に積層することができる。位相差フィルムについては、上記〔4〕の記載が引用される。
 偏光板等の光学積層体に含まれ得る他の光学機能性フィルム(光学部材)の例は、集光板、輝度向上フィルム、反射層(反射フィルム)、半透過反射層(半透過反射フィルム)、光拡散層(光拡散フィルム)等である。
 集光板は、光路制御等を目的に用いられるもので、プリズムアレイシートやレンズアレイシート、ドット付設シート等であることができる。
 輝度向上フィルムは、偏光板等の光学積層体を適用した画像表示装置における輝度を向上させる目的で使用される。具体的には、屈折率の異方性が互いに異なる薄膜フィルムを複数枚積層して反射率に異方性が生じるように設計された反射型偏光分離シート、コレステリック液晶ポリマーの配向フィルムやその配向液晶層を基材フィルム上に支持した円偏光分離シート等が挙げられる。
 反射層、半透過反射層、光拡散層は、偏光板を反射型、半透過型、拡散型の光学部材とするためにそれぞれ設けられる。反射型の偏光板は、視認側からの入射光を反射させて表示するタイプの液晶表示装置に用いられ、バックライト等の光源を省略できるため、液晶表示装置を薄型化しやすい。半透過型の偏光板は、明所では反射型として、暗所ではバックライトからの光で表示するタイプの液晶表示装置に用いられる。また拡散型の偏光板は、光拡散性を付与してモアレ等の表示不良を抑制した液晶表示装置に用いられる。反射層、半透過反射層及び光拡散層は、公知の方法により形成することができる。
 〔8-2〕粘着剤層
 光学積層体は、粘着剤層を含むことができる。粘着剤層としては、光学積層体を液晶セルや有機EL表示素子等の画像表示素子、又は他の光学部材に貼合するための粘着剤層が挙げられる。該粘着剤層は、図1及び2に示される構成の光学積層体においては光学層30の外面、図3に示される構成の光学積層体においては第1熱可塑性樹脂フィルム10又は第2熱可塑性樹脂フィルム20の外面、図4に示される構成の光学積層体においては第1硬化物層15又は第2熱可塑性樹脂フィルム20の外面、図5に示される構成の光学積層体においては第1硬化物層15又は第2硬化物層25の外面に積層することができる。
 図3に示される構成の光学積層体の第2熱可塑性樹脂フィルム20の外面に粘着剤層40を積層した例を図6に示す。
 粘着剤層に用いられる粘着剤としては、(メタ)アクリル系樹脂や、シリコーン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリエーテル系樹脂等をベースポリマーとするものを用いることができる。中でも、透明性、粘着力、信頼性、耐候性、耐熱性、リワーク性等の観点から、(メタ)アクリル系粘着剤が好ましい。
 (メタ)アクリル系粘着剤には、メチル基やエチル基やn-、i-又はt-ブチル基等の炭素数が20以下のアルキル基を有する(メタ)アクリル酸アルキルエステルと、(メタ)アクリル酸や(メタ)アクリル酸ヒドロキシエチル等の官能基含有(メタ)アクリル系モノマーとを、ガラス転移温度が好ましくは25℃以下、より好ましくは0℃以下となるように配合した、重量平均分子量が10万以上の(メタ)アクリル系樹脂がベースポリマーとして有用である。
 光学積層体への粘着剤層の形成は、例えば、トルエンや酢酸エチル等の有機溶剤に粘着剤組成物を溶解又は分散させて粘着剤液を調製し、これを光学積層体の対象面に直接塗工して粘着剤層を形成する方式や、離型処理が施されたセパレートフィルム上に粘着剤層をシート状に形成しておき、それを光学積層体の対象面に移着する方式等により行うことができる。
 粘着剤層の厚みは、その接着力等に応じて決定されるが、1μm以上50μm以下の範囲が適当であり、好ましくは2μm以上40μm以下である。
 光学積層体は、上記のセパレートフィルムを含み得る。セパレートフィルムは、ポリエチレン等のポリエチレン系樹脂、ポリプロピレン等のポリプロピレン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等からなるフィルムであることができる。中でも、ポリエチレンテレフタレートの延伸フィルムが好ましい。
 粘着剤層は、必要に応じて、ガラス繊維、ガラスビーズ、樹脂ビーズ、金属粉や他の無機粉末からなる充填剤、顔料、着色剤、酸化防止剤、紫外線吸収剤、帯電防止剤等を含むことができる。
 〔8-3〕プロテクトフィルム
 光学積層体は、その表面(典型的には、第1熱可塑性樹脂フィルム10、第2熱可塑性樹脂フィルム20、第1硬化物層15及び/又は第2硬化物層25の表面)を保護するためのプロテクトフィルムを含むことができる。プロテクトフィルムは、例えば画像表示素子や他の光学部材に光学積層体が貼合された後、それが有する粘着剤層ごと剥離除去される。
 プロテクトフィルムは、例えば、基材フィルムとその上に積層される粘着剤層とで構成される。粘着剤層については上述の記述が引用される。
 基材フィルムを構成する樹脂は、例えば、ポリエチレンのようなポリエチレン系樹脂、ポリプロピレンのようなポリプロピレン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステル系樹脂、ポリカーボネート系樹脂等の熱可塑性樹脂であることができる。好ましくは、ポリエチレンテレフタレート等のポリエステル系樹脂である。
 <画像表示装置>
 本発明に係る光学積層体は、液晶表示装置や有機エレクトロルミネッセンス(EL)表示装置等の画像表示装置に適用することができる。この場合、画像表示装置は、光学積層体と、画像表示素子とを含む。画像表示素子としては、液晶セル、有機EL表示素子等が挙げられる。これらの画像表示素子としては、従来公知のものを使用することができる。
 偏光板である光学積層体が液晶表示装置に適用される場合、光学積層体は、液晶セルのバックライト側(背面側)に配置されてもよいし、視認側に配置されてもよいし、それらの両方に配置されてもよい。偏光板である光学積層体が有機EL表示装置に適用される場合、光学積層体は通常、有機EL表示素子の視認側に配置される。
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。実施例、比較例中の「%」及び「部」は、特記しない限り、質量%及び質量部である。
 [製造例:偏光子の作製]
 厚さ60μmのポリビニルアルコールフィルム(平均重合度:約2,400、ケン化度:99.9モル%以上)を30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の質量比が0.02/2/100である30℃の水溶液に浸漬した。その後、ヨウ化カリウム/ホウ酸/水の質量比が12/5/100である56.5℃の水溶液に浸漬した。引き続き、8℃の純水で洗浄した後、65℃で乾燥させて、ポリビニルアルコールフィルムにヨウ素が吸着配向された厚み23μmの偏光子を得た。延伸は、主にヨウ素染色及びホウ酸処理の工程で行い、トータル延伸倍率は5.5倍であった。
 〔実施例1~4、比較例1及び2〕
 (1)硬化性組成物の調製
 表1に示される成分を表1に示される配合量で、水系溶媒としての純水とともに混合して、硬化性組成物(接着剤水溶液)を調製した。表1に示される各成分の配合量の単位は質量部であり、各成分の配合量は固形分換算での量である。実施例1~4、比較例1及び2において、得られた硬化性組成物における水系樹脂(A)の濃度は5.0質量%とした。
 (2)偏光板の作製
 トリアセチルセルロース(TAC)フィルム〔コニカミノルタオプト(株)製の商品名「KC4UAW」、厚み:40μm〕の片面にケン化処理を施した後、そのケン化処理面に上記(1)で調製した硬化性組成物をバーコータを用いて塗工するとともに、環状ポリオレフィン系樹脂からなるゼロ位相差フィルム〔日本ゼオン(株)製の商品名「ZEONOR」、厚み:23μm〕の片面にコロナ処理を施し、そのコロナ処理面に上記(1)で調製した硬化性組成物をバーコータを用いて塗工した。硬化性組成物層が偏光子側となるように、偏光子の一方の面にケン化処理済みTACフィルムを積層し、他方の面にコロナ処理済みゼロ位相差フィルムを積層して、ゼロ位相差フィルム/硬化性組成物層/偏光子/硬化性組成物層/TACフィルムの層構成を有する積層体を得た。この積層体に対して、熱風乾燥機で80℃、300秒間の加熱処理を行うことにより、ゼロ位相差フィルム/硬化物層/偏光子/硬化物層/TACフィルムの層構成を有する偏光板を作製した。作製した偏光板中の硬化物層の厚みは、一層につき20~60nmであった。
 (3)光学耐久性の評価
 得られた偏光板を30mm×30mmの大きさに裁断した後、ゼロ位相差フィルム側に(メタ)アクリル系粘着剤を介してガラス基板に貼合し、測定サンプルを得た。測定サンプルの層構成は、ガラス基板/(メタ)アクリル系粘着剤層/ゼロ位相差フィルム/硬化物層/偏光子/硬化物層/TACフィルムである。ガラス基板には、無アルカリガラス基板〔コーニング社製の商品名「Eagle XG」〕を使用した。
 得られた測定サンプルについて、積分球付き分光光度計〔日本分光(株)製の製品名「V7100」〕を用いて波長380~780nmの範囲におけるMD透過率とTD透過率を測定し、各波長における偏光度を算出した。算出した偏光度について、JIS Z 8701:1999「色の表示方法-XYZ表色系及びX10Y10Z10表色系」の2度視野(C光源)により視感度補正を行い、耐久性試験前の視感度補正偏光度Pyを求めた。なお、測定サンプルは、偏光板のTACフィルム側をディテクター側とし、ガラス基板側から光が入光するように積分球付き分光光度計にセットした。
 偏光度(%)は、下記式:
 偏光度(λ)=100×(Tp(λ)-Tc(λ))/(Tp(λ)+Tc(λ))
で定義される。
 Tp(λ)は、入射する波長λ(nm)の直線偏光とパラレルニコルの関係で測定した測定サンプルの透過率(%)である。
 Tc(λ)は、入射する波長λ(nm)の直線偏光とクロスニコルの関係で測定した測定サンプルの透過率(%)である。
 次いで、この測定サンプルを温度85℃、相対湿度85%RHの高温高湿環境下に500時間置いた後、温度23℃、相対湿度50%RHの環境下に24時間置く耐久性試験に供した。耐久性試験後、耐久性試験前と同様の方法によって視感度補正偏光度Pyを求めた。
 耐久性試験後の視感度補正偏光度Pyと耐久性試験前の視感度補正偏光度Pyとの差の絶対値(|ΔPy|)を算出した。|ΔPy|の算出値を表1に示す。
 |ΔPy|の値が小さいほど、高温高湿環境下における光学耐久性に優れる。いずれの実施例及び比較例においても、耐久試験後の視感度補正偏光度Pyと耐久試験前の視感度補正偏光度Pyの差は、負の値を示した。
 (4)密着性の評価
 得られた偏光板をゼロ位相差フィルム側に(メタ)アクリル系粘着剤を介してガラス基板に貼合し、粘着剤層付偏光板とした。得られた粘着剤層付偏光板から、幅25mm、長さ約200mmの試験片を裁断し、その粘着剤層面をソーダガラスに貼合した。次いで、偏光子とTACフィルムとの間にカッターの刃を入れ、長さ方向に端から30mm剥離し、その剥離部分を万能引張試験機〔(株)島津製作所製の「AG-1」〕のつかみ部でつかんだ。この状態の試験片を、温度23℃及び相対湿度55%の雰囲気中にて、JIS K 6854-2:1999「接着剤-はく離接着強さ試験方法-第2部:180度はく離」に準じて、つかみ移動速度300mm/分で180度はく離試験を行い、つかみ部の30mmを除く170mmの長さにわたる密着性を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示される各成分の詳細は次のとおりである。
 水系樹脂(A)のA-1:株式会社日本触媒製の商品名「エポクロス WS-300」〔2-オキサゾリル基を側鎖として有するオキサゾリル基含有アクリル系重合体の水溶液、固形分濃度:10質量%、オキサゾリン価(理論値):130g solid/eq.、オキサゾリル基量(理論値):7.7mmol/g,solid、数平均分子量:4×10、重量平均分子量:12×104)〕
 水系樹脂(A)のA-2:日本合成化学工業株式会社の商品名「ゴーセファイマー Z-200」〔アセトアセチル基で変性されたポリビニルアルコール、平均重合度:1100、ケン化度:98.5モル%以上〕
 シラン化合物(B):信越化学工業株式会社製の商品名「X-12-1135」〔カルボキシル基及びシラノール基を有するシラン化合物〕
 化合物(C):硫酸
 10 第1熱可塑性樹脂フィルム、15 第1硬化物層、20 第2熱可塑性樹脂フィルム、25 第2硬化物層、30 光学層、40 粘着剤層。

Claims (13)

  1.  水系樹脂とシラノール基を有するシラン化合物とを少なくとも含む、硬化性組成物。
  2.  前記シラン化合物は、さらに、置換基を有していてもよいアミノ基、カルボキシル基、エポキシ基、アセトアセチル基、ヒドロキシアルキル基、メルカプト基、オキシアルキレン基、及びアルケニル基からなる群より選択される1以上の官能基を有する、請求項1に記載の硬化性組成物。
  3.  前記シラン化合物は、さらに、置換基を有していてもよいアミノ基及びカルボキシル基のうちの少なくとも一方の官能基を有する、請求項1又は2に記載の硬化性組成物。
  4.  前記シラン化合物は、さらにSi-O-Si結合を含み、
     前記シラン化合物の構造物中に前記官能基を有する、請求項2又は3に記載の硬化性組成物。
  5.  前記水系樹脂は、水酸基含有樹脂及び(メタ)アクリル系樹脂のうちの少なくとも一方を含む、請求項1~4のいずれか1項に記載の硬化性組成物。
  6.  前記水酸基含有樹脂は、ポリビニルアルコール系樹脂及びポリビニルアセタール系樹脂のうちの少なくとも一方を含む、請求項5に記載の硬化性組成物。
  7.  請求項1~6のいずれか1項に記載の硬化性組成物を硬化させてなる、硬化物層。
  8.  光学層及び第1硬化物層を含み、
     前記第1硬化物層は、請求項7に記載の硬化物層である、光学積層体。
  9.  さらに、第1熱可塑性樹脂フィルムを含み、
     前記光学層、前記第1硬化物層、及び前記第1熱可塑性樹脂フィルムがこの順に積層されている、請求項8に記載の光学積層体。
  10.  さらに、第2硬化物層及び第2熱可塑性樹脂フィルムを含み、
     前記光学層の前記第1硬化物層側とは反対側に、前記第2硬化物層及び前記第2熱可塑性樹脂フィルムがこの順に積層されている、請求項8又は9に記載の光学積層体。
  11.  前記第2硬化物層は、請求項7に記載の硬化物層である、請求項10に記載の光学積層体。
  12.  前記光学層は、偏光子である、請求項8~11のいずれか1項に記載の光学積層体。
  13.  請求項8~12のいずれか1項に記載の光学積層体、及び、画像表示素子を含む、画像表示装置。
PCT/JP2020/016287 2019-04-26 2020-04-13 硬化性組成物、硬化物層、光学積層体、及び画像表示装置 WO2020218060A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080030886.8A CN113728055B (zh) 2019-04-26 2020-04-13 固化性组合物、固化物层、光学层叠体、以及图像显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-085027 2019-04-26
JP2019085027A JP2020180237A (ja) 2019-04-26 2019-04-26 硬化性組成物、硬化物層、光学積層体、及び画像表示装置

Publications (1)

Publication Number Publication Date
WO2020218060A1 true WO2020218060A1 (ja) 2020-10-29

Family

ID=72941881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016287 WO2020218060A1 (ja) 2019-04-26 2020-04-13 硬化性組成物、硬化物層、光学積層体、及び画像表示装置

Country Status (4)

Country Link
JP (1) JP2020180237A (ja)
CN (1) CN113728055B (ja)
TW (1) TW202104421A (ja)
WO (1) WO2020218060A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565510A (zh) * 2024-01-17 2024-02-20 畅的新材料科技(上海)有限公司 一种双波段反射叠层膜及制备方法
CN117565510B (zh) * 2024-01-17 2024-05-24 畅的新材料科技(上海)有限公司 一种双波段反射叠层膜及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119656A (ja) * 2001-10-15 2003-04-23 Nippon Shokubai Co Ltd 積層板用不織布用水性バインダー及びそれにより形成されてなる積層板用不織布、プリント配線板及び絶縁板
JP2003166162A (ja) * 2001-11-27 2003-06-13 Matsushita Electric Works Ltd ガラス不織布及び積層板
WO2009051243A1 (ja) * 2007-10-18 2009-04-23 Nippon Sheet Glass Company, Limited 光輝性顔料
JP2009280889A (ja) * 2008-05-26 2009-12-03 Nippon Parkerizing Co Ltd 水系表面処理剤、プレコート金属材料の下地処理方法、プレコート金属材料の製造方法およびプレコート金属材料
JP2011107686A (ja) * 2009-10-22 2011-06-02 Sumitomo Chemical Co Ltd 光学積層体及びその製造方法
JP2017037234A (ja) * 2015-08-11 2017-02-16 日本合成化学工業株式会社 偏光板用接着剤組成物、それを用いた偏光板
JP2017039320A (ja) * 2015-08-19 2017-02-23 太陽誘電ケミカルテクノロジー株式会社 有機高分子層が設けられた印刷用孔版及びその製造方法
JP2018158987A (ja) * 2017-03-22 2018-10-11 日東電工株式会社 易接着剤組成物およびそれを備える偏光子保護フィルム、偏光フィルムならびに画像表示装置
JP2019188355A (ja) * 2018-04-26 2019-10-31 シャープ株式会社 光触媒層、光触媒体、及び光触媒体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359881A (ja) * 2003-06-06 2004-12-24 Mitsubishi Chemicals Corp ガスバリア性コーティング剤組成物およびガスバリア性積層フィルム
JP7345241B2 (ja) * 2017-05-25 2023-09-15 住友化学株式会社 偏光板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119656A (ja) * 2001-10-15 2003-04-23 Nippon Shokubai Co Ltd 積層板用不織布用水性バインダー及びそれにより形成されてなる積層板用不織布、プリント配線板及び絶縁板
JP2003166162A (ja) * 2001-11-27 2003-06-13 Matsushita Electric Works Ltd ガラス不織布及び積層板
WO2009051243A1 (ja) * 2007-10-18 2009-04-23 Nippon Sheet Glass Company, Limited 光輝性顔料
JP2009280889A (ja) * 2008-05-26 2009-12-03 Nippon Parkerizing Co Ltd 水系表面処理剤、プレコート金属材料の下地処理方法、プレコート金属材料の製造方法およびプレコート金属材料
JP2011107686A (ja) * 2009-10-22 2011-06-02 Sumitomo Chemical Co Ltd 光学積層体及びその製造方法
JP2017037234A (ja) * 2015-08-11 2017-02-16 日本合成化学工業株式会社 偏光板用接着剤組成物、それを用いた偏光板
JP2017039320A (ja) * 2015-08-19 2017-02-23 太陽誘電ケミカルテクノロジー株式会社 有機高分子層が設けられた印刷用孔版及びその製造方法
JP2018158987A (ja) * 2017-03-22 2018-10-11 日東電工株式会社 易接着剤組成物およびそれを備える偏光子保護フィルム、偏光フィルムならびに画像表示装置
JP2019188355A (ja) * 2018-04-26 2019-10-31 シャープ株式会社 光触媒層、光触媒体、及び光触媒体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565510A (zh) * 2024-01-17 2024-02-20 畅的新材料科技(上海)有限公司 一种双波段反射叠层膜及制备方法
CN117565510B (zh) * 2024-01-17 2024-05-24 畅的新材料科技(上海)有限公司 一种双波段反射叠层膜及制备方法

Also Published As

Publication number Publication date
TW202104421A (zh) 2021-02-01
JP2020180237A (ja) 2020-11-05
CN113728055B (zh) 2024-02-09
CN113728055A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2015064433A1 (ja) 偏光板
WO2013047884A1 (ja) 偏光板およびその製造方法
WO2012133161A1 (ja) 光硬化性接着剤、偏光板および積層光学部材
JP7308759B2 (ja) 光学積層体及び画像表示装置
JP2008197310A (ja) 薄型偏光板、複合偏光板、画像表示装置、及び複合偏光板の製造方法
CN108931833B (zh) 偏振板
WO2020218060A1 (ja) 硬化性組成物、硬化物層、光学積層体、及び画像表示装置
JP2012032696A (ja) 複合位相差板、複合偏光板および液晶表示装置
JP7308758B2 (ja) 硬化性組成物、光学積層体及び画像表示装置
WO2020218061A1 (ja) 硬化性組成物、硬化物層、光学積層体、及び画像表示装置
WO2020213494A1 (ja) 光学積層体及び画像表示装置
JP7096066B2 (ja) 偏光板
JP6923395B2 (ja) 偏光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795627

Country of ref document: EP

Kind code of ref document: A1